151
|
Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing. PLoS One 2015; 10:e0139812. [PMID: 26462236 PMCID: PMC4604205 DOI: 10.1371/journal.pone.0139812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization. We also found that depletion of TCERG1 reduces the expression of the activated form of the pro-apoptotic mitochondrial membrane protein Bak, which remains inactive by heterodimerizing with Bcl-xL, preventing the initial step of cytochrome c release in Bak-mediated mitochondrial apoptosis. In addition, we provide evidence that TCERG1 also participates in the death receptor-mediated apoptosis pathway. Interestingly, TCERG1 also modulates Fas/CD95 alternative splicing. We propose that TCERG1 sensitizes a cell to apoptotic agents, thus promoting apoptosis by regulating the alternative splicing of both the Bcl-x and Fas/CD95 genes. Our findings may provide a new link between the control of alternative splicing and the molecular events leading to apoptosis.
Collapse
|
152
|
Alam H, Gu B, Lee MG. Histone methylation modifiers in cellular signaling pathways. Cell Mol Life Sci 2015; 72:4577-92. [PMID: 26305020 DOI: 10.1007/s00018-015-2023-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/02/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
Histone methyltransferases and demethylases epigenetically regulate gene expression by modifying histone methylation status in numerous cellular processes, including cell differentiation and proliferation. These modifiers also control methylation levels of various non-histone proteins, such as effector proteins that play critical roles in cellular signaling networks. Dysregulated histone methylation modifiers alter expression of oncogenes and tumor suppressor genes and change methylation states of effector proteins, frequently resulting in aberrant cellular signaling cascades and cellular transformation. In this review, we summarize the role of histone methylation modifiers in regulating the following signaling pathways: NF-κB, RAS/RAF/MEK/MAPK, PI3K/Akt, Wnt/β-catenin, p53, and ERα.
Collapse
Affiliation(s)
- Hunain Alam
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Bingnan Gu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
- Cancer Biology Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
153
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|
154
|
Fuhrmann J, Clancy K, Thompson PR. Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 2015; 115:5413-61. [PMID: 25970731 PMCID: PMC4463550 DOI: 10.1021/acs.chemrev.5b00003] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jakob Fuhrmann
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kathleen
W. Clancy
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology and Program in Chemical
Biology, University of Massachusetts Medical
School, 364 Plantation
Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
155
|
Kim JK, Lim Y, Lee JO, Lee YS, Won NH, Kim H, Kim HS. PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells. J Mol Endocrinol 2015; 54:315-24. [PMID: 25917831 DOI: 10.1530/jme-14-0325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 11/08/2022]
Abstract
The relationship between protein arginine methyltransferases (PRMTs) and insulin synthesis in β cells is not yet well understood. In the present study, we showed that PRMT4 expression was increased in INS-1 and HIT-T15 pancreatic β cells under high-glucose conditions. In addition, asymmetric dimethylation of Arg17 in histone H3 was significantly increased in both cell lines in the presence of glucose. The inhibition or knockdown of PRMT4 suppressed glucose-induced insulin gene expression in INS-1 cells by 81.6 and 79% respectively. Additionally, the overexpression of mutant PRMT4 also significantly repressed insulin gene expression. Consistently, insulin secretion induced in response to high levels of glucose was decreased by both PRMT4 inhibition and knockdown. Moreover, the inhibition of PRMT4 blocked high-glucose-induced insulin gene expression and insulin secretion in primary pancreatic islets. These results indicate that PRMT4 might be a key regulator of high-glucose-induced insulin secretion from pancreatic β cells via H3R17 methylation.
Collapse
Affiliation(s)
- Joong Kwan Kim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Yongchul Lim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Jung Ok Lee
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Young-Sun Lee
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Nam Hee Won
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Hyun Kim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| | - Hyeon Soo Kim
- Department of AnatomyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaDepartment of SurgerySamsung Medical Center, 81, Irwon-Ro, Gangnam-Gu, Seoul 135-710, KoreaDepartment of PathologyKorea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701, KoreaLee Gil Ya Cancer and Diabetes InstituteGachon University, Inchon, Kyunggi do, Korea
| |
Collapse
|
156
|
Shlensky D, Mirrielees JA, Zhao Z, Wang L, Mahajan A, Yu M, Sherer NM, Wilke LG, Xu W. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors. PLoS One 2015; 10:e0128143. [PMID: 26030442 PMCID: PMC4451767 DOI: 10.1371/journal.pone.0128143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL) and truncated CARM1 (CARM1ΔE15). CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models. METHODS To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors. RESULTS Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement. CONCLUSIONS The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens.
Collapse
Affiliation(s)
- David Shlensky
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jennifer A. Mirrielees
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Zibo Zhao
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Lu Wang
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Aparna Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathan M. Sherer
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Lee G. Wilke
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Wei Xu
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
157
|
Poulard C, Rambaud J, Lavergne E, Jacquemetton J, Renoir JM, Trédan O, Chabaud S, Treilleux I, Corbo L, Romancer ML. Role of JMJD6 in Breast Tumourigenesis. PLoS One 2015; 10:e0126181. [PMID: 25951181 PMCID: PMC4423888 DOI: 10.1371/journal.pone.0126181] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/30/2015] [Indexed: 01/02/2023] Open
Abstract
Background Protein arginine methylation is a common post translational modification that regulates protein properties. This modification is carried out by a family of nine arginine methyltransferases (PRMTs). Arginine methylation has already been linked to tumourigenesis as overexpression of these enzymes was associated with various cancers, notably in breast cancers. Since the Jumonji Domain Containing 6 protein (JMJD6) possesses an arginine demethylase activity able to remove the methyl mark, we wanted to assess its potential role in breast tumourigenesis. Methods The expression of the protein by tissue microarray immunohistochemical staining was performed on a cohort of 133 breast tumours. Using cell lines stably overexpressing or knocked down for JMJD6, we evaluated its role on cell proliferation, cell migration, colony formation and mice tumour xenografts. Results The analysis of JMJD6 expression in a cohort of breast tumour samples indicates that JMJD6 was highly expressed in aggressive breast tumours. Moreover, high expression of JMJD6 was associated with poor disease-free survival of patients in this cohort. JMJD6 silencing in breast tumoural cells promotes certain characteristics of tumourigenesis including proliferation, migration in vitro, and tumour growth in vivo. These effects are dependent on its demethylase activity as an enzymatic dead mutant lost these properties. Conclusions Although JMJD6 displays anti-tumoral properties in cell lines, its expression in breast tumours may be a marker of poor prognosis, suggesting that its function could be altered in breast cancer.
