151
|
Abstract
In recent years, emerging structural information on the aRNAP (archaeal RNA polymerase) apparatus has shown its strong evolutionary relationship with the eukaryotic counterpart, RNA Pol (polymerase) II. A novel atomic model of SshRNAP (Sulfolobus shibatae RNAP) in complex with dsDNA (double-stranded DNA) constitutes a new piece of information helping the understanding of the mechanisms for DNA stabilization at the position downstream of the catalytic site during transcription. In Archaea, in contrast with Eukarya, downstream DNA stabilization is universally mediated by the jaw domain and, in some species, by the additional presence of the Rpo13 subunit. Biochemical and biophysical data, combined with X-ray structures of apo- and DNA-bound aRNAP, have demonstrated the capability of the Rpo13 C-terminus to bind in a sequence-independent manner to downstream DNA. In the present review, we discuss the recent findings on the aRNAP and focus on the mechanisms by which the RNAP stabilizes the bound DNA during transcription.
Collapse
|
152
|
Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. J Mol Biol 2012; 425:697-712. [PMID: 23238253 DOI: 10.1016/j.jmb.2012.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022]
Abstract
Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3' end of the RNA from the active center after bond formation and before translocation of RNAP II on DNA. In several documented cases, backtracking requires a special signal such as A/T-rich sequences forming an unstable RNA-DNA hybrid in the elongation complex. However, other sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient elongation factor TFIIS (TFIIS(AA)) enhances backtracked pauses during regular transcription. This is due to increased efficiency of formation of an intermediate that leads to backtracking. This intermediate may involve misalignment at the 3' end of the nascent RNA in the active center of the yeast RNAP II, and TFIIS(AA) promotes formation of this intermediate at the DNA sequences, presenting a high-energy barrier to translocation. We proposed a three-step mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state increases the likelihood of the 3' RNA end misalignment facilitating a backtrack pausing. These results demonstrate an important role of the intrinsic blocks to forward translocation in pausing by RNAP II.
Collapse
|
153
|
Chen XF, Lehmann L, Lin JJ, Vashisht A, Schmidt R, Ferrari R, Huang C, McKee R, Mosley A, Plath K, Kurdistani SK, Wohlschlegel J, Carey M. Mediator and SAGA have distinct roles in Pol II preinitiation complex assembly and function. Cell Rep 2012. [PMID: 23177621 DOI: 10.1016/j.celrep.2012.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A key feature of RNA polymerase II (Pol II) preinitiation complexes (PICs) is their ability to coordinate transcription initiation with chromatin modification and remodeling. To understand how this coordination is achieved, we employed extensive proteomic and mechanistic analyses to study the composition and assembly of PICs in HeLa cell and mouse embryonic stem cell (ESC) nuclear extracts. Strikingly, most of the machinery that is necessary for transcription initiation on chromatin is part of the PIC. The PIC is nearly identical between ESCs and HeLa cells and contains two major coactivator complexes: Mediator and SAGA. Genome-wide analysis of Mediator reveals that it has a close correlation with Pol II, TATA-binding protein, and messenger RNA levels and thus may play a major role in PIC assembly. Moreover, Mediator coordinates assembly of the Pol II initiation factors and chromatin machinery into a PIC in vitro, whereas SAGA acts after PIC assembly to allow transcription on chromatin.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, BSRB 351A, 615 Charles E. Young Drive, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Hobson D, Wei W, Steinmetz L, Svejstrup J. RNA polymerase II collision interrupts convergent transcription. Mol Cell 2012; 48:365-74. [PMID: 23041286 PMCID: PMC3504299 DOI: 10.1016/j.molcel.2012.08.027] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 01/22/2023]
Abstract
Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical and genetic approaches in yeast to show that polymerases transcribing opposite DNA strands cannot bypass each other. RNAPII stops but does not dissociate upon head-to-head collision in vitro, suggesting that opposing polymerases represent insurmountable obstacles for each other. Head-to-head collision in vivo also results in RNAPII stopping, and removal of collided RNAPII from the DNA template can be achieved via ubiquitylation-directed proteolysis. Indeed, in cells lacking efficient RNAPII polyubiquitylation, the half-life of collided polymerases increases, so that they can be detected between convergent genes. These results provide insight into fundamental mechanisms of gene traffic control and point to an unexplored effect of antisense transcription on gene regulation via polymerase collision.
Collapse
MESH Headings
- Blotting, Northern
- Chromatin Immunoprecipitation
- DNA, Antisense/chemistry
- DNA, Antisense/genetics
- DNA, Antisense/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- Gene Expression Regulation, Fungal
- Models, Genetic
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Tertiary
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
- Transcription, Genetic
- Ubiquitination
Collapse
Affiliation(s)
- David J. Hobson
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, London EN6 3LD, UK
| | - Wu Wei
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Stanford Genome Technology Center, 855 South California Avenue, Palo Alto, CA 94304, USA
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Stanford Genome Technology Center, 855 South California Avenue, Palo Alto, CA 94304, USA
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, London EN6 3LD, UK
| |
Collapse
|
155
|
Wiesler SC, Burrows PC, Buck M. A dual switch controls bacterial enhancer-dependent transcription. Nucleic Acids Res 2012; 40:10878-92. [PMID: 22965125 PMCID: PMC3505966 DOI: 10.1093/nar/gks844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.
