151
|
Østergaard ME, Gerland B, Escudier JM, Swayze EE, Seth PP. Differential effects on allele selective silencing of mutant huntingtin by two stereoisomers of α,β-constrained nucleic acid. ACS Chem Biol 2014; 9:1975-9. [PMID: 25050989 DOI: 10.1021/cb5003027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe the effects of introducing two epimers of neutral backbone α,β-constrained nucleic acid (CNA) on the activity and allele selectivity profile of RNase H active antisense oligonucleotides (ASOs) targeting a single nucleotide polymorphism (SNP) for the treatment of Huntington's disease (HD). ASOs modified with both isomers of α,β-CNA in the gap region showed good activity versus the mutant allele, but one isomer showed improved selectivity versus the wild-type allele. Analysis of the human RNase H cleavage patterns of α,β-CNA modified ASOs versus matched and mismatched RNA revealed that both isomers support RNase H cleavage on the RNA strand across from the site of incorporation in the ASO--an unusual observation for a neutral linkage oligonucleotide modification. Interestingly, ASOs modified with (R)- and (S)-5'-hydroxyethyl DNA (RHE and SHE respectively) formed by partial hydrolysis of the dioxaphosphorinane ring system in α,β-CNA also showed good activity versus the mutant allele but an improved selectivity profile was observed for the RHE modified ASO. Our observations further support the profiling of neutral and 5'-modified nucleic acid analogs as tools for gene silencing applications.
Collapse
Affiliation(s)
- Michael E. Østergaard
- Isis Pharmaceuticals
Inc. 2855 Gazelle Court, Carlsbad, California 92011, United States
| | - Béatrice Gerland
- Laboratoire
de Synthèse et Physico-Chimie de Molécules d’Intérêt
Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route
de Narbonne, Toulouse F-31062, France
| | - Jean-Marc Escudier
- Laboratoire
de Synthèse et Physico-Chimie de Molécules d’Intérêt
Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route
de Narbonne, Toulouse F-31062, France
| | - Eric E. Swayze
- Isis Pharmaceuticals
Inc. 2855 Gazelle Court, Carlsbad, California 92011, United States
| | - Punit P. Seth
- Isis Pharmaceuticals
Inc. 2855 Gazelle Court, Carlsbad, California 92011, United States
| |
Collapse
|
152
|
Skotte NH, Southwell AL, Østergaard ME, Carroll JB, Warby SC, Doty CN, Petoukhov E, Vaid K, Kordasiewicz H, Watt AT, Freier SM, Hung G, Seth PP, Bennett CF, Swayze EE, Hayden MR. Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One 2014; 9:e107434. [PMID: 25207939 PMCID: PMC4160241 DOI: 10.1371/journal.pone.0107434] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/11/2014] [Indexed: 01/10/2023] Open
Abstract
Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.
Collapse
Affiliation(s)
- Niels H. Skotte
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amber L. Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jeffrey B. Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, Washington, United States of America
| | - Simon C. Warby
- Center for Advanced Research in Sleep Medicine, Department of Psychiatry, University of Montréal, Montréal, Quebec, Canada
| | - Crystal N. Doty
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eugenia Petoukhov
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Andrew T. Watt
- ISIS Pharmaceuticals, Carlsbad, California, United States of America
| | - Susan M. Freier
- ISIS Pharmaceuticals, Carlsbad, California, United States of America
| | - Gene Hung
- ISIS Pharmaceuticals, Carlsbad, California, United States of America
| | - Punit P. Seth
- ISIS Pharmaceuticals, Carlsbad, California, United States of America
| | - C. Frank Bennett
- ISIS Pharmaceuticals, Carlsbad, California, United States of America
| | - Eric E. Swayze
- ISIS Pharmaceuticals, Carlsbad, California, United States of America
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
153
|
Reddy K, Schmidt MHM, Geist JM, Thakkar NP, Panigrahi GB, Wang YH, Pearson CE. Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability. Nucleic Acids Res 2014; 42:10473-87. [PMID: 25147206 PMCID: PMC4176329 DOI: 10.1093/nar/gku658] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
R-loops, transcriptionally-induced RNA:DNA hybrids, occurring at repeat tracts (CTG)n, (CAG)n, (CGG)n, (CCG)n and (GAA)n, are associated with diseases including myotonic dystrophy, Huntington's disease, fragile X and Friedreich's ataxia. Many of these repeats are bidirectionally transcribed, allowing for single- and double-R-loop configurations, where either or both DNA strands may be RNA-bound. R-loops can trigger repeat instability at (CTG)·(CAG) repeats, but the mechanism of this is unclear. We demonstrate R-loop-mediated instability through processing of R-loops by HeLa and human neuron-like cell extracts. Double-R-loops induced greater instability than single-R-loops. Pre-treatment with RNase H only partially suppressed instability, supporting a model in which R-loops directly generate instability by aberrant processing, or via slipped-DNA formation upon RNA removal and its subsequent aberrant processing. Slipped-DNAs were observed to form following removal of the RNA from R-loops. Since transcriptionally-induced R-loops can occur in the absence of DNA replication, R-loop processing may be a source of repeat instability in the brain. Double-R-loop formation and processing to instability was extended to the expanded C9orf72 (GGGGCC)·(GGCCCC) repeats, known to cause amyotrophic lateral sclerosis and frontotemporal dementia, providing the first suggestion through which these repeats may become unstable. These findings provide a mechanistic basis for R-loop-mediated instability at disease-associated repeats.