Collapse
Affiliation(s)
- Coralie Poulard
- Université de Lyon, F-69000 Lyon, France
- Université Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Equipe Labellisée "La Ligue
| | - Juliette Rambaud
- Université de Lyon, F-69000 Lyon, France
- Université Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Equipe Labellisée "La Ligue
| | - Emilie Lavergne
- Centre Léon Bérard, Biostatistics Unit, F-69000 Lyon, France
| | - Julien Jacquemetton
- Université de Lyon, F-69000 Lyon, France
- Université Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Equipe Labellisée "La Ligue
| | - Jack-Michel Renoir
- UMR CNRS 8203 Vectorology and anti-cancer therapeutics, Institut Gustave Roussy, 114, Rue E. Vaillant, 94805 Villejuif Cedex, France
| | - Olivier Trédan
- Centre Léon Bérard, Department of Medical Oncology, F-69000 Lyon, France
| | - Sylvie Chabaud
- Centre Léon Bérard, Biostatistics Unit, F-69000 Lyon, France
| | | | - Laura Corbo
- Université de Lyon, F-69000 Lyon, France
- Université Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Equipe Labellisée "La Ligue
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France
- Université Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- Equipe Labellisée "La Ligue
- * E-mail:
| |
Collapse
|
158
|
Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7:388-401. [PMID: 25948865 DOI: 10.1093/jmcb/mjv027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
It is well known that many genes implicated in the development and progression of breast cancer undergo aberrant alternative splicing events to produce proteins with pro-cancer properties. These changes in alternative splicing can arise from mutations or single-nucleotide polymorphisms (SNPs) within the DNA sequences of cancer-related genes, which can strongly affect the activity of splicing factors and influence the splice site choice. However, it is important to note that absence of mutations is not sufficient to prevent misleading choices in splice site selection. There is now increasing evidence to demonstrate that the expression profile of ten splicing factors (including SRs and hnRNPs) and eight RNA-binding proteins changes in breast cancer cells compared with normal cells. These modifications strongly influence the alternative splicing pattern of many cancer-related genes despite the absence of any detrimental mutations within their DNA sequences. Thus, a comprehensive assessment of the splicing factor status in breast cancer is important to provide insights into the mechanisms that lead to breast cancer development and metastasis. Whilst most studies focus on mutations that affect alternative splicing in cancer-related genes, this review focuses on splicing factors and RNA-binding proteins that are themselves deregulated in breast cancer and implicated in cancer-related alternative splicing events.
Collapse
Affiliation(s)
- Marco Silipo
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
159
|
Lott K, Mukhopadhyay S, Li J, Wang J, Yao J, Sun Y, Qu J, Read LK. Arginine methylation of DRBD18 differentially impacts its opposing effects on the trypanosome transcriptome. Nucleic Acids Res 2015; 43:5501-23. [PMID: 25940618 PMCID: PMC4477658 DOI: 10.1093/nar/gkv428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a posttranslational modification that impacts wide-ranging cellular functions, including transcription, mRNA splicing and translation. RNA binding proteins (RBPs) represent one of the largest classes of arginine methylated proteins in both mammals and the early diverging parasitic protozoan, Trypanosoma brucei. Here, we report the effects of arginine methylation on the functions of the essential and previously uncharacterized T. brucei RBP, DRBD18. RNAseq analysis shows that DRBD18 depletion causes extensive rearrangement of the T. brucei transcriptome, with increases and decreases in hundreds of mRNAs. DRBD18 contains three methylated arginines, and we used complementation of DRBD18 knockdown cells with methylmimic or hypomethylated DRBD18 to assess the functions of these methylmarks. Methylmimic and hypomethylated DRBD18 associate with different ribonucleoprotein complexes. These altered macromolecular interactions translate into differential impacts on the T. brucei transcriptome. Methylmimic DRBD18 preferentially stabilizes target RNAs, while hypomethylated DRBD18 is more efficient at destabilizing RNA. The protein arginine methyltransferase, TbPRMT1, interacts with DRBD18 and knockdown of TbPRMT1 recapitulates the effects of hypomethylated DRBD18 on mRNA levels. Together, these data support a model in which arginine methylation acts as a switch that regulates T. brucei gene expression.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Shreya Mukhopadhyay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Yao
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
160
|
O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem J 2015; 466:587-99. [PMID: 25585345 DOI: 10.1042/bj20141072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Co-activator-associated arginine methyltransferase 1 (CARM1) asymmetrically di-methylates proteins on arginine residues. CARM1 was previously known to be modified through O-linked-β-N-acetylglucosaminidation (O-GlcNAcylation). However, the site(s) of O-GlcNAcylation were not mapped and the effects of O-GlcNAcylation on biological functions of CARM1 were undetermined. In the present study, we describe the comprehensive mapping of CARM1 post-translational modification (PTM) using top-down MS. We found that all detectable recombinant CARM1 expressed in human embryonic kidney (HEK293T) cells is automethylated as we previously reported and that about 50% of this automethylated CARM1 contains a single O-linked-β-N-acetylglucosamine (O-GlcNAc) moiety [31]. The O-GlcNAc moiety was mapped by MS to four possible sites (Ser595, Ser598, Thr601 and Thr603) in the C-terminus of CARM1. Mutation of all four sites [CARM1 quadruple mutant (CARM1QM)] markedly decreased O-GlcNAcylation, but did not affect protein stability, dimerization or cellular localization of CARM1. Moreover, CARM1QM elicits similar co-activator activity as CARM1 wild-type (CARM1WT) on a few transcription factors known to be activated by CARM1. However, O-GlcNAc-depleted CARM1 generated by wheat germ agglutinin (WGA) enrichment, O-GlcNAcase (OGA) treatment and mutation of putative O-GlcNAcylation sites displays different substrate specificity from that of CARM1WT. Our findings suggest that O-GlcNAcylation of CARM1 at its C-terminus is an important determinant for CARM1 substrate specificity.
Collapse
|
161
|
Geoghegan V, Guo A, Trudgian D, Thomas B, Acuto O. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun 2015; 6:6758. [PMID: 25849564 PMCID: PMC4396391 DOI: 10.1038/ncomms7758] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
The impact of protein arginine methylation on the regulation of immune functions is virtually unknown. Here, we apply a novel method—isomethionine methyl-SILAC—coupled with antibody-mediated arginine-methylated peptide enrichment to identify methylated peptides in human T cells by mass spectrometry. This approach allowed the identification of 2,502 arginine methylation sites from 1,257 tissue-specific and housekeeping proteins. We find that components of T cell antigen receptor signal machinery and several key transcription factors that regulate T cell fate determination are methylated on arginine. Moreover, we demonstrate changes in arginine methylation stoichiometry during cellular stimulation in a subset of proteins critical to T cell differentiation. Our data suggest that protein arginine methyltransferases exert key regulatory roles in T cell activation and differentiation, opening a new field of investigation in T cell biology. Arginine methylation is an important regulatory post-translational modification. Here, the authors present a new SILAC-based method—iMethyl-SILAC—that allows unambiguous identification of arginine-methylated peptide pairs by mass spectrometry and apply it to greatly expand the known T-cell arginine methylome.
Collapse
Affiliation(s)
- Vincent Geoghegan
- Laboratory of T cell signalling, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ailan Guo
- Cell Signaling Technology Inc., Trask Lane, Danvers, Massachusetts 01923, USA
| | - David Trudgian
- Central Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Oreste Acuto
- Laboratory of T cell signalling, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
162
|
Hernando CE, Sanchez SE, Mancini E, Yanovsky MJ. Genome wide comparative analysis of the effects of PRMT5 and PRMT4/CARM1 arginine methyltransferases on the Arabidopsis thaliana transcriptome. BMC Genomics 2015; 16:192. [PMID: 25880665 PMCID: PMC4381356 DOI: 10.1186/s12864-015-1399-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/24/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Methylation at arginine residues (R) is an important post-translational modification that regulates a myriad of essential cellular processes in eukaryotes, such as transcriptional regulation, RNA processing, signal transduction and DNA repair. Arginine methylation is catalyzed by a family of enzymes known as protein arginine methyltransferases (PRMTs). PRMTs are classified as Type I or Type II, depending on the position of the methyl group on the guanidine of the methylated arginine. Previous reports have linked symmetric R methylation to transcriptional repression, while asymmetric R methylation is generally associated with transcriptional activation. However, global studies supporting this conclusion are not available. RESULTS Here we compared side by side the physiological and molecular roles of the best characterized plant PRMTs, the Type II PRMT5 and the Type I PRMT4, also known as CARM1 in mammals. We found that prmt5 and prmt4a;4b mutants showed similar alterations in flowering time, photomorphogenic responses and salt stress tolerance, while only prmt5 mutants exhibited alterations in circadian rhythms. An RNA-seq analysis revealed that expression and splicing of many differentially regulated genes was similarly enhanced or repressed by PRMT5 and PRMT4s. Furthermore, PRMT5 and PRMT4s co-regulated the expression and splicing of key regulatory genes associated with transcription, RNA processing, responses to light, flowering, and abiotic stress tolerance, being candidates to mediate the physiological alterations observed in the mutants. CONCLUSIONS Our global analysis indicates that two of the most important Type I and Type II arginine methyltransferases, PRTM4 and PRMT5, have mostly overlapping as well as specific, but not opposite, roles in the global regulation of gene expression in plants.
