151
|
Hamza B, Irimia D. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. LAB ON A CHIP 2015; 15:2625-33. [PMID: 25987163 PMCID: PMC4457540 DOI: 10.1039/c5lc00245a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Appropriate inflammatory responses to wounds and infections require adequate numbers of neutrophils arriving at injury sites. Both insufficient and excessive neutrophil recruitment can be detrimental, favouring systemic spread of microbes or triggering severe tissue damage. Despite its importance in health and disease, the trafficking of neutrophils through tissues remains difficult to control and the mechanisms regulating it are insufficiently understood. These mechanisms are also complex and difficult to isolate using traditional in vivo models. Here we designed a microfluidic model of tissue infection/inflammation, in which human neutrophils emerge from a droplet-size samples of whole blood and display bi-directional traffic between this and micro-chambers containing chemoattractant and microbe-like particles. Two geometrical barriers restrict the entrance of red blood cells from the blood to the micro-chambers and simulate the mechanical function of the endothelial barrier separating the cells in blood from cells in tissues. We found that in the presence of chemoattractant, the number of neutrophils departing the chambers by retrotaxis is in dynamic equilibrium with the neutrophils recruited by chemotaxis. We also found that in the presence of microbe-like particles, the number of neutrophils trapped in the chambers is proportional to the number of particles. Together, the dynamic equilibrium between migration, reversed-migration and trapping processes determine the optimal number of neutrophils at a site. These neutrophils are continuously refreshed and responsive to the number of microbes. Further studies using this infection-inflammation-on-a-chip-model could help study the processes of inflammation resolution. The new in vitro experimental tools may also eventually help testing new therapeutic strategies to limit neutrophil accumulation in tissues during chronic inflammation, without increasing the risk for infections.
Collapse
Affiliation(s)
- Bashar Hamza
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129
- Current affiliation: Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | |
Collapse
|
152
|
Luo D, McGettrick HM, Stone PC, Rainger GE, Nash GB. The roles of integrins in function of human neutrophils after their migration through endothelium into interstitial matrix. PLoS One 2015; 10:e0118593. [PMID: 25706870 PMCID: PMC4338182 DOI: 10.1371/journal.pone.0118593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 12/30/2022] Open
Abstract
We investigated the changes in neutrophil phenotype and function after transendothelial migration, and the roles played by integrin receptors in their behaviour. Neutrophils were tracked microscopically as they migrated through endothelial cells into collagen gels, and were retrieved at desired times. When endothelial cells were treated with increasing doses of tumour necrosis factor-α, neutrophils not only migrated in greater number, but also to a greater depth in the gel. Apoptosis was barely detectable in neutrophils retrieved after 24h, and many remained viable and motile at 48h. Neutrophils retrieved after 1h had increased oxidative capacity and at 24h had similar capacity as freshly-isolated neutrophils. However, by then they had impaired ability to phagocytose bacteria. Compared to fresh neutrophils, total mRNA was halved by 24h, but while β2-integrin expression decreased, β1- and β3-integrin increased along with ICAM-1. Studies of integrin blockade indicated that while β2-integrins were needed to cross the endothelial barrier, no integrins were required for migration within the gel. β2-integrins also contributed to phagocytosis, but their binding was not required for prolonged survival. These results demonstrate a model for integrated analysis of neutrophil migration and function, and describe development of effector functions and the roles of integrins in human neutrophils for the first time.
Collapse
Affiliation(s)
- Ding Luo
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M. McGettrick
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phil C. Stone
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - George E. Rainger
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gerard B. Nash
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
153
|
Rodrigues KADF, Amorim LV, Dias CN, Moraes DFC, Carneiro SMP, Carvalho FADA. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:32-40. [PMID: 25460590 DOI: 10.1016/j.jep.2014.11.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/11/2014] [Accepted: 11/13/2014] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syzygium cumini (L.) Skeels (Myrtaceae), commonly known as "jambolão" in Brazil is widely used in folk medicine against leishmaniasis, inflammation, chronic diarrhea, and ulcers. It is one of the most commonly used plants for the treatment of diabetes worldwide. In previous studies, Syzygium cumini was shown to possess antihyperlipidemic and anti-allergic properties, and to exhibit good performance as an antimicrobial agent against bacteria, fungi, and protozoa parasites of the genus Leishmania and Trypanosoma. This study was aimed at evaluating the effects of S. cumini essential oil (ScEO) and its major component α-pinene on Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. MATERIALS AND METHODS To evaluate the anti-proliferative effect on Leishmania, effects on promastigote and axenic amastigote forms were assessed using tetrazolium salt (MTT) assay. The intramacrophagic amastigotes were exposed to ScEO and α-pinene to determine the survival index. To gain insight into the mechanism of action involved in the effect on the samples, we evaluated the modulation of macrophage activation state by observing structural (phagocytic and lysosomal activities) and cellular (nitric oxide increase) changes. To assess the safety profile of ScEO and α-pinene, murine macrophages and human red blood cells were treated with ScEO and α-pinene and the selectivity index was calculated for each treatment. RESULTS α-Pinene was effective against Leishmania amazonensis promastigote forms, with a half-maximal inhibitory concentration (IC50) value of 19.7µg/mL. α-Pinene was more active (IC50 values of 16.1 and 15.6µg/mL against axenic and intracellular amastigotes, respectively) than ScEO (IC50 values of 43.9 and 38.1µg/mL against axenic and intracellular amastigotes, respectively). Our results showed that the anti-Leishmania effects were mediated by immunomodulatory activity, as evidenced by the observed increases in both phagocytic and lysosomal activity, and the elevated NO levels. ScEO and α-pinene exhibited low cytotoxicity against murine macrophages and human erythrocytes. The 50% cytotoxicity concentration (CC50) values for the macrophages in the MTT assay were 614.1 and 425.2µg/mL for ScEO and α-pinene, respectively, while the corresponding half-maximal hemolytic concentration (HC50) values were 874.3 and 233.3µg/mL. CONCLUSIONS Taken together, the results demonstrate that ScEO and its major constituent α-pinene have significant anti-Leishmania activity, modulated by macrophage activation, with acceptable levels of cytotoxicity in murine macrophages and human erythrocytes. Further work is warranted, involving more in-depth mechanistic studies and in vivo investigations.
Collapse
Affiliation(s)
| | - Layane Valéria Amorim
- Graduate Program in Pharmacology, Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | - Clarice Noleto Dias
- Laboratory of Pharmacognosy II, Department of Pharmacy, Federal University of Maranhão, 65085-580 São Luís, MA, Brazil.
| | | | - Sabrina Maria Portela Carneiro
- Graduate Program in Pharmacology, Medicinal Plants Research Center, Federal University of Piauí, 64049-550 Teresina, PI, Brazil.
| | | |
Collapse
|
154
|
Immunomodulatory effects of selected Malaysian plants on the CD18/11a expression and phagocytosis activities of leukocytes. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30170-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
155
|
Ushijima Y, Ohniwa RL, Maruyama A, Saito S, Tanaka Y, Morikawa K. Nucleoid compaction by MrgA(Asp56Ala/Glu60Ala) does not contribute to staphylococcal cell survival against oxidative stress and phagocytic killing by macrophages. FEMS Microbiol Lett 2014; 360:144-51. [PMID: 25227518 DOI: 10.1111/1574-6968.12598] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus MrgA (encoded by mrgA) belongs to the Dps family of proteins, which play important roles in coping with various stresses. The staphylococcal mrgA gene is specifically expressed under oxidative stress conditions and is one of the most highly induced genes during phagocytic killing by macrophages. We previously reported that mrgA is essential for oxidative stress resistance, and can cause nucleoid compaction. However, whether nucleoid compaction by itself would contribute to oxidative stress resistance was hard to determine, because Dps family proteins generally have ferroxidase activity to prevent hydroxyl radical formation via the Fenton reaction. In this study, we resolved the crystal structure of MrgA and conducted mutation analysis of Asp56 and Glu60, which are located at the expected ferroxidase centre. In the strain expressing Asp56Ala/Glu60Ala MrgA (termed MrgA*), MrgA* retained dodecamer formation and nucleoid compaction ability. By contrast, the ferroxidase activity of MrgA* decreased by about half. Viability of the mrgA* strain was as low as the mrgA null mutant in oxidative stress and phagocytic killing assays. These results suggest that nucleoid compaction by itself is insufficient for oxidative stress resistance, and Asp56 and Glu60 constitute essential molecular sites in MrgA for oxidative stress resistance and survival against phagocytic killing.