Collapse
Affiliation(s)
- Kaalak Reddy
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Monika H M Schmidt
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Jaimie M Geist
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Department of Biology, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Neha P Thakkar
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Gagan B Panigrahi
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Yuh-Hwa Wang
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Christopher E Pearson
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
154
|
Figiel M, Nowotny M. Crystal structure of RNase H3-substrate complex reveals parallel evolution of RNA/DNA hybrid recognition. Nucleic Acids Res 2014; 42:9285-94. [PMID: 25016521 PMCID: PMC4132731 DOI: 10.1093/nar/gku615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RNases H participate in the replication and maintenance of genomic DNA. RNase H1 cleaves the RNA strand of RNA/DNA hybrids, and RNase H2 in addition hydrolyzes the RNA residue of RNA–DNA junctions. RNase H3 is structurally closely related to RNases H2, but its biochemical properties are similar to type 1 enzymes. Its unique N-terminal substrate-binding domain (N-domain) is related to TATA-binding protein. Here, we report the first crystal structure of RNase H3 in complex with its RNA/DNA substrate. Just like RNases H1, type 3 enzyme recognizes the 2′-OH groups of the RNA strand and detects the DNA strand by binding a phosphate group and inducing B-form conformation. Moreover, the N-domain recognizes RNA and DNA in a manner that is highly similar to the hybrid-binding domain of RNases H1. Our structure demonstrates a remarkable example of parallel evolution of the elements used in the specific recognition of RNA and DNA.
Collapse
Affiliation(s)
- Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland
| |
Collapse
|
155
|
You DJ, Jongruja N, Tannous E, Angkawidjaja C, Koga Y, Kanaya S. Structural basis for salt-dependent folding of ribonuclease H1 from halophilic archaeon Halobacterium sp. NRC-1. J Struct Biol 2014; 187:119-128. [PMID: 24972277 DOI: 10.1016/j.jsb.2014.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/10/2014] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Abstract
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNase H1) requires ⩾2M NaCl, ⩾10mM MnCl2, or ⩾300mM MgCl2 for folding. To understand the structural basis for this salt-dependent folding of Halo-RNase H1, the crystal structure of Halo-RNase H1 was determined in the presence of 10mM MnCl2. The structure of Halo-RNase H1 highly resembles those of metagenome-derived LC11-RNase H1 and Sulfolobus tokodaii RNase H1 (Sto-RNase H1), except that it contains two Mn(2+) ions at the active site and has three bi-aspartate sites on its surface. To examine whether negative charge repulsion at these sites are responsible for low-salt denaturation of Halo-RNase H1, a series of the mutant proteins of Halo-RNase H1 at these sites were constructed. The far-UV CD spectra of these mutant proteins measured in the presence of various concentrations of NaCl suggest that these mutant proteins exist in an equilibrium between a partially folded state and a folded state. However, the fraction of the protein in a folded state is nearly 0% for the active site mutant, 40% for the bi-aspartate site mutant, and 70% for the mutant at both sites in the absence of salt. The active site mutant requires relatively low concentration (∼0.5M) of salt for folding. These results suggest that suppression of negative charge repulsion at both active and bi-aspartate sites by salt is necessary to yield a folded protein.
Collapse
Affiliation(s)
- Dong-Ju You
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Electron Microscopic Research, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Nujarin Jongruja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Elias Tannous
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Clement Angkawidjaja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; International College, Osaka University, 1-30 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
156
|
Poongavanam V, Steinmann C, Kongsted J. Inhibitor ranking through QM based chelation calculations for virtual screening of HIV-1 RNase H inhibition. PLoS One 2014; 9:e98659. [PMID: 24897431 PMCID: PMC4045755 DOI: 10.1371/journal.pone.0098659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Quantum mechanical (QM) calculations have been used to predict the binding affinity of a set of ligands towards HIV-1 RT associated RNase H (RNH). The QM based chelation calculations show improved binding affinity prediction for the inhibitors compared to using an empirical scoring function. Furthermore, full protein fragment molecular orbital (FMO) calculations were conducted and subsequently analysed for individual residue stabilization/destabilization energy contributions to the overall binding affinity in order to better understand the true and false predictions. After a successful assessment of the methods based on the use of a training set of molecules, QM based chelation calculations were used as filter in virtual screening of compounds in the ZINC database. By this, we find, compared to regular docking, QM based chelation calculations to significantly reduce the large number of false positives. Thus, the computational models tested in this study could be useful as high throughput filters for searching HIV-1 RNase H active-site molecules in the virtual screening process.
