151
|
Irnov I, Sharma CM, Vogel J, Winkler WC. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 2010; 38:6637-51. [PMID: 20525796 PMCID: PMC2965217 DOI: 10.1093/nar/gkq454] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/27/2010] [Accepted: 05/10/2010] [Indexed: 01/05/2023] Open
Abstract
Post-transcriptional regulatory mechanisms are widespread in bacteria. Interestingly, current published data hint that some of these mechanisms may be non-random with respect to their phylogenetic distribution. Although small, trans-acting regulatory RNAs commonly occur in bacterial genomes, they have been better characterized in Gram-negative bacteria, leaving the impression that they may be less important for Firmicutes. It has been presumed that Gram-positive bacteria, in particular the Firmicutes, are likely to utilize cis-acting regulatory RNAs located within the 5' mRNA leader region more often than trans-acting regulatory RNAs. In this analysis we catalog, by a deep sequencing-based approach, both classes of regulatory RNA candidates for Bacillus subtilis, the model microorganism for Firmicutes. We successfully recover most of the known small RNA regulators while also identifying a greater number of new candidate RNAs. We anticipate these data to be a broadly useful resource for analysis of post-transcriptional regulatory strategies in B. subtilis and other Firmicutes.
Collapse
Affiliation(s)
- Irnov Irnov
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9038, USA and Max Planck Institute for Infection Biology, RNA Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Cynthia M. Sharma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9038, USA and Max Planck Institute for Infection Biology, RNA Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Jörg Vogel
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9038, USA and Max Planck Institute for Infection Biology, RNA Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Wade C. Winkler
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9038, USA and Max Planck Institute for Infection Biology, RNA Biology, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
152
|
Park HS, Ostberg Y, Johansson J, Wagner EGH, Uhlin BE. Novel role for a bacterial nucleoid protein in translation of mRNAs with suboptimal ribosome-binding sites. Genes Dev 2010; 24:1345-50. [PMID: 20595230 DOI: 10.1101/gad.576310] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Escherichia coli, the major nucleoid protein H-NS limits transcription by acting as a repressor or transcriptional silencer, presumably by its ability to close the looped chromosome domains in the nucleoid through DNA-protein-DNA bridging. Here, we demonstrate the direct involvement of H-NS as a positive factor stimulating translation of the malT mRNA. In vitro studies showed that H-NS facilitates a repositioning of the 30S preinitiation complex on the malT mRNA. H-NS stimulation of translation depended on the AU-rich -35 to -40 region of the mRNA. Several additional examples were found demonstrating a novel function for H-NS in translation of genes with suboptimal ribosome-binding sequences.
Collapse
Affiliation(s)
- Hyun-Sook Park
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
153
|
Belasco JG. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 2010; 11:467-78. [PMID: 20520623 PMCID: PMC3145457 DOI: 10.1038/nrm2917] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite its universal importance for controlling gene expression, mRNA degradation was initially thought to occur by disparate mechanisms in eukaryotes and bacteria. This conclusion was based on differences in the structures used by these organisms to protect mRNA termini and in the RNases and modifying enzymes originally implicated in mRNA decay. Subsequent discoveries have identified several striking parallels between the cellular factors and molecular events that govern mRNA degradation in these two kingdoms of life. Nevertheless, some key distinctions remain, the most fundamental of which may be related to the different mechanisms by which eukaryotes and bacteria control translation initiation.
Collapse
Affiliation(s)
- Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, 10016, USA.
| |
Collapse
|
154
|
Beisel CL, Storz G. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 2010; 34:866-82. [PMID: 20662934 DOI: 10.1111/j.1574-6976.2010.00241.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bacteria use a range of RNA regulators collectively termed small RNAs (sRNAs) to help respond to changes in the environment. Many sRNAs regulate their target mRNAs through limited base-pairing interactions. Ongoing characterization of base-pairing sRNAs in bacteria has started to reveal how these sRNAs participate in global regulatory networks. These networks can be broken down into smaller regulatory circuits that have characteristic behaviors and functions. In this review, we describe the specific regulatory circuits that incorporate base-pairing sRNAs and the importance of each circuit in global regulation. Because most of these circuits were originally identified as network motifs in transcriptional networks, we also discuss why sRNAs may be used over protein transcription factors to help transduce environmental signals.
Collapse
Affiliation(s)
- Chase L Beisel
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | | |
Collapse
|
155
|
Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J 2010; 29:1840-50. [PMID: 20407422 DOI: 10.1038/emboj.2010.73] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/24/2010] [Indexed: 01/16/2023] Open
Abstract
Escherichia coli produces proteinaceous surface structures called curli that are involved in adhesion and biofilm formation. CsgD is the transcriptional activator of curli genes. We show here that csgD expression is, in part, controlled post-transcriptionally by two redundant small RNAs (sRNAs), OmrA and OmrB. Their overexpression results in curli deficiency, in accordance with the inhibition of chromosomally encoded, FLAG-tagged CsgD. Downregulation of csgD occurs by a direct antisense interaction within the csgD 5'-UTR, far upstream of the ribosome-binding site (RBS). OmrA/B downregulate plasmid-borne csgD-gfp fusions in vivo, and inhibit CsgD translation in vitro. The RNA chaperone Hfq is required for normal csgD mRNA and OmrA/B levels in the cell, and enhances sRNA-dependent inhibition of csgD translation in vitro. Translational inhibition involves two phylogenetically conserved secondary structure modules that are supported by chemical and enzymatic probing. The 5'-most element is necessary and sufficient for regulation, the one downstream comprises the RBS and affects translational efficiency. OmrA/B are two antisense RNAs that regulate a transcription factor to alter a morphotype and group behaviour.