Collapse
Affiliation(s)
- Carlos E Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina.
| | - Sabrina E Sanchez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina. .,Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Estefanía Mancini
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina.
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina.
| |
Collapse
|
163
|
Hu SB, Xiang JF, Li X, Xu Y, Xue W, Huang M, Wong CC, Sagum CA, Bedford MT, Yang L, Cheng D, Chen LL. Protein arginine methyltransferase CARM1 attenuates the paraspeckle-mediated nuclear retention of mRNAs containing IRAlus. Genes Dev 2015; 29:630-45. [PMID: 25792598 PMCID: PMC4378195 DOI: 10.1101/gad.257048.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
In many cells, mRNAs containing inverted repeated Alu elements (IRAlus) in their 3' untranslated regions (UTRs) are inefficiently exported to the cytoplasm. Such nuclear retention correlates with paraspeckle-associated protein complexes containing p54(nrb). However, nuclear retention of mRNAs containing IRAlus is variable, and how regulation of retention and export is achieved is poorly understood. Here we show one mechanism of such regulation via the arginine methyltransferase CARM1 (coactivator-associated arginine methyltransferase 1). We demonstrate that disruption of CARM1 enhances the nuclear retention of mRNAs containing IRAlus. CARM1 regulates this nuclear retention pathway at two levels: CARM1 methylates the coiled-coil domain of p54(nrb), resulting in reduced binding of p54(nrb) to mRNAs containing IRAlus, and also acts as a transcription regulator to suppress NEAT1 transcription, leading to reduced paraspeckle formation. These actions of CARM1 work together synergistically to regulate the export of transcripts containing IRAlus from paraspeckles under certain cellular stresses, such as poly(I:C) treatment. This work demonstrates how a post-translational modification of an RNA-binding protein affects protein-RNA interaction and also uncovers a mechanism of transcriptional regulation of the long noncoding RNA NEAT1.
Collapse
Affiliation(s)
- Shi-Bin Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Feng Xiang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yefen Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Xue
- Key Laboratory of Computational Biology, Chinese Academy of Sciences (CAS)-German Max Planck Society (MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Huang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catharine C Wong
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cari A Sagum
- The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Mark T Bedford
- The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Li Yang
- Key Laboratory of Computational Biology, Chinese Academy of Sciences (CAS)-German Max Planck Society (MPG) Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Donghang Cheng
- The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA;
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| |
Collapse
|
164
|
Yang Y, Hadjikyriacou A, Xia Z, Gayatri S, Kim D, Zurita-Lopez C, Kelly R, Guo A, Li W, Clarke SG, Bedford MT. PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nat Commun 2015; 6:6428. [PMID: 25737013 PMCID: PMC4351962 DOI: 10.1038/ncomms7428] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/28/2015] [Indexed: 12/18/2022] Open
Abstract
The human genome encodes a family of nine protein arginine methyltransferases (PRMT1-9), whose members can catalyse three distinct types of methylation on arginine residues. Here we identify two spliceosome-associated proteins-SAP145 and SAP49-as PRMT9-binding partners, linking PRMT9 to U2 snRNP maturation. We show that SAP145 is methylated by PRMT9 at arginine 508, which takes the form of monomethylated arginine (MMA) and symmetrically dimethylated arginine (SDMA). PRMT9 thus joins PRMT5 as the only mammalian enzymes capable of depositing the SDMA mark. Methylation of SAP145 on Arg 508 generates a binding site for the Tudor domain of the Survival of Motor Neuron (SMN) protein, and RNA-seq analysis reveals gross splicing changes when PRMT9 levels are attenuated. These results identify PRMT9 as a nonhistone methyltransferase that primes the U2 snRNP for interaction with SMN.
Collapse
Affiliation(s)
- Yanzhong Yang
- 1] Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA [2] Department of Radiation Biology, Beckman Research Institute, City of Hope Cancer Center, Duarte, California 91010, USA
| | - Andrea Hadjikyriacou
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Zheng Xia
- Division of Biostatistics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sitaram Gayatri
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Daehoon Kim
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Cecilia Zurita-Lopez
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Ryan Kelly
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Ailan Guo
- Cell Signaling Technology Inc., Danvers, Massachusetts 01923, USA
| | - Wei Li
- Division of Biostatistics, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Mark T Bedford
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| |
Collapse
|
165
|
Morettin A, Baldwin RM, Cote J. Arginine methyltransferases as novel therapeutic targets for breast cancer. Mutagenesis 2015; 30:177-89. [DOI: 10.1093/mutage/geu039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
166
|
Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol 2015; 35:928-38. [PMID: 25561469 DOI: 10.1128/mcb.01426-14] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) and CDK12 have each been demonstrated to phosphorylate the RNA polymerase II C-terminal domain (CTD) at serine 2 of the heptad repeat, both in vitro and in vivo. CDK9, as part of P-TEFb and the super elongation complex (SEC), is by far the best characterized of CDK9, CDK12, and CDK13. We employed both in vitro and in vivo assays to further investigate the molecular properties of CDK12 and its paralog CDK13. We isolated Flag-tagged CDK12 and CDK13 and found that they associate with numerous RNA processing factors. Although knockdown of CDK12, CDK13, or their cyclin partner CCNK did not affect the bulk CTD phosphorylation levels in HCT116 cells, transcriptome sequencing (RNA-seq) analysis revealed that CDK12 and CDK13 losses in HCT116 cells preferentially affect expression of DNA damage response and snoRNA genes, respectively. CDK12 and CDK13 depletion also leads to a loss of expression of RNA processing factors and to defects in RNA processing. These findings suggest that in addition to implementing CTD phosphorylation, CDK12 and CDK13 may affect RNA processing through direct physical interactions with RNA processing factors and by regulating their expression.
Collapse
|
167
|
Han HS, Choi D, Choi S, Koo SH. Roles of protein arginine methyltransferases in the control of glucose metabolism. Endocrinol Metab (Seoul) 2014; 29:435-40. [PMID: 25559572 PMCID: PMC4285034 DOI: 10.3803/enm.2014.29.4.435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.