Collapse
Affiliation(s)
- Yuri Ushijima
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
156
|
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5:448. [PMID: 25285096 PMCID: PMC4168738 DOI: 10.3389/fimmu.2014.00448] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.
Collapse
Affiliation(s)
| | - Nutan Srivastava
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Troy Mitchell
- Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
157
|
Taylor NJ, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W, Ma Y, Wendon JA, Shawcross DL. The severity of circulating neutrophil dysfunction in patients with cirrhosis is associated with 90-day and 1-year mortality. Aliment Pharmacol Ther 2014; 40:705-15. [PMID: 25060167 DOI: 10.1111/apt.12886] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 05/23/2014] [Accepted: 07/02/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Patients with cirrhosis are susceptible to sepsis, pre-disposing to the development of encephalopathy, bleeding and organ dysfunction with associated high mortality. AIM To characterise circulating neutrophil function in a cirrhotic cohort as a determinant of 90-day and 1-year mortality. METHODS Sixty-two patients with cirrhosis [49 stable (Child-Pugh A/B/C = 24%/39%/37%); 13 acute-on-chronic liver failure] were prospectively studied and compared with 11 healthy controls. Neutrophil function was evaluated at baseline and repeated at critical points during the course of the patient's illness until death/transplantation. Neutrophil phenotype was determined using fluorochrome-labelled antibodies to CD16/CD11b and assessed by flow cytometry. Neutrophil phagocytic activity (NPA) and capacity (NPC) were determined using FITC-labelled opsonised Escherichia coli. Oxidative burst (OB) was quantified by the percentage of neutrophils producing reactive oxygen species (ROS) and mean fluorescence intensity at rest, and after stimulation with E. coli. Physiological variables, biochemistry, microbiology and outcomes were collected. Plasma pro- and anti-inflammatory cytokine profiles were performed by ELISA. RESULTS NPA/NPC was impaired in cirrhosis with the most significant dysfunction being observed in those with advanced disease and in those treated with propranolol. NPC predicted survival in stable cirrhosis [AUROC 0.83 (95% CI 0.68-0.97); P = 0.021] and differentiated survivors from nonsurvivors (90-day P = 0.01; 1 year P < 0.001). Resting OB ≥12% predicted 90-day mortality with 80% sensitivity and 71% specificity [AUROC 0.81 (95% CI 0.64-0.97); P = 0.026 and differentiated survivors from nonsurvivors; P = 0.015]. CONCLUSION Circulating neutrophils in patients with cirrhosis are dysfunctional and predict the development of infection, organ dysfunction and survival at 90 days and 1 year.
Collapse
Affiliation(s)
- N J Taylor
- Liver Intensive Care Unit, King's College London School of Medicine at King's College Hospital, London, UK; Institute of Liver Studies and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
159
|
Obesity-induced hyperleptinemia improves survival and immune response in a murine model of sepsis. Anesthesiology 2014; 121:98-114. [PMID: 24595112 DOI: 10.1097/aln.0000000000000192] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Obesity is a growing health problem and associated with immune dysfunction. Sepsis is defined as systemic inflammatory response syndrome that occurs during infection. Excessive inflammation combined with immune dysfunction can lead to multiorgan damage and death. METHODS The authors investigated the influence of a class 1 obesity (body mass index between 30 and 34.9) on immune function and outcome in sepsis and the role of leptin on the immune response. The authors used a long-term high-fat-diet feeding model (12 weeks) on C57Bl/6 mice (n = 100) and controls on standard diet (n = 140) followed by a polymicrobial sepsis induced by cecal ligation and puncture. RESULTS The authors show that class 1 obesity is connected to significant higher serum leptin levels (data are mean ± SEM) (5.7 ± 1.2 vs. 2.7 ± 0.2 ng/ml; n = 5; P = 0.033) and improved innate immune response followed by significant better survival rate in sepsis (71.4%, n = 10 vs. 10%, n = 14; P < 0.0001). Additional sepsis-induced increases in leptin levels stabilize body temperature and are associated with a controlled immune response in a time-dependent and protective manner. Furthermore, leptin treatment of normal-weight septic mice with relative hypoleptinemia (n = 35) also significantly stabilizes body temperature, improves cellular immune response, and reduces proinflammatory cytokine response resulting in improved survival (30%; n = 10). CONCLUSIONS Relative hyperleptinemia of class 1 obesity or induced by treatment is protective in sepsis. Leptin seems to play a regulatory role in the immune system in sepsis, and treatment of relative hypoleptinemia could offer a new way of an individual sepsis therapy.
Collapse
|
160
|
Catz SD. The role of Rab27a in the regulation of neutrophil function. Cell Microbiol 2014; 16:1301-10. [PMID: 24964030 DOI: 10.1111/cmi.12328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Neutrophils are central regulators of the innate immune response and help shape the adaptive immune response. Malfunction and unregulated neutrophil activation leads to disease and inflammation. During the host response to infection, neutrophils display several mechanisms of defense mediated by their arsenal of granular proteins. Regulation of granular trafficking, docking and fusion is at the core of the neutrophil defense response to pathogens. The small GTPase Rab27a has emerged as a central regulator of the neutrophil response through its tight control of vesicular trafficking and degranulation. This review focuses on the latest research that has led to the characterization of Rab27a as an essential regulator of neutrophil function.
Collapse
Affiliation(s)
- Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
161
|
Jakhar R, Paul S, Chauhan AK, Kang SC. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage. Int Immunopharmacol 2014; 22:356-65. [PMID: 25068824 DOI: 10.1016/j.intimp.2014.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 01/08/2023]
Abstract
Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases.
Collapse
Affiliation(s)
- Rekha Jakhar
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Souren Paul
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Anil Kumar Chauhan
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea.
| |
Collapse
|
162
|
Meijer M, Rijkers GT, van Overveld FJ. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2014; 9:1055-68. [PMID: 24168412 DOI: 10.1586/1744666x.2013.851347] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by a decreased airflow due to airway narrowing that, once it occurs, is not fully reversible. The disease usually is progressive and associated with an enhanced inflammatory response in the lungs after exposure to noxious particles or gases. After removal of the noxious particles, the inflammation can continue in a self-sustaining manner. It has been established that improper activation of neutrophils lies at the core of the pathology. This paper provides an overview of the mechanisms by which neutrophils can induce the pulmonary damage of COPD. As the pathogenesis of COPD is slowly being unraveled, new points of intervention are discovered, some of which with promising results.
Collapse
Affiliation(s)
- Mariska Meijer
- Department of Science, University College Roosevelt, Lange Noordstraat 1, 4113 CB Middelburg, The Netherlands
| | | | | |
Collapse
|
163
|
Saffarzadeh M, Cabrera-Fuentes HA, Veit F, Jiang D, Scharffetter-Kochanek K, Gille CG, Rooijakkers SHM, Hartl D, Preissner KT. Characterization of rapid neutrophil extracellular trap formation and its cooperation with phagocytosis in human neutrophils. Discoveries (Craiova) 2014; 2:e19. [PMID: 32309548 PMCID: PMC6941580 DOI: 10.15190/d.2014.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neutrophils, as the first cellular line of innate host defense, employ phagocytosis and formation of neutrophil extracellular traps (NETs) to combat infections. Classical NET formation induced by phorbol myristate acetate requires several hours to complete. However, recent studies demonstrated rapid NET formation in neutrophils upon stimulation by platelets, Staphylococcus aureus or fungal products. Here we describe that antibody- or complement-induced phagocytosis triggers rapid NET formation. In contrast to classical NETosis, chemical inhibition of NADPH oxidase as well as using NADPH oxidase-deficient patient neutrophils did not affect rapid NET formation. Although phagocytosis and rapid NET formation may not be the prerequisite of each other, cooperation of phagocytosis and rapid NET formation may be essential to improve the efficiency of defense mechanisms in combating disseminating bacteria. Dissecting the differential mechanisms of NET formation is crucial to develop novel therapeutic strategies for infectious and auto-immune diseases where NETs play an essential role.