Collapse
|
156
|
Lorenz C, Gesell T, Zimmermann B, Schoeberl U, Bilusic I, Rajkowitsch L, Waldsich C, von Haeseler A, Schroeder R. Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res 2010; 38:3794-808. [PMID: 20348540 PMCID: PMC2887942 DOI: 10.1093/nar/gkq032] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An unexpectedly high number of regulatory RNAs have been recently discovered that fine-tune the function of genes at all levels of expression. We employed Genomic SELEX, a method to identify protein-binding RNAs encoded in the genome, to search for further regulatory RNAs in Escherichia coli. We used the global regulator protein Hfq as bait, because it can interact with a large number of RNAs, promoting their interaction. The enriched SELEX pool was subjected to deep sequencing, and 8865 sequences were mapped to the E. coli genome. These short sequences represent genomic Hfq-aptamers and are part of potential regulatory elements within RNA molecules. The motif 5′-AAYAAYAA-3′ was enriched in the selected RNAs and confers low-nanomolar affinity to Hfq. The motif was confirmed to bind Hfq by DMS footprinting. The Hfq aptamers are 4-fold more frequent on the antisense strand of protein coding genes than on the sense strand. They were enriched opposite to translation start sites or opposite to intervening sequences between ORFs in operons. These results expand the repertoire of Hfq targets and also suggest that Hfq might regulate the expression of a large number of genes via interaction with cis-antisense RNAs.
Collapse
Affiliation(s)
- C Lorenz
- Department of Biochemistry, Medical University of Vienna and University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, Vandenesch F, Romby P. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 2010; 6:e1000809. [PMID: 20300607 PMCID: PMC2837412 DOI: 10.1371/journal.ppat.1000809] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/05/2010] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.
Collapse
Affiliation(s)
- Clément Chevalier
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Sandrine Boisset
- INSERM U851, Centre National de Référence des Staphylocoques, Lyon, France; Université de Lyon, Lyon, France
| | - Cédric Romilly
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Benoit Masquida
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Thomas Geissmann
- INSERM U851, Centre National de Référence des Staphylocoques, Lyon, France; Université de Lyon, Lyon, France
| | - François Vandenesch
- INSERM U851, Centre National de Référence des Staphylocoques, Lyon, France; Université de Lyon, Lyon, France
- * E-mail: (FV); (PR)
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (FV); (PR)
| |
Collapse
|
158
|
Lioliou E, Romilly C, Romby P, Fechter P. RNA-mediated regulation in bacteria: from natural to artificial systems. N Biotechnol 2010; 27:222-35. [PMID: 20211281 DOI: 10.1016/j.nbt.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteria use various means of RNA-mediated gene regulation. Regulatory RNAs include mRNA leaders that affect expression in cis or in trans, non-coding RNAs that trap regulatory proteins or interact with one or multiple target mRNAs, and RNAs that protect the bacteria against foreign and invasive DNA. The aim of this review is to outline the basic principles of bacterial RNA-mediated regulation, with a special focus on both cis-acting regulatory regions of mRNAs and antisense RNAs (asRNAs), and to give a brief overview of selected examples of RNA-based technology that have paved the way for biotechnological applications.
Collapse
Affiliation(s)
- Efthimia Lioliou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, Strasbourg cedex, France
| | | | | | | |
Collapse
|
159
|
Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010; 8:e1000317. [PMID: 20186264 PMCID: PMC2826370 DOI: 10.1371/journal.pbio.1000317] [Citation(s) in RCA: 572] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/20/2010] [Indexed: 11/18/2022] Open
Abstract
Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival. The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA) transcripts. We have found previously that one or more components of the SOS response induce persister formation after exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of persister formation.
Collapse
Affiliation(s)
- Tobias Dörr
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Marin Vulić
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
160
|
Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 2009; 139:770-9. [PMID: 19914169 DOI: 10.1016/j.cell.2009.08.046] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/16/2009] [Accepted: 08/26/2009] [Indexed: 11/18/2022]
Abstract
Riboswitches are RNA elements acting in cis, controlling expression of their downstream genes through a metabolite-induced alteration of their secondary structure. Here, we demonstrate that two S-adenosylmethionine (SAM) riboswitches, SreA and SreB, can also function in trans and act as noncoding RNAs in Listeria monocytogenes. SreA and SreB control expression of the virulence regulator PrfA by binding to the 5'-untranslated region of its mRNA. Absence of the SAM riboswitches SreA and SreB increases the level of PrfA and virulence gene expression in L. monocytogenes. Thus, the impact of the SAM riboswitches on PrfA expression highlights a link between bacterial virulence and nutrient availability. Together, our results uncover an unexpected role for riboswitches and a distinct class of regulatory noncoding RNAs in bacteria.
