151
|
Sydow JF, Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr Opin Struct Biol 2009; 19:732-9. [PMID: 19914059 DOI: 10.1016/j.sbi.2009.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 02/06/2023]
Abstract
Whereas mechanisms underlying the fidelity of DNA polymerases (DNAPs) have been investigated in detail, RNA polymerase (RNAP) fidelity mechanisms remained poorly understood. New functional and structural studies now suggest how RNAPs select the correct nucleoside triphosphate (NTP) substrate to prevent transcription errors, and how the enzymes detect and remove a misincorporated nucleotide during proofreading. Proofreading begins with fraying of the misincorporated nucleotide away from the DNA template, which pauses transcription. Subsequent backtracking of RNAP by one position enables nucleolytic cleavage of an RNA dinucleotide that contains the misincorporated nucleotide. Since cleavage occurs at the same active site that is used for polymerization, the RNAP proofreading mechanism differs from that used by DNAPs, which contain a distinct nuclease specific active site.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Gene Center Munich and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
152
|
Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol Cell 2009; 35:191-205. [PMID: 19647516 PMCID: PMC2791892 DOI: 10.1016/j.molcel.2009.06.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/08/2009] [Accepted: 06/05/2009] [Indexed: 11/24/2022]
Abstract
Multiple RNA polymerase II (RNAPII) molecules can transcribe a gene simultaneously, but what happens when such polymerases collide—for example due to polymerase pausing or DNA damage? Here, RNAPII collision was characterized using a reconstituted system for simultaneous transcription by two polymerases. When progression of leading polymerase is obstructed, rear-end collision entails a transient state in which the elongation complexes interact, followed by substantial backtracking of trailing polymerase. Elongation complexes remain stable on DNA, with their activity and the integrity of transcription bubbles remaining intact. Subsequent TFIIS-stimulated transcript cleavage allows resumed forward translocation, resulting in trailing polymerase oscillating at the obstruction. Conversely, if leading polymerase is merely stalled at a pause site, collision and TFIIS cooperate to drive it through. We propose that dynamic interactions between RNAPII elongation complexes help regulate polymerase traffic and that their conformational flexibility buffers the effect of collisions with objects on DNA, thereby maintaining stability in the face of obstacles to transcription.
Collapse
|
153
|
Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 2009; 325:626-8. [PMID: 19644123 DOI: 10.1126/science.1172926] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA polymerase II (Pol II) must overcome the barriers imposed by nucleosomes during transcription elongation. We have developed an optical tweezers assay to follow individual Pol II complexes as they transcribe nucleosomal DNA. Our results indicate that the nucleosome behaves as a fluctuating barrier that locally increases pause density, slows pause recovery, and reduces the apparent pause-free velocity of Pol II. The polymerase, rather than actively separating DNA from histones, functions instead as a ratchet that rectifies nucleosomal fluctuations. We also obtained direct evidence that transcription through a nucleosome involves transfer of the core histones behind the transcribing polymerase via a transient DNA loop. The interplay between polymerase dynamics and nucleosome fluctuations provides a physical basis for the regulation of eukaryotic transcription.
Collapse
Affiliation(s)
- Courtney Hodges
- Jason L. Choy Laboratory of Single-Molecule Biophysics and Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
154
|
Galburt EA, Grill SW, Bustamante C. Single molecule transcription elongation. Methods 2009; 48:323-32. [PMID: 19426807 PMCID: PMC2767109 DOI: 10.1016/j.ymeth.2009.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 11/20/2022] Open
Abstract
Single molecule optical trapping assays have now been applied to a great number of macromolecular systems including DNA, RNA, cargo motors, restriction enzymes, DNA helicases, chromosome remodelers, DNA polymerases and both viral and bacterial RNA polymerases. The advantages of the technique are the ability to observe dynamic, unsynchronized molecular processes, to determine the distributions of experimental quantities and to apply force to the system while monitoring the response over time. Here, we describe the application of these powerful techniques to study the dynamics of transcription elongation by RNA polymerase II from Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Eric A Galburt
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstrasse 38, 01187 Dresden, Germany.