Collapse
Affiliation(s)
- Hye Sook Han
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Dahee Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seri Choi
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea
| | - Seung Hoi Koo
- Department of Life Sciences, Korea University College of Life Sciences and Biotechnology, Seoul, Korea.
| |
Collapse
|
168
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
169
|
Fàbregas A, Sánchez-Hernández N, Ticó JR, García-Montoya E, Pérez-Lozano P, Suñé-Negre JM, Hernández-Munain C, Suñé C, Miñarro M. A new optimized formulation of cationic solid lipid nanoparticles intended for gene delivery: Development, characterization and DNA binding efficiency of TCERG1 expression plasmid. Int J Pharm 2014; 473:270-9. [DOI: 10.1016/j.ijpharm.2014.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
170
|
Guiro J, O'Reilly D. Insights into the U1 small nuclear ribonucleoprotein complex superfamily. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:79-92. [DOI: 10.1002/wrna.1257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/17/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- J Guiro
- Institute of Biosciences; University of Sao Paulo; Sao Paulo Brazil
| | - D O'Reilly
- Sir William Dunn School of Pathology; Oxford United Kingdom
| |
Collapse
|
171
|
Gayatri S, Bedford MT. Readers of histone methylarginine marks. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:702-10. [PMID: 24583552 PMCID: PMC4099268 DOI: 10.1016/j.bbagrm.2014.02.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
Abstract
Arginine methylation is a common posttranslational modification (PTM) that alters roughly 0.5% of all arginine residues in the cells. There are three types of arginine methylation: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). These three PTMs are enriched on RNA-binding proteins and on histones, and also impact signal transduction cascades. To date, over thirty arginine methylation sites have been cataloged on the different core histones. These modifications alter protein structure, impact interactions with DNA, and also generate docking sites for effector molecules. The primary "readers" of methylarginine marks are Tudor domain-containing proteins. The complete family of thirty-six Tudor domain-containing proteins has yet to be fully characterized, but at least ten bind methyllysine motifs and eight bind methylarginine motifs. In this review, we will highlight the biological roles of the Tudor domains that interact with arginine methylated motifs, and also address other types of interactions that are regulated by these particular PTMs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Sitaram Gayatri
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
172
|
Baldwin RM, Morettin A, Côté J. Role of PRMTs in cancer: Could minor isoforms be leaving a mark? World J Biol Chem 2014; 5:115-29. [PMID: 24921003 PMCID: PMC4050107 DOI: 10.4331/wjbc.v5.i2.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/05/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methylation of a variety of protein substrates, many of which have been linked to the development, progression and aggressiveness of different types of cancer. Moreover, aberrant expression of PRMTs has been observed in several cancer types. While the link between PRMTs and cancer is a relatively new area of interest, the functional implications documented thus far warrant further investigations into its therapeutic potential. However, the expression of these enzymes and the regulation of their activity in cancer are still significantly understudied. Currently there are nine main members of the PRMT family. Further, the existence of alternatively spliced isoforms for several of these family members provides an additional layer of complexity. Specifically, PRMT1, PRMT2, CARM1 and PRMT7 have been shown to have alternative isoforms and others may be currently unrealized. Our knowledge with respect to the relative expression and the specific functions of these isoforms is largely lacking and needs attention. Here we present a review of the current knowledge of the known alternative PRMT isoforms and provide a rationale for how they may impact on cancer and represent potentially useful targets for the development of novel therapeutic strategies.
Collapse
|
173
|
Sena JA, Wang L, Heasley LE, Hu CJ. Hypoxia regulates alternative splicing of HIF and non-HIF target genes. Mol Cancer Res 2014; 12:1233-43. [PMID: 24850901 DOI: 10.1158/1541-7786.mcr-14-0149] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia-inducible transcription factor 1α (HIF1α) and 2α (HIF2α/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF-induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. IMPLICATIONS This study demonstrates a novel function of HIF in regulating RNA splicing of HIF target genes.
Collapse
Affiliation(s)
| | - Liyi Wang
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn E Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cheng-Jun Hu
- Molecular Biology Graduate Program and Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
174
|
Ubiquitination-dependent CARM1 degradation facilitates Notch1-mediated podocyte apoptosis in diabetic nephropathy. Cell Signal 2014; 26:1774-82. [PMID: 24726896 DOI: 10.1016/j.cellsig.2014.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/06/2014] [Indexed: 12/21/2022]
Abstract
Podocyte apoptosis induced by hyperglycemia is considered a critical factor in the development of diabetic nephropathy. Recent studies have implicated Notch signaling in podocyte apoptosis; however, its regulatory mechanisms are not fully understood. In this study, we found that high-glucose treatment increased Notch1 and Jagged-1 expression, the transcriptional activity of Hes, and podocyte apoptosis, and decreased the expression of coactivator-associated arginine methyltransferase 1 (CARM1) in rat podocytes. Transient transfection of CARM1 reversed high-glucose-induced Notch1 expression, the transcriptional activity of Hes, and podocyte apoptosis. Moreover, the silencing of CARM1 using siRNA increased Notch1 expression, the transcriptional activity of Hes, and podocyte apoptosis. However, the Glu(266)-mediated enzymatic activity of CARM1 was not necessary for Notch signaling activation and podocyte apoptosis. Here, we demonstrate that AMP-activated protein kinase alpha (AMPKα) and cannabinoid receptor 1 (CB1R) are regulated by CARM1 and that high-glucose-induced podocyte apoptosis is mediated by a CARM1-AMPKα-Notch1-CB1R signaling axis. We also show that high-glucose-induced CARM1 downregulation is due to ubiquitination-dependent CARM1 degradation. Finally, we demonstrate that CARM1 expression in podocytes was diminished in rats with streptozotocin-induced diabetes compared to vehicle-treated rats. Together, our data provide evidence that ubiquitination-dependent CARM1 degradation in podocytes in diabetes promotes podocyte apoptosis via Notch1 activation. Strategies to preserve CARM1 expression or reduce the enzymatic activity of a ubiquitin ligase specific for CARM1 could be used to prevent podocyte loss in diabetic nephropathy.
Collapse
|
175
|
Liu Y, Liu K, Qin S, Xu C, Min J. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 2014; 143:275-94. [PMID: 24704322 DOI: 10.1016/j.pharmthera.2014.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023]
Abstract
Dynamic chromatin structure is modulated by post-translational modifications on histones, such as acetylation, phosphorylation and methylation. Research on histone methylation has become the most flourishing area of epigenetics in the past fourteen years, and a large amount of data has been accumulated regarding its biology and disease implications. Correspondingly, a lot of efforts have been made to develop small molecule compounds that can specifically modulate histone methyltransferases and methylation reader proteins, aiming for potential therapeutic drugs. Here, we summarize recent progress in chemical probe and drug discovery of histone methyltransferases and methylation reader proteins. For each target, we will review their biological/biochemical functions first, and then focus on their disease implications and drug discovery. We can also see that structure-based compound design and optimization plays a critical role in facilitating the development of highly potent and selective chemical probes and inhibitors for these targets.
Collapse
Affiliation(s)
- Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
176
|
Mann M, Zou Y, Chen Y, Brann D, Vadlamudi R. PELP1 oncogenic functions involve alternative splicing via PRMT6. Mol Oncol 2014; 8:389-400. [PMID: 24447537 PMCID: PMC3943689 DOI: 10.1016/j.molonc.2013.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a proto-oncogene that functions as coactivator of the estrogen receptor and is an independent prognostic predictor of shorter survival of breast cancer patients. The dysregulation of PELP1 in breast cancer has been implicated in oncogenesis, metastasis, and therapy resistance. Although several aspects of PELP1 have been studied, a complete list of PELP1 target genes remains unknown, and the molecular mechanisms of PELP1 mediated oncogenesis remain elusive. In this study, we have performed a whole genome analysis to profile the PELP1 transcriptome by RNA-sequencing and identified 318 genes as PELP1 regulated genes. Pathway analysis revealed that PELP1 modulates several pathways including the molecular mechanisms of cancer, estrogen signaling, and breast cancer progression. Interestingly, RNA-seq analysis also revealed that PELP1 regulates the expression of several genes involved in alternative splicing. Accordingly, the PELP1 regulated genome includes several uniquely spliced isoforms. Mechanistic studies show that PELP1 binds RNA with a preference to poly-C, co-localizes with the splicing factor SC35 at nuclear speckles, and participates in alternative splicing. Further, PELP1 interacts with the arginine methyltransferase PRMT6 and modifies PRMT6 functions. Inhibition of PRMT6 reduced PELP1-mediated estrogen receptor activation, cellular proliferation, and colony formation. PELP1 and PRMT6 are co-recruited to estrogen receptor target genes, PELP1 knockdown affects the enrichment of histone H3R2 di-methylation, and PELP1 and PRMT6 coordinate to regulate the alternative splicing of genes involved in cancer. Collectively, our data suggest that PELP1 oncogenic functions involve alternative splicing leading to the activation of unique pathways that support tumor progression and that the PELP1-PRMT6 axis may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Monica Mann
- The Department of Cellular and Structural Biology, San Antonio, TX 78229, USA; The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA.