Collapse
Affiliation(s)
- Edmund Loh
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Activation of gene expression by small RNA. Curr Opin Microbiol 2009; 12:674-82. [DOI: 10.1016/j.mib.2009.09.009] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/20/2009] [Indexed: 11/22/2022]
|
162
|
Reichenbach B, Göpel Y, Görke B. Dual control by perfectly overlapping sigma 54- and sigma 70- promoters adjusts small RNA GlmY expression to different environmental signals. Mol Microbiol 2009; 74:1054-70. [PMID: 19843219 DOI: 10.1111/j.1365-2958.2009.06918.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Escherichia coli synthesis of glucosamine-6-phosphate synthase GlmS is feedback-controlled by a regulatory cascade composed of small RNAs GlmY and GlmZ. When GlcN6P becomes limiting, GlmY accumulates and inhibits processing of GlmZ. Full-length GlmZ base-pairs with the glmS transcript and activates synthesis of GlmS, which re-synthesizes GlcN6P. Here we show that glmY expression is controlled by two overlapping promoters with the same transcription start site. A sigma(70)-dependent promoter contributes to glmY transcription during exponential growth. Alternatively, glmY can be transcribed from a sigma(54)-dependent promoter, which requires the YfhK/YfhA two-component system for activity. YfhK is a sensor kinase and YfhA is a response regulator that contains a sigma(54) interaction domain. YfhA binds to a DNA region located more than 100 bp upstream of glmY. Three copies of the conserved sequence TGTCN(10)GACA contribute to binding, and the two sites next to glmY are essential for activation of the sigma(54)-dependent promoter by YfhA. YfhK and YfhA upregulate GlmY when cells enter the stationary growth phase, whereas regulation by glucosamine-6-phosphate occurs post GlmY transcription. Target genes regulated by YfhK and YfhA were unknown so far. We propose to rename these proteins to GlrK and GlrR, for glmY regulating kinase and response regulator respectively.
Collapse
Affiliation(s)
- Birte Reichenbach
- Georg-August - Universität Göttingen, Abteilung für Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
163
|
Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 2009; 5:305. [PMID: 19756044 PMCID: PMC2758717 DOI: 10.1038/msb.2009.63] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 08/03/2009] [Indexed: 11/09/2022] Open
Abstract
Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon-limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light-dependent manner and may be required for processing the L11 r-operon and the SyR7 noncoding RNA, which is antisense to the murF 5′ UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, ∼10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks.
Collapse
|
164
|
Sharma CM, Vogel J. Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 2009; 12:536-46. [PMID: 19758836 DOI: 10.1016/j.mib.2009.07.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 01/27/2023]
Abstract
Following the pioneering screens for small regulatory RNAs (sRNAs) in Escherichia coli in 2001, sRNAs are now being identified in almost every branch of the eubacterial kingdom. Experimental strategies have become increasingly important for sRNA discovery, thanks to increased availability of tiling arrays and fast progress in the development of high-throughput cDNA sequencing (RNA-Seq). The new technologies also facilitate genome-wide discovery of potential target mRNAs by sRNA pulse-expression coupled to transcriptomics, and immunoprecipitation with RNA-binding proteins such as Hfq. Moreover, the staggering rate of new sRNAs demands mechanistic analysis of target regulation. We will also review the available toolbox for wet lab-based research, including in vivo and in vitro reporter systems, genetic methods and biochemical co-purification of sRNA interaction partners.
Collapse
Affiliation(s)
- Cynthia Mira Sharma
- RNA Biology Group, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | |
Collapse
|
165
|
On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends Microbiol 2009; 17:399-405. [PMID: 19733080 DOI: 10.1016/j.tim.2009.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 12/29/2022]
Abstract
The pleiotropic post-transcriptional regulator Hfq is an RNA chaperone that facilitates pairing interactions between small regulatory RNAs (sRNAs) and their mRNA targets in several bacteria. However, this classical pattern, derived from the Escherichia coli model, is not applicable to the whole bacterial kingdom. In this article we discuss the facultative requirement for Hfq for sRNA-mRNA duplex formation among bacteria and the specific features of the Hfq protein and RNA duplexes that might account for the dispensability or requirement of the chaperone. Apparent links between the need for Hfq, the GC content of bacterial genomes and the free energy of experimentally validated sRNA-mRNA pairing interactions are presented.
Collapse
|
166
|
Abstract
A recent meeting on 'Regulatory RNAs in prokaryotes' reflected the growing interest in this research topic. Almost 200 scientists met to discuss the identification, structure, function and mechanistic details of regulatory RNAs in bacteria and archaea. The topics included small regulatory RNAs, riboswitches, RNA thermosensors and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) elements.
Collapse
|
167
|
Shakhnovich EA, Davis BM, Waldor MK. Hfq negatively regulates type III secretion in EHEC and several other pathogens. Mol Microbiol 2009; 74:347-63. [PMID: 19703108 DOI: 10.1111/j.1365-2958.2009.06856.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hfq is a conserved RNA-binding protein that regulates diverse cellular processes through post-transcriptional control of gene expression, often by functioning as a chaperone for regulatory sRNAs. Here, we explored the role of Hfq in enterohaemorrhagic Escherichia coli (EHEC), a group of non-invasive intestinal pathogens. EHEC virulence is dependent on a Type III secretion system encoded in the LEE pathogenicity island. The abundance of transcripts for all 41 LEE genes and more than half of confirmed non-LEE-encoded T3 effectors were elevated in an EHEC hfq deletion mutant. Thus, Hfq promotes co-ordinated expression of the LEE-encoded T3S apparatus and both LEE- and non-LEE-encoded effectors. Increased transcript levels led to the formation of functional secretion complexes capable of secreting high quantities of effectors into the supernatant. The increase in LEE-derived transcripts and proteins was dependent on Ler, the LEE-encoded transcriptional activator, and the ler transcript appears to be a direct target of Hfq-mediated negative regulation. Finally, we found that Hfq contributes to the negative regulation of T3SSs in several other pathogens, suggesting that Hfq, potentially along with species-specific sRNAs, underlies a common means to prevent unfettered expression of T3SSs.