| | | | | |
Collapse
|
155
|
Otterstrom JJ, van Oijen AM. Biochemistry. Nudging through a nucleosome. Science 2009; 325:547-8. [PMID: 19644099 DOI: 10.1126/science.1177311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jason J Otterstrom
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
156
|
Sydow JF, Brueckner F, Cheung ACM, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 2009; 34:710-21. [PMID: 19560423 DOI: 10.1016/j.molcel.2009.06.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/05/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022]
Abstract
We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Department of Chemistry and Biochemistry, Gene Center Munich and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
RNA polymerase (RNAP) is a complex molecular machine that governs gene expression and its regulation in all cellular organisms. To accomplish its function of accurately producing a full-length RNA copy of a gene, RNAP performs a plethora of chemical reactions and undergoes multiple conformational changes in response to cellular conditions. At the heart of this machine is the active center, the engine, which is composed of distinct fixed and moving parts that serve as the ultimate acceptor of regulatory signals and as the target of inhibitory drugs. Recent advances in the structural and biochemical characterization of RNAP explain the active center at the atomic level and enable new approaches to understanding the entire transcription mechanism, its exceptional fidelity and control.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
158
|
Chromatin structure is implicated in "late" elongation checkpoints on the U2 snRNA and beta-actin genes. Mol Cell Biol 2009; 29:4002-13. [PMID: 19451231 PMCID: PMC2704739 DOI: 10.1128/mcb.00189-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The negative elongation factor NELF is a key component of an early elongation checkpoint generally located within 100 bp of the transcription start site of protein-coding genes. Negotiation of this checkpoint and conversion to productive elongation require phosphorylation of the carboxy-terminal domain of RNA polymerase II (pol II), NELF, and DRB sensitivity-inducing factor (DSIF) by positive transcription elongation factor b (P-TEFb). P-TEFb is dispensable for transcription of the noncoding U2 snRNA genes, suggesting that a NELF-dependent checkpoint is absent. However, we find that NELF at the end of the 800-bp U2 gene transcription unit and RNA interference-mediated knockdown of NELF causes a termination defect. NELF is also associated 800 bp downstream of the transcription start site of the beta-actin gene, where a "late" P-TEFb-dependent checkpoint occurs. Interestingly, both genes have an extended nucleosome-depleted region up to the NELF-dependent control point. In both cases, transcription through this region is P-TEFb independent, implicating chromatin in the formation of the terminator/checkpoint. Furthermore, CTCF colocalizes with NELF on the U2 and beta-actin genes, raising the possibility that it helps the positioning and/or function of the NELF-dependent control point on these genes.
Collapse
|
159
|
Rodríguez-Paredes M, Ceballos-Chávez M, Esteller M, García-Domínguez M, Reyes JC. The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Res 2009; 37:2449-60. [PMID: 19255092 PMCID: PMC2677868 DOI: 10.1093/nar/gkp101] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
CHD8 is a chromatin remodeling ATPase of the SNF2 family. We found that depletion of CHD8 impairs cell proliferation. In order to identify CHD8 target genes, we performed a transcriptomic analysis of CHD8-depleted cells, finding out that CHD8 controls the expression of cyclin E2 (CCNE2) and thymidylate synthetase (TYMS), two genes expressed in the G1/S transition of the cell cycle. CHD8 was also able to co-activate the CCNE2 promoter in transient transfection experiments. Chromatin immunoprecipitation experiments demonstrated that CHD8 binds directly to the 5' region of both CCNE2 and TYMS genes. Interestingly, both RNA polymerase II (RNAPII) and CHD8 bind constitutively to the 5' promoter-proximal region of CCNE2, regardless of the cell-cycle phase and, therefore, of the expression of CCNE2. The tandem chromodomains of CHD8 bind in vitro specifically to histone H3 di-methylated at lysine 4. However, CHD8 depletion does not affect the methylation levels of this residue. We also show that CHD8 associates with the elongating form of RNAPII, which is phosphorylated in its carboxy-terminal domain (CTD). Furthermore, CHD8-depleted cells are hypersensitive to drugs that inhibit RNAPII phosphorylation at serine 2, suggesting that CHD8 is required for an early step of the RNAPII transcription cycle.
Collapse
Affiliation(s)
- M Rodríguez-Paredes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC, Américo Vespucio s/n, E-41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
160
|
Nagata M, Ito T, Arimitsu N, Koyama H, Sekimizu K. Transcription arrest relief by S-II/TFIIS during gene expression in erythroblast differentiation. Genes Cells 2009; 14:371-80. [PMID: 19210546 DOI: 10.1111/j.1365-2443.2008.01277.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcription stimulator S-II relieves RNA polymerase II (RNAPII) from transcription elongation arrest. Mice lacking the S-II gene (S-II KO mice) die at mid-gestation with impaired erythroblast differentiation, and have decreased expression of the Bcl-x gene. To understand a role of S-II in Bcl-x gene expression, we examined the distribution of transcription complex on the Bcl-x gene in S-II KO mice. The amount of RNAPII at intron 2 of the Bcl-x gene was decreased in S-II KO mice, whereas recruitment of transcription initiation factor TFIIB and RNAPII to the promoter was not decreased. Consistently, in vitro transcription analysis revealed the presence of a transcription arrest site in the Bcl-x gene intron 2, and transcription arrest at this site was overcome by S-II. Furthermore, histone acetylation on the coding region of the Bcl-x gene was decreased in S-II KO mice. In the beta(major)-globin gene, whose expression was also decreased in S-II KO mice, there were no changes in RNAPII distribution or histone acetylation, but the amount of histone H3 occupying the coding region was increased. These results suggest that S-II is involved in transcription of the Bcl-x and beta(major)-globin gene during erythroblast differentiation, by relieving transcription arrest or affecting histone modification on chromatin template.