Collapse
Affiliation(s)
- Simone C. Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | - Martin Buck
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
156
|
Gaillard H, Aguilera A. Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:141-50. [PMID: 23046879 DOI: 10.1016/j.bbagrm.2012.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 01/13/2023]
Abstract
During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Throughout transcription elongation, RNA polymerases frequently deal with a number of obstacles that need to be removed for transcription resumption. One important type of hindrance consists of helix-distorting DNA lesions. Transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair, ensures a fast repair of such transcription-blocking lesions. While the nucleotide excision repair reaction is fairly well understood, its regulation and the way it deals with DNA transcription remains largely unknown. In this review, we update our current understanding of the factors involved in TC-NER and discuss their functional interplay with the processes of transcription elongation and mRNP biogenesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
157
|
Kaplan CD. Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:39-54. [PMID: 23022618 DOI: 10.1016/j.bbagrm.2012.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 01/12/2023]
Abstract
Transcription by RNA polymerase II (Pol II), and all RNA polymerases for that matter, may be understood as comprising two cycles. The first cycle relates to the basic mechanism of the transcription process wherein Pol II must select the appropriate nucleoside triphosphate (NTP) substrate complementary to the DNA template, catalyze phosphodiester bond formation, and translocate to the next position on the DNA template. Performing this cycle in an iterative fashion allows the synthesis of RNA chains that can be over one million nucleotides in length in some larger eukaryotes. Overlaid upon this enzymatic cycle, transcription may be divided into another cycle of three phases: initiation, elongation, and termination. Each of these phases has a large number of associated transcription factors that function to promote or regulate the gene expression process. Complicating matters, each phase of the latter transcription cycle are coincident with cotranscriptional RNA processing events. Additionally, transcription takes place within a highly dynamic and regulated chromatin environment. This chromatin environment is radically impacted by active transcription and associated chromatin modifications and remodeling, while also functioning as a major platform for Pol II regulation. This review will focus on our basic knowledge of the Pol II transcription mechanism, and how altered Pol II activity impacts gene expression in vivo in the model eukaryote Saccharomyces cerevisiae. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
158
|
Liu X, Bushnell DA, Kornberg RD. RNA polymerase II transcription: structure and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:2-8. [PMID: 23000482 DOI: 10.1016/j.bbagrm.2012.09.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
Abstract
A minimal RNA polymerase II (pol II) transcription system comprises the polymerase and five general transcription factors (GTFs) TFIIB, -D, -E, -F, and -H. The addition of Mediator enables a response to regulatory factors. The GTFs are required for promoter recognition and the initiation of transcription. Following initiation, pol II alone is capable of RNA transcript elongation and of proofreading. Structural studies reviewed here reveal roles of GTFs in the initiation process and shed light on the transcription elongation mechanism. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
159
|
Martinez-Rucobo FW, Cramer P. Structural basis of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:9-19. [PMID: 22982352 DOI: 10.1016/j.bbagrm.2012.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/13/2023]
Abstract
For transcription elongation, all cellular RNA polymerases form a stable elongation complex (EC) with the DNA template and the RNA transcript. Since the millennium, a wealth of structural information and complementary functional studies provided a detailed three-dimensional picture of the EC and many of its functional states. Here we summarize these studies that elucidated EC structure and maintenance, nucleotide selection and addition, translocation, elongation inhibition, pausing and proofreading, backtracking, arrest and reactivation, processivity, DNA lesion-induced stalling, lesion bypass, and transcriptional mutagenesis. In the future, additional structural and functional studies of elongation factors that control the EC and their possible allosteric modes of action should result in a more complete understanding of the dynamic molecular mechanisms underlying transcription elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
160
|
Zhou J, Schweikhard V, Block SM. Single-molecule studies of RNAPII elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:29-38. [PMID: 22982192 DOI: 10.1016/j.bbagrm.2012.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 01/22/2023]
Abstract
Elongation, the transcriptional phase in which RNA polymerase (RNAP) moves processively along a DNA template, occurs via a fundamental enzymatic mechanism that is thought to be universally conserved among multi-subunit polymerases in all kingdoms of life. Beyond this basic mechanism, a multitude of processes are integrated into transcript elongation, among them fidelity control, gene regulatory interactions involving elongation factors, RNA splicing or processing factors, and regulatory mechanisms associated with chromatin structure. Many kinetic and molecular details of the mechanism of the nucleotide addition cycle and its regulation, however, remain elusive and generate continued interest and even controversy. Recently, single-molecule approaches have emerged as powerful tools for the study of transcription in eukaryotic organisms. Here, we review recent progress and discuss some of the unresolved questions and ongoing debates, while anticipating future developments in the field. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
161
|
Basic mechanism of transcription by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:20-8. [PMID: 22982365 DOI: 10.1016/j.bbagrm.2012.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 11/21/2022]
Abstract
RNA polymerase II-like enzymes carry out transcription of genomes in Eukaryota, Archaea, and some viruses. They also exhibit fundamental similarity to RNA polymerases from bacteria, chloroplasts, and mitochondria. In this review we take an inventory of recent studies illuminating different steps of basic transcription mechanism, likely common for most multi-subunit RNA polymerases. Through the amalgamation of structural and computational chemistry data we attempt to highlight the most feasible reaction pathway for the two-metal nucleotidyl transfer mechanism, and to evaluate the way catalysis can be linked to translocation in the mechano-chemical cycle catalyzed by RNA polymerase II. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
162
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
163
|
Abstract
We provide here a molecular movie that captures key aspects of RNA polymerase II initiation and elongation. To create the movie, we combined structural snapshots of the initiation-elongation transition and of elongation, including nucleotide addition, translocation, pausing, proofreading, backtracking, arrest, reactivation, and inhibition. The movie reveals open questions about the mechanism of transcription and provides a useful teaching tool.
Collapse
Affiliation(s)
- Alan C M Cheung
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
164
|
Structural insights into transcriptional repression by noncoding RNAs that bind to human Pol II. J Mol Biol 2012; 425:3639-48. [PMID: 22954660 DOI: 10.1016/j.jmb.2012.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022]
Abstract
Gene transcription is regulated in response to environmental changes and developmental cues. In mammalian cells subjected to stress conditions such as heat shock, transcription of most protein-coding genes decreases, while the transcription of heat shock protein genes increases. Repression involves direct binding to RNA polymerase II (Pol II) of certain noncoding RNAs (ncRNAs) that are upregulated upon heat shock. Another class of ncRNAs is also upregulated and binds to Pol II but does not inhibit transcription. Incorporation of repressive ncRNAs into pre-initiation complexes prevents transcription initiation, while non-repressive ncRNAs are displaced from Pol II by TFIIF. Here, we present cryo-electron microscopy reconstructions of human Pol II in complex with six different ncRNAs from mouse and human. Our structures show that both repressive and non-repressive ncRNAs bind to a conserved binding site within the cleft of Pol II. The site, which is also shared with a previously characterized yeast aptamer, is close to the active center and, thus, in an ideal position to regulate transcription. Importantly, additional RNA elements extend flexibly beyond the docking site. We propose that the differences concerning the repressive activity of the ncRNAs analyzed must be due to the distinct character of these more unstructured, flexible segments of the RNA that emanate from the cleft.
Collapse
|
165
|
Abstract
RNA polymerase is a ratchet machine that oscillates between productive and backtracked states at numerous DNA positions. Since its first description 15 years ago, backtracking--the reversible sliding of RNA polymerase along DNA and RNA--has been implicated in many critical processes in bacteria and eukaryotes, including the control of transcription elongation, pausing, termination, fidelity, and genome instability.