Collapse
Affiliation(s)
- Elizabeth A Shakhnovich
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
168
|
Wagner EGH. Kill the messenger: bacterial antisense RNA promotes mRNA decay. Nat Struct Mol Biol 2009; 16:804-6. [DOI: 10.1038/nsmb0809-804] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
169
|
Pfeiffer V, Papenfort K, Lucchini S, Hinton JCD, Vogel J. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 2009; 16:840-6. [PMID: 19620966 DOI: 10.1038/nsmb.1631] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/04/2009] [Indexed: 02/03/2023]
Abstract
Bacterial small noncoding RNAs (sRNAs) generally recognize target mRNAs in the 5' region to prevent 30S ribosomes from initiating translation. It was thought that the mRNA coding sequence (CDS) was refractory to sRNA-mediated repression, because elongating 70S ribosomes have an efficient RNA helicase activity that prevents stable target pairing. We report that the Hfq-associated MicC sRNA silences Salmonella typhimurium ompD mRNA via a <or=12-bp RNA duplex within the CDS (codons 23-26) that is essential and sufficient for repression. MicC does not inhibit translational initiation at this downstream position but instead acts by accelerating RNase E-dependent ompD mRNA decay. We propose an alternative gene-silencing pathway within bacterial CDS wherein sRNAs repress targets by endonucleolytic mRNA destabilization rather than by the prototypical inhibition of translational initiation. The discovery of CDS targeting markedly expands the sequence space for sRNA target predictions in bacteria.
Collapse
Affiliation(s)
- Verena Pfeiffer
- Max Planck Institute for Infection Biology, RNA Biology Group, Berlin, Germany
| | | | | | | | | |
Collapse
|
170
|
Santiviago CA, Reynolds MM, Porwollik S, Choi SH, Long F, Andrews-Polymenis HL, McClelland M. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 2009; 5:e1000477. [PMID: 19578432 PMCID: PMC2698986 DOI: 10.1371/journal.ppat.1000477] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 05/15/2009] [Indexed: 01/03/2023] Open
Abstract
Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS).
Collapse
|
171
|
Ribosomal initiation complexes probed by toeprinting and effect of trans-acting translational regulators in bacteria. Methods Mol Biol 2009; 540:247-63. [PMID: 19381565 DOI: 10.1007/978-1-59745-558-9_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Toeprinting was developed to study the formation of ribosomal initiation complexes in bacteria. This approach, based on the inhibition of reverse transcriptase elongation, was used to monitor the effect of ribosomal components and translational factors on the formation of the active ribosomal initiation complex. Moreover, this method offers an easy way to study in vitro how mRNA conformational changes alter ribosome binding at the initiation site. These changes can be induced either by environmental cues (temperature, ion concentration), or by the binding of metabolites, regulatory proteins, and trans-acting RNAs. An experimental guide is given to follow the different steps of the formation of ribosomal initiation complexes in Escherichia coli and Staphylococcus aureus, and to monitor the mechanism of action of several regulators on translation initiation in vitro. Protocols to prepare the ribosome and the subunits are also given for Thermus thermophilus, Staphylococcus aureus, and Escherichia coli.
Collapse
|
172
|
Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009; 21:416-25. [PMID: 19447594 DOI: 10.1016/j.ceb.2009.04.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/06/2009] [Indexed: 12/27/2022]
Abstract
Controlling protein-coding gene expression can no longer be attributed purely to proteins involved in transcription, RNA processing, and translation. The role that noncoding RNAs (ncRNAs) play as potent and specific regulators of gene expression is now widely recognized in almost all species studied to date. Long ncRNAs can both upregulate and downregulate gene expression in both eukaryotes and prokaryotes and are essential in processes such as dosage compensation, genomic imprinting, developmental patterning and differentiation, and stress response. Small ncRNAs also play essential roles in diverse organisms, although are limited to eukaryotes. Different small RNA classes regulate diverse processes such as transposon and virus suppression, as well as many key developmental processes.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
173
|
Papenfort K, Vogel J. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol 2009; 160:278-87. [PMID: 19366629 DOI: 10.1016/j.resmic.2009.03.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/23/2009] [Indexed: 01/29/2023]
Abstract
Small noncoding RNAs (sRNAs), often in conjunction with Hfq protein, have increasingly been shown to regulate multiple rather than individual mRNAs, thereby reprogramming gene expression at the post-transcriptional level. This review summarizes how and when several such regulators (CyaR, DsrA, GcvB, OmrAB, RNAIII, RybB, RyhB) act upon multiple targets.