Collapse
Affiliation(s)
- Makiko Nagata
- Department of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
161
|
High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol 2009; 16:124-9. [PMID: 19136959 PMCID: PMC2635915 DOI: 10.1038/nsmb.1526] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/10/2008] [Indexed: 11/10/2022]
Abstract
The nature of the nucleosomal barrier which regulates access to the underlying DNA during many cellular processes is not fully understood. Here we present a detailed map of histone-DNA interactions along the DNA sequence to near basepair accuracy by mechanically unzipping single molecules of DNA, each containing a single nucleosome. This interaction map revealed a distinct ~5 bp periodicity that was enveloped by three broad regions of strong interactions, with the strongest at the dyad and the other two at ~ ±40 bp from the dyad. Unzipping up to the dyad allowed recovery of a canonical nucleosome upon relaxation of the DNA, but unzipping beyond the dyad resulted in removal of histone octamer from its initial DNA sequence. These findings have significant implications for how RNA polymerase and other DNA-based enzymes may gain access to DNA associated with a nucleosome.
Collapse
|
162
|
Ujvári A, Hsieh FK, Luse SW, Studitsky VM, Luse DS. Histone N-terminal tails interfere with nucleosome traversal by RNA polymerase II. J Biol Chem 2008; 283:32236-43. [PMID: 18815126 DOI: 10.1074/jbc.m806636200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We determined the effect of the N-terminal histone tails on nucleosome traversal by yeast and human RNA polymerase II (pol II). Removal of H2A/H2B tails, H3/H4 tails, or all tails increased complete traversal of the nucleosome by human pol II, although the increase varied considerably depending on the template and on which tails were removed. Human pol II achieved >80% traversal of one nucleosomal template lacking the H2A/H2B tails, but even in those reactions, the transcript elongation rate was lower than the rate on pure DNA templates. For yeast pol II, transcription proceeded much farther into the nucleosome in the absence of tails, but complete read-through was not substantially increased by tail removal. Transcription factor IIS provided roughly the same level of read-through stimulation for transcript elongation in the presence or absence of tails. FACT also stimulated elongation on nucleosomal templates, and this effect was similar regardless of the presence of tails. For both polymerases, removal of the H2A/H2B tails reduced pausing throughout the nucleosome, suggesting that histone tails affect a common step at most points during nucleosome traversal. We conclude that histone tails provide a significant part of the nucleosomal barrier to pol II transcript elongation.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
163
|
Abstract
Single-molecule techniques have advanced our understanding of transcription by RNA polymerase (RNAP). A new arsenal of approaches, including single-molecule fluorescence, atomic-force microscopy, magnetic tweezers, and optical traps (OTs) have been employed to probe the many facets of the transcription cycle. These approaches supply fresh insights into the means by which RNAP identifies a promoter, initiates transcription, translocates and pauses along the DNA template, proofreads errors, and ultimately terminates transcription. Results from single-molecule experiments complement the knowledge gained from biochemical and genetic assays by facilitating the observation of states that are otherwise obscured by ensemble averaging, such as those resulting from heterogeneity in molecular structure, elongation rate, or pause propensity. Most studies to date have been performed with bacterial RNAP, but work is also being carried out with eukaryotic polymerase (Pol II) and single-subunit polymerases from bacteriophages. We discuss recent progress achieved by single-molecule studies, highlighting some of the unresolved questions and ongoing debates.
Collapse
|
164
|
Magnani L, Lee K, Fodor WL, Machaty Z, Cabot RA. Developmental capacity of porcine nuclear transfer embryos correlate with levels of chromatin-remodeling transcripts in donor cells. Mol Reprod Dev 2008; 75:766-76. [PMID: 18246531 DOI: 10.1002/mrd.20818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Somatic cell nuclear transfer (SCNT) still retains important limitations. Impaired epigenetic reprogramming is considered responsible for altered gene expression and developmental failure in SCNT-derived embryos. After nuclear transfer the donor cell nucleus undergoes extensive changes in gene expression that involve epigenetic modifications and chromatin remodeling. We hypothesized that SNF2-type ATP-dependent chromatin factors contribute to epigenetic reprogramming and the relative amount of these factors in the donor cell affects developmental potential of the reconstructed embryos. In order to test this hypothesis, we assessed the relative amount of SNF2-type ATPases (Brahma, Brg1, SNF2H, SNF2L, CHD3, and CHD5) in three different donor cells as well as in porcine metaphase II oocytes. We performed SCNT with fetal fibroblast cells, olfactory bulb (OB) progenitor cells, and porcine skin originating sphere stem cells (PSOS). We found that OB-NT embryos and PSOS-NT embryos resulted in a higher morulae/blastocysts ratio as compared to fibroblast-NT embryos (23.53%, 16.98%, and 11.63%, respectively; P < 0.05). Fibroblast cells contained a significantly higher amount of SNF2L and CHD3 transcripts while Brg1 and SNF2H were the most expressed transcripts in all the cell lines analyzed. Metaphase II oocyte expression profile appeared to be unique compared to the cell lines analyzed. This work supports our hypothesis that an array of chromatin-remodeling proteins on donor cells may influence the chromatin structure, effect epigenetic reprogramming, and developmental potential.