Collapse
|
166
|
Nedialkov YA, Nudler E, Burton ZF. RNA polymerase stalls in a post-translocated register and can hyper-translocate. Transcription 2012; 3:260-9. [PMID: 23132506 PMCID: PMC3632624 DOI: 10.4161/trns.22307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Exonuclease (Exo) III was used to probe translocation states of RNA polymerase (RNAP) ternary elongation complexes (TECs). Escherichia coli RNAP stalls primarily in a post-translocation register that makes relatively slow excursions to a hyper-translocated state or to a pre-translocated state. Tagetitoxin (TGT) strongly inhibits hyper-translocation and inhibits backtracking, so, as indicated by Exo III mapping, TGT appears to stabilize both the pre- and probably a partially post-translocation state of RNAP. Because the pre-translocated to post-translocated transition is slow at many template positions, these studies appear inconsistent with a model in which RNAP makes frequent and rapid (i.e., millisecond phase) oscillations between pre- and post-translocation states. Nine nucleotides (9-nt) and 10-nt TECs, and TECs with longer nascent RNAs, have distinct translocation properties consistent with a 9–10 nt RNA/DNA hybrid. RNAP mutant proteins in the bridge helix and trigger loop are identified that inhibit or stimulate forward and backward translocation.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
167
|
Wojtas MN, Abrescia NGA. Soaking of DNA into crystals of archaeal RNA polymerase achieved by desalting in droplets. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1134-8. [PMID: 22949213 PMCID: PMC3433216 DOI: 10.1107/s1744309112033507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/24/2012] [Indexed: 11/06/2023]
Abstract
Transcription is a fundamental process across the three domains of life and is carried out by multi-subunit enzymatic DNA-directed RNA polymerases (RNAPs). The interaction of RNAP with nucleic acids is tightly controlled for precise and processive RNA synthesis. Whilst a wealth of structural information has been gathered on the eukaryotic Pol II in complex with DNA/RNA, no information exists on its ancestral counterpart archaeal RNAP. Thus, in order to extend knowledge of the archaeal transcriptional apparatus, crystallization of Sulfolobus shibatae RNAP (molecular mass of ~400 kDa) with DNA fragments was pursued. To achieve this goal, crystal growth was first optimized using a nanoseeding technique. An ad hoc soaking protocol was then put into place, which consisted of gently exchanging the high-salt buffer used for apo-RNAP crystal growth into a low-salt buffer necessary for DNA binding to RNAP. Of the various crystals screened, one diffracted to 4.3 Å resolution and structural analysis showed the presence of bound DNA [Wojtas et al. (2012). Nucleic Acids Res. 40, doi:10.1093/nar/gks692].
Collapse
Affiliation(s)
| | - Nicola G. A. Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
168
|
Regulation of mammalian transcription by Gdown1 through a novel steric crosstalk revealed by cryo-EM. EMBO J 2012; 31:3575-87. [PMID: 22850672 DOI: 10.1038/emboj.2012.205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 07/03/2012] [Indexed: 01/24/2023] Open
Abstract
In mammals, a distinct RNA polymerase II form, RNAPII(G) contains a novel subunit Gdown1 (encoded by POLR2M), which represses gene activation, only to be reversed by the multisubunit Mediator co-activator. Here, we employed single-particle cryo-electron microscopy (cryo-EM) to disclose the architectures of RNAPII(G), RNAPII and RNAPII in complex with the transcription initiation factor TFIIF, all to ~19 Å. Difference analysis mapped Gdown1 mostly to the RNAPII Rpb5 shelf-Rpb1 jaw, supported by antibody labelling experiments. These structural features correlate with the moderate increase in the efficiency of RNA chain elongation by RNAP II(G). In addition, our updated RNAPII-TFIIF map showed that TFIIF tethers multiple regions surrounding the DNA-binding cleft, in agreement with cross-linking and biochemical mapping. Gdown1's binding sites overlap extensively with those of TFIIF, with Gdown1 sterically excluding TFIIF from RNAPII, herein demonstrated by competition assays using size exclusion chromatography. In summary, our work establishes a structural basis for Gdown1 impeding initiation at promoters, by obstruction of TFIIF, accounting for an additional dependent role of Mediator in activated transcription.
Collapse
|
169
|
Lin C, Yang L, Rosenfeld MG. Molecular logic underlying chromosomal translocations, random or non-random? Adv Cancer Res 2012; 113:241-79. [PMID: 22429857 DOI: 10.1016/b978-0-12-394280-7.00015-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromosomal translocations serve as essential diagnostic markers and therapeutic targets for leukemia, lymphoma, and many types of solid tumors. Understanding the mechanisms of chromosomal translocation generation has remained a central biological question for decades. Rather than representing a random event, recent studies indicate that chromosomal translocation is a non-random event in a spatially regulated, site-specific, and signal-driven manner, reflecting actions involved in transcriptional activation, epigenetic regulation, three-dimensional nuclear architecture, and DNA damage-repair. In this review, we will focus on the progression toward understanding the molecular logic underlying chromosomal translocation events and implications of new strategies for preventing chromosomal translocations.
Collapse
Affiliation(s)
- Chunru Lin
- Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, La Jolla, California, USA
| | | | | |
Collapse
|
170
|
Grünberg S, Warfield L, Hahn S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat Struct Mol Biol 2012; 19:788-96. [PMID: 22751016 PMCID: PMC3414687 DOI: 10.1038/nsmb.2334] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/28/2012] [Indexed: 01/23/2023]
Abstract
Yeast RNA polymerase (Pol) II general factor TFIIE and the TFIIH subunit Ssl2/XPB function in transition of the preinitiation complex (PIC) to the open complex. We find that the three TFIIE winged helix (WH) domains form a heterodimer, with the Tfa1/TFIIEα WH binding the Pol II clamp and the Tfa2/TFIIEβ tandem WH domain encircling promoter DNA that becomes single stranded in the open complex. Ssl2 lies adjacent to TFIIE, enclosing downstream promoter DNA. In contrast to previous proposals, comparison of the PIC and open complex models strongly suggests that Ssl2 promotes DNA opening by functioning as a double stranded DNA translocase, feeding 15 bp of double stranded DNA into the Pol II cleft. Right-handed threading of DNA through the Ssl2 binding groove, combined with the fixed position of upstream promoter DNA, will lead to DNA unwinding and the open state.
Collapse
|
171
|
Ivančić-Baće I, Al Howard J, Bolt EL. Tuning in to interference: R-loops and cascade complexes in CRISPR immunity. J Mol Biol 2012; 422:607-616. [PMID: 22743103 DOI: 10.1016/j.jmb.2012.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 12/26/2022]
Abstract
Stable RNA-DNA hybrids formed by invasion of an RNA strand into duplex DNA, termed R-loops, are notorious for provoking genome instability especially when they arise during transcription. However, in some instances (DNA replication and class switch recombination), R-loops are useful so long as their existence is carefully managed to avoid them persisting. A recent flow of research papers establishes a newly discovered use for R-loops as key intermediates in a prokaryotic immune system called CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats). Structures and mechanism of ribonucleoprotein complexes ("Cascades") that form CRISPR R-loops highlight precision targeting of duplex DNA that has sequence characteristics marking it as foe, enabling nucleolytic destruction of DNA and recycling the Cascade. We review these significant recent breakthroughs in understanding targeting/interference stages of CRISPR immunity and discuss questions arising, including a possible link between targeting and adaptive immunity in prokaryotes.