Collapse
Affiliation(s)
- Kai Papenfort
- Max Planck Institute for Infection Biology, RNA Biology Group, Charitéplatz 1, 10117 Berlin, Germany
| | | |
Collapse
|
174
|
Abstract
Small RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life. Until 1999, only about 10 abundant sRNAs had been identified in Escherichia coli, but the function of most of them remained elusive for a long time. However, since 2001, a series of systematic computational approaches have revealed that bacteria encode a tremendous number of sRNAs. In E. coli more than 100 sRNAs are now known. However, approximately only 20 of them have been assigned a biological function, indicating that this is still a challenging issue. Systematic searches have been performed for a few Gram-positive bacterial species, too. sRNAs can be divided into two major groups: the first group comprises so-called bona fide antisense RNAs, which regulate gene expression by a base-pairing mechanism with mRNA. The second group of sRNAs encompasses RNAs that act by binding to small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|
175
|
Abstract
Staphylococcus aureus ribonuclease III (Sa-RNase III) belongs to the enzyme family known to process double-stranded RNAs consisting of two turns of the RNA helix. Although the enzyme is thought to play a role in ribosomal RNA processing and gene regulation, the deletion of the rnc gene in S. aureus does not affect cell growth in rich medium. S. aureus RNase III acts in concert with regulatory RNAIII to repress the expression of several mRNAs encoding virulence factors. The action of the RNase is most likely to initiate the degradation of repressed mRNAs leading to an irreversible repression. In this chapter, we describe the overexpression and purification of recombinant RNase III from S. aureus, and we show that its biochemical properties are similar to the orthologous enzyme from Escherichia coli. Both enzymes similarly recognize and cleave different RNA substrates and RNA-mRNA duplexes.
Collapse
|
176
|
Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 2009; 72:579-89, Table of Contents. [PMID: 19052321 DOI: 10.1128/mmbr.00025-08] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been a great expansion in the number of small regulatory RNAs identified in bacteria. Some of these small RNAs repress the synthesis of potentially toxic proteins. Generally the toxin proteins are hydrophobic and less than 60 amino acids in length, and the corresponding antitoxin small RNA genes are antisense to the toxin genes or share long stretches of complementarity with the target mRNAs. Given their short length, only a limited number of these type I toxin-antitoxin loci have been identified, but it is predicted that many remain to be found. Already their characterization has given insights into regulation by small RNAs, has suggested functions for the small toxic proteins at the cell membrane, and has led to practical applications for some of the type I toxin-antitoxin loci.
Collapse
|
177
|
Richards J, Belasco JG. A new window onto translational repression by bacterial sRNAs. Mol Cell 2009; 32:751-3. [PMID: 19111653 DOI: 10.1016/j.molcel.2008.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Molecular Cell, Bouvier et al. (2008) show that bacterial sRNAs can repress mRNA translation not only by binding to the Shine-Dalgarno element but also by base pairing anywhere within the first few codons of the protein-coding region.
Collapse
Affiliation(s)
- Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
178
|
Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J. Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell 2009; 32:827-37. [PMID: 19111662 DOI: 10.1016/j.molcel.2008.10.027] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/22/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
Small noncoding RNAs (sRNAs) have predominantly been shown to repress bacterial mRNAs by masking the Shine-Dalgarno (SD) or AUG start codon sequence, thereby preventing 30S ribosome entry and, consequently, translation initiation. However, many recently identified sRNAs lack obvious SD and AUG complementarity, indicating that sRNA-mediated translational control could also take place at other mRNA sites. We report that Salmonella RybB sRNA represses ompN mRNA translation by pairing with the 5' coding region. Results of systematic antisense interference with 30S binding to ompN and unrelated mRNAs suggest that sRNAs can act as translational repressors by sequestering sequences within the mRNA down to the fifth codon, even without SD and AUG start codon pairing. This "five codon window" for translational control in the 5' coding region of mRNA not only has implications for sRNA target predictions but might also apply to cis-regulatory systems such as RNA thermosensors and riboswitches.
Collapse
Affiliation(s)
- Marie Bouvier
- Max Planck Institute for Infection Biology, RNA Biology Group, Berlin D-10117, Germany
| | | | | | | | | |
Collapse
|
179
|
Abstract
Regulatory ncRNAs (non-coding RNAs) adjust bacterial physiology in response to environmental cues. ncRNAs can base-pair to mRNAs and change their translation efficiency and/or their stability, or they can bind to proteins and modulate their activity. ncRNAs have been discovered in several species throughout the bacterial kingdom. This review illustrates the diversity of physiological processes and molecular mechanisms where ncRNAs are key regulators.
Collapse
|
180
|
Probing mRNA structure and sRNA-mRNA interactions in bacteria using enzymes and lead(II). Methods Mol Biol 2009; 540:215-32. [PMID: 19381563 DOI: 10.1007/978-1-59745-558-9_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzymatic probing and lead(II)-induced cleavages have been developed to study the secondary structure of RNA molecules either free or engaged in complex with different ligands. Using a combination of probes with different specificities (unpaired vs. paired regions), it is possible to get information on the accessibility of each nucleotide, on the binding site of a ligand (noncoding RNAs, protein, metabolites), and on RNA conformational changes that accompanied ligand binding or environmental conditions (temperature, pH, ions, etc.). The detection of the cleavages can be conducted by two different ways, which are chosen according to the length of the studied RNA. The first method uses end-labeled RNA molecules and the second one involves primer extension by reverse transcriptase. We provide here an experimental procedure that was designed to map the structure of mRNA and mRNA-sRNA interaction in vitro.