| | - Yi Zou
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yidong Chen
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA.
| | - Ratna Vadlamudi
- The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
177
|
Sylvestersen KB, Horn H, Jungmichel S, Jensen LJ, Nielsen ML. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest. Mol Cell Proteomics 2014; 13:2072-88. [PMID: 24563534 DOI: 10.1074/mcp.o113.032748] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function, and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein arginine methyltransferases; however, very little is known about which arginine residues become methylated on target substrates. Here we describe a proteomics methodology that combines single-step immunoenrichment of methylated peptides with high-resolution mass spectrometry to identify endogenous arginine mono-methylation (MMA) sites. We thereby identify 1027 site-specific MMA sites on 494 human proteins, discovering numerous novel mono-methylation targets and confirming the majority of currently known MMA substrates. Nuclear RNA-binding proteins involved in RNA processing, RNA localization, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared with the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers strong site-specific regulation of MMA sites during transcriptional arrest. Interestingly, several MMA sites are down-regulated after a few hours of transcriptional arrest. In contrast, the corresponding di-methylation or protein expression levels are not altered, confirming that MMA sites contain regulated functions on their own. Collectively, we present a site-specific MMA data set in human cells and demonstrate for the first time that MMA is a dynamic post-translational modification regulated during transcriptional arrest by a hitherto uncharacterized arginine demethylase.
Collapse
Affiliation(s)
- Kathrine B Sylvestersen
- From the ‡Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Heiko Horn
- §Disease Systems Biology, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Stephanie Jungmichel
- From the ‡Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars J Jensen
- §Disease Systems Biology, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael L Nielsen
- From the ‡Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
178
|
Sena JA, Wang L, Pawlus MR, Hu CJ. HIFs enhance the transcriptional activation and splicing of adrenomedullin. Mol Cancer Res 2014; 12:728-41. [PMID: 24523299 DOI: 10.1158/1541-7786.mcr-13-0607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Adrenomedullin (ADM) is important for tumor angiogenesis, tumor cell growth, and survival. Under normoxic conditions, the ADM gene was found to produce two alternative transcripts, a fully spliced transcript that produces AM and PAMP peptides and intron-3-retaining transcript that produces a less functionally significant PAMP peptide only. ADM is a well-established hypoxia inducible gene; however, it is not clear which ADM isoform is induced by hypoxia. In this study, it was determined that various cancer and normal cells express two predominant types of ADM transcripts, a AM/PAMP peptide producing full-length transcript in which all introns are removed, and a nonprotein producing I1-3 transcript in which all introns are retained. Interestingly, hypoxia preferentially induced the full-length isoform. Moreover, hypoxia-inducible factors (HIF), but not hypoxia per se, are necessary and sufficient to increase splicing of ADM pre-mRNA. ADM splicing reporters confirmed that transcriptional activation by HIF or other transcription factors is sufficient to enhance splicing. However, HIFs are more potent in enhancing ADM pre-mRNA splicing than other transcriptional activators. Thus, ADM intron retention is not a consequence of abnormal splicing, but is an important mechanism to regulate ADM expression. These results demonstrate a novel function of HIFs in regulating ADM expression by enhancing its pre-mRNA splicing. Importantly, using endogenous and cloned ADM gene, further evidence is provided for the coupling of transcription and RNA splicing. IMPLICATIONS Here, a novel function of HIFs in regulating ADM gene expression is identified by enhancing ADM pre-mRNA splicing.
Collapse
Affiliation(s)
- Johnny A Sena
- Authors' Affiliations: Molecular Biology Graduate Program, 2Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | |
Collapse
|
179
|
Wang L, Zhao Z, Meyer MB, Saha S, Yu M, Guo A, Wisinski KB, Huang W, Cai W, Pike JW, Yuan M, Ahlquist P, Xu W. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 2014; 25:21-36. [PMID: 24434208 PMCID: PMC4004525 DOI: 10.1016/j.ccr.2013.12.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/29/2013] [Accepted: 12/13/2013] [Indexed: 11/25/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a coactivator for various cancer-relevant transcription factors, is overexpressed in breast cancer. To elucidate the functions of CARM1 in tumorigenesis, we knocked out CARM1 from several breast cancer cell lines using Zinc-Finger Nuclease technology, which resulted in drastic phenotypic and biochemical changes. The CARM1 KO cell lines enabled identification of CARM1 substrates, notably the SWI/SNF core subunit BAF155. Methylation of BAF155 at R1064 was found to be an independent prognostic biomarker for cancer recurrence and to regulate breast cancer cell migration and metastasis. Furthermore, CARM1-mediated BAF155 methylation affects gene expression by directing methylated BAF155 to unique chromatin regions (e.g., c-Myc pathway genes). Collectively, our studies uncover a mechanism by which BAF155 acquires tumorigenic functions via arginine methylation.
Collapse
Affiliation(s)
- Lu Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zibo Zhao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sandeep Saha
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Huang
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ming Yuan
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
180
|
Wei H, Mundade R, Lange K, Lu T. Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle 2013; 13:32-41. [PMID: 24296620 PMCID: PMC3925732 DOI: 10.4161/cc.27353] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate arginine residues on histones and other proteins. PRMTs play a crucial role in influencing various cellular functions, including cellular development and tumorigenesis. Arginine methylation by PRMTs is found on both nuclear and cytoplasmic proteins. Recently, there is increasing evidence regarding post-translational modifications of non-histone proteins by PRMTs, illustrating the previously unknown importance of PRMTs in the regulation of various cellular functions by post-translational modifications. In this review, we present the recent developments in the regulation of non-histone proteins by PRMTs.
Collapse
|
181
|
Targeting protein arginine N-methyltransferases with peptide-based inhibitors: opportunities and challenges. Future Med Chem 2013; 5:2199-206. [DOI: 10.4155/fmc.13.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recently peptide-based inhibitors have been used to selectively inhibit a family of epigenetic enzymes called protein arginine N-methyltransferases (PRMTs), which has been implicated in different physiological processes and human diseases, such as heart disease and cancer. The diverse efforts to tease out subtle structural differences among PRMT enzymes in order to generate selective inhibitors as well as existing challenges in the field will be examined. The acquisition of PRMT substrate sequence preferences and structural information obtained from small-molecule inhibitors have helped in developing different peptide-based inhibitors that show great promise not only as inhibitors, but also as molecular probes to characterize PRMTs.
Collapse
|
182
|
Feng Y, Maity R, Whitelegge JP, Hadjikyriacou A, Li Z, Zurita-Lopez C, Al-Hadid Q, Clark AT, Bedford MT, Masson JY, Clarke SG. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 2013; 288:37010-25. [PMID: 24247247 DOI: 10.1074/jbc.m113.525345] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.
Collapse
Affiliation(s)
- You Feng
- From the Departments of Chemistry and Biochemistry and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, Ren J, Beausoleil SA, Silva JC, Vemulapalli V, Bedford MT, Comb MJ. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 2013; 13:372-87. [PMID: 24129315 PMCID: PMC3879628 DOI: 10.1074/mcp.o113.027870] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins.