Collapse
Affiliation(s)
- Ivana Ivančić-Baće
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jamieson Al Howard
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Edward L Bolt
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
172
|
Xie P. A dynamic model for processive transcription elongation and backtracking long pauses by multisubunit RNA polymerases. Proteins 2012; 80:2020-34. [PMID: 22488837 DOI: 10.1002/prot.24090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 11/07/2022]
Abstract
RNA polymerases are enzymes that transcribe genes from DNA onto strands of RNA. The transcription elongation by multisubunit RNA polymerases is processive but nonuniform: one enzyme can translocate along the DNA template for thousands of nucleotide addition steps but, sometimes, it can enter backtracking long pauses. Here, we present a Brownian ratchet model for the processive transcription elongation and the backtracking long pauses, which is developed based on the available structural and biochemical studies. Using the model, we analytically study the dynamics of the transcription elongation, such as the effects of external force and NTP concentration on the transcription velocity free of pauses, and the dynamics of backtracking long pauses, such as the probabilities of entering and returning from the backtracking pauses, with the analytical results in good agreement with the available single molecule experimental data. Values of several parameters for both Escherichia coli and Saccharomyces cerevisiae RNA polymerases such as their affinities for the DNA/RNA substrate during transcription elongation are determined. Moreover, some testable predictions are presented.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
173
|
Kellinger MW, Ulrich S, Chong J, Kool ET, Wang D. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. J Am Chem Soc 2012; 134:8231-40. [PMID: 22509745 DOI: 10.1021/ja302077d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of "hydrogen bond deficient" nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson-Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3'-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3'-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity.
Collapse
Affiliation(s)
- Matthew W Kellinger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, La Jolla, California 92093-0625, United States
| | | | | | | | | |
Collapse
|
174
|
Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, Block SM. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S A 2012; 109:6555-60. [PMID: 22493230 PMCID: PMC3340090 DOI: 10.1073/pnas.1200939109] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During transcription, RNA polymerase II (RNAPII) must select the correct nucleotide, catalyze its addition to the growing RNA transcript, and move stepwise along the DNA until a gene is fully transcribed. In all kingdoms of life, transcription must be finely tuned to ensure an appropriate balance between fidelity and speed. Here, we used an optical-trapping assay with high spatiotemporal resolution to probe directly the motion of individual RNAPII molecules as they pass through each of the enzymatic steps of transcript elongation. We report direct evidence that the RNAPII trigger loop, an evolutionarily conserved protein subdomain, serves as a master regulator of transcription, affecting each of the three main phases of elongation, namely: substrate selection, translocation, and catalysis. Global fits to the force-velocity relationships of RNAPII and its trigger loop mutants support a Brownian ratchet model for elongation, where the incoming NTP is able to bind in either the pre- or posttranslocated state, and movement between these two states is governed by the trigger loop. Comparison of the kinetics of pausing by WT and mutant RNAPII under conditions that promote base misincorporation indicate that the trigger loop governs fidelity in substrate selection and mismatch recognition, and thereby controls aspects of both transcriptional accuracy and rate.
Collapse
Affiliation(s)
| | | | - Craig D. Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; and
| | - Murali Palangat
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Steven M. Block
- Biophysics Program
- Department of Applied Physics
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
175
|
Walmacq C, Cheung AC, Kireeva ML, Lubkowska L, Ye C, Gotte D, Strathern JN, Carell T, Cramer P, Kashlev M. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol Cell 2012; 46:18-29. [PMID: 22405652 PMCID: PMC3329276 DOI: 10.1016/j.molcel.2012.02.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 11/28/2011] [Accepted: 02/10/2012] [Indexed: 11/19/2022]
Abstract
UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA strand stall transcription elongation by RNA polymerase II (Pol II). If the nucleotide excision repair machinery does not promptly remove the CPDs, stalled Pol II creates a roadblock for DNA replication and subsequent rounds of transcription. Here we present evidence that Pol II has an intrinsic capacity for translesion synthesis (TLS) that enables bypass of the CPD with or without repair. Translesion synthesis depends on the trigger loop and bridge helix, the two flexible regions of the Pol II subunit Rpb1 that participate in substrate binding, catalysis, and translocation. Substitutions in Rpb1 that promote lesion bypass in vitro increase UV resistance in vivo, and substitutions that inhibit lesion bypass decrease cell survival after UV irradiation. Thus, translesion transcription becomes essential for cell survival upon accumulation of the unrepaired CPD lesions in genomic DNA.
Collapse
Affiliation(s)
- Celine Walmacq
- NCI Center for Cancer Research, Frederick, MD, 21702, USA
| | - Alan C.M. Cheung
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | - Chengcheng Ye
- NCI Center for Cancer Research, Frederick, MD, 21702, USA
| | - Deanna Gotte
- NCI Center for Cancer Research, Frederick, MD, 21702, USA
| | | | - Thomas Carell
- Department of Chemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Butenandt-Strasse 5-13, 81377 Munich, Germany
| | - Patrick Cramer
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | |
Collapse
|
176
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
177
|
Cheng B, Li T, Rahl PB, Adamson TE, Loudas NB, Guo J, Varzavand K, Cooper JJ, Hu X, Gnatt A, Young RA, Price DH. Functional association of Gdown1 with RNA polymerase II poised on human genes. Mol Cell 2012; 45:38-50. [PMID: 22244331 DOI: 10.1016/j.molcel.2011.10.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/05/2011] [Accepted: 10/20/2011] [Indexed: 10/14/2022]
Abstract
Most human genes are loaded with promoter-proximally paused RNA polymerase II (Pol II) molecules that are poised for release into productive elongation by P-TEFb. We present evidence that Gdown1, the product of the POLR2M gene that renders Pol II responsive to Mediator, is involved in Pol II elongation control. During in vitro transcription, Gdown1 specifically blocked elongation stimulation by TFIIF, inhibited the termination activity of TTF2, and influenced pausing factors NELF and DSIF, but did not affect the function of TFIIS or the mRNA capping enzyme. Without P-TEFb, Gdown1 led to the production of stably paused polymerases in the presence of nuclear extract. Supporting these mechanistic insights, ChIP-Seq demonstrated that Gdown1 mapped over essentially all poised polymerases across the human genome. Our results establish that Gdown1 stabilizes poised polymerases while maintaining their responsiveness to P-TEFb and suggest that Mediator overcomes a Gdown1-mediated block of initiation by allowing TFIIF function.
Collapse
Affiliation(s)
- Bo Cheng
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Treutlein B, Muschielok A, Andrecka J, Jawhari A, Buchen C, Kostrewa D, Hög F, Cramer P, Michaelis J. Dynamic architecture of a minimal RNA polymerase II open promoter complex. Mol Cell 2012; 46:136-46. [PMID: 22424775 DOI: 10.1016/j.molcel.2012.02.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/04/2011] [Accepted: 02/10/2012] [Indexed: 01/22/2023]
Abstract
The open promoter complex (OC) is a central intermediate during transcription initiation that contains a DNA bubble. Here, we employ single-molecule Förster resonance energy transfer experiments and Nano-Positioning System analysis to determine the three-dimensional architecture of a minimal OC consisting of promoter DNA, including a TATA box and an 11-nucleotide mismatched region around the transcription start site, TATA box-binding protein (TBP), RNA polymerase (Pol) II, and general transcription factor (TF)IIB and TFIIF. In this minimal OC, TATA-DNA and TBP reside above the Pol II cleft between clamp and protrusion domains. Downstream DNA is dynamically loaded into and unloaded from the Pol II cleft at a timescale of seconds. The TFIIB core domain is displaced from the Pol II wall, where it is located in the closed promoter complex. These results reveal large overall structural changes during the initiation-elongation transition, which are apparently accommodated by the intrinsic flexibility of TFIIB.