Collapse
|
181
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
182
|
Levine E, Hwa T. Small RNAs establish gene expression thresholds. Curr Opin Microbiol 2008; 11:574-9. [PMID: 18935980 DOI: 10.1016/j.mib.2008.09.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 02/01/2023]
Abstract
The central role of small RNAs in regulating bacterial gene expression has been elucidated in the past years. Typically, small RNAs act via specific basepairing with target mRNAs, leading to modulation of translation initiation and mRNA stability. Quantitative studies suggest that small RNA regulation is characterized by unique features, which allow it to complement regulation at the transcriptional level. In particular, small RNAs are shown to establish a threshold for the expression of their target, providing safety mechanism against random fluctuations and transient signals. The threshold level is set by the transcription rate of the small RNA and can thus be modulated dynamically to reflect changing environmental conditions.
Collapse
Affiliation(s)
- Erel Levine
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, CA 92093, United States.
| | | |
Collapse
|
183
|
Weel-Sneve R, Bjørås M, Kristiansen KI. Overexpression of the LexA-regulated tisAB RNA in E. coli inhibits SOS functions; implications for regulation of the SOS response. Nucleic Acids Res 2008; 36:6249-59. [PMID: 18832374 PMCID: PMC2577331 DOI: 10.1093/nar/gkn633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA damage induced SOS response in Escherichia coli is initiated by cleavage of the LexA repressor through activation of RecA. Here we demonstrate that overexpression of the SOS-inducible tisAB gene inhibits several SOS functions in vivo. Wild-type E. coli overexpressing tisAB showed the same UV sensitivity as a lexA mutant carrying a noncleavable version of the LexA protein unable to induce the SOS response. Immunoblotting confirmed that tisAB overexpression leads to higher levels of LexA repressor and northern experiments demonstrated delayed and reduced induction of recA mRNA. In addition, induction of prophage λ and UV-induced filamentation was inhibited by tisAB overexpression. The tisAB gene contains antisense sequences to the SOS-inducible dinD gene (16 nt) and the uxaA gene (20 nt), the latter encoding a dehydratase essential for galacturonate catabolism. Cleavage of uxaA mRNA at the antisense sequence was dependent on tisAB RNA expression. We showed that overexpression of tisAB is less able to confer UV sensitivity to the uxaA dinD double mutant as compared to wild-type, indicating that the dinD and uxaA transcripts modulate the anti-SOS response of tisAB. These data shed new light on the complexity of SOS regulation in which the uxaA gene could link sugar metabolism to the SOS response via antisense regulation of the tisAB gene.
Collapse
Affiliation(s)
- Ragnhild Weel-Sneve
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Rikshospitalet University Hospital, NO-0027 Oslo, Norway
| | | | | |
Collapse
|
184
|
André G, Even S, Putzer H, Burguière P, Croux C, Danchin A, Martin-Verstraete I, Soutourina O. S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res 2008; 36:5955-69. [PMID: 18812398 PMCID: PMC2566862 DOI: 10.1093/nar/gkn601] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ubiGmccBA operon of Clostridium acetobutylicum is involved in methionine to cysteine conversion. We showed that its expression is controlled by a complex regulatory system combining several RNA-based mechanisms. Two functional convergent promoters associated with transcriptional antitermination systems, a cysteine-specific T-box and an S-box riboswitch, are located upstream of and downstream from the ubiG operon, respectively. Several antisense RNAs were synthesized from the downstream S-box-dependent promoter, resulting in modulation of the level of ubiG transcript and of MccB activity. In contrast, the upstream T-box system did not appear to play a major role in regulation, leaving antisense transcription as the major regulatory mechanism for the ubiG operon. The abundance of sense and antisense transcripts was inversely correlated with the sulfur source availability. Deletion of the downstream promoter region completely abolished the sulfur-dependent control of the ubiG operon, and the expression of antisense transcripts in trans did not restore the regulation of the operon. Our data revealed important insights into the molecular mechanism of cis-antisense-mediated regulation, a control system only rarely observed in prokaryotes. We proposed a regulatory model in which the antisense RNA controlled the expression of the ubiG operon in cis via transcriptional interference at the ubiG locus.
Collapse
Affiliation(s)
- Gaëlle André
- Genetics of Bacterial Genomes, Pasteur Institute, CNRS URA2171, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Steglich C, Futschik ME, Lindell D, Voss B, Chisholm SW, Hess WR. The challenge of regulation in a minimal photoautotroph: non-coding RNAs in Prochlorococcus. PLoS Genet 2008; 4:e1000173. [PMID: 18769676 PMCID: PMC2518516 DOI: 10.1371/journal.pgen.1000173] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 07/17/2008] [Indexed: 12/18/2022] Open
Abstract
Prochlorococcus, an extremely small cyanobacterium that is very abundant in the world's oceans, has a very streamlined genome. On average, these cells have about 2,000 genes and very few regulatory proteins. The limited capability of regulation is thought to be a result of selection imposed by a relatively stable environment in combination with a very small genome. Furthermore, only ten non-coding RNAs (ncRNAs), which play crucial regulatory roles in all forms of life, have been described in Prochlorococcus. Most strains also lack the RNA chaperone Hfq, raising the question of how important this mode of regulation is for these cells. To explore this question, we examined the transcription of intergenic regions of Prochlorococcus MED4 cells subjected to a number of different stress conditions: changes in light qualities and quantities, phage infection, or phosphorus starvation. Analysis of Affymetrix microarray expression data from intergenic regions revealed 276 novel transcriptional units. Among these were 12 new ncRNAs, 24 antisense RNAs (asRNAs), as well as 113 short mRNAs. Two additional ncRNAs were identified by homology, and all 14 new ncRNAs were independently verified by Northern hybridization and 5'RACE. Unlike its reduced suite of regulatory proteins, the number of ncRNAs relative to genome size in Prochlorococcus is comparable to that found in other bacteria, suggesting that RNA regulators likely play a major role in regulation in this group. Moreover, the ncRNAs are concentrated in previously identified genomic islands, which carry genes of significance to the ecology of this organism, many of which are not of cyanobacterial origin. Expression profiles of some of these ncRNAs suggest involvement in light stress adaptation and/or the response to phage infection consistent with their location in the hypervariable genomic islands.