Collapse
Affiliation(s)
- Luca Magnani
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
165
|
Human U2 snRNA genes exhibit a persistently open transcriptional state and promoter disassembly at metaphase. Mol Cell Biol 2008; 28:3573-88. [PMID: 18378697 DOI: 10.1128/mcb.00087-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In mammals, small multigene families generate spliceosomal U snRNAs that are nearly as abundant as rRNA. Using the tandemly repeated human U2 genes as a model, we show by footprinting with DNase I and permanganate that nearly all sequences between the enhancer-like distal sequence element and the initiation site are protected during interphase whereas the upstream half of the U2 snRNA coding region is exposed. We also show by chromatin immunoprecipitation that the SNAPc complex, which binds the TATA-like proximal sequence element, is removed at metaphase but remains bound under conditions that induce locus-specific metaphase fragility of the U2 genes, such as loss of CSB, BRCA1, or BRCA2 function, treatment with actinomycin D, or overexpression of the tetrameric p53 C terminus. We propose that the U2 snRNA promoter establishes a persistently open state to facilitate rapid reinitiation and perhaps also to bypass TFIIH-dependent promoter melting; this open state would then be disassembled to allow metaphase chromatin condensation.
Collapse
|
166
|
Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, Lozach J, Glass CK, Rosenfeld MG. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 2008; 29:69-80. [PMID: 18206970 DOI: 10.1016/j.molcel.2007.11.002] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/01/2007] [Accepted: 11/05/2007] [Indexed: 11/27/2022]
Abstract
Solving the biological roles of covalent histone modifications, including monoubiquitination of histone H2A, and the molecular mechanisms by which these modifications regulate specific transcriptional programs remains a central question for all eukaryotes. Here we report that the N-CoR/HDAC1/3 complex specifically recruits a specific histone H2A ubiquitin ligase, 2A-HUB/hRUL138, to a subset of regulated gene promoters. 2A-HUB catalyzes monoubiquitination of H2A at lysine 119, functioning as a combinatoric component of the repression machinery required for specific gene regulation programs. Thus, 2A-HUB mediates a selective repression of a specific set of chemokine genes in macrophages, critically modulating migratory responses to TLR activation. H2A monoubiquitination acts to prevent FACT recruitment at the transcriptional promoter region, blocking RNA polymerase II release at the early stage of elongation. We suggest that distinct H2A ubiquitinases, each recruited based on interactions with different corepressor complexes, contribute to distinct transcriptional repression programs.
Collapse
Affiliation(s)
- Wenlai Zhou
- Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Armstrong JA. Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatin. Biochem Cell Biol 2008; 85:426-34. [PMID: 17713578 DOI: 10.1139/o07-054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Initiation by RNA polymerase II (Pol II) involves a host of enzymes, and the process of elongation appears similarly complex. Transcriptional elongation through chromatin requires the coordinated efforts of Pol II and its associated transcription factors: C-terminal domain kinases, elongation complexes, chromatin-modifying enzymes, chromatin remodeling factors, histone chaperones (nucleosome assembly factors), and histone variants. This review examines the following: (i) the consequences of the encounter between elongating Pol II and a nucleosome, and (ii) chromatin remodeling factors and nucleosome assembly factors that have recently been identified as important for the elongation stage of transcription.
Collapse
Affiliation(s)
- Jennifer A Armstrong
- Joint Science Department, The Claremont Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA.
| |
Collapse
|
168
|
Vassylyeva MN, Svetlov V, Dearborn AD, Klyuyev S, Artsimovitch I, Vassylyev DG. The carboxy-terminal coiled-coil of the RNA polymerase beta'-subunit is the main binding site for Gre factors. EMBO Rep 2007; 8:1038-43. [PMID: 17917675 DOI: 10.1038/sj.embor.7401079] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/09/2007] [Accepted: 08/22/2007] [Indexed: 11/09/2022] Open
Abstract
Bacterial Gre transcript cleavage factors stimulate the intrinsic endonucleolytic activity of RNA polymerase (RNAP) to rescue stalled transcription complexes. They bind to RNAP and extend their coiled-coil (CC) domains to the catalytic centre through the secondary channel. Three existing models for the Gre-RNAP complex postulate congruent mechanisms of Gre-assisted catalysis, while offering conflicting views of the Gre-RNAP interactions. Here, we report the GreB structure of Escherichia coli. The GreB monomers form a triangle with the tip of the amino-terminal CC of one molecule trapped within the hydrophobic cavity of the carboxy-terminal domain of a second molecule. This arrangement suggests an analogous model for recruitment to RNAP. Indeed, the beta'-subunit CC located at the rim of the secondary channel has conserved hydrophobic residues at its tip. We show that substitutions of these residues and those in the GreB C-terminal domain cavity confer defects in GreB activity and binding to RNAP, and present a plausible model for the RNAP-GreB complex.