Collapse
Affiliation(s)
- Barbara Treutlein
- Department of Chemistry and Center for Integrated Protein Science München, Ludwig-Maximilians-Universität München, Butenandtstr.11, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Jennebach S, Herzog F, Aebersold R, Cramer P. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res 2012; 40:5591-601. [PMID: 22396529 PMCID: PMC3384336 DOI: 10.1093/nar/gks220] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase (Pol) I contains a 10-subunit catalytic core that is related to the core of Pol II and includes subunit A12.2. In addition, Pol I contains the heterodimeric subcomplexes A14/43 and A49/34.5, which are related to the Pol II subcomplex Rpb4/7 and the Pol II initiation factor TFIIF, respectively. Here we used lysine-lysine crosslinking, mass spectrometry (MS) and modeling based on five crystal structures, to extend the previous homology model of the Pol I core, to confirm the location of A14/43 and to position A12.2 and A49/34.5 on the core. In the resulting model of Pol I, the C-terminal ribbon (C-ribbon) domain of A12.2 reaches the active site via the polymerase pore, like the C-ribbon of the Pol II cleavage factor TFIIS, explaining why the intrinsic RNA cleavage activity of Pol I is strong, in contrast to the weak cleavage activity of Pol II. The A49/34.5 dimerization module resides on the polymerase lobe, like TFIIF, whereas the A49 tWH domain resides above the cleft, resembling parts of TFIIE. This indicates that Pol I and also Pol III are distantly related to a Pol II-TFIIS-TFIIF-TFIIE complex.
Collapse
Affiliation(s)
- Stefan Jennebach
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
180
|
Strathern JN, Jin DJ, Court DL, Kashlev M. Isolation and characterization of transcription fidelity mutants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:694-9. [PMID: 22366339 DOI: 10.1016/j.bbagrm.2012.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
Abstract
Accurate transcription is an essential step in maintaining genetic information. Error-prone transcription has been proposed to contribute to cancer, aging, adaptive mutagenesis, and mutagenic evolution of retroviruses and retrotransposons. The mechanisms controlling transcription fidelity and the biological consequences of transcription errors are poorly understood. Because of the transient nature of mRNAs and the lack of reliable experimental systems, the identification and characterization of defects that increase transcription errors have been particularly challenging. In this review we describe novel genetic screens for the isolation of fidelity mutants in both Saccharomyces cerevisiae and Escherichia coli RNA polymerases. We obtained and characterized two distinct classes of mutants altering NTP misincorporation and transcription slippage both in vivo and in vitro. Our study not only validates the genetic schemes for the isolation of RNA polymerase mutants that alter fidelity, but also sheds light on the mechanism of transcription accuracy. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Jeffrey N Strathern
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
181
|
Parsa JY, Ramachandran S, Zaheen A, Nepal RM, Kapelnikov A, Belcheva A, Berru M, Ronai D, Martin A. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis. PLoS Genet 2012; 8:e1002518. [PMID: 22346767 PMCID: PMC3276561 DOI: 10.1371/journal.pgen.1002518] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022] Open
Abstract
Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID. Creating an effective antibody-mediated immune response relies on processes that create antibodies of high affinity and of different functions in order to clear pathogens. Activation-induced cytidine deaminase (AID) is an essential B cell–specific factor that is known to initiate these processes by deaminating dC on single-stranded DNA of actively transcribed genes. AID has also been implicated in deaminating dC at non-antibody genes, resulting in the disregulation of genes that may lead to B cell–related cancers. Until now, it has remained unknown what the source, structure, and distribution of the single-stranded DNA is that AID acts upon. By using a novel assay that allows direct detection of single-stranded DNA within intact cell nuclei, we observed patches of single-stranded DNA that are strongly correlated to the preferred activity of AID. Furthermore, we find that the activity of AID and single-stranded DNA patch formation can be enhanced by negative supercoiling of the DNA, which is a typical consequence of transcription. These findings allow us to better understand how AID is recruited to and mutates antibody genes as well as other genes implicated in cancers of B cell origin.
Collapse
Affiliation(s)
- Jahan-Yar Parsa
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Ahmad Zaheen
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rajeev M. Nepal
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Anat Kapelnikov
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Diana Ronai
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
182
|
Kinjo AR, Nakamura H. Composite structural motifs of binding sites for delineating biological functions of proteins. PLoS One 2012; 7:e31437. [PMID: 22347478 PMCID: PMC3275580 DOI: 10.1371/journal.pone.0031437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 01/08/2012] [Indexed: 11/19/2022] Open
Abstract
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | | |
Collapse
|
183
|
Yu J, Oster G. A small post-translocation energy bias aids nucleotide selection in T7 RNA polymerase transcription. Biophys J 2012; 102:532-41. [PMID: 22325276 PMCID: PMC3274829 DOI: 10.1016/j.bpj.2011.12.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 01/22/2023] Open
Abstract
The RNA polymerase (RNAP) of bacteriophage T7 is a single subunit enzyme that can transcribe DNA to RNA in the absence of additional protein factors. In this work, we present a model of T7 RNAP translocation during elongation. Based on structural information and experimental data from single-molecule force measurements, we show that a small component of facilitated translocation or power stroke coexists with the Brownian-ratchet-driven motions, and plays a crucial role in nucleotide selection at pre-insertion. The facilitated translocation is carried out by the conserved Tyr(639) that moves its side chain into the active site, pushing aside the 3'-end of the RNA, and forming a locally stabilized post-translocation intermediate. Pre-insertion of an incoming nucleotide into this stabilized intermediate state ensures that Tyr(639) closely participates in selecting correct nucleotides. A similar translocation mechanism has been suggested for multi-subunit RNAPs involving the bridge-helix bending. Nevertheless, the bent bridge-helix sterically prohibits nucleotide binding in the post-transolocation intermediate analog; moreover, the analog is not stabilized unless an inhibitory protein factor binds to the enzyme. Using our scheme, we also compared the efficiencies of different strategies for nucleotide selection, and examined effects of facilitated translocation on forward tracking.