Collapse
Affiliation(s)
- Mona Saffarzadeh
- Department of Biochemistry, School of Medicine, Justus-Liebig-University, Giessen, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | | | - Florian Veit
- Excellence Cluster Cardio-Pulmonary System (ECCPS), German Lung Center (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Dongsheng Jiang
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | - Christian Gille Gille
- Department of Pediatrics IV/Neonatology, Eberhard Karls University, Tuebingen, Germany
| | | | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University, Tuebingen, Germany
| | - Klaus T Preissner
- Department of Biochemistry, School of Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
164
|
Lu T, Porter AR, Kennedy AD, Kobayashi SD, DeLeo FR. Phagocytosis and killing of Staphylococcus aureus by human neutrophils. J Innate Immun 2014; 6:639-49. [PMID: 24713863 DOI: 10.1159/000360478] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus infections. Although significant progress has been made, our understanding of neutrophil interactions with S. aureus remains incomplete. To provide a more comprehensive view of this process, we investigated phagocytosis and killing of S. aureus by human neutrophils using varied assay conditions in vitro. A greater percentage of bacteria were internalized by adherent neutrophils compared to those in suspension, and, unexpectedly, uptake of S. aureus by adherent neutrophils occurred efficiently in the absence of opsonins. An antibody specific for S. aureus promoted uptake of unopsonized bacteria in suspension, but had little or no capacity to enhance phagocytosis of S. aureus opsonized with normal human serum or by adherent neutrophils. Collectively, these results indicate that assay conditions can have a significant influence on the phagocytosis and killing of S. aureus by neutrophils. More importantly, the results suggest a vaccine approach directed to enhance opsonophagocytosis alone is not sufficient to promote increased killing of S. aureus by human neutrophils. With the emergence and reemergence of antibiotic-resistant microorganisms, establishing parameters that are optimal for studying neutrophil-S. aureus interactions will pave the way towards developing immune-directed strategies for anti-staphylococcal therapies.
Collapse
Affiliation(s)
- Thea Lu
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Mont., USA
| | | | | | | | | |
Collapse
|
165
|
Assessment of rat antigen-induced arthritis and its suppression during glucocorticoid therapy by use of hemicyanine dye probes with different molecular weight in near-infrared fluorescence optical imaging. Invest Radiol 2014; 48:729-37. [PMID: 23835596 DOI: 10.1097/rli.0b013e3182954046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Arthritic joints are ideal disease entities to be assessed via optical imaging. Here, we investigated the selective accumulation behavior of two differently sized hemicyanine optical probes in arthritic joints and its modification during glucocorticoid therapy in the course of inflammation. MATERIALS AND METHODS The well-standardized preclinical antigen-induced arthritis (AIA) model in rats was used. The animals were divided into 3 groups: arthritic, arthritic and dexamethasone-treated, and immunized only. After intravenous coinjection of DY-752 (size, 800 Da) and DY-682-(rat) IgG (size, 150 kDa) probes, spectrally unmixed near-infrared fluorescence images were acquired and analyzed semiquantitatively. Probe organ distribution, joint swelling, blood cell counts, joint vessel density, and histological scoring of arthritis were determined. RESULTS The local joint accumulation kinetics of the DY-752 probe differed from the DY-682-IgG one. In the course of AIA, probe signaling in arthritic joints was similar between each other. Joint swelling and histological scoring were in accordance with signaling. Dexamethasone treatment of rats with AIA significantly reduced both the near-infrared fluorescence signals and severity of arthritis but did not change the joint vascular density or the uptake of the probes by phagocytes. A differential biodistribution of both probes was encountered, but such an accumulation was prevented by dexamethasone treatment. CONCLUSIONS Near-infrared fluorescence signaling in the course of AIA closely reflects the pathophysiological events of the arthritic joint and the effects of therapy independently of the molecular size of the probe. The results show the suitability of our hemicyanine probes for imaging of arthritis.
Collapse
|
166
|
El Chemaly A, Nunes P, Jimaja W, Castelbou C, Demaurex N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J Leukoc Biol 2014; 95:827-839. [PMID: 24415791 DOI: 10.1189/jlb.0513251] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022] Open
Abstract
Production of ROS and maintenance of an appropriate pH within the lumen of neutrophil and macrophage phagosomes are important for an effective immune response. Hv1 proton channels sustain ROS production at the plasma membrane, but their role in phagosomes is not known. Here, we tested whether Hv1 channels regulate the pHp and sustain phagosomal ROS production in neutrophils and macrophages. The presence of Hv1 channels on phagosomes of human neutrophils and mouse macrophages was confirmed by Western blot and immunostaining. Phagosomal ROS production, measured with OxyBurst-coupled targets, was reduced in neutrophils and macrophages isolated from Hv1-deficient mice. Ratiometric imaging of FITC-coupled targets showed that phagosomes acidified more slowly in Hv1-deficient macrophages and transiently alkalinized when the V-ATPase was inhibited. In WT neutrophils, 97% of phagosomes remained neutral 30 min after particle ingestion, whereas 37% of Hv1-deficient phagosomes were alkaline (pH>8.3) and 14% acidic (pH<6.3). The subpopulation of acidic phagosomes was eliminated by V-ATPase inhibition, whereas NOX inhibition caused a rapid acidification, independently of Hv1 expression. Finally, V-ATPase accumulation on phagosomes was inversely correlated to intraphagosomal ROS production in neutrophils. These data indicate that Hvcn1 ablation deregulates neutrophil pHp, leading to alkalinization in phagosomes with residual ROS production or to the early accumulation of V-ATPase on phagosomes that fail to mount an oxidative response. Hv1 channels therefore differentially regulate the pHp in neutrophils and macrophages, sustaining rapid acidification in macrophage phagosomes and maintaining a neutral pH in neutrophil phagosomes.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Wedali Jimaja
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
167
|
Wu GH, Lu CL, Jiang JG, Li ZY, Huang ZL. Regulation effect of polysaccharides from Pleurotus tuber-regium (Fr.) on the immune activity of mice macrophages. Food Funct 2014; 5:337-44. [DOI: 10.1039/c3fo60410a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
168
|
Lee YY, Lin MB, Cheng CF, Chang LY, Liu TY, Hung SL. Inhibitory effects of areca nut extract on expression of complement receptors and fc receptors in human neutrophils. J Periodontol 2013; 85:1096-106. [PMID: 24354650 DOI: 10.1902/jop.2013.130498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chewing of areca quid increases the prevalence of periodontal diseases. Areca nut extract (ANE) inhibits the phagocytic activity of human neutrophils. This in vitro study investigates the effects of ANE on complement- and antibody-opsonized phagocytosis by neutrophils. Expression of complement receptors, Fc receptors, and F-actin in ANE-treated neutrophils is also analyzed. METHODS The viability of ANE-treated neutrophils was determined using the propidium iodide staining method. The possible effects of ANE on the expression of complement receptors and Fc receptors were examined using an immunofluorescence staining method followed by flow cytometry and confocal laser scanning microscopy. The phagocytic activity of neutrophils against complement or immunoglobulin (Ig)G-opsonized fluorescent beads was analyzed using flow cytometry. Expression of F-actin was determined using confocal laser scanning microscopy. RESULTS ANE significantly inhibited the production of complement receptors (CR1, CR3, and CR4) and Fc receptors (FcγRII and FcγRIII) in a concentration-dependent manner. Treatment of neutrophils with ANE significantly impaired their ability to phagocytose fluorescent beads. ANE also inhibited phagocytosis of fluorescent beads that were opsonized by complement or IgG. Moreover, expression of F-actin was inhibited after ANE treatment. CONCLUSIONS ANE inhibits the complement- and IgG-mediated neutrophil phagocytosis that may result from reduction of the expression of complement receptors, Fc receptors, and F-actin formation after ANE treatment. The findings suggest that areca nut chewing may jeopardize the defensive functions of neutrophils and affect periodontal health.