Collapse
Affiliation(s)
- Vasanthanathan Poongavanam
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
- * E-mail:
| | - Casper Steinmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
157
|
Das K, Martinez SE, Bandwar RP, Arnold E. Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: insights into requirements for RNase H cleavage. Nucleic Acids Res 2014; 42:8125-37. [PMID: 24880687 PMCID: PMC4081091 DOI: 10.1093/nar/gku487] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In synthesizing a double-stranded DNA from viral RNA, HIV-1 reverse transcriptase (RT) generates an RNA/DNA intermediate. RT also degrades the RNA strand and synthesizes the second DNA strand. The RNase H active site of RT functions as a nuclease to cleave the RNA strand; however, the structural basis for endonucleolytic cleavage of the RNA strand remains elusive. Here we report crystal structures of RT-RNA/DNA-dATP and RT-RNA/DNA-nevirapine (NVP) ternary complexes at 2.5 and 2.9 Å resolution, respectively. The polymerase region of RT-RNA/DNA-dATP complex resembles DNA/DNA ternary complexes apart from additional interactions of 2′-OH groups of the RNA strand. The conformation and binding of RNA/DNA deviates significantly after the seventh nucleotide versus a DNA/DNA substrate. Binding of NVP slides the RNA/DNA non-uniformly over RT, and the RNA strand moves closer to the RNase H active site. Two additional structures, one containing a gapped RNA and another a bulged RNA, reveal that conformational changes of an RNA/DNA and increased interactions with the RNase H domain, including the interaction of a 2′-OH with N474, help to position the RNA nearer to the active site. The structures and existing biochemical data suggest a nucleic acid conformation-induced mechanism for guiding cleavage of the RNA strand.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Sergio E Martinez
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Rajiv P Bandwar
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
158
|
Himmel DM, Myshakina NS, Ilina T, Van Ry A, Ho WC, Parniak MA, Arnold E. Structure of a dihydroxycoumarin active-site inhibitor in complex with the RNase H domain of HIV-1 reverse transcriptase and structure-activity analysis of inhibitor analogs. J Mol Biol 2014; 426:2617-31. [PMID: 24840303 DOI: 10.1016/j.jmb.2014.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) encodes four essential enzymes: protease, integrase, reverse transcriptase (RT)-associated DNA polymerase, and RT-associated ribonuclease H (RNase H). Current clinically approved anti-AIDS drugs target all HIV enzymatic activities except RNase H, which has proven to be a very difficult target for HIV drug discovery. Our high-throughput screening activities identified the dihydroxycoumarin compound F3284-8495 as a specific inhibitor of RT RNase H, with low micromolar potency in vitro. Optimization of inhibitory potency can be facilitated by structural information about inhibitor-target binding. Here, we report the crystal structure of F3284-8495 bound to the active site of an isolated RNase H domain of HIV-1 RT at a resolution limit of 1.71Å. From predictions based on this structure, compounds were obtained that showed improved inhibitory activity. Computational analysis suggested structural alterations that could provide additional interactions with RT and thus improve inhibitory potency. These studies established proof of concept that F3284-8495 could be used as a favorable chemical scaffold for development of HIV RNase H inhibitors.
Collapse
Affiliation(s)
- Daniel M Himmel
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-5627, USA.
| | - Nataliya S Myshakina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Tatiana Ilina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Alexander Van Ry
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - William C Ho
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-5627, USA.
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-5627, USA.
| |
Collapse
|
159
|
Zhao H, Wang J, Zhou Y, Yang Y. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome. PLoS One 2014; 9:e96694. [PMID: 24792350 PMCID: PMC4008587 DOI: 10.1371/journal.pone.0096694] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/10/2014] [Indexed: 12/25/2022] Open
Abstract
As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions). A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC) of 0.77 with high precision (94%) and high sensitivity (65%). We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA)] is available as an on-line server at http://sparks-lab.org.