Collapse
Affiliation(s)
- Jin Yu
- Departments of Molecular and Cell Biology, and Environmental Science, Policy and Management, University of California, Berkeley, California
| | - George Oster
- Departments of Molecular and Cell Biology, and Environmental Science, Policy and Management, University of California, Berkeley, California
| |
Collapse
|
184
|
Da LT, Wang D, Huang X. Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J Am Chem Soc 2012; 134:2399-406. [PMID: 22206270 PMCID: PMC3273452 DOI: 10.1021/ja210656k] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pyrophosphate ion (PP(i)) release after nucleotide incorporation is a necessary step for RNA polymerase II (pol II) to enter the next nucleotide addition cycle during transcription elongation. However, the role of pol II residues in PP(i) release and the mechanistic relationship between PP(i) release and the conformational change of the trigger loop remain unclear. In this study, we constructed a Markov state model (MSM) from extensive all-atom molecular dynamics (MD) simulations in the explicit solvent to simulate the PP(i) release process along the pol II secondary channel. Our results show that the trigger loop has significantly larger intrinsic motion after catalysis and formation of PP(i), which in turn aids PP(i) release mainly through the hydrogen bonding between the trigger loop residue H1085 and the (Mg-PP(i))(2-) group. Once PP(i) leaves the active site, it adopts a hopping model through several highly conserved positively charged residues such as K752 and K619 to release from the pol II pore region of the secondary channel. These positive hopping sites form favorable interactions with PP(i) and generate four kinetically metastable states as identified by our MSM. Furthermore, our single-mutant simulations suggest that H1085 and K752 aid PP(i) exit from the active site after catalysis, whereas K619 facilitates its passage through the secondary channel. Finally, we suggest that PP(i) release could help the opening motion of the trigger loop, even though PP(i) release precedes full opening of the trigger loop due to faster PP(i) dynamics. Our simulations provide predictions to guide future experimental tests.
Collapse
Affiliation(s)
- Lin-Tai Da
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0625, USA
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
185
|
Sekine SI, Tagami S, Yokoyama S. Structural basis of transcription by bacterial and eukaryotic RNA polymerases. Curr Opin Struct Biol 2012; 22:110-8. [DOI: 10.1016/j.sbi.2011.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 01/22/2023]
|
186
|
Werner F. A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 2012; 417:13-27. [PMID: 22306403 PMCID: PMC3382729 DOI: 10.1016/j.jmb.2012.01.031] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/25/2022]
Abstract
Evolutionary related multisubunit RNA polymerases (RNAPs) transcribe the genomes of all living organisms. Whereas the core subunits of RNAPs are universally conserved in all three domains of life—indicative of a common evolutionary descent—this only applies to one RNAP-associated transcription factor—Spt5, also known as NusG in bacteria. All other factors that aid RNAP during the transcription cycle are specific for the individual domain or only conserved between archaea and eukaryotes. Spt5 and its bacterial homologue NusG regulate gene expression in several ways by (i) modulating transcription processivity and promoter proximal pausing, (ii) coupling transcription and RNA processing or translation, and (iii) recruiting termination factors and thereby silencing laterally transferred DNA and protecting the genome against double-stranded DNA breaks. This review discusses recent discoveries that identify Spt5-like factors as evolutionary conserved nexus for the regulation and coordination of the machineries responsible for information processing in the cell.
Collapse
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
187
|
Luo J, Fishburn J, Hahn S, Ranish J. An integrated chemical cross-linking and mass spectrometry approach to study protein complex architecture and function. Mol Cell Proteomics 2011; 11:M111.008318. [PMID: 22067100 DOI: 10.1074/mcp.m111.008318] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Knowledge of protein structures and protein-protein interactions is essential for understanding biological processes. Chemical cross-linking combined with mass spectrometry is an attractive approach for studying protein-protein interactions and protein structure, but to date its use has been limited largely by low yields of informative cross-links (because of inefficient cross-linking reactions) and by the difficulty of confidently identifying the sequences of cross-linked peptide pairs from their fragmentation spectra. Here we present an approach based on a new MS labile cross-linking reagent, BDRG (biotin-aspartate-Rink-glycine), which addresses these issues. BDRG incorporates a biotin handle (for enrichment of cross-linked peptides prior to MS analysis), two pentafluorophenyl ester groups that react with peptide amines, and a labile Rink-based bond between the pentafluorophenyl groups that allows cross-linked peptides to be separated during MS and confidently identified by database searching of their fragmentation spectra. We developed a protocol for the identification of BDRG cross-linked peptides derived from purified or partially purified protein complexes, including software to aid in the identification of different classes of cross-linker-modified peptides. Importantly, our approach permits the use of high accuracy precursor mass measurements to verify the database search results. We demonstrate the utility of the approach by applying it to purified yeast TFIIE, a heterodimeric transcription factor complex, and to a single-step affinity-purified preparation of the 12-subunit RNA polymerase II complex. The results show that the method is effective at identifying cross-linked peptides derived from purified and partially purified protein complexes and provides complementary information to that from other structural approaches. As such, it is an attractive approach to study the topology of protein complexes.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
188
|
Cheung ACM, Sainsbury S, Cramer P. Structural basis of initial RNA polymerase II transcription. EMBO J 2011; 30:4755-63. [PMID: 22056778 PMCID: PMC3243610 DOI: 10.1038/emboj.2011.396] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/10/2011] [Indexed: 01/22/2023] Open
Abstract
Several RNA polymerase II–nucleic acid crystal structures reveal the transition of the initiating polymerase from the open complex (OC) state to the initially transcribing complex (ITC) containing several RNA nucleotides. During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II–DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3′-proximal phosphate of short RNAs. Short DNA–RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2′-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.
Collapse
Affiliation(s)
- Alan C M Cheung
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
189
|
Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 2011; 146:533-43. [PMID: 21854980 DOI: 10.1016/j.cell.2011.07.034] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/18/2011] [Accepted: 07/26/2011] [Indexed: 01/28/2023]
Abstract
Frequent codirectional collisions between the replisome and RNA polymerase (RNAP) are inevitable because the rate of replication is much faster than that of transcription. Here we show that, in E. coli, the outcome of such collisions depends on the productive state of transcription elongation complexes (ECs). Codirectional collisions with backtracked (arrested) ECs lead to DNA double-strand breaks (DSBs), whereas head-on collisions do not. A mechanistic model is proposed to explain backtracking-mediated DSBs. We further show that bacteria employ various strategies to avoid replisome collisions with backtracked RNAP, the most general of which is translation that prevents RNAP backtracking. If translation is abrogated, DSBs are suppressed by elongation factors that either prevent backtracking or reactivate backtracked ECs. Finally, termination factors also contribute to genomic stability by removing arrested ECs. Our results establish RNAP backtracking as the intrinsic hazard to chromosomal integrity and implicate active ribosomes and other anti-backtracking mechanisms in genome maintenance.