Collapse
Affiliation(s)
- Marina N Vassylyeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
169
|
Ito T, Saso K, Arimitsu N, Sekimizu K. Defective FESTA/EAF2-mediated transcriptional activation in S-II-deficient embryonic stem cells. Biochem Biophys Res Commun 2007; 363:603-9. [PMID: 17892859 DOI: 10.1016/j.bbrc.2007.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 09/06/2007] [Indexed: 01/11/2023]
Abstract
S-II is a transcription stimulation factor that enhances RNA synthesis by RNA polymerase II in vitro. To elucidate the function of S-II in transcriptional activation in mammalian cells, we generated an S-II-deficient murine embryonic stem (ES) cell line, DKO20, through targeted gene disruption. The DKO20 cells were viable, grew normally, and had a stable karyotype. The ability to evoke transcriptional activation of hsp70 and c-fos genes was not significantly altered in DKO20. In contrast, transcriptional activation mediated by FESTA/EAF2, a transcription factor that interacts with S-II, was decreased in DKO20 cells. The reduced transactivation potential of FESTA/EAF2 was rescued by introducing the wild-type S-II gene in DKO20. The amino-terminal region of S-II, a binding surface for FESTA/EAF2, was essential for the recovery. These results suggest that S-II is selectively required for positive transcriptional regulation of a subset of genes in murine ES cells.
Collapse
Affiliation(s)
- Takahiro Ito
- Division of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
170
|
Toulokhonov I, Zhang J, Palangat M, Landick R. A Central Role of the RNA Polymerase Trigger Loop in Active-Site Rearrangement during Transcriptional Pausing. Mol Cell 2007; 27:406-19. [PMID: 17679091 DOI: 10.1016/j.molcel.2007.06.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/10/2007] [Accepted: 06/06/2007] [Indexed: 11/15/2022]
Abstract
Transcriptional pausing by RNA polymerase is an underlying event in the regulation of transcript elongation, yet the physical changes in the transcribing complex that create the initially paused conformation remain poorly understood. We report that this nonbacktracked elemental pause results from an active-site rearrangement whose signature includes a trigger-loop conformation positioned near the RNA 3' nucleotide and a conformation of betaDloopII that allows fraying of the RNA 3' nucleotide away from the DNA template. During nucleotide addition, trigger-loop movements or folding appears to assist NTP-stimulated translocation and to be crucial for catalysis. At a pause, the trigger loop directly contributes to the paused conformation, apparently by restriction of its movement or folding, whereas a previously postulated unfolding of the bridge helix does not. This trigger-loop-centric model can explain many properties of transcriptional pausing.
Collapse
|
171
|
Kulaeva OI, Gaykalova D, Studitsky VM. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat Res 2007; 618:116-29. [PMID: 17313961 PMCID: PMC1924643 DOI: 10.1016/j.mrfmmm.2006.05.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/30/2006] [Indexed: 12/31/2022]
Abstract
The process of transcript elongation by RNA polymerase II (Pol II) involves transcription-dependent exchange and displacement of all core histones and is tightly controlled by numerous protein complexes modifying chromatin structure. These processes can contribute to regulation of transcription initiation and elongation, as well as the chromatin state. Recent data suggest that the histone octamer is displaced from DNA at a high rate of transcription, but can survive less frequent transcription that is accompanied only by partial loss of H2A/H2B histones. Here we propose that critical density of Pol II molecules could be required for displacement of the histone octamer and discuss mechanisms that are most likely involved in the processes of histone exchange.
Collapse
Affiliation(s)
- Olga I. Kulaeva
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Daria Gaykalova
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Vasily M. Studitsky
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| |
Collapse
|
172
|
Abstract
Chromatin structure imposes significant obstacles on all aspects of transcription that are mediated by RNA polymerase II. The dynamics of chromatin structure are tightly regulated through multiple mechanisms including histone modification, chromatin remodeling, histone variant incorporation, and histone eviction. In this Review, we highlight advances in our understanding of chromatin regulation and discuss how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.
Collapse
Affiliation(s)
- Bing Li
- Stowers Medical Research Institute, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
173
|
Galburt EA, Grill SW, Wiedmann A, Lubkowska L, Choy J, Nogales E, Kashlev M, Bustamante C. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 2007; 446:820-3. [PMID: 17361130 DOI: 10.1038/nature05701] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 02/23/2007] [Indexed: 11/09/2022]
Abstract
RNA polymerase II (RNAP II) is responsible for transcribing all messenger RNAs in eukaryotic cells during a highly regulated process that is conserved from yeast to human, and that serves as a central control point for cellular function. Here we investigate the transcription dynamics of single RNAP II molecules from Saccharomyces cerevisiae against force and in the presence and absence of TFIIS, a transcription elongation factor known to increase transcription through nucleosomal barriers. Using a single-molecule dual-trap optical-tweezers assay combined with a novel method to enrich for active complexes, we found that the response of RNAP II to a hindering force is entirely determined by enzyme backtracking. Surprisingly, RNAP II molecules ceased to transcribe and were unable to recover from backtracks at a force of 7.5 +/- 2 pN, only one-third of the force determined for Escherichia coli RNAP. We show that backtrack pause durations follow a t(-3/2) power law, implying that during backtracking RNAP II diffuses in discrete base-pair steps, and indicating that backtracks may account for most of RNAP II pauses. Significantly, addition of TFIIS rescued backtracked enzymes and allowed transcription to proceed up to a force of 16.9 +/- 3.4 pN. Taken together, these results describe a regulatory mechanism of transcription elongation in eukaryotes by which transcription factors modify the mechanical performance of RNAP II, allowing it to operate against higher loads.