Collapse
Affiliation(s)
- Ya-Yun Lee
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
169
|
Calpain-1 inhibitors for selective treatment of rheumatoid arthritis: what is the future? Future Med Chem 2013; 5:2057-74. [DOI: 10.4155/fmc.13.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Effective small-molecule treatment of inflammatory diseases remains an unmet need in medicine. Current treatments are either limited in effectiveness or invasive. The latest biologics prevent influx of inflammatory cells to damaged tissue. Calpain-1 is a calcium-activated cysteine protease that plays an important role in neutrophil motility. It is, therefore, a potential target for intervention in inflammatory disease. Many inhibitors of calpains have been developed but most are unselective and so unsuitable for drug use. However, recent series of α-mercaptoacrylate inhibitors target regulatory domains of calpain-1 and are much more specific. These compounds are effective in impairing the cell spreading mechanism of neutrophils in vitro and raise the possibility of treating rheumatoid arthritis with a pill; however, challenges still remain. Improved bioavailability is needed and solution of their precise mode of action should prompt the development of specific calpain-1 screens for novel classes of inhibitors.
Collapse
|
170
|
Johnson MB, Criss AK. Neisseria gonorrhoeae phagosomes delay fusion with primary granules to enhance bacterial survival inside human neutrophils. Cell Microbiol 2013; 15:1323-40. [PMID: 23374609 PMCID: PMC3713093 DOI: 10.1111/cmi.12117] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/11/2013] [Accepted: 01/27/2013] [Indexed: 12/21/2022]
Abstract
Symptomatic infection with Neisseria gonorrhoeae (Gc) promotes inflammation driven by polymorphonuclear leucocytes (PMNs, neutrophils), yet some Gc survive PMN exposure during infection. Here we report a novel mechanism of gonococcal resistance to PMNs: Gc phagosomes avoid maturation into phagolysosomes by delayed fusion with primary (azurophilic) granules, which contain antimicrobial components including serine proteases. Reduced phagosome-primary granule fusion was observed in gonorrheal exudates and human PMNs infected ex vivo. Delayed phagosome-granule fusion could be overcome by opsonizing Gc with immunoglobulin. Using bacterial viability dyes along with antibodies to primary granules revealed that Gc survival in PMNs correlated with early residence in primary granule-negative phagosomes. However, when Gc was killed prior to PMN exposure, dead bacteria were also found in primary granule-negative phagosomes. These results suggest that Gc surface characteristics, rather than active bacterial processes, influence phagosome maturation and that Gc death inside PMNs occurs after phagosome-granule fusion. Ectopically increasing primary granule-phagosome fusion, by immunoglobulin opsonization or PMN treatment with lysophosphatidylcholine, reduced intracellular Gc viability, which was attributed in part to serine protease activity. We conclude that one method for Gc to avoid PMN clearance in acute gonorrhoea is by delaying primary granule-phagosome fusion, thus preventing formation of a degradative phagolysosome.
Collapse
Affiliation(s)
- M. Brittany Johnson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
171
|
Comparison of Brazilian Plants Used to Treat Gastritis on the Oxidative Burst of Helicobacter pylori-Stimulated Neutrophil. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:851621. [PMID: 23970939 PMCID: PMC3732590 DOI: 10.1155/2013/851621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
Abstract
Ten Brazilian medicinal plants used to treat gastritis and ulcers were carefully selected on the basis of ethnopharmacological importance and antiulcerogenic activity previously described. The antioxidant activity of the methanolic extracts was determined in analysis conditions that simulate a real biological activity on inhibition of the oxidative burst induced in neutrophils using Helicobacter pylori as activator, by a luminol-amplified chemiluminescence assay. The extracts, at low concentration (5 μg/mL), exhibited a large variation in inhibitory effects of H. pylori-induced oxidative burst ranging from 48% inhibition to inactive, but all extracts, excluding Byrsonima intermedia, had inhibitory activity over 80% at the concentration of 100 μg/mL. The total suppressive antioxidant capacity measured as the effective concentration, which represents the extract concentration producing 50% inhibition of the chemiluminescence induced by H. pylori, varies from 27.2 to 56.8 μg/mL and was in the following order: Qualea parviflora > Qualea multiflora > Alchornea triplinervia > Qualea grandiflora > Anacardium humile > Davilla elliptica > Mouriri pusa > Byrsonima basiloba > Alchornea glandulosa > Byrsonima intermedia. The main groups of compounds in tested extracts are presented. Differences in the phytochemical profile, quantitatively and qualitatively, of these plants can explain and justify their protective effect on the gastric mucosa caused by the neutrophil-generated ROS that occurs when H. pylori displays its evasion mechanisms.
Collapse
|
172
|
Life of neutrophil: From stem cell to neutrophil extracellular trap. Respir Physiol Neurobiol 2013; 187:68-73. [DOI: 10.1016/j.resp.2013.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 12/16/2022]
|
173
|
Yuandani, Ilangkovan M, Jantan I, Mohamad HF, Husain K, Abdul Razak AF. Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:603634. [PMID: 23737840 PMCID: PMC3659478 DOI: 10.1155/2013/603634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/06/2013] [Accepted: 04/09/2013] [Indexed: 11/22/2022]
Abstract
The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs) with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µ g/mL). There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells). The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS) inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µ g/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µ g/mL). Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µ g/mL). Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.
Collapse
Affiliation(s)
- Yuandani
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Menaga Ilangkovan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Hazni Falina Mohamad
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Amirul Faiz Abdul Razak
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
174
|
Hu W, Ge Y, Ojcius DM, Sun D, Dong H, Yang XF, Yan J. p53 signalling controls cell cycle arrest and caspase-independent apoptosis in macrophages infected with pathogenic Leptospira species. Cell Microbiol 2013; 15:1642-59. [PMID: 23521874 DOI: 10.1111/cmi.12141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase-independent, mitochondrion-related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG-based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild-type p53-containing mouse macrophages and p53-deficient human macrophages. Most leptospire-infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1 -phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53-dependent p21(Cip) (1/) (WAF) (1) and pro-apoptotic Bcl-2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire-induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage-dependent p53-Bax/Noxa/Puma-AIF/EndoG signalling mediates the leptospire-induced cell cycle arrest and caspase-independent apoptosis of macrophages.
Collapse
Affiliation(s)
- Weilin Hu
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | | | | | | | | | | | | |
Collapse
|
175
|
Taylor NJ, Nishtala A, Manakkat Vijay GK, Abeles RD, Auzinger G, Bernal W, Ma Y, Wendon JA, Shawcross DL. Circulating neutrophil dysfunction in acute liver failure. Hepatology 2013; 57:1142-52. [PMID: 23079896 DOI: 10.1002/hep.26102] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022]
Abstract
UNLABELLED Systemic inflammation and susceptibility to developing sepsis is common in acute liver failure (ALF) resulting in tissue damage and organ failure. This study characterized the function of circulating neutrophils in 25 patients with ALF and subacute liver failure (SALF). ALF (n=15)/SALF (n=10) patients were prospectively studied and compared with 11 healthy (HC) and 6 septic controls (SC). Neutrophils were isolated on admission to intensive care and every 3-4 days until death / liver transplantation / recovery. Neutrophil phenotype was determined using fluorochrome-labeled antibodies to CD16 and CD11b and assessed by flow cytometry. Neutrophil phagocytic activity (NPA) was determined using fluorescein isothiocyanate-labeled opsonized Escherichia coli and oxidative burst (OB) was determined by the percentage of neutrophils producing reactive oxygen species (ROS) at rest and after stimulation with opsonized E. coli. Physiological variables, biochemistry, arterial ammonia, microbiology, and outcomes were collected. Plasma pro- and antiinflammatory cytokine profiles were performed by enzyme-linked immunosorbent assay. Neutrophil expression of CD16 which recognizes the FcγRIII region of immunoglobulin G was significantly reduced in the ALF cohort (P<0.001) on day 1 compared to HC. NPA was significantly impaired in the SALF cohort compared to HC (P<0.01). Impaired NPA in the ALF and SALF cohorts on admission predicted nonsurvival without liver transplantation (P=0.01). Spontaneous neutrophil production of ROS was not significantly increased in any of the cohorts. E. coli-stimulated OB was preserved in ALF/SALF cohorts but was significantly impaired in the SC group (P<0.05). CONCLUSION Circulating neutrophils in ALF/SALF have impaired bacteriocidal function similar to that seen in severe sepsis. Neutrophil function indices are important biomarkers in ALF and may be implicated in the development of organ dysfunction and the increased susceptibility to developing sepsis.