Collapse
Affiliation(s)
- Huiying Zhao
- School of Informatics, Indiana University Purdue University, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jihua Wang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Yaoqi Zhou
- School of Informatics, Indiana University Purdue University, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, Shandong, China
- Institute for Glycomics and School of Information and Communication Technique, Griffith University, Southport, Queensland, Australia
- * E-mail: (YZ); (YY)
| | - Yuedong Yang
- School of Informatics, Indiana University Purdue University, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Institute for Glycomics and School of Information and Communication Technique, Griffith University, Southport, Queensland, Australia
- * E-mail: (YZ); (YY)
| |
Collapse
|
160
|
Claeys Bouuaert C, Walker N, Liu D, Chalmers R. Crosstalk between transposase subunits during cleavage of the mariner transposon. Nucleic Acids Res 2014; 42:5799-808. [PMID: 24623810 PMCID: PMC4027188 DOI: 10.1093/nar/gku172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022] Open
Abstract
Mariner transposition is a complex reaction that involves three recombination sites and six strand breaking and joining reactions. This requires precise spatial and temporal coordination between the different components to ensure a productive outcome and minimize genomic instability. We have investigated how the cleavage events are orchestrated within the mariner transpososome. We find that cleavage of the non-transferred strand is completed at both transposon ends before the transferred strand is cleaved at either end. By introducing transposon-end mutations that interfere with cleavage, but leave transpososome assembly unaffected, we demonstrate that a structural transition preceding transferred strand cleavage is coordinated between the two halves of the transpososome. Since mariner lacks the DNA hairpin intermediate, this transition probably reflects a reorganization of the transpososome to allow the access of different monomers onto the second pair of strands, or the relocation of the DNA within the same active site between two successive hydrolysis events. Communication between transposase subunits also provides a failsafe mechanism that restricts the generation of potentially deleterious double-strand breaks at isolated sites. Finally, we identify transposase mutants that reveal that the conserved WVPHEL motif provides a structural determinant of the coordination mechanism.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Neil Walker
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Danxu Liu
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
161
|
Yamamoto T, Fujii N, Yasuhara H, Wada S, Wada F, Shigesada N, Harada-Shiba M, Obika S. Evaluation of multiple-turnover capability of locked nucleic acid antisense oligonucleotides in cell-free RNase H-mediated antisense reaction and in mice. Nucleic Acid Ther 2014; 24:283-90. [PMID: 24758560 DOI: 10.1089/nat.2013.0470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The multiple-turnover ability of a series of locked nucleic acid (LNA)-based antisense oligonucleotides (AONs) in the RNase H-mediated scission reaction was estimated using a newly developed cell-free reaction system. We determined the initial reaction rates of AONs under multiple-turnover conditions and found that among 24 AONs tested, AONs with melting temperatures (Tm) of 40°C-60°C efficiently elicit multiple rounds of RNA scission. On the other hand, by measuring Tm with two 10-mer RNAs partially complementary to AONs as models of cleaved 5' and 3' fragments of mRNA, we found that AONs require adequate binding affinity for efficient turnover activities. We further demonstrated that the efficacy of a set of 13-mer AONs in mice correlated with their turnover efficiency, indicating that the intracellular situation where AONs function is similar to multiple-turnover conditions. Our methodology and findings may provide an opportunity to shed light on a previously unknown antisense mechanism, leading to further improvement of the activity and safety profiles of AONs.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- 1 Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Ty3 reverse transcriptase complexed with an RNA-DNA hybrid shows structural and functional asymmetry. Nat Struct Mol Biol 2014; 21:389-96. [PMID: 24608367 PMCID: PMC6321743 DOI: 10.1038/nsmb.2785] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
Abstract
Retrotransposons are a class of mobile genetic elements that replicate by converting their single-stranded RNA intermediate to double-stranded DNA through the combined DNA polymerase and ribonuclease H (RNase H) activities of the element-encoded reverse transcriptase (RT). Although a wealth of structural information is available for lentiviral and gammaretroviral RTs, equivalent studies on counterpart enzymes of long terminal repeat (LTR)-containing retrotransposons, from which they are evolutionarily derived, is lacking. In this study, we report the first crystal structure of a complex of RT from the Saccharomyces cerevisiae LTR retrotransposon Ty3 in the presence of its polypurine tract-containing RNA-DNA hybrid. In contrast to its retroviral counterparts, Ty3 RT adopts an asymmetric homodimeric architecture whose assembly is substrate dependent. Moreover, our structure and biochemical data suggest that the RNase H and DNA polymerase activities are contributed by individual subunits of the homodimer.
Collapse
|
163
|
Stafford KA, Palmer Iii AG. Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site. F1000Res 2014; 3:67. [PMID: 25075292 PMCID: PMC4032109 DOI: 10.12688/f1000research.3605.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 11/26/2022] Open
Abstract
Ribonuclease H1 (RNase H) enzymes are well-conserved endonucleases that are present in all domains of life and are particularly important in the life cycle of retroviruses as domains within reverse transcriptase. Despite extensive study, especially of the E. coli homolog, the interaction of the highly negatively charged active site with catalytically required magnesium ions remains poorly understood. In this work, we describe molecular dynamics simulations of the E. coli homolog in complex with magnesium ions, as well as simulations of other homologs in their apo states. Collectively, these results suggest that the active site is highly rigid in the apo state of all homologs studied and is conformationally preorganized to favor the binding of a magnesium ion. Notably, representatives of bacterial, eukaryotic, and retroviral RNases H all exhibit similar active-site rigidity, suggesting that this dynamic feature is only subtly modulated by amino acid sequence and is primarily imposed by the distinctive RNase H protein fold.