Collapse
Affiliation(s)
- Eric A Galburt
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Carey M, Li B, Workman JL. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 2006; 24:481-7. [PMID: 17081996 PMCID: PMC1847601 DOI: 10.1016/j.molcel.2006.09.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/05/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
The coordinated action of histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling enzymes in promoter-dependent transcription initiation represents a paradigm for how epigenetic information regulates gene expression. However, little is known about how such enzymes function during transcription elongation. Here, we investigated the role of RSC, a bromodomain-containing ATPase, in nucleosome transcription in vitro. Purified S. cerevisiae RNA polymerase II (Pol II) arrests at two primary locations on a positioned mononucleosome. RSC stimulates passage of Pol II through these sites. The function of RSC in elongation requires the energy of ATP hydrolysis. Moreover, the SAGA and NuA4 HATs strongly stimulated RSC's effect on elongation. The stimulation correlates closely with acetyl-CoA-dependent recruitment of RSC to nucleosomes. Thus, RSC can recognize acetylated nucleosomes and facilitate passage of Pol II through them. These data support the view that histone modifications regulate accessibility of the coding region to Pol II.
Collapse
Affiliation(s)
- Michael Carey
- Stowers Medical Research Institute 1000 East 50 St. Kansas City, MO 816-926-4317
- Department of Biological Chemistry David Geffen School of Medicine at UCLA 10833 LeConte Ave Los Angeles, CA 90095
| | - Bing Li
- Stowers Medical Research Institute 1000 East 50 St. Kansas City, MO 816-926-4317
| | - Jerry L. Workman
- Stowers Medical Research Institute 1000 East 50 St. Kansas City, MO 816-926-4317
| |
Collapse
|
175
|
Bondarenko VA, Steele LM, Ujvári A, Gaykalova DA, Kulaeva OI, Polikanov YS, Luse DS, Studitsky VM. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol Cell 2006; 24:469-79. [PMID: 17081995 DOI: 10.1016/j.molcel.2006.09.009] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/05/2006] [Accepted: 09/20/2006] [Indexed: 11/25/2022]
Abstract
Nucleosomes uniquely positioned on high-affinity DNA sequences present a polar barrier to transcription by human and yeast RNA polymerase II (Pol II). In one transcriptional orientation, these nucleosomes provide a strong, factor- and salt-insensitive barrier at the entry into the H3/H4 tetramer that can be recapitulated without H2A/H2B dimers. The same nucleosomes transcribed in the opposite orientation form a weaker, more diffuse barrier that is largely relieved by higher salt, TFIIS, or FACT. Barrier properties are therefore dictated by both the local nucleosome structure (influenced by the strength of the histone-DNA interactions) and the location of the high-affinity DNA region within the nucleosome. Pol II transcribes DNA sequences at the entry into the tetramer much less efficiently than the same sequences located distal to the nucleosome dyad. Thus, entry into the tetramer by Pol II facilitates further transcription, perhaps due to partial unfolding of the tetramer from DNA.
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
The multisubunit RNAPs (RNA polymerases) found in all cellular life forms are remarkably conserved in fundamental structure, in mechanism and in their susceptibility to sequence-dependent pausing during transcription of DNA in the absence of elongation regulators. Recent studies of both prokaryotic and eukaryotic transcription have yielded an increasing appreciation of the extent to which gene regulation is accomplished during the elongation phase of transcription. Transcriptional pausing is a fundamental enzymatic mechanism that underlies many of these regulatory schemes. In some cases, pausing functions by halting RNAP for times or at positions required for regulatory interactions. In other cases, pauses function by making RNAP susceptible to premature termination of transcription unless the enzyme is modified by elongation regulators that programme efficient gene expression. Pausing appears to occur by a two-tiered mechanism in which an initial rearrangement of the enzyme's active site interrupts active elongation and puts RNAP in an elemental pause state from which additional rearrangements or regulator interactions can create long-lived pauses. Recent findings from biochemical and single-molecule transcription experiments, coupled with the invaluable availability of RNAP crystal structures, have produced attractive hypotheses to explain the fundamental mechanism of pausing.