Collapse
Affiliation(s)
- Nicholas J Taylor
- Liver Intensive Care Unit and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK; Institute of Liver Studies and Transplantation, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Eugenia uniflora L. Essential Oil as a Potential Anti-Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:279726. [PMID: 23533469 PMCID: PMC3590759 DOI: 10.1155/2013/279726] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/14/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
Abstract
Eugenia uniflora L. is a member of the Myrtaceae family and is commonly known as Brazilian cherry tree. In this study, we evaluated the chemical composition of Eugenia uniflora L. essential oil (EuEO) by using gas chromatography-mass spectrometry (GC-MS) and assessed its anti-Leishmania activity. We also explored the potential mechanisms of action and cytotoxicity of EuEO. Thirty-two compounds were identified, which constituted 92.65% of the total oil composition. The most abundant components were sesquiterpenes (91.92%), with curzerene (47.3%), γ -elemene (14.25%), and trans- β -elemenone (10.4%) being the major constituents. The bioactivity shown by EuEO against promastigotes (IC50, 3.04 μ g·mL(-1)) and amastigotes (IC50, 1.92 μ g·mL(-1)) suggested significant anti-Leishmania activity. In the cytotoxicity determination, EuEO was 20 times more toxic to amastigotes than to macrophages. Hemolytic activity was 63.22% at the highest concentration tested (400 μ g·mL(-1)); however, there appeared to be no toxicity at 50 μ g·mL(-1). While the data show that EuEO activity is not mediated by nitric oxide production, they do suggest that macrophage activation may be involved in EuEO anti-Leishmania activity, as evidenced by increases in both the phagocytic capacity and the lysosomal activity. More studies are needed to determine in vivo activity as well as additional mechanisms of the anti-Leishmania activity.
Collapse
|
177
|
Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 2013; 202:183-95. [DOI: 10.1007/s00430-013-0288-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/04/2023]
|
178
|
Linden JR, Kunkel D, Laforce-Nesbitt SS, Bliss JM. The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cell Microbiol 2013; 15:1127-42. [PMID: 23279221 DOI: 10.1111/cmi.12103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 11/30/2022]
Abstract
Candida albicans causes the majority of invasive candidiasis in immunocompromised adults while Candida parapsilosis is a leading cause of neonatal candidiasis. While much work has focused on how the immune system recognizes and responds to C. albicans, less is known about host interaction with C. parapsilosis. This study investigates the human neutrophil phagocytic response to these species. Neutrophils underwent phagocytosis of C. parapsilosis yeast and C. albicans hyphae much more efficiently than C. albicans yeast. Treatment of neutrophils with a galectin-3 (gal3) blocking antibody inhibited phagocytosis of C. parapsilosis yeast and C. albicans hyphae, but not C. albicans yeast. The majority of neutrophil gal3 was expressed intracellularly and was secreted from neutrophils after treatment with C. parapsilosis mannan. When neutrophils were treated with exogenous gal3, phagocytosis of both C. albicans and C. parapsilosis yeast increased. Exposure of neutrophils to C. parapsilosis yeast increased phagocytosis of C. albicans yeast and was inhibited by gal3 blocking antibody. Taken together, these data indicate that gal3 secreted from neutrophils may act as a pro-inflammatory autocrine/paracrine signal in neutrophil phagocytosis and suggest that gal3 has a unique role in neutrophil response to C. parapsilosis yeast and C. albicans hyphae distinct from C. albicans yeast.
Collapse
Affiliation(s)
- Jennifer R Linden
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
179
|
Makni-Maalej K, Chiandotto M, Hurtado-Nedelec M, Bedouhene S, Gougerot-Pocidalo MA, Dang PMC, El-Benna J. Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochem Pharmacol 2013; 85:92-100. [PMID: 23085266 DOI: 10.1016/j.bcp.2012.10.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) production by the neutrophil NADPH oxidase plays a key role in host defense against pathogens, such as bacteria and fungi. Zymosan a cell-wall preparation from Saccharomyces cerevisiae is largely used to activate neutrophils in its opsonized form. In this study, we show that non-opsonized zymosan alone induced ROS production by human neutrophils. Zymosan-induced ROS production is higher than the formyl-methionyl-leucyl-phenylalanine (fMLF)- or the phorbol myristate acetate (PMA)-induced ROS production but is lower than the one induced by opsonized zymosan. Most of the zymosan-induced ROS production is intracellular. Interestingly, zymosan induced the phosphorylation of the NADPH oxidase cytosolic component p47phox on several sites which are Ser315, Ser328 and Ser345. Zymosan induced also the activation of the small G-protein Rac2. Phosphorylation of the p47phox as well as Rac2 activation were inhibited by genistein a broad range protein tyrosine kinase inhibitor and by wortmannin a PI3Kinase inhibitor. GF109203X a PKC inhibitor inhibited phosphorylation of p47phox on Ser315 and Ser328. SB203580 and UO126, inhibitors of p38MAPK and ERK1/2-pathway, respectively, inhibited phosphorylation of p47phox on Ser345. Zymosan-induced ROS production was completely inhibited by genistein and wortmannin and partially inhibited by SB203580, UO126 and GF109203X. These results show that zymosan alone is able to activate NADPH oxidase in human neutrophils via the phosphorylation of p47phox and Rac2 activation and that a protein tyrosine kinase, PI3Kinase, p38MAPK, ERK1/2 and PKC are involved in this process. These pathways could be potential pharmacological targets to treat zymosan- and S. cerevisiae-induced inflammation.
Collapse
Affiliation(s)
- Karama Makni-Maalej
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris F-75018, France
| | | | | | | | | | | | | |
Collapse
|
180
|
Ceusters JD, Serteyn DA, Minguet G, de la Rebière de Pouyade G, Romainville J, Deby-Dupont GP, Mouithys-Mickalad AA, Franck TJ. An in vitro whole blood model to test the effects of different stimuli conditions on the release of myeloperoxidase and elastase by equine neutrophils. Vet Immunol Immunopathol 2012; 150:221-7. [DOI: 10.1016/j.vetimm.2012.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/11/2012] [Accepted: 09/17/2012] [Indexed: 11/30/2022]
|
181
|
Yipp BG, Petri B, Salina D, Jenne CN, Scott BNV, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, Malawista SE, de Boisfleury Chevance A, Zhang K, Conly J, Kubes P. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18:1386-93. [PMID: 22922410 PMCID: PMC4529131 DOI: 10.1038/nm.2847] [Citation(s) in RCA: 855] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/25/2012] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are released, as neutrophils die in vitro, in a process requiring hours, leaving a temporal gap for invasive microbes to exploit. Functional neutrophils undergoing NETosis have not been documented. During Gram-positive skin infections, we directly visualized live PMN in vivo rapidly releasing NETs, which prevented bacterial dissemination. NETosis occurred during crawling thereby casting large areas of NETs. NET-releasing PMN developed diffuse decondensed nuclei ultimately becoming devoid of DNA. Cells with abnormal nuclei displayed unusual crawling behavior highlighted by erratic pseudopods and hyperpolarization consistent with the nucleus being a fulcrum for crawling. A combined requirement of Tlr2 and complement mediated opsonization tightly regulated NET release. Additionally live human PMN developed decondensed nuclei and formed NETS in vivo and intact anuclear neutrophils were abundant in Gram-positive human abscesses. Therefore early in infection, non-cell death NETosis occurs in vivo during Gram-positive infection in mice and humans.