Collapse
Affiliation(s)
- Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Arthur G Palmer Iii
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
164
|
Rosta E, Yang W, Hummer G. Calcium inhibition of ribonuclease H1 two-metal ion catalysis. J Am Chem Soc 2014; 136:3137-44. [PMID: 24499076 PMCID: PMC3985467 DOI: 10.1021/ja411408x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 01/05/2023]
Abstract
Most phosphate-processing enzymes require Mg(2+) as a cofactor to catalyze nucleotide cleavage and transfer reactions. Ca(2+) ions inhibit many of these enzymatic activities, despite Ca(2+) and Mg(2+) having comparable binding affinities and overall biological abundances. Here we study the molecular details of the calcium inhibition mechanism for phosphodiester cleavage, an essential reaction in the metabolism of nucleic acids and nucleotides, by comparing Ca(2+)- and Mg(2+) catalyzed reactions. We study the functional roles of the specific metal ion sites A and B in enabling the catalytic cleavage of an RNA/DNA hybrid substrate by B. halodurans ribonuclease (RNase) H1 using hybrid quantum-mechanics/molecular mechanics (QM/MM) free energy calculations. We find that Ca(2+) substitution of either of the two active-site Mg(2+) ions substantially increases the height of the reaction barrier and thereby abolishes the catalytic activity. Remarkably, Ca(2+) at the A site is inactive also in Mg(2+)-optimized active-site structures along the reaction path, whereas Mg(2+) substitution recovers activity in Ca(2+)-optimized structures. Geometric changes resulting from Ca(2+) substitution at metal ion site A may thus be a secondary factor in the loss of catalytic activity. By contrast, at metal ion site B geometry plays a more important role, with only a partial recovery of activity after Mg(2+) substitution in Ca(2+)-optimized structures. Ca(2+)-substitution also leads to a change in mechanism, with deprotonation of the water nucleophile requiring a closer approach to the scissile phosphate, which in turn increases the barrier. As a result, Ca(2+) is less efficient in activating the water. As a likely cause for the different reactivities of Mg(2+) and Ca(2+) ions in site A, we identify differences in charge transfer to the ions and the associated decrease in the pKa of the oxygen nucleophile attacking the phosphate group.
Collapse
Affiliation(s)
- Edina Rosta
- Laboratory
of Chemical Physics, National Institute of
Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Wei Yang
- Laboratory
of Molecular Biology, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gerhard Hummer
- Laboratory
of Chemical Physics, National Institute of
Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
165
|
Reply to "Structural requirements for RNA degradation by HIV-1 reverse transcriptase". Nat Struct Mol Biol 2014; 20:1342-3. [PMID: 24304911 DOI: 10.1038/nsmb.2726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
166
|
Šipova H, Špringer T, Rejman D, Šimak O, Petrová M, Novák P, Rosenbergová Š, Páv O, Liboska R, Barvík I, Štěpanek J, Rosenberg I, Homola J. 5'-O-Methylphosphonate nucleic acids--new modified DNAs that increase the Escherichia coli RNase H cleavage rate of hybrid duplexes. Nucleic Acids Res 2014; 42:5378-89. [PMID: 24523351 PMCID: PMC4005664 DOI: 10.1093/nar/gku125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several oligothymidylates containing various ratios of phosphodiester and isopolar 5'-hydroxyphosphonate, 5'-O-methylphosphonate and 3'-O-methylphosphonate internucleotide linkages were examined with respect to their hybridization properties with oligoriboadenylates and their ability to induce RNA cleavage by ribonuclease H (RNase H). The results demonstrated that the increasing number of 5'-hydroxyphosphonate or 5'-O-methylphosphonate units in antisense oligonucleotides (AOs) significantly stabilizes the heteroduplexes, whereas 3'-O-methylphosphonate AOs cause strong destabilization of the heteroduplexes. Only the heteroduplexes with 5'-O-methylphosphonate units in the antisense strand exhibited a significant increase in Escherichia coli RNase H cleavage activity by up to 3-fold (depending on the ratio of phosphodiester and phosphonate linkages) in comparison with the natural heteroduplex. A similar increase in RNase H cleavage activity was also observed for heteroduplexes composed of miRNA191 and complementary AOs containing 5'-O-methylphosphonate units. We propose for this type of AOs, working via the RNase H mechanism, the abbreviation MEPNA (MEthylPhosphonate Nucleic Acid).
Collapse
Affiliation(s)
- Hana Šipova
- Institute of Photonics and Electronics AS CR, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague, Czech Republic and Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abdur R, Gerlits OO, Gan J, Jiang J, Salon J, Kovalevsky AY, Chumanevich AA, Weber IT, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:354-61. [PMID: 24531469 PMCID: PMC3940196 DOI: 10.1107/s1399004713027922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.