Collapse
Affiliation(s)
- R Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
177
|
Jimeno-González S, Gómez-Herreros F, Alepuz PM, Chávez S. A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region. Mol Cell Biol 2006; 26:8710-21. [PMID: 17000768 PMCID: PMC1636840 DOI: 10.1128/mcb.01129-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FACT complex stimulates transcription elongation on nucleosomal templates. In vivo experiments also involve FACT in the reassembly of nucleosomes traversed by RNA polymerase II. Since several features of chromatin organization vary throughout the genome, we wondered whether FACT is equally required for all genes. We show in this study that the in vivo depletion of Spt16, one of the subunits of Saccharomyces cerevisiae FACT, strongly affects transcription of three genes, GAL1, PHO5, and Kluyveromyces lactis LAC4, which exhibit positioned nucleosomes at their transcribed regions. In contrast, showing a random nucleosome structure, YAT1 and Escherichia coli lacZ are only mildly influenced by Spt16 depletion. We also show that the effect of Spt16 depletion on GAL1 expression is suppressed by a histone mutation and that the insertion of a GAL1 fragment, which allows the positioning of two nucleosomes, at the 5' end of YAT1 makes the resulting transcription unit sensitive to Spt16 depletion. These results indicate that FACT requirement for transcription depends on the chromatin organization of the 5' end of the transcribed region.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Departamento de Genética, Facultad de Biología, Avda. Reina Mercedes 6, 41012-Seville, Spain
| | | | | | | |
Collapse
|
178
|
Herbert KM, La Porta A, Wong BJ, Mooney RA, Neuman KC, Landick R, Block SM. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 2006; 125:1083-94. [PMID: 16777599 PMCID: PMC1483142 DOI: 10.1016/j.cell.2006.04.032] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/18/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
Transcriptional pausing by RNA polymerase (RNAP) plays an important role in the regulation of gene expression. Defined, sequence-specific pause sites have been identified biochemically. Single-molecule studies have also shown that bacterial RNAP pauses frequently during transcriptional elongation, but the relationship of these "ubiquitous" pauses to the underlying DNA sequence has been uncertain. We employed an ultrastable optical-trapping assay to follow the motion of individual molecules of RNAP transcribing templates engineered with repeated sequences carrying imbedded, sequence-specific pause sites of known regulatory function. Both the known and ubiquitous pauses appeared at reproducible locations, identified with base-pair accuracy. Ubiquitous pauses were associated with DNA sequences that show similarities to regulatory pause sequences. Data obtained for the lifetimes and efficiencies of pauses support a model where the transition to pausing branches off of the normal elongation pathway and is mediated by a common elemental state, which corresponds to the ubiquitous pause.
Collapse
Affiliation(s)
| | - Arthur La Porta
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Becky J. Wong
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Rachel A. Mooney
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Keir C. Neuman
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Robert Landick
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Steven M. Block
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- *Contact:
| |
Collapse
|
179
|
Guermah M, Palhan VB, Tackett AJ, Chait BT, Roeder RG. Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Cell 2006; 125:275-86. [PMID: 16630816 DOI: 10.1016/j.cell.2006.01.055] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/09/2005] [Accepted: 01/22/2006] [Indexed: 11/22/2022]
Abstract
We have reconstituted a highly purified RNA polymerase II transcription system containing chromatin templates assembled with purified histones and assembly factors, the histone acetyltransferase p300, and components of the general transcription machinery that, by themselves, suffice for activated transcription (initiation and elongation) on DNA templates. We show that this system mediates activator-dependent initiation, but not productive elongation, on chromatin templates. We further report the purification of a chromatin transcription-enabling activity (CTEA) that, in a manner dependent upon p300 and acetyl-CoA, strongly potentiates transcription elongation through several contiguous nucleosomes as must occur in vivo. The transcription elongation factor SII is a major component of CTEA and strongly synergizes with p300 (histone acetylation) at a step subsequent to preinitiation complex formation. The purification of CTEA also identified HMGB2 as a coactivator that, while inactive on its own, enhances SII and p300 functions.
Collapse
Affiliation(s)
- Mohamed Guermah
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
180
|
Ito T, Arimitsu N, Takeuchi M, Kawamura N, Nagata M, Saso K, Akimitsu N, Hamamoto H, Natori S, Miyajima A, Sekimizu K. Transcription elongation factor S-II is required for definitive hematopoiesis. Mol Cell Biol 2006; 26:3194-203. [PMID: 16581793 PMCID: PMC1446961 DOI: 10.1128/mcb.26.8.3194-3203.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transcription elongation factor S-II/TFIIS promotes readthrough of transcriptional blocks by stimulating nascent RNA cleavage activity of RNA polymerase II in vitro. The biologic significance of S-II function in higher eukaryotes, however, remains unclear. To determine its role in mammalian development, we generated S-II-deficient mice through targeted gene disruption. Homozygous null mutants died at midgestation with marked pallor, suggesting severe anemia. S-II(-/-) embryos had a decreased number of definitive erythrocytes in the peripheral blood and disturbed erythroblast differentiation in fetal liver. There was a dramatic increase in apoptotic cells in S-II(-/-) fetal liver, which was consistent with a reduction in Bcl-x(L) gene expression. The presence of phenotypically defined hematopoietic stem cells and in vitro colony-forming hematopoietic progenitors in S-II(-/-) fetal liver indicates that S-II is dispensable for the generation and differentiation of hematopoietic stem cells. S-II-deficient fetal liver cells, however, exhibited a loss of long-term repopulating potential when transplanted into lethally irradiated adult mice, indicating that S-II deficiency causes an intrinsic defect in the self-renewal of hematopoietic stem cells. Thus, S-II has critical and nonredundant roles in definitive hematopoiesis.
Collapse
Affiliation(s)
- Takahiro Ito
- Division of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Thiriet C, Hayes JJ. Histone dynamics during transcription: exchange of H2A/H2B dimers and H3/H4 tetramers during pol II elongation. Results Probl Cell Differ 2006; 41:77-90. [PMID: 16909891 DOI: 10.1007/400_009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromatin within eukaryotic cell nuclei accommodates many complex activities that require at least partial disassembly and reassembly of nucleosomes. This disassembly/reassembly is thought to be somewhat localized when associated with processes such as site-specific DNA repair but likely occurs over extended regions during processive processes such as DNA replication or transcription. Here we review data addressing the effect of transcription elongation on nucleosome disassembly/reassembly, specifically focusing on the issue of transcription-dependent exchange of H2A/H2B dimers and H3/H4 tetramers. We suggest a model whereby passage of a polymerase through a nucleosome induces displacement of H2A/H2B dimers with a much higher probability than displacement of H3/H4 tetramers such that the extent of tetramer replacement is relatively low and proportional to polymerase density on any particular gene.