Collapse
Affiliation(s)
- Ailan Guo
- Cell Signaling Technology Inc., 3 Trask Lane, Danvers, Massachusetts 01923
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 2013; 27:1903-16. [PMID: 24013503 PMCID: PMC3778243 DOI: 10.1101/gad.219899.113] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
The tight control of gene expression at the level of both transcription and post-transcriptional RNA processing is essential for mammalian development. We here investigate the role of protein arginine methyltransferase 5 (PRMT5), a putative splicing regulator and transcriptional cofactor, in mammalian development. We demonstrate that selective deletion of PRMT5 in neural stem/progenitor cells (NPCs) leads to postnatal death in mice. At the molecular level, the absence of PRMT5 results in reduced methylation of Sm proteins, aberrant constitutive splicing, and the alternative splicing of specific mRNAs with weak 5' donor sites. Intriguingly, the products of these mRNAs are, among others, several proteins regulating cell cycle progression. We identify Mdm4 as one of these key mRNAs that senses the defects in the spliceosomal machinery and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in vivo. Our data demonstrate that PRMT5 is a master regulator of splicing in mammals and uncover a new role for the Mdm4 pre-mRNA, which could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Marco Bezzi
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Shun Xie Teo
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Julius Muller
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Wei Chuen Mok
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Sanjeeb Kumar Sahu
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Leah A. Vardy
- Institute of Medical Biology (IMB), A*STAR, Singapore 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zahid Q. Bonday
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
185
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
186
|
Dillon MBC, Rust HL, Thompson PR, Mowen KA. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. J Biol Chem 2013; 288:27872-80. [PMID: 23946480 DOI: 10.1074/jbc.m113.491092] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase (PRMT) 8 is unique among the PRMTs, as it has a highly restricted tissue expression pattern and an N terminus that contains two automethylation sites and a myristoylation site. PRMTs catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a peptidylarginine on a protein substrate. Currently, the physiological roles, regulation, and cellular substrates of PRMT8 are poorly understood. However, a thorough understanding of PRMT8 kinetics should provide insights into each of these areas, thereby enhancing our understanding of this unique enzyme. In this study, we determined how automethylation regulates the enzymatic activity of PRMT8. We found that preventing automethylation with lysine mutations (preserving the positive charge of the residue) increased the turnover rate and decreased the Km of AdoMet but did not affect the Km of the protein substrate. In contrast, mimicking automethylation with phenylalanine (i.e. mimicking the increased hydrophobicity) decreased the turnover rate. The inhibitory effect of the PRMT8 N terminus could be transferred to PRMT1 by creating a chimeric protein containing the N terminus of PRMT8 fused to PRMT1. Thus, automethylation of the N terminus likely regulates PRMT8 activity by decreasing the affinity of the enzyme for AdoMet.
Collapse
Affiliation(s)
- Myles B C Dillon
- From the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | | | | | | |
Collapse
|
187
|
Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 2013; 3:1311. [PMID: 23419748 PMCID: PMC3575585 DOI: 10.1038/srep01311] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
Arginine methylation is a common posttranslational modification that is found on both histone and non-histone proteins. Three types of arginine methylation exist in mammalian cells: monomethylarginine (MMA), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). PRMT1 is the primary methyltransferase that deposits the ADMA mark, and it accounts for over 90% of this type of methylation. Here, we show that with the loss of PRMT1 activity, there are major increases in global MMA and SDMA levels, as detected by type-specific antibodies. Amino acid analysis confirms that MMA and SDMA levels accumulate when ADMA levels are reduced. These findings reveal the dynamic interplay between different arginine methylation types in the cells, and that the pre-existence of the dominant ADMA mark can block the occurrence of SDMA and MMA marks on the same substrate. This study provides clear evidence of competition for different arginine methylation types on the same substrates.
Collapse
|
188
|
Pang L, Tian H, Chang N, Yi J, Xue L, Jiang B, Gorospe M, Zhang X, Wang W. Loss of CARM1 is linked to reduced HuR function in replicative senescence. BMC Mol Biol 2013; 14:15. [PMID: 23837869 PMCID: PMC3718661 DOI: 10.1186/1471-2199-14-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background The co-activator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of HuR. However, the functional impact of this modification is not fully understood. Here, we investigated the influence of HuR methylation by CARM1 upon the turnover of HuR target mRNAs encoding senescence-regulatory proteins. Results Changing the methylation status of HuR in HeLa cells by either silencing CARM1 or mutating the major methylation site (R217K) greatly diminished the effect of HuR in regulating the turnover of mRNAs encoding cyclin A, cyclin B1, c-fos, SIRT1, and p16. Although knockdown of CARM1 or HuR individually influenced the expression of cyclin A, cyclin B1, c-fos, SIRT1, and p16, joint knockdown of both CARM1 and HuR did not show further effect. Methylation by CARM1 enhanced the association of HuR with the 3′UTR of p16 mRNA, but not with the 3′UTR of cyclin A, cyclin B1, c-fos, or SIRT1 mRNAs. In senescent human diploid fibroblasts (HDFs), reduced CARM1 was accompanied by reduced HuR methylation. In addition, knockdown of CARM1 or mutation of the major methylation site of HuR in HDF markedly impaired the ability of HuR to regulate the expression of cyclin A, cyclin B1, c-fos, SIRT1, and p16 as well to maintain a proliferative phenotype. Conclusion CARM1 represses replicative senescence by methylating HuR and thereby enhancing HuR’s ability to regulate the turnover of cyclin A, cyclin B1, c-fos, SIRT1, and p16 mRNAs.
Collapse
Affiliation(s)
- Lijun Pang
- Department of Biochemistry and Molecular Biology, Peking University health Science Center, 38 Xueyuan Road, Beijing 100191, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Zheng S, Damoiseaux R, Chen L, Black DL. A broadly applicable high-throughput screening strategy identifies new regulators of Dlg4 (Psd-95) alternative splicing. Genome Res 2013; 23:998-1007. [PMID: 23636947 PMCID: PMC3668367 DOI: 10.1101/gr.147546.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/21/2013] [Indexed: 01/17/2023]
Abstract
Most mammalian genes produce multiple mRNA isoforms derived from alternative pre-mRNA splicing, with each alternative exon controlled by a complex network of regulatory factors. The identification of these regulators can be laborious and is usually carried out one factor at a time. We have developed a broadly applicable high-throughput screening method that simultaneously identifies multiple positive and negative regulators of a particular exon. Two minigene reporters were constructed: One produces green fluorescent protein (GFP) from the mRNA including an exon, and red fluorescent protein (RFP) from the mRNA lacking the exon; the other switches these fluorescent products of exon inclusion and exclusion. Combining results from these two reporters eliminates many false positives and greatly enriches for true splicing regulators. After extensive optimization of this method, we performed a gain-of-function screen of 15,779 cDNA clones and identified 40 genes affecting exon 18 of Discs large homolog 4 (Dlg4; also known as post-synaptic density protein 95 [Psd-95]). We confirmed that 28 of the 34 recoverable clones alter reporter splicing in RT-PCR assays. Remarkably, 18 of the identified genes encode splicing factors or RNA binding proteins, including PTBP1, a previously identified regulator of this exon. Loss-of-function experiments examining endogenous Dlg4 transcripts validated the effects of five of eight genes tested in independent cell lines, and two genes were further confirmed to regulate Dlg4 splicing in primary neurons. These results identify multiple new regulators of Dlg4 splicing, and validate an approach to isolating splicing regulators for almost any cassette exon from libraries of cDNAs, shRNAs, or small molecules.