Collapse
Affiliation(s)
- Rob Abdur
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Oksana O. Gerlits
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jianhua Gan
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jiansheng Jiang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jozef Salon
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander A. Chumanevich
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhen Huang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
168
|
|
169
|
Stafford KA, Ferrage F, Cho JH, Palmer AG. Side chain dynamics of carboxyl and carbonyl groups in the catalytic function of Escherichia coli ribonuclease H. J Am Chem Soc 2013; 135:18024-7. [PMID: 24219366 DOI: 10.1021/ja409479y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many proteins use Asx and Glx (x = n, p, or u) side chains as key functional groups in enzymatic catalysis and molecular recognition. In this study, NMR spin relaxation experiments and molecular dynamics simulations are used to measure the dynamics of the side chain amide and carboxyl groups, (13)C(γ/δ), in Escherichia coli ribonuclease HI (RNase H). Model-free analysis shows that the catalytic residues in RNase H are preorganized on ps-ns time scales via a network of electrostatic interactions. However, chemical exchange line broadening shows that these residues display significant conformational dynamics on μs-ms time scales upon binding of Mg(2+) ions. Two groups of catalytic residues exhibit differential line broadening, implicating distinct reorganizational processes upon binding of metal ions. These results support the "mobile metal ion" hypothesis, which was inferred from structural studies of RNase H.
Collapse
Affiliation(s)
- Kate A Stafford
- Department of Biochemistry and Molecular Biophysics, Columbia University , New York, New York 10032, United States
| | | | | | | |
Collapse
|
170
|
Gorska A, Swiatkowska A, Dutkiewicz M, Ciesiolka J. Modulation of p53 expression using antisense oligonucleotides complementary to the 5'-terminal region of p53 mRNA in vitro and in the living cells. PLoS One 2013; 8:e78863. [PMID: 24244378 PMCID: PMC3824000 DOI: 10.1371/journal.pone.0078863] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/17/2022] Open
Abstract
The p53 protein is a key player in cell response to stress events and cancer prevention. However, up-regulation of p53 that occurs during radiotherapy of some tumours results in radio-resistance of targeted cells. Recently, antisense oligonucleotides have been used to reduce the p53 level in tumour cells which facilitates their radiation-induced apoptosis. Here we describe the rational design of antisense oligomers directed against the 5'-terminal region of p53 mRNA aimed to inhibit the synthesis of p53 protein and its ΔNp53 isoform. A comprehensive analysis of the sites accessible to oligomer hybridization in this mRNA region was performed. Subsequently, translation efficiency from the initiation codons for both proteins in the presence of selected oligomers was determined in rabbit reticulocyte lysate and in MCF-7 cells. The antisense oligomers with 2'-OMe and LNA modifications were used to study the mechanism of their impact on translation. It turned out that the remaining RNase H activity of the lysate contributed to modulation of protein synthesis efficiency which was observed in the presence of antisense oligomers. A possibility of changing the ratio of the newly synthetized p53 and ΔNp53 in a controlled manner was revealed which is potentially very attractive considering the relationship between the functioning of these two proteins. Selected antisense oligonucleotides which were designed based on accessibility mapping of the 5'-terminal region of p53 mRNA were able to significantly reduce the level of p53 protein in MCF-7 cells. One of these oligomers might be used in the future as a support treatment in anticancer therapy.
Collapse
Affiliation(s)
- Agnieszka Gorska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | |
Collapse
|
171
|
Ultradeep pyrosequencing and molecular modeling identify key structural features of hepatitis B virus RNase H, a putative target for antiviral intervention. J Virol 2013; 88:574-82. [PMID: 24173223 DOI: 10.1128/jvi.03000-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Last-generation nucleoside/nucleotide analogues are potent against hepatitis B virus (HBV) and have a high barrier to resistance. However, delayed responses have been observed in patients previously exposed to other drugs of the same class, long-term resistance is possible, and cure of infection cannot be achieved with these therapies, emphasizing the need for alternative therapeutic approaches. The HBV RNase H represents an interesting target because its enzyme activity is essential to the HBV life cycle. The goal of our study was to characterize the structure of the HBV RNase H by computing a 3-dimensional molecular model derived from E. coli RNase H and analyzing 2,326 sequences of all HBV genotypes available in public databases and 958,000 sequences generated by means of ultradeep pyrosequencing of sequences from a homogenous population of 73 treatment-naive patients infected with HBV genotype D. Our data revealed that (i) the putative 4th catalytic residue displays unexpected variability that could be explained by the overlap of the HBx gene and has no apparent impact on HBV replicative capacity and that (ii) the C-helix-containing basic protrusion, which is required to guide the RNA/DNA heteroduplex into the catalytic site, is highly conserved and bears unique structural properties that can be used to target HBV-specific RNase H inhibitors without cross-species activity. The model shows substantial differences from other known RNases H and paves the way for functional and structural studies as a prerequisite to the development of new inhibitors of the HBV cell cycle specifically targeting RNase H activity.