Collapse
Affiliation(s)
- Bryan G Yipp
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada. 2The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Monfregola J, Johnson JL, Meijler MM, Napolitano G, Catz SD. MUNC13-4 protein regulates the oxidative response and is essential for phagosomal maturation and bacterial killing in neutrophils. J Biol Chem 2012; 287:44603-18. [PMID: 23115246 DOI: 10.1074/jbc.m112.414029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophils use diverse mechanisms to kill pathogens including phagocytosis, exocytosis, generation of reactive oxygen species (ROS), and neutrophil extracellular traps. These mechanisms rely on their ability to mobilize intracellular organelles and to deliver granular cargoes to specific cellular compartments or into the extracellular milieu, but the molecular mechanisms regulating vesicular trafficking in neutrophils are not well understood. MUNC13-4 is a RAB27A effector that coordinates exocytosis in hematopoietic cells, and its deficiency is associated with the human immunodeficiency familial hemophagocytic lymphohistiocytosis type 3. In this work, we have established an essential role for MUNC13-4 in selective vesicular trafficking, phagosomal maturation, and intracellular bacterial killing in neutrophils. Using neutrophils from munc13-4 knock-out (KO) mice, we show that MUNC13-4 is necessary for the regulation of p22(phox)-expressing granule trafficking to the plasma membrane and regulates extracellular ROS production. MUNC13-4 was also essential for the regulation of intracellular ROS production induced by Pseudomonas aeruginosa despite normal trafficking of p22(phox)-expressing vesicles toward the phagosome. Importantly, in the absence of MUNC13-4, phagosomal maturation was impaired as observed by the defective delivery of azurophilic granules and multivesicular bodies to the phagosome. Significantly, this mechanism was intact in RAB27A KO neutrophils. Intracellular bacterial killing was markedly impaired in MUNC13-4 KO neutrophils. MUNC13-4-deficient cells showed a significant increase in neutrophil extracellular trap formation but were unable to compensate for the impaired bacterial killing. Altogether, these findings characterize novel functions of MUNC13-4 in the innate immune response of the neutrophil and have direct implications for the understanding of immunodeficiencies in patients with MUNC13-4 deficiency.
Collapse
Affiliation(s)
- Jlenia Monfregola
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
183
|
Lima TS, Cataneo SC, Iritus ACC, Sampaio SC, Della-Casa MS, Cirillo MC. Crotoxin, a rattlesnake toxin, induces a long-lasting inhibitory effect on phagocytosis by neutrophils. Exp Biol Med (Maywood) 2012; 237:1219-30. [PMID: 23045721 DOI: 10.1258/ebm.2012.012010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Crotalus durissus terrificus snake venom (CdtV) has long-lasting anti-inflammatory properties and inhibits the spreading and phagocytic activity of macrophages. Crotoxin (CTX), the main component of CdtV, is responsible for these effects. Considering the role of neutrophils in the inflammatory response and the lack of information about the effect of CdtV on neutrophils, the aim of this study was to investigate the effect of CdtV and CTX on two functions of neutrophils, namely phagocytosis and production of reactive oxygen species, and on the intracellular signaling involved in phagocytosis, particularly on tyrosine phosphorylation and rearrangements of the actin cytoskeleton. Our results showed that the incubation of neutrophils with CdtV or CTX, at different concentrations, or the subcutaneous injection of CdtV or CTX in rats two hours or one, four or 14 days before or one hour after the induction of inflammation inhibited the phagocytic activity of neutrophils. Furthermore, these in vitro and in vivo effects were associated with CdtV and CTX inhibition of tyrosine phosphorylation and consequently actin polymerization. Despite the inhibitory effect on phagocytosis, this study demonstrated that CdtV and CTX did not alter the production of the main reactive oxygen species. Therefore, this study characterized, for the first time, the actions of CdtV on neutrophils and demonstrated that CTX induces a long-lasting inhibition of tyrosine phosphorylation and consequently phagocytosis. We suggest that CTX represents a potential natural product in controlling inflammatory diseases, since a single dose exerts a long-lasting effect on intracellular signaling involved in phagocytosis by neutrophils.
Collapse
Affiliation(s)
- Tatiane S Lima
- Laboratory of Pathophysiology, Butantan Institute, Av. Vital Brazil 1500, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
184
|
Guerra B, Bolin A, Otton R. Carbonyl stress and a combination of astaxanthin/vitamin C induce biochemical changes in human neutrophils. Toxicol In Vitro 2012; 26:1181-90. [DOI: 10.1016/j.tiv.2012.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
|
185
|
Makni-Maalej K, Boussetta T, Hurtado-Nedelec M, Belambri SA, Gougerot-Pocidalo MA, El-Benna J. The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils: critical role of p47phox phosphorylation and the proline isomerase Pin1. THE JOURNAL OF IMMUNOLOGY 2012; 189:4657-65. [PMID: 23002436 DOI: 10.4049/jimmunol.1201007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Superoxide anion production by the neutrophil NADPH oxidase plays a key role in host defense; however, excessive superoxide production is believed to participate to inflammatory reactions. Neutrophils express several TLR that recognize a variety of microbial motifs or agonists. The interaction between TLR and their agonists is believed to help neutrophils to recognize and eliminate the pathogen. However, the effects of some TLR agonists on the NADPH oxidase activation and the mechanisms controlling these effects have not been elucidated. In this study, we show that the TLR7/8 agonist CL097 by itself did not induce NADPH oxidase activation in human neutrophils, but induced a dramatic increase of fMLF-stimulated activation. Interestingly, CL097 induced cytochrome b558 translocation to the plasma membrane and the phosphorylation of the NADPH oxidase cytosolic component p47phox on Ser(345), Ser(328), and Ser(315). Phosphorylation of Ser(328) and Ser(315) was significantly increased in CL097-primed and fMLF-stimulated neutrophils. Phosphorylation of Ser(345), Ser(328), and Ser(315) was decreased by inhibitors of p38 MAPK and the ERK1/2 pathway. Phosphorylation of Ser(328) was decreased by a protein kinase C inhibitor. Genistein, a broad-range protein tyrosine kinase inhibitor, inhibited the phosphorylation of these serines. Our results also show that CL097 induced proline isomerase 1 (Pin1) activation and that juglone, a Pin1 inhibitor, inhibited CL097-mediated priming of fMLF-induced p47phox phosphorylation and superoxide production. These results show that the TLR7/8 agonist CL097 induces hyperactivation of the NADPH oxidase by stimulating the phosphorylation of p47phox on selective sites in human neutrophils and suggest that p38 MAPK, ERK1/2, protein kinase C, and Pin1 control this process.
Collapse
Affiliation(s)
- Karama Makni-Maalej
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris F-75018, France
| | | | | | | | | | | |
Collapse
|
186
|
Kang JH, Kim SS, Yang MP. Effect of parenteral l-alanyl-l-glutamine administration on phagocytic responses of polymorphonuclear neutrophilic leukocytes in dogs undergoing high-dose methylprednisolone sodium succinate treatment. Am J Vet Res 2012; 73:1410-7. [PMID: 22924723 DOI: 10.2460/ajvr.73.9.1410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether parenteral l-alanyl-l-glutamine (Ala-Gln) administration modulated phagocytic responses of polymorphonuclear neutrophilic leukocytes (PMNs) from dogs undergoing high-dose methylprednisolone sodium succinate (MPSS) treatment. ANIMALS 15 healthy Beagles. PROCEDURES Dogs were randomly assigned to 3 treatment groups (n = 5/group): 38-hour IV infusion of saline (0.9% NaCl) solution (control group), saline solution with 8.5% amino acids (2.3 g/kg/d), or saline solution with 8.5% amino acids (1.8 g/kg/d) and 20% l-alanyl-l-glutamine (Ala-Gln; 0.5 g/kg/d). High-dose MPSS treatment was initiated at the same time that IV infusions began, such that a total dose of 85 mg of MPSS/kg was administered through multiple IV injections over a 26-hour period. The infusions were maintained until 12 hours after the last MPSS injection. Blood samples collected before MPSS injections began and 2, 12, and 24 hours after injections ceased were used to evaluate PMN function. RESULTS MPSS injections resulted in an increase in the total number of circulating leukocytes and increases in neutrophil and monocyte counts but did not affect lymphocyte, eosinophil, or basophil counts. Lymphocyte counts in the Ala-Gln group were higher than in the control group 12 hours after MPSS injections finished. Relative to preinfusion values, phagocytic capacity, oxidative burst activity, and filamentous actin polymerization of PMNs were suppressed in all dogs except those that received Ala-Gln. CONCLUSIONS AND CLINICAL RELEVANCE Parenteral Ala-Gln administration in dogs resulted in an increase in PMN phagocytic responses that were suppressed by high-dose MPSS treatment.