Collapse
Affiliation(s)
- Christophe Thiriet
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Box 712, Rochester, NY 14625, USA
| | | |
Collapse
|
182
|
Perederina AA, Vassylyeva MN, Berezin IA, Svetlov V, Artsimovitch I, Vassylyev DG. Cloning, expression, purification, crystallization and initial crystallographic analysis of transcription elongation factors GreB from Escherichia coli and Gfh1 from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 62:44-6. [PMID: 16511259 PMCID: PMC1401493 DOI: 10.1107/s1744309105040297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 12/05/2005] [Indexed: 11/11/2022]
Abstract
The Escherichia coli gene encoding the transcription cleavage factor GreB and the Thermus thermophilus gene encoding the anti-GreA transcription factor Gfh1 were cloned and expressed and the purified proteins were crystallized by the sitting-drop vapor-diffusion technique. The GreB and Gfh1 crystals, which were improved by macroseeding, belong to space group P4(1)2(1)2 (or P4(3)2(1)2), with unit-cell parameters a = b = 148, c = 115.2 A and a = b = 59.3, c = 218.9 A, respectively. Complete diffraction data sets were collected for the GreB and Gfh1 crystals to 2.6 and 2.8 A resolution, respectively. Crystals of the selenomethionine proteins were obtained by microseeding using the native protein crystals and diffract as well as the native ones. The structure determination of these proteins is now in progress.
Collapse
Affiliation(s)
- Anna A. Perederina
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Marina N. Vassylyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Igor A. Berezin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
| | - Vladimir Svetlov
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, AL 35294, USA
- Correspondence e-mail:
| |
Collapse
|
183
|
Santangelo TJ, Reeve JN. Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J Mol Biol 2005; 355:196-210. [PMID: 16305799 DOI: 10.1016/j.jmb.2005.10.062] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 11/15/2022]
Abstract
Archaea are prokaryotes with a single DNA-dependent RNA polymerase (RNAP) that is homologous to, and likely resembles the ancestor of all three eukaryotic RNAPs. In vitro studies have confirmed that initiation by archaeal RNAPs resembles the Pol II system, and we report the first detailed in vitro investigation of archaeal transcription termination. Methanothermobacter thermautotrophicus (M.t.) RNAP is susceptible to intrinsic termination at an intergenic sequence that conforms to a bacterial intrinsic terminator, as well as at bona fide bacterial intrinsic terminators. In contrast to bacterial RNAPs, M.t. RNAP also terminated in response to synthetic and natural oligo-T-rich sequences that were not preceded by sequences with any recognizable potential to form a stable RNA hairpin. Both template topology and temperature influenced the position and extent of termination in vitro, and the results argue that transcription of an upstream sequence can alter the termination response of the archaeal RNAP at a remote downstream sequence.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
184
|
Grasser KD. Emerging role for transcript elongation in plant development. TRENDS IN PLANT SCIENCE 2005; 10:484-90. [PMID: 16150628 DOI: 10.1016/j.tplants.2005.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 05/04/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII), once regarded as the simple extension of the initiated mRNA, is a complex and highly regulated phase of the transcription cycle. Many factors have been identified that contribute to the dynamic control of the elongation stage of transcription. There are elongation factors that modulate the activity of RNAPII and other factors that facilitate the transcription through chromatin. Recent studies of mutants defective in elongation factors have revealed the importance of proper transcript elongation for the development of higher eukaryotes. Here, the essentials of transcript elongation are briefly summarized to discuss its role in developmental processes.
Collapse
Affiliation(s)
- Klaus D Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| |
Collapse
|
185
|
Zhang Z, Fu J, Gilmour DS. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3'-end processing factor, Pcf11. Genes Dev 2005; 19:1572-80. [PMID: 15998810 PMCID: PMC1172063 DOI: 10.1101/gad.1296305] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pcf11 is one of numerous proteins involved in pre-mRNA 3'-end processing and transcription termination. Using elongation complexes (ECs) formed from purified yeast RNA polymerase II (Pol II), we show that a 140-amino acid polypeptide from yeast Pcf11 is capable of dismantling the EC in vitro. This action depends on the C-terminal domain (CTD) of the largest subunit of Pol II and the CTD-interaction domain (CID) of Pcf11. Our experiments reveal a novel termination mechanism whereby Pcf11 bridges the CTD to the nascent transcript and causes dissociation of both Pol II and the nascent transcript from the DNA in the absence of nucleotide hydrolysis. We posit that conformational changes in the CTD are transduced through Pcf11 to the nascent transcript to cause termination.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
186
|
In Brief. Nat Rev Mol Cell Biol 2005. [DOI: 10.1038/nrm1658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|