Collapse
MESH Headings
- DNA, Intergenic/chemistry
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Nucleic Acid Conformation
- Open Reading Frames
- Phototrophic Processes
- Prochlorococcus/chemistry
- Prochlorococcus/genetics
- Prochlorococcus/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
186
|
Unoson C, Wagner EGH. A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Mol Microbiol 2008; 70:258-70. [PMID: 18761622 DOI: 10.1111/j.1365-2958.2008.06416.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported on an SOS-induced toxin, TisB, in Escherichia coli and its regulation by the RNA antitoxin IstR-1. Here, we addressed the mode of action of TisB. By placing the tisB reading frame downstream of a controllable promoter on a plasmid, toxicity could be analysed in the absence of the global SOS response. Upon induction of TisB, cell growth was inhibited and plating efficiency decreased rapidly. The onset of toxicity correlated with a drastic decrease in transcription, translation and replication rates. Cellular RNA was degraded, but in vitro experiments showed that TisB did not affect translation or transcription directly. Thus, these effects are downstream consequences of membrane damage: TisB is predicted to be hydrophobic and membrane spanning, and Western analyses demonstrated that this peptide was strictly localized to the cytoplasmic membrane fraction. Membrane damage and cell killing under tisB multicopy expression are also seen by live/death staining and the formation of ghost cells. This is reminiscent of another toxin, Hok of plasmid R1, which also targets the membrane. The biological significance of the istR/tisB locus is still elusive; deletion of the entire locus gave no fitness phenotype in competition experiments.
Collapse
Affiliation(s)
- Cecilia Unoson
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden
| | | |
Collapse
|
187
|
Fozo EM, Kawano M, Fontaine F, Kaya Y, Mendieta KS, Jones KL, Ocampo A, Rudd KE, Storz G. Repression of small toxic protein synthesis by the Sib and OhsC small RNAs. Mol Microbiol 2008; 70:1076-93. [PMID: 18710431 DOI: 10.1111/j.1365-2958.2008.06394.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sequences encoding the QUAD1 RNAs were initially identified as four repeats in Escherichia coli. These repeats, herein renamed SIB, are conserved in closely related bacteria, although the number of repeats varies. All five Sib RNAs in E. coli MG1655 are expressed, and no phenotype was observed for a five-sib deletion strain. However, a phenotype reminiscent of plasmid addiction was observed for overexpression of the Sib RNAs, and further examination of the SIB repeat sequences revealed conserved open reading frames encoding highly hydrophobic 18- to 19-amino-acid proteins (Ibs) opposite each sib gene. The Ibs proteins were found to be toxic when overexpressed and this toxicity could be prevented by coexpression of the corresponding Sib RNA. Two other RNAs encoded divergently in the yfhL-acpS intergenic region were similarly found to encode a small hydrophobic protein (ShoB) and an antisense RNA regulator (OhsC). Overexpression of both IbsC and ShoB led to immediate changes in membrane potential suggesting both proteins affect the cell envelope. Whole genome expression analysis showed that overexpression of IbsC and ShoB, as well as the small hydrophobic LdrD and TisB proteins, has both overlapping and unique consequences for the cell.
Collapse
Affiliation(s)
- Elizabeth M Fozo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
AbstractA large variety of RNA-based mechanisms have been uncovered in all living organisms to regulate gene expression in response to internal and external changes, and to rapidly adapt cell growth in response to these signals. In bacteria, structural elements in the 5′ leader regions of mRNAs have direct effects on translation initiation of the downstream coding sequences. The docking and unfolding of these mRNAs on the 30S subunit are critical steps in the initiation process directly modulating and timing translation. Structural elements can also undergo conformational changes in response to environmental cues (i.e., temperature sensors) or upon binding of a variety oftrans-acting factors, such as metabolites, non-coding RNAs or regulatory proteins. These RNA switches can temporally regulate translation, leading either to repression or to activation of protein synthesis.