Collapse
Affiliation(s)
- Dipak Dutta
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
190
|
Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, Chakraborty A, Druzhinin SY, Chatterjee S, Mukhopadhyay J, Ebright YW, Zozula A, Shen J, Sengupta S, Niedfeldt RR, Xin C, Kaneko T, Irschik H, Jansen R, Donadio S, Connell N, Ebright RH. New target for inhibition of bacterial RNA polymerase: 'switch region'. Curr Opin Microbiol 2011; 14:532-43. [PMID: 21862392 PMCID: PMC3196380 DOI: 10.1016/j.mib.2011.07.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/08/2023]
Abstract
A new drug target - the 'switch region' - has been identified within bacterial RNA polymerase (RNAP), the enzyme that mediates bacterial RNA synthesis. The new target serves as the binding site for compounds that inhibit bacterial RNA synthesis and kill bacteria. Since the new target is present in most bacterial species, compounds that bind to the new target are active against a broad spectrum of bacterial species. Since the new target is different from targets of other antibacterial agents, compounds that bind to the new target are not cross-resistant with other antibacterial agents. Four antibiotics that function through the new target have been identified: myxopyronin, corallopyronin, ripostatin, and lipiarmycin. This review summarizes the switch region, switch-region inhibitors, and implications for antibacterial drug discovery.
Collapse
Affiliation(s)
- Aashish Srivastava
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Meliza Talaue
- Center for Biodefense, University of Medicine and Dentistry of New Jersey, Newark NJ 07101, USA
| | - Shuang Liu
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - David Degen
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Richard Y. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Elena Sineva
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Anirban Chakraborty
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Sergey Y. Druzhinin
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Sujoy Chatterjee
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Jayanta Mukhopadhyay
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Yon W. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Alex Zozula
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Juan Shen
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Sonali Sengupta
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Rui Rong Niedfeldt
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Cai Xin
- College of Chemical Engineering, Sichuan University, Sichuan, Chengdu 610065, PRC
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York NY 10004, USA
| | - Herbert Irschik
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Stefano Donadio
- NAICONS--New Anti-Infectives Consortium, 20138 Milano, Italy
| | - Nancy Connell
- Center for Biodefense, University of Medicine and Dentistry of New Jersey, Newark NJ 07101, USA
| | - Richard H. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
191
|
Fernández-Tornero C, Böttcher B, Rashid UJ, Müller CW. Analyzing RNA polymerase III by electron cryomicroscopy. RNA Biol 2011; 8:760-5. [PMID: 21881405 DOI: 10.4161/rna.8.5.16021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent electron cryomicroscopy reconstructions have provided new insights into the overall organization of yeast RNA polymerase (Pol) III, responsible for the synthesis of small, non-translated RNAs. The structure of the free Pol III enzyme at 10 Å resolution provides an accurate framework to better understand its overall architecture and the structural organization and functional role of two Pol III-specific subcomplexes. Cryo-EM structures of elongating Pol III bound to DNA/RNA scaffolds show the rearrangement of the Pol III-specific subcomplexes that enclose incoming DNA. In one reconstruction downstream DNA and newly transcribed RNA can be followed over considerably longer distances as in the crystal structure of elongating Pol II. The Pol III transcription machinery is increasingly recognized as a possible target for cancer therapy. The recent cryo-EM reconstructions contribute to the molecular understanding of Pol III transcription as a prerequisite for targeting its components.
Collapse
|
192
|
Hein PP, Palangat M, Landick R. RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 2011; 50:7002-14. [PMID: 21739957 DOI: 10.1021/bi200437q] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translocation of RNA polymerase on DNA is thought to involve oscillations between pretranslocated and posttranslocated states that are rectified by nucleotide addition or pyrophosphorolysis. The pretranslocated register is also a precursor to transcriptional pause states that mediate regulation of transcript elongation. However, the determinants of bias between the pretranslocated and posttranslocated states are incompletely understood. To investigate translocation bias in multisubunit RNA polymerases, we measured rates of pyrophosphorolysis, which occurs in the pretranslocated register, in minimal elongation complexes containing T. thermophilus or E. coli RNA polymerase. Our results suggest that the identity of RNA:DNA nucleotides in the active site are strong determinants of susceptibility to pyrophosphorolysis, and thus translocation bias, with the 3' RNA nucleotide favoring the pretranslocated state in the order U > C > A > G. The preference of 3' U vs G for the pretranslocated register appeared to be universal among both bacterial and eukaryotic RNA polymerases and was confirmed by exonuclease III footprinting of defined elongation complexes. However, the relationship of pyrophosphate concentration to the rate of pyrophosphorolysis of 3' U-containing versus 3' G-containing elongation complexes did not match predictions of a simple mechanism in which 3'-RNA seqeunce affects only translocation bias and pyrophosphate (PPi) binds only to the pretranslocated state.
Collapse
Affiliation(s)
- Pyae P Hein
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
193
|
Ruprich-Robert G, Wery M, Després D, Boulard Y, Thuriaux P. Crucial role of a dicarboxylic motif in the catalytic center of yeast RNA polymerases. Curr Genet 2011; 57:327-34. [PMID: 21761155 DOI: 10.1007/s00294-011-0350-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 11/29/2022]
Abstract
The catalytic center of yeast RNA polymerase II and III contains an acidic loop borne by their second largest subunit (Rpb2-(832)GYNQED(837), Rpc128-(764)GYDIED(769)) and highly conserved in all cellular and viral DNA-dependent RNA polymerases. A site-directed mutagenesis of this dicarboxylic motif reveals its strictly essential character in RNA polymerase III, with a slightly less stringent pattern in RNA polymerase II, where rpb2-E836Q and other substitutions completely prevent growth, whereas rpb2-E836A combines a dominant growth defect with severe lethal sectoring. A mild but systematic increase in RNA polymerase occupancy and a strict dependency on the transcript cleavage factor TFIIS (Dst1) also suggest a slower rate of translocation or higher probability of transcriptional stalling in this mutation. A conserved nucleotide triphosphate funnel domain binds the Rpb2-(832)GYNQED(837) loop by an Rpb2-R(1020)/Rpb2-D(837) salt-bridge. Molecular dynamic simulations reveal a second bridge (Rpb1-K(752)/Rpb2-E(836)), which may account for the critical role of the invariant Rpb2-E(836). Rpb2-E(836) and the funnel domain are not found among the RNA-dependent eukaryotic RNA polymerases and may thus represent a specific adaptation to double-stranded DNA templates.