Collapse
Affiliation(s)
- Sika Zheng
- Howard Hughes Medical Institute, University of California at Los Angeles, California 90095, USA
| | - Robert Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, California 90095, USA
| | - Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Douglas L. Black
- Howard Hughes Medical Institute, University of California at Los Angeles, California 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, California 90095, USA
| |
Collapse
|
190
|
Zeng H, Wu J, Bedford MT, Sbardella G, Hoffmann FM, Bi K, Xu W. A TR-FRET-based functional assay for screening activators of CARM1. Chembiochem 2013; 14:827-35. [PMID: 23585185 PMCID: PMC3828750 DOI: 10.1002/cbic.201300029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Indexed: 11/07/2022]
Abstract
Epigenetics is an emerging field that demands selective cell-permeable chemical probes to perturb, especially in vivo, the activity of specific enzymes involved in modulating the epigenetic codes. Coactivator-associated arginine methyltransferase 1 (CARM1) is a coactivator of estrogen receptor α (ERα), the main target in human breast cancer. We previously showed that twofold overexpression of CARM1 in MCF7 breast cancer cells increased the expression of ERα-target genes involved in differentiation and reduced cell proliferation, thus leading to the hypothesis that activating CARM1 by chemical activators might be therapeutically effective in breast cancer. Selective, potent, cell-permeable CARM1 activators will be essential to test this hypothesis. Here we report the development of a cell-based, time-resolved (TR) FRET assay that uses poly(A) binding protein 1 (PABP1) methylation to monitor cellular activity of CARM1. The LanthaScreen TR-FRET assay uses MCF7 cells expressing GFP-PABP1 fusion protein through BacMam gene delivery system, methyl-PABP1 specific antibody, and terbium-labeled secondary antibody. This assay has been validated as reflecting the expression and/or activity of CARM1 and optimized for high throughput screening to identify CARM1 allosteric activators. This TR-FRET platform serves as a generic tool for functional screening of cell-permeable, chemical modulators of CARM1 for elucidation of its in vivo functions.
Collapse
Affiliation(s)
- Hao Zeng
- Graduate Program in Cellular and Molecular Biology, McArdle Laboratory for Cancer Research and Carbone Comprehensive Cancer Center, University of Wisconsin, 1400 University Ave, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Identification of a novel lipin homologue from the parasitic protozoan Trypanosoma brucei. BMC Microbiol 2013; 13:101. [PMID: 23656927 PMCID: PMC3654991 DOI: 10.1186/1471-2180-13-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background Arginine methylation is a post-translational modification that expands the functional diversity of proteins. Kinetoplastid parasites contain a relatively large group of protein arginine methyltransferases (PRMTs) compared to other single celled eukaryotes. Several T. brucei proteins have been shown to serve as TbPRMT substrates in vitro, and a great number of proteins likely to undergo methylation are predicted by the T. brucei genome. This indicates that a large number of proteins whose functions are modulated by arginine methylation await discovery in trypanosomes. Here, we employed a yeast two-hybrid screen using as bait the major T. brucei type I PRMT, TbPRMT1, to identify potential substrates of this enzyme. Results We identified a protein containing N-LIP and C-LIP domains that we term TbLpn. These domains are usually present in a family of proteins known as lipins, and involved in phospholipid biosynthesis and gene regulation. Far western and co-immunoprecipitation assays confirmed the TbPRMT1-TbLpn interaction. We also demonstrated that TbLpn is localized mainly to the cytosol, and is methylated in vivo. In addition, we showed that, similar to mammalian and yeast proteins with N-LIP and C-LIP domains, recombinant TbLpn exhibits phosphatidic acid phosphatase activity, and that two conserved aspartic acid residues present in the C-LIP domain are critical for its enzymatic activity. Conclusions This study reports the characterization of a novel trypanosome protein and provides insight into its enzymatic activity and function in phospholipid biosynthesis. It also indicates that TbLpn functions may be modulated by arginine methylation.
Collapse
|
192
|
Liu F, Li F, Ma A, Dobrovetsky E, Dong A, Gao C, Korboukh I, Liu J, Smil D, Brown PJ, Frye SV, Arrowsmith CH, Schapira M, Vedadi M, Jin J. Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. J Med Chem 2013; 56:2110-24. [PMID: 23445220 PMCID: PMC4319713 DOI: 10.1021/jm3018332] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein arginine methyltransferases (PRMTs) play an important role in diverse biological processes. Among the nine known human PRMTs, PRMT3 has been implicated in ribosomal biosynthesis via asymmetric dimethylation of the 40S ribosomal protein S2 and in cancer via interaction with the DAL-1 tumor suppressor protein. However, few selective inhibitors of PRMTs have been discovered. We recently disclosed the first selective PRMT3 inhibitor, which occupies a novel allosteric binding site and is noncompetitive with both the peptide substrate and cofactor. Here we report comprehensive structure-activity relationship studies of this series, which resulted in the discovery of multiple PRMT3 inhibitors with submicromolar potencies. An X-ray crystal structure of compound 14u in complex with PRMT3 confirmed that this inhibitor occupied the same allosteric binding site as our initial lead compound. These studies provide the first experimental evidence that potent and selective inhibitors can be created by exploiting the allosteric binding site of PRMT3.
Collapse
Affiliation(s)
- Feng Liu
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Anqi Ma
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elena Dobrovetsky
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cen Gao
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ilia Korboukh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jing Liu
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David Smil
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
193
|
Abstract
There are nine protein arginine methyltransferases (PRMTs) encoded in mammalian genomes, the protein products of which catalyse three types of arginine methylation--monomethylation and two types of dimethylation. Protein arginine methylation is an abundant modification that has been implicated in signal transduction, gene transcription, DNA repair and mRNA splicing, among others. Studies have only recently linked this modification to carcinogenesis and metastasis. Sequencing studies have not generally found alterations to the PRMTs; however, overexpression of these enzymes is often associated with various cancers, which might make some of them viable targets for therapeutic strategies.
Collapse
Affiliation(s)
- Yanzhong Yang
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. BOX 389, Smithville, Texas 78957, USA
| | | |
Collapse
|
194
|
Li J, Zhao Z, Carter C, Ehrlich LIR, Bedford MT, Richie ER. Coactivator-associated arginine methyltransferase 1 regulates fetal hematopoiesis and thymocyte development. THE JOURNAL OF IMMUNOLOGY 2012; 190:597-604. [PMID: 23248263 DOI: 10.4049/jimmunol.1102513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a protein arginine methyltransferase that methylates histones and transcriptional regulators. We previously reported that the absence of CARM1 partially blocks thymocyte differentiation at embryonic day 18.5 (E18.5). In this study, we find that reduced thymopoiesis in Carm1(-/-) mice is due to a defect in the fetal hematopoietic compartment rather than in the thymic stroma. To determine the cellular basis for impaired thymopoiesis, we examined the number and function of fetal liver (FL) and bone marrow cells. Despite markedly reduced cellularity of hematopoietic progenitors in E18.5 bone marrow, the number of long-term hematopoietic stem cells and downstream subsets was not reduced in Carm1(-/-) E14.5 or E18.5 FL. Nevertheless, competitive reconstitution assays revealed a deficit in the ability of Carm1(-/-) FL cells to contribute to hematopoiesis. Furthermore, impaired differentiation of Carm1(-/-) FL cells in a CARM1-sufficient host showed that CARM1 is required cell autonomously in hematopoietic cells. Coculture of Carm1(-/-) FL cells on OP9-DL1 monolayers showed that CARM1 is required for survival of hematopoietic progenitors under conditions that promote differentiation. Taken together, this report demonstrates that CARM1 is a key epigenetic regulator of hematopoiesis that affects multiple lineages at various stages of differentiation.