Collapse
Affiliation(s)
- Ji-Houn Kang
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | |
Collapse
|
187
|
Pathogen recognition and activation of the innate immune response in zebrafish. Adv Hematol 2012; 2012:159807. [PMID: 22811714 PMCID: PMC3395205 DOI: 10.1155/2012/159807] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/22/2012] [Indexed: 12/28/2022] Open
Abstract
The zebrafish has proven itself as an excellent model to study vertebrate innate immunity. It presents us with possibilities for in vivo imaging of host-pathogen interactions which are unparalleled in mammalian model systems. In addition, its suitability for genetic approaches is providing new insights on the mechanisms underlying the innate immune response. Here, we review the pattern recognition receptors that identify invading microbes, as well as the innate immune effector mechanisms that they activate in zebrafish embryos. We compare the current knowledge about these processes in mammalian models and zebrafish and discuss recent studies using zebrafish infection models that have advanced our general understanding of the innate immune system. Furthermore, we use transcriptome analysis of zebrafish infected with E. tarda, S. typhimurium, and M. marinum to visualize the gene expression profiles resulting from these infections. Our data illustrate that the two acute disease-causing pathogens, E. tarda and S. typhimurium, elicit a highly similar proinflammatory gene induction profile, while the chronic disease-causing pathogen, M. marinum, induces a weaker and delayed innate immune response.
Collapse
|
188
|
El Chemaly A, Demaurex N. Do Hv1 proton channels regulate the ionic and redox homeostasis of phagosomes? Mol Cell Endocrinol 2012; 353:82-7. [PMID: 22056415 DOI: 10.1016/j.mce.2011.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022]
Abstract
Recent work on animal models has revealed the important role played by the voltage-gated proton channel Hv1 during bacterial killing by innate immune cells. Studies from mice lacking Hv1 channels showed that Hv1 proton channels are required for high-level production of reactive oxygen species (ROS) by the NADPH oxidase of phagocytes (NOX2) in two ways. First, Hv1 channels maintain a physiological membrane potential during the respiratory burst of neutrophils by providing a compensating charge for the electrons transferred by NOX2 from NADPH to superoxide. Second, Hv1 channels maintain a physiological cytosolic pH by extruding the acid generated by the NOX2-dependent consumption of NADPH. The two mechanisms directly sustain the activity of the NOX2 enzyme and indirectly sustain other neutrophil functions by enhancing the driving force for the entry of calcium into cells, thereby boosting cellular calcium signals. The increased depolarization of Hv1-deficient neutrophils aborted calcium responses to chemoattractants and revealed adhesion and migration defects that were associated with an impaired depolymerization of the cortical actin cytoskeleton. Current research aims to transpose these findings to phagosomes, the phagocytic vacuoles where bacterial killing takes place. However, the mechanisms that control the phagosomal pH appear to vary greatly between phagocytes: phagosomes rapidly acidify in macrophages but remain neutral for several minutes in neutrophils following ingestion of solid particles, whereas in dendritic cells phagosomes alkalinize, a mechanism thought to promote antigen cross-presentation. In this review, we discuss how the knowledge gained on the role of Hv1 channels at the plasma membrane of neutrophils can be used to study the regulation of the phagosomal pH, ROS, membrane potential, and calcium fluxes in different phagocytic cells.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
189
|
CpsY influences Streptococcus iniae cell wall adaptations important for neutrophil intracellular survival. Infect Immun 2012; 80:1707-15. [PMID: 22354020 DOI: 10.1128/iai.00027-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of a pathogen to evade neutrophil phagocytic killing mechanisms is critically important for dissemination and establishment of a systemic infection. Understanding how pathogens overcome these innate defenses is essential for the development of optimal therapeutic strategies for invasive infections. CpsY is a conserved transcriptional regulator previously identified as an important virulence determinant for systemic infection of Streptococcus iniae. While orthologs of CpsY have been associated with the regulation of methionine metabolism and uptake pathways, CpsY additionally functions in protection from neutrophil-mediated killing. S. iniae does not alter neutrophil phagosomal maturation but instead is able to adapt to the extreme bactericidal environment of a mature neutrophil phagosome, a property dependent upon CpsY. This CpsY-dependent adaptation appears to involve stabilization of the cell wall through peptidoglycan O-acetylation and repression of cellular autolysins. Furthermore, S. iniae continues to be a powerful model for investigation of bacterial adaptations during systemic streptococcal infection.
Collapse
|
190
|
A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 2012; 10:178-90. [PMID: 22290508 DOI: 10.1038/nrmicro2713] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria-neutrophil relationship and proposes potential benefits of this relationship for the pathogen.
Collapse
|
191
|
Negrini TC, Duque C, Vizoto NL, Stipp RN, Mariano FS, Höfling JF, Graner E, Mattos-Graner RO. Influence of VicRK and CovR on the interactions of Streptococcus mutans with phagocytes. Oral Dis 2012; 18:485-93. [DOI: 10.1111/j.1601-0825.2011.01896.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
192
|
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012; 30:459-89. [PMID: 22224774 DOI: 10.1146/annurev-immunol-020711-074942] [Citation(s) in RCA: 1175] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neutrophils are the most abundant white blood cells in circulation, and patients with congenital neutrophil deficiencies suffer from severe infections that are often fatal, underscoring the importance of these cells in immune defense. In spite of neutrophils' relevance in immunity, research on these cells has been hampered by their experimentally intractable nature. Here, we present a survey of basic neutrophil biology, with an emphasis on examples that highlight the function of neutrophils not only as professional killers, but also as instructors of the immune system in the context of infection and inflammatory disease. We focus on emerging issues in the field of neutrophil biology, address questions in this area that remain unanswered, and critically examine the experimental basis for common assumptions found in neutrophil literature.
Collapse
Affiliation(s)
- Borko Amulic
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
193
|
Conejeros I, Velásquez Z, Carretta M, Alarcón P, Hidalgo M, Burgos R. 2-Aminoethoxydiphenyl borate (2-APB) reduces alkaline phosphatase release, CD63 expression, F-actin polymerization and chemotaxis without affecting the phagocytosis activity in bovine neutrophils. Vet Immunol Immunopathol 2012; 145:540-5. [DOI: 10.1016/j.vetimm.2011.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/26/2022]
|
194
|
Emami CN, Mittal R, Wang L, Ford HR, Prasadarao NV. Role of neutrophils and macrophages in the pathogenesis of necrotizing enterocolitis caused by Cronobacter sakazakii. J Surg Res 2012; 172:18-28. [PMID: 21601887 PMCID: PMC3169739 DOI: 10.1016/j.jss.2011.04.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/17/2011] [Accepted: 04/07/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cronobacter sakazakii (CS) is a highly virulent gram-negative opportunistic pathogen that has been implicated in clinical outbreaks of necrotizing enterocolitis (NEC). The role of mucosal immune cells in CS infection is not well understood. In this study, we sought to elucidate the role of neutrophils (polymorphonuclear leukocytes; PMNs) and macrophages in the pathogenesis of NEC induced by CS using a novel newborn mouse model. MATERIALS AND METHODS PMNs and macrophages were depleted in newborn mice using Gr-1 antibody and carrageenan, respectively, and then infected with 10(3) CFU of CS. The development of NEC in these mice was assessed by a pathologist based on the morphologic changes in the intestine. Cytokine production was determined in the serum and intestinal homogenates of infected mice by enzyme-linked immunosorbent assay (ELISA). Inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production was determined by flow cytometry and Greiss method, respectively. RESULTS Depletion of PMNs and macrophages in newborn mice led to increased recruitment of dendritic cells (DCs) in the intestine compared with wild-type mice upon infection with CS. PMN- and macrophage-depleted mice showed increased bacterial load, production of pro-inflammatory cytokines, iNOS expression, and NO production in the intestines in comparison to wild-type mice fed with CS. In addition, depletion of PMNs and macrophages prior to infection in mice resulted in severe inflammation, villus destruction, and enhanced enterocyte apoptosis in the intestines compared with CS-infected wild-type mice. CONCLUSIONS Our data suggest that depletion of PMNs and macrophages from the lamina propria (LP) exacerbates experimental NEC, indicating that both of these immunocytes play an important role in the clearance of CS during the initial stages of infection. The increased mucosal cytokine response and NO production in the absence of these immunocytes may be responsible for the observed increase in mucosal injury. Understanding how CS manipulates these cells, employing novel mouse model of NEC reported in this study, will provide significant insights for the development of novel therapeutic and preventive strategies to combat NEC.