Collapse
Affiliation(s)
- Gwenaël Ruprich-Robert
- Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bâtiment 144, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
194
|
Kireeva ML, Domecq C, Coulombe B, Burton ZF, Kashlev M. Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation. J Biol Chem 2011; 286:30898-30910. [PMID: 21730074 DOI: 10.1074/jbc.m111.260844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fork loop 2 is a small semiconservative segment of the larger fork domain in the second largest Rpb2 subunit of RNA polymerase II (Pol II). This flexible loop, juxtaposed at the leading edge of transcription bubble, has been proposed to participate in DNA strand separation, translocation along DNA, and NTP loading to Pol II during elongation. Here we show that the Rpb2 mutant carrying a deletion of the flexible part of the loop is not lethal in yeast. The mutation exhibits no defects in DNA melting and translocation in vitro but confers a moderate decrease of the catalytic activity of the enzyme caused by the impaired sequestration of the NTP substrate in the active center prior to catalysis. In the structural model of the Pol II elongation complex, fork loop 2 directly interacts with an unpaired DNA residue in the non-template DNA strand one nucleotide ahead from the active center (the i+2 position). We showed that elimination of this putative interaction by replacement of the i+2 residue with an abasic site inhibits Pol II activity to the same degree as the deletion of fork loop 2. This replacement has no detectable effect on the activity of the mutant enzyme. We provide direct evidence that interaction of fork loop 2 with the non-template DNA strand facilitates NTP sequestration through interaction with the adjacent segment of the fork domain involved in the active center of Pol II.
Collapse
Affiliation(s)
- Maria L Kireeva
- NCI-Frederick, National Institutes of Health, Center for Cancer Research, Frederick, Maryland 21702-1201
| | - Céline Domecq
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montréal, Québec, H2W 1R7 Canada
| | - Benoit Coulombe
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montréal, Québec, H2W 1R7 Canada
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Mikhail Kashlev
- NCI-Frederick, National Institutes of Health, Center for Cancer Research, Frederick, Maryland 21702-1201.
| |
Collapse
|
195
|
Proshkin SA, Mironov AS. Regulation of bacterial transcription elongation. Mol Biol 2011. [DOI: 10.1134/s0026893311020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
196
|
Mortensen SA, Sønderkær M, Lynggaard C, Grasser M, Nielsen KL, Grasser KD. Reduced expression of the DOG1 gene in Arabidopsis mutant seeds lacking the transcript elongation factor TFIIS. FEBS Lett 2011; 585:1929-33. [PMID: 21569772 DOI: 10.1016/j.febslet.2011.04.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
TFIIS is a transcript elongation factor that facilitates transcription by RNA polymerase II through blocks to elongation. Arabidopsis plants lacking TFIIS are affected in seed dormancy, which represents a block to complete germination under favourable conditions. We have comparatively profiled the transcript levels of seeds of tfIIs mutants and control plants. Among the differentially expressed genes, the DOG1 gene was identified that is a QTL for seed dormancy. The reduced expression of DOG1 in tfIIs seeds was confirmed by quantitative RT-PCR and Northern analyses, suggesting that down-regulation of DOG1 expression is involved in the seed dormancy phenotype of tfIIs mutants.
Collapse
Affiliation(s)
- Simon A Mortensen
- Cell Biology and Plant Biochemistry, Regensburg University, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
197
|
The TFIIF-like Rpc37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center. Mol Cell Biol 2011; 31:2715-28. [PMID: 21536656 DOI: 10.1128/mcb.05151-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic RNA polymerase III (Pol III) relies on a transcription factor TFIIF-like Rpc37/53 subcomplex for promoter opening, elongation, termination, and reinitiation. By incorporating the photoreactive amino acid p-benzoyl-L-phenylalanine (BPA) into Rpc37, Rpc53, and the Rpc2 subunit of Pol III, we mapped protein-protein interactions, revealing the position of Rpc37/53 within the Pol III preinitiation complex (PIC). BPA photo-cross-linking was combined with site-directed hydroxyl radical probing to localize the Rpc37/53 dimerization module on the lobe/external 2 domains of Rpc2, in similarity to the binding of TFIIF on Pol II. N terminal to the dimerization domain, Rpc53 binds the Pol III-specific subunits Rpc82 and Rpc34, the Pol III stalk, and the assembly factor TFIIIC, essential for PIC formation. The C-terminal domain of Rpc37 interacts extensively with Rpc2 and Rpc34 and contains binding sites for initiation factor Bdp1. We also located the C-terminal domain of Rpc37 within the Pol III active center in the ternary elongation complex, where it likely functions in accurate termination. Our work explains how the Rpc37/53 dimer is anchored on the Pol III core and acts as a hub to integrate a protein network for initiation and termination.
Collapse
|
198
|
Lane LA, Fernández-Tornero C, Zhou M, Morgner N, Ptchelkine D, Steuerwald U, Politis A, Lindner D, Gvozdenovic J, Gavin AC, Müller CW, Robinson CV. Mass spectrometry reveals stable modules in holo and apo RNA polymerases I and III. Structure 2011; 19:90-100. [PMID: 21220119 DOI: 10.1016/j.str.2010.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/15/2010] [Accepted: 11/09/2010] [Indexed: 12/27/2022]
Abstract
RNA polymerases are essential enzymes which transcribe DNA into RNA. Here, we obtain mass spectra of the cellular forms of apo and holo eukaryotic RNA polymerase I and III, defining their composition under different solution conditions. By recombinant expression of subunits within the initiation heterotrimer of Pol III, we derive an interaction network and couple this data with ion mobility data to define topological restraints. Our data agree with available structural information and homology modeling and are generally consistent with yeast two hybrid data. Unexpectedly, elongation complexes of both Pol I and III destabilize the assemblies compared with their apo counterparts. Increasing the pH and ionic strength of apo and holo forms of Pol I and Pol III leads to formation of at least ten stable subcomplexes for both enzymes. Uniquely for Pol III many subcomplexes contain only one of the two largest catalytic subunits. We speculate that these stable subcomplexes represent putative intermediates in assembly pathways.
Collapse
Affiliation(s)
- Laura A Lane
- Department of Chemistry, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 2011; 12:283-94. [PMID: 21487437 DOI: 10.1038/nrm3098] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pervasiveness of RNA synthesis in eukaryotes is largely the result of RNA polymerase II (Pol II)-mediated transcription, and termination of its activity is necessary to partition the genome and maintain the proper expression of neighbouring genes. Despite its ever-increasing biological significance, transcription termination remains one of the least understood processes in gene expression. However, recent mechanistic studies have revealed a striking convergence among several overlapping models of termination, including the poly(A)- and Sen1-dependent pathways, as well as new insights into the specificity of Pol II termination among its diverse gene targets. Broader knowledge of the role of Pol II carboxy-terminal domain phosphorylation in promoting alternative mechanisms of termination has also been gained.
Collapse
|
200
|
Larson MH, Landick R, Block SM. Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 2011; 41:249-62. [PMID: 21292158 DOI: 10.1016/j.molcel.2011.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 01/05/2011] [Indexed: 11/17/2022]
Abstract
Transcription is the first of many biochemical steps that turn the genetic information found in DNA into the proteins responsible for driving cellular processes. In this review, we highlight certain advantages of single-molecule techniques in the study of prokaryotic and eukaryotic transcription, and the specific ways in which these techniques complement conventional, ensemble-based biochemistry. We focus on recent literature, highlighting examples where single-molecule methods have provided fresh insights into mechanism. We also present recent technological advances and outline future directions in the field.
Collapse
Affiliation(s)
- Matthew H Larson
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|