Collapse
Affiliation(s)
- Jia Li
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
195
|
Castellano S, Spannhoff A, Milite C, Dal Piaz F, Cheng D, Tosco A, Viviano M, Yamani A, Cianciulli A, Sala M, Cura V, Cavarelli J, Novellino E, Mai A, Bedford MT, Sbardella G. Identification of small-molecule enhancers of arginine methylation catalyzed by coactivator-associated arginine methyltransferase 1. J Med Chem 2012; 55:9875-90. [PMID: 23095008 PMCID: PMC3508294 DOI: 10.1021/jm301097p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arginine methylation is a common post-translational modification that is crucial in modulating gene expression at multiple critical levels. The arginine methyltransferases (PRMTs) are envisaged as promising druggable targets, but their role in physiological and pathological pathways is far from being clear due to the limited number of modulators reported to date. In this effort, enzyme activators can be invaluable tools useful as gain-of-function reagents to interrogate the biological roles in cells and in vivo of PRMTs. Yet the identification of such molecules is rarely pursued. Herein we describe a series of aryl ureido acetamido indole carboxylates (dubbed "uracandolates"), able to increase the methylation of histone (H3) or nonhistone (polyadenylate-binding protein 1, PABP1) substrates induced by coactivator-associated arginine methyltransferase 1 (CARM1), both in in vitro and cellular settings. To the best of our knowledge, this is the first report of compounds acting as CARM1 activators.
Collapse
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Astrid Spannhoff
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Ciro Milite
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Fabrizio Dal Piaz
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Donghang Cheng
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Alessandra Tosco
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Monica Viviano
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Abdellah Yamani
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Agostino Cianciulli
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Marina Sala
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, IGBMC (Institut de Génétique et Biologie Moléculaire et Cellulaire), UDS, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonello Mai
- Istituto Pasteur – Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Roma, Italy
| | - Mark T. Bedford
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | - Gianluca Sbardella
- Dipartimento di Scienze Farmaceutiche e Biomediche, Epigenetic Med Chem Lab, Università degli Studi di Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA), Italy
| |
Collapse
|
196
|
Low JKK, Wilkins MR. Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 2012; 279:4423-43. [PMID: 23094907 DOI: 10.1111/febs.12039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
Recent research has implicated arginine methylation as a major regulator of cellular processes, including transcription, translation, nucleocytoplasmic transport, signalling, DNA repair, RNA processing and splicing. Arginine methylation is evolutionarily conserved, and it is now thought that it may rival other post-translational modifications such as phosphorylation in terms of its occurrence in the proteome. In addition, multiple recent examples demonstrate an exciting new theme: the interplay between methylation and other post-translational modifications such as phosphorylation. In this review, we summarize our current understanding of arginine methylation and the recent advances made, with a focus on the lower eukaryote Saccharomyces cerevisiae. We cover the types of methylated proteins, their responsible methyltransferases, where and how the effects of arginine methylation are seen in the cell, and, finally, discuss the conservation of the biological function of methylarginines between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Jason K K Low
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
197
|
Sanchez G, Dury AY, Murray LM, Biondi O, Tadesse H, El Fatimy R, Kothary R, Charbonnier F, Khandjian EW, Côté J. A novel function for the survival motoneuron protein as a translational regulator. Hum Mol Genet 2012; 22:668-84. [PMID: 23136128 DOI: 10.1093/hmg/dds474] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SMN1, the causative gene for spinal muscular atrophy (SMA), plays a housekeeping role in the biogenesis of small nuclear RNA ribonucleoproteins. SMN is also present in granular foci along axonal projections of motoneurons, which are the predominant cell type affected in the pathology. These so-called RNA granules mediate the transport of specific mRNAs along neurites and regulate mRNA localization, stability, as well as local translation. Recent work has provided evidence suggesting that SMN may participate in the assembly of RNA granules, but beyond that, the precise nature of its role within these structures remains unclear. Here, we demonstrate that SMN associates with polyribosomes and can repress translation in an in vitro translation system. We further identify the arginine methyltransferase CARM1 as an mRNA that is regulated at the translational level by SMN and find that CARM1 is abnormally up-regulated in spinal cord tissue from SMA mice and in severe type I SMA patient cells. We have previously characterized a novel regulatory pathway in motoneurons involving the SMN-interacting RNA-binding protein HuD and CARM1. Thus, our results suggest the existence of a potential negative feedback loop in this pathway. Importantly, an SMA-causing mutation in the Tudor domain of SMN completely abolished translational repression, a strong indication for the functional significance of this novel SMN activity in the pathology.
Collapse
Affiliation(s)
- Gabriel Sanchez
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Uhlmann T, Geoghegan VL, Thomas B, Ridlova G, Trudgian DC, Acuto O. A method for large-scale identification of protein arginine methylation. Mol Cell Proteomics 2012; 11:1489-99. [PMID: 22865923 PMCID: PMC3494207 DOI: 10.1074/mcp.m112.020743] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
The lack of methods for proteome-scale detection of arginine methylation restricts our knowledge of its relevance in physiological and pathological processes. Here we show that most tryptic peptides containing methylated arginine(s) are highly basic and hydrophilic. Consequently, they could be considerably enriched from total cell extracts by simple protocols using either one of strong cation exchange chromatography, isoelectric focusing, or hydrophilic interaction liquid chromatography, the latter being by far the most effective of all. These methods, coupled with heavy methyl-stable isotope labeling by amino acids in cell culture and mass spectrometry, enabled in T cells the identification of 249 arginine methylation sites in 131 proteins, including 190 new sites and 93 proteins not previously known to be arginine methylated. By extending considerably the number of known arginine methylation sites, our data reveal a novel proline-rich consensus motif and identify for the first time arginine methylation in proteins involved in cytoskeleton rearrangement at the immunological synapse and in endosomal trafficking.
Collapse
Affiliation(s)
| | | | - Benjamin Thomas
- §Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Gabriela Ridlova
- From the ‡T Cell Signalling Laboratory and
- §Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - David C. Trudgian
- §Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | |
Collapse
|
199
|
Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int J Mol Sci 2012. [PMID: 23202904 PMCID: PMC3497278 DOI: 10.3390/ijms131012383] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Protein arginine methylation is a novel posttranslational modification that plays a pivotal role in a variety of intracellular events, such as signal transduction, protein-protein interaction and transcriptional regulation, either by the direct regulation of protein function or by metabolic products originating from protein arginine methylation that influence nitric oxide (NO)-dependent processes. A growing body of evidence suggests that both mechanisms are implicated in cardiovascular and pulmonary diseases. This review will present and discuss recent research on PRMTs and the methylation of non-histone proteins and its consequences for the pathogenesis of various lung disorders, including lung cancer, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease and asthma. This article will also highlight novel directions for possible future investigations to evaluate the functional contribution of arginine methylation in lung homeostasis and disease.
Collapse
|
200
|
Khan DH, Jahan S, Davie JR. Pre-mRNA splicing: role of epigenetics and implications in disease. Adv Biol Regul 2012; 52:377-388. [PMID: 22884031 DOI: 10.1016/j.jbior.2012.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Epigenetics refer to a variety of processes that have long-term effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are histone modifications and DNA methylation which, in concert with chromatin remodeling complexes, nuclear architecture and microRNAs, define the chromatin structure of a gene and its transcriptional activity. There is a growing awareness that histone modifications and chromatin organization influence pre-mRNA splicing. Further there is emerging evidence that pre-mRNA splicing itself influences chromatin organization. In the mammalian genome around 95% of multi-exon genes generate alternatively spliced transcripts, the products of which create proteins with different functions. It is now established that several human diseases are a direct consequence of aberrant splicing events. In this review we present the interplay between epigenetic mechanisms and splicing regulation, as well as discuss recent studies on the role of histone deacetylases in splicing activities.
Collapse
Affiliation(s)
- Dilshad H Khan
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, R3E 3P4 Canada
| | | | | |
Collapse
|