Collapse
Affiliation(s)
- Claudia N Emami
- Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
195
|
Bonacorsi C, Raddi MSG, da Fonseca LM, Sannomiya M, Vilegas W. Effect of Byrsonima crassa and phenolic constituents on Helicobacter pylori-induced neutrophils oxidative burst. Int J Mol Sci 2011; 13:133-41. [PMID: 22312243 PMCID: PMC3269677 DOI: 10.3390/ijms13010133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 12/26/2022] Open
Abstract
Byrsonima crassa Niedenzu (Malpighiaceae) is used in Brazilian folk medicine for the treatment of diseases related mainly to gastric ulcers. In a previous study, our group described the gastric protective effect of the methanolic extract from the leaves of B. crassa. The present study was carried out to investigate the effects of methanolic extract and its phenolic compounds on the respiratory burst of neutrophils stimulated by H. pylori using a luminol-based chemiluminescence assay as well as their anti-H. pylori activity. The suppressive activity on oxidative burst of H. pylori-stimulated neutrophils was in the order of methyl gallate > (+)-catechin > methanol extract > quercetin 3-O-α-l-arabinopyranoside > quercetin 3-O-β-d-galactopyranoside > amentoflavone. Methyl gallate, compound that induced the highest suppressive activity with IC50 value of 3.4 μg/mL, did not show anti-H. pylori activity. B. crassa could be considered as a potential source of natural antioxidant in gastric ulcers by attenuating the effects on the damage to gastric mucosa caused by neutrophil generated reactive oxygen species, even when H. pylori displays its evasion mechanisms.
Collapse
Affiliation(s)
- Cibele Bonacorsi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14801-902, Brazil; E-Mail:
| | - Maria Stella G. Raddi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14801-902, Brazil; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.S.G.R.); (L.M.F); Tel.:+55-16-3301-5720; Fax: +55-16-3322-0073
| | - Luiz Marcos da Fonseca
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14801-902, Brazil; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (M.S.G.R.); (L.M.F); Tel.:+55-16-3301-5720; Fax: +55-16-3322-0073
| | - Miriam Sannomiya
- School of Arts, Sciences and Humanities, University of São Paulo (USP), São Paulo, SP, 03828-000, Brazil; E-Mail:
| | - Wagner Vilegas
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-900, Brazil; E-Mail:
| |
Collapse
|
196
|
Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 2011; 34:237-59. [PMID: 22080185 PMCID: PMC3271231 DOI: 10.1007/s00281-011-0295-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus has been an important human pathogen throughout history and is currently a leading cause of bacterial infections worldwide. S. aureus has the unique ability to cause a continuum of diseases, ranging from minor skin infections to fatal necrotizing pneumonia. Moreover, the emergence of highly virulent, drug-resistant strains such as methicillin-resistant S. aureus in both healthcare and community settings is a major therapeutic concern. Neutrophils are the most prominent cellular component of the innate immune system and provide an essential primary defense against bacterial pathogens such as S. aureus. Neutrophils are rapidly recruited to sites of infection where they bind and ingest invading S. aureus, and this process triggers potent oxidative and non-oxidative antimicrobial killing mechanisms that serve to limit pathogen survival and dissemination. S. aureus has evolved numerous mechanisms to evade host defense strategies employed by neutrophils, including the ability to modulate normal neutrophil turnover, a process critical to the resolution of acute inflammation. Here we provide an overview of the role of neutrophils in host defense against bacterial pathogens and discuss strategies employed by S. aureus to circumvent neutrophil function.
Collapse
Affiliation(s)
- Kevin M Rigby
- Laboratory of Human Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
197
|
|
198
|
Protective role of naturally occurring interleukin-17A-producing γδ T cells in the lung at the early stage of systemic candidiasis in mice. Infect Immun 2011; 79:4503-10. [PMID: 21875963 DOI: 10.1128/iai.05799-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin-17A (IL-17A)-producing γδ T cells differentiate in the fetal thymus and reside in the peripheral tissues, such as the lungs of naïve adult mice. We show here that naturally occurring γδ T cells play a protective role in the lung at a very early stage after systemic infection with Candida albicans. Selective depletion of neutrophils by in vivo administration of anti-Ly6G monoclonal antibody (MAb) impaired fungal clearance more prominently in the lung than in the kidney 24 h after intravenous infection with C. albicans. Rapid and transient production of IL-23 was detected in the lung at 12 h, preceding IL-17A production and the influx of neutrophils, which reached a peak at 24 h after infection. IL-17A knockout (KO) mice showed reduced infiltration of neutrophils concurrently with impaired fungal clearance in the lung after infection. The major source of IL-17A was the γδ T cell population in the lung, and Cδ KO mice showed little IL-17A production and reduced neutrophil infiltration after infection. Early IL-23 production in a TLR2/MyD88-dependent manner and IL-23-triggered tyrosine kinase 2 (Tyk2) signaling were essential for IL-17A production by γδ T cells. Thus, our study demonstrated a novel role of naturally occurring IL-17A-producing γδ T cells in the first line of host defense against C. albicans infection.
Collapse
|
199
|
Examination of trafficking of phagocytosed colloid particles in neutrophils using synchrotron-based X-ray fluorescence microscopy (XFM). J Biol Phys 2011; 37:493-506. [PMID: 22942490 DOI: 10.1007/s10867-011-9233-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 07/18/2011] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Synchrotron-based X-ray fluorescence microscopy (XFM) can localise chemical elements at a subcellular level. 99mTechnetium stannous (TcSn) colloid is taken up by phagocytes via a Complement Receptor 3 mediated phagocytic process. In the current study, XFM was used to examine the intracellular trafficking of TcSn colloid in neutrophils. XFM was performed on TcSn colloid, and neutrophils labelled with TcSn colloid, in whole blood. We developed a set of pixel by pixel analysis and mapping techniques incorporating cluster analysis that allowed us to differentiate neutrophils and artefactual contaminants, and we examined the changes in element distribution that accompany neutrophil phagocytosis of TcSn colloid. Sn became associated with half the neutrophils. Within cells, Sn colocalised with iron (Fe) and sulphur (S), and was negatively associated with calcium (Ca). Despite the high sensitivity of XFM, Tc was not detected. XFM can help clarify the intracellular processes that accompany neutrophil phagocytosis. The subcellular colocalisation of Sn with Fe is consistent with fusion of the colloid-containing phagosome with neutrophil granules. The association of Sn with S suggests that proteins rich in S-containing amino acids are present in the phagosome. The negative colocalisation with Ca indicates that ongoing maturation of the TcSn colloid phagosome is no longer calcium dependent one hour after phagocytosis. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s10867-011-9233-9) contains supplementary material, which is available to authorized users.
Collapse
|
200
|
Nordenfelt P, Tapper H. The role of calcium in neutrophil granule-phagosome fusion. Commun Integr Biol 2011; 3:224-6. [PMID: 20714398 DOI: 10.4161/cib.3.3.11168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 05/01/2010] [Indexed: 01/05/2023] Open
Abstract
During phagocytosis, neutrophils kill microorganisms by delivering antimicrobial substances to the phagosome. For this, the intracellular targeting and fusion of granules must be strictly regulated and a dependence on the cytosolic concentration of free calcium has been suggested. New evidence show that different mechanisms regulate early and late stages of Fc receptor-mediated phagocytosis. The early fusion events are dependent on calcium but this is not the case for the fusion of azurophilic granules with phagosomes at later stages. Certain pathogens target the granule-phagosome fusion machinery in order to survive intracellularly; a deeper understanding of intracellular membrane traffic processes could allow new approaches for the eradication of pathogens that are harbored inside the cells of our immune system.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Division of Infection Medicine; Department of Clinical Sciences; Lund University; Lund, Sweden
| | | |
Collapse
|