Collapse
|
189
|
Sharma CM, Darfeuille F, Plantinga TH, Vogel J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 2008; 21:2804-17. [PMID: 17974919 DOI: 10.1101/gad.447207] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interactions of numerous regulatory small RNAs (sRNAs) with target mRNAs have been characterized, but how sRNAs can regulate multiple, structurally unrelated mRNAs is less understood. Here we show that Salmonella GcvB sRNA directly acts on seven target mRNAs that commonly encode periplasmic substrate-binding proteins of ABC uptake systems for amino acids and peptides. Alignment of GcvB homologs of distantly related bacteria revealed a conserved G/U-rich element that is strictly required for GcvB target recognition. Analysis of target gene fusion regulation in vivo, and in vitro structure probing and translation assays showed that GcvB represses its target mRNAs by binding to extended C/A-rich regions, which may also serve as translational enhancer elements. In some cases (oppA, dppA), GcvB repression can be explained by masking the ribosome-binding site (RBS) to prevent 30S subunit binding. However, GcvB can also effectively repress translation by binding to target mRNAs at upstream sites, outside the RBS. Specifically, GcvB represses gltI mRNA translation at the C/A-rich target site located at positions -57 to -45 relative to the start codon. Taken together, our study suggests highly conserved regions in sRNAs and mRNA regions distant from Shine-Dalgarno sequences as important elements for the identification of sRNA targets.
Collapse
Affiliation(s)
- Cynthia M Sharma
- RNA Biology Group, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
190
|
A Competition Mechanism Regulates the Translation of the Escherichia coli Operon Encoding Ribosomal Proteins L35 and L20. J Mol Biol 2008; 375:612-25. [DOI: 10.1016/j.jmb.2007.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/19/2007] [Accepted: 10/23/2007] [Indexed: 11/18/2022]
|
191
|
Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM. Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 2007; 35:7651-64. [PMID: 17982174 PMCID: PMC2190706 DOI: 10.1093/nar/gkm916] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In pathogenic bacteria, a large number of sRNAs coordinate adaptation to stress and expression of virulence genes. To better understand the turnover of regulatory sRNAs in the model pathogen, Salmonella typhimurium, we have constructed mutants for several ribonucleases (RNase E, RNase G, RNase III, PNPase) and Poly(A) Polymerase I. The expression profiles of four sRNAs conserved among many enterobacteria, CsrB, CsrC, MicA and SraL, were analysed and the processing and stability of these sRNAs was studied in the constructed strains. The degradosome was a common feature involved in the turnover of these four sRNAs. PAPI-mediated polyadenylation was the major factor governing SraL degradation. RNase III was revealed to strongly affect MicA decay. PNPase was shown to be important in the decay of these four sRNAs. The stability of CsrB and CsrC seemed to be independent of the RNA chaperone, Hfq, whereas the decay of SraL and MicA was Hfq-dependent. Taken together, the results of this study provide initial insight into the mechanisms of sRNA decay in Salmonella, and indicate specific contributions of the RNA decay machinery components to the turnover of individual sRNAs.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
192
|
Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P, Yusupov M, Klaholz BP. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 2007; 130:1019-31. [PMID: 17889647 DOI: 10.1016/j.cell.2007.07.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/18/2007] [Accepted: 07/06/2007] [Indexed: 01/04/2023]
Abstract
Gene expression can be regulated at the level of initiation of protein biosynthesis via structural elements present at the 5' untranslated region of mRNAs. These folded mRNA segments may bind to the ribosome, thus blocking translation until the mRNA unfolds. Here, we report a series of cryo-electron microscopy snapshots of ribosomal complexes directly visualizing either the mRNA structure blocked by repressor protein S15 or the unfolded, active mRNA. In the stalled state, the folded mRNA prevents the start codon from reaching the peptidyl-tRNA (P) site inside the ribosome. Upon repressor release, the mRNA unfolds and moves into the mRNA channel allowing translation initiation. A comparative structure and sequence analysis suggests the existence of a universal stand-by site on the ribosome (the 30S platform) dedicated for binding regulatory 5' mRNA elements. Different types of mRNA structures may be accommodated during translation preinitiation and regulate gene expression by transiently stalling the ribosome.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Protein Binding
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Structural Homology, Protein
- Time Factors
Collapse
Affiliation(s)
- Stefano Marzi
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Structural Biology and Genomics, Illkirch, F-67404 France
| | | | | | | | | | | | | |
Collapse
|
193
|
Arraiano CM, Bamford J, Brüssow H, Carpousis AJ, Pelicic V, Pflüger K, Polard P, Vogel J. Recent advances in the expression, evolution, and dynamics of prokaryotic genomes. J Bacteriol 2007; 189:6093-100. [PMID: 17601780 PMCID: PMC1951890 DOI: 10.1128/jb.00612-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cecilia M Arraiano
- ITQB-Instituto de Tecnologia Química e Biológical/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Vogel J, Wagner EGH. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 2007; 10:262-70. [PMID: 17574901 DOI: 10.1016/j.mib.2007.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/01/2007] [Indexed: 01/08/2023]
Abstract
Small noncoding RNAs have been discovered at a staggering rate in Escherichia coli and many other bacteria. Most of the sRNAs of known function regulate gene expression by binding to specific mRNAs or proteins. Given the scores of sRNAs of unknown function, the identification of their cellular targets has become urgent. Here, we review the diverse strategies that have been used to identify and validate bacterial sRNA targets. These include the pulse-expression of sRNAs followed by global transcriptome analysis (microarrays), new biocomputational prediction algorithms, and novel gfp reporter gene fusions to validate candidate target gene regulation.
Collapse
MESH Headings
- Base Sequence
- Computational Biology/methods
- Models, Genetic
- Oligonucleotide Array Sequence Analysis
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/analysis
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Jörg Vogel
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|