Collapse
|
172
|
Thermal adaptation of conformational dynamics in ribonuclease H. PLoS Comput Biol 2013; 9:e1003218. [PMID: 24098095 PMCID: PMC3789780 DOI: 10.1371/journal.pcbi.1003218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
The relationship between inherent internal conformational processes and enzymatic activity or thermodynamic stability of proteins has proven difficult to characterize. The study of homologous proteins with differing thermostabilities offers an especially useful approach for understanding the functional aspects of conformational dynamics. In particular, ribonuclease HI (RNase H), an 18 kD globular protein that hydrolyzes the RNA strand of RNA:DNA hybrid substrates, has been extensively studied by NMR spectroscopy to characterize the differences in dynamics between homologs from the mesophilic organism E. coli and the thermophilic organism T. thermophilus. Herein, molecular dynamics simulations are reported for five homologous RNase H proteins of varying thermostabilities and enzymatic activities from organisms of markedly different preferred growth temperatures. For the E. coli and T. thermophilus proteins, strong agreement is obtained between simulated and experimental values for NMR order parameters and for dynamically averaged chemical shifts, suggesting that these simulations can be a productive platform for predicting the effects of individual amino acid residues on dynamic behavior. Analyses of the simulations reveal that a single residue differentiates between two different and otherwise conserved dynamic processes in a region of the protein known to form part of the substrate-binding interface. Additional key residues within these two categories are identified through the temperature-dependence of these conformational processes. The relationship between enzymatic activity and protein stability has long been a difficult problem in the study of protein biochemistry. Enzymes may undergo structural changes in order to bind substrates, catalyze chemical reactions, and release products, but flexibility often is inversely correlated with thermodynamic stability. Proteins from organisms that are adapted to high temperature can be both more rigid and less active at ambient temperature than their homologs from organisms that grow at lower temperatures. For this reason, studying homologous pairs of proteins from organisms adapted to different thermal environments is a productive way to identify functionally important motions. In this work we perform comparative analyses of molecular dynamics simulations for five ribonuclease H proteins of varying thermal stabilities, isolated from organisms that grow in varying thermal environments. We identify two different mechanisms of motion in a region of the protein that interacts with substrate molecules, suggesting at least two forms of thermal adaptation in this protein family.
Collapse
|
173
|
Wu H, Sun H, Liang X, Lima WF, Crooke ST. Human RNase H1 is associated with protein P32 and is involved in mitochondrial pre-rRNA processing. PLoS One 2013; 8:e71006. [PMID: 23990920 PMCID: PMC3750045 DOI: 10.1371/journal.pone.0071006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
Mammalian RNase H1 has been implicated in mitochondrial DNA replication and RNA processing and is required for embryonic development. We identified the mitochondrial protein P32 that binds specifically to human RNase H1, but not human RNase H2. P32 binds human RNase H1 via the hybrid-binding domain of the enzyme at an approximately 1∶1 ratio. P32 enhanced the cleavage activity of RNase H1 by reducing the affinity of the enzyme for the heteroduplex substrate and enhancing turnover, but had no effect on the cleavage pattern. RNase H1 and P32 were partially co-localized in mitochondria and reduction of P32 or RNase H1 levels resulted in accumulation of mitochondrial pre ribosomal RNA [12S/16S] in HeLa cells. P32 also co-immunoprecipitated with MRPP1, a mitochondrial RNase P protein required for mitochondrial pre-rRNA processing. The P32-RNase H1 complex was shown to physically interact with mitochondrial DNA and pre-rRNA. These results expand the potential roles for RNase H1 to include assuring proper transcription and processing of guanosine-cytosine rich pre-ribosomal RNA in mitochondria. Further, the results identify P32 as a member of the ‘RNase H1 degradosome’ and the key P32 enhances the enzymatic efficiency of human RNase H1.
Collapse
Affiliation(s)
- Hongjiang Wu
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Hong Sun
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Xuehai Liang
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Walt F. Lima
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Stanley T. Crooke
- Department of Core Antisense Research, Isis Pharmaceuticals, Inc., Carlsbad, California, United States of America
- * E-mail:
| |
Collapse
|
174
|
Østergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN, Vaid K, Villanueva EB, Swayze EE, Bennett CF, Hayden MR, Seth PP. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 2013; 41:9634-50. [PMID: 23963702 PMCID: PMC3834808 DOI: 10.1093/nar/gkt725] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders.
Collapse
Affiliation(s)
- Michael E Østergaard
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Maláč K, Barvík I. Complex between Human RNase HI and the phosphonate-DNA/RNA duplex: Molecular dynamics study. J Mol Graph Model 2013; 44:81-90. [DOI: 10.1016/j.jmgm.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 10/26/2022]
|
176
|
Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage. Proc Natl Acad Sci U S A 2013; 110:8075-80. [PMID: 23630261 DOI: 10.1073/pnas.1301133110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many DNA viruses use powerful molecular motors to cleave concatemeric viral DNA into genome-length units and package them into preformed procapsid powered by ATP hydrolysis. Here we report the structures of the DNA-packaging motor gp2 of bacteriophage Sf6, which reveal a unique clade of RecA-like ATPase domain and an RNase H-like nuclease domain tethered by a regulatory linker domain, exhibiting a strikingly distinct domain arrangement. The gp2 structures complexed with nucleotides reveal, at the atomic detail, the catalytic center embraced by the ATPase domain and the linker domain. The gp2 nuclease activity is modulated by the ATPase domain and is stimulated by ATP. An extended DNA-binding surface is formed by the linker domain and the nuclease domain. These results suggest a unique mechanism for translation of chemical reaction into physical motion of DNA and provide insights into coordination of DNA translocation and cleavage in a viral DNA-packaging motor, which may be achieved via linker-domain-mediated interdomain communication driven by ATP hydrolysis.
Collapse
|
177
|
Abstract
RNase H (retroviral ribonuclease H) cleaves the phosphate backbone of the RNA template within an RNA/DNA hybrid to complete the synthesis of double-stranded viral DNA. In the present study we have determined the complete structure of the RNase H domain from XMRV (xenotropic murine leukaemia virus-related virus) RT (reverse transcriptase). The basic protrusion motif of the XMRV RNase H domain is folded as a short helix and an adjacent highly bent loop. Structural superposition and subsequent mutagenesis experiments suggest that the basic protrusion motif plays a role in direct binding to the major groove in RNA/DNA hybrid, as well as in establishing the co-ordination among modules in RT necessary for proper function.
Collapse
|
178
|
The structure of the herpes simplex virus DNA-packaging terminase pUL15 nuclease domain suggests an evolutionary lineage among eukaryotic and prokaryotic viruses. J Virol 2013; 87:7140-8. [PMID: 23596306 DOI: 10.1128/jvi.00311-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1), the prototypic member of herpesviruses, employs a virally encoded molecular machine called terminase to package the viral double-stranded DNA (dsDNA) genome into a preformed protein shell. The terminase contains a large subunit that is thought to cleave concatemeric viral DNA during the packaging initiation and completion of each packaging cycle and supply energy to the packaging process via ATP hydrolysis. We have determined the X-ray structure of the C-terminal domain of the terminase large-subunit pUL15 (pUL15C) from HSV-1. The structure shows a fold resembling those of bacteriophage terminases, RNase H, integrases, DNA polymerases, and topoisomerases, with an active site clustered with acidic residues. Docking analysis reveals a DNA-binding surface surrounded by flexible loops, indicating considerable conformational changes upon DNA binding. In vitro assay shows that pUL15C possesses non-sequence-specific, Mg(2+)-dependent nuclease activity. These results suggest that pUL15 uses an RNase H-like, metal ion-mediated catalysis mechanism for cleavage of viral concatemeric DNA. The structure reveals extra structural elements in addition to the RNase H-like fold core and variations in local architecture of the nuclease active site, which are conserved in herpesvirus terminases and bear great similarity to the phage T4 gp17 but are distinct from podovirus and siphovirus orthologs and cellular RNase H, delineating a new evolutionary lineage among a large family of eukaryotic viruses and simple and complex prokaryotic viruses.
Collapse
|
179
|
Chung S, Miller JT, Lapkouski M, Tian L, Yang W, Le Grice SFJ. Examining the role of the HIV-1 reverse transcriptase p51 subunit in positioning and hydrolysis of RNA/DNA hybrids. J Biol Chem 2013; 288:16177-84. [PMID: 23595992 DOI: 10.1074/jbc.m113.465641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent crystallographic analysis of p66/p51 human immunodeficiency virus (HIV) type 1 reverse transcriptase (RT) complexed with a non-polypurine tract RNA/DNA hybrid has illuminated novel and important contacts between structural elements at the C terminus of the noncatalytic p51 subunit and the nucleic acid duplex in the vicinity of the ribonuclease H (RNase H) active site. In particular, a short peptide spanning residues Phe-416-Pro-421 was shown to interact with the DNA strand, cross the minor groove of the helix, and then form Van der Waals contacts with the RNA strand adjacent to the scissile phosphate. At the base of the adjoining α-helix M', Tyr-427 forms a hydrogen bond with Asn-348, the latter of which, when mutated to Ile, is implicated in resistance to both nucleoside and non-nucleoside RT inhibitors. Based on our structural data, we analyzed the role of the p51 C terminus by evaluating selectively mutated p66/p51 heterodimers carrying (i) p51 truncations that encroach on α-M', (ii) alterations that interrupt the Asn-348-Tyr-427 interaction, and (iii) alanine substitutions throughout the region Phe-416-Pro-421. Collectively, our data support the notion that the p51 C terminus makes an important contribution toward hybrid binding and orienting the RNA strand for catalysis at the RNase H active site.
Collapse
Affiliation(s)
- Suhman Chung
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
180
|
Nowak E, Potrzebowski W, Konarev PV, Rausch JW, Bona MK, Svergun DI, Bujnicki JM, Le Grice SFJ, Nowotny M. Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res 2013; 41:3874-87. [PMID: 23382176 PMCID: PMC3616737 DOI: 10.1093/nar/gkt053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate-a key difference between monomeric and dimeric RTs.
Collapse
Affiliation(s)
- Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Wojciech Potrzebowski
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Petr V. Konarev
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jason W. Rausch
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marion K. Bona
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Dmitri I. Svergun
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janusz M. Bujnicki
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Stuart F. J. Le Grice
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 4 Trojdena Street, 02-109 Warsaw, Poland, European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany, RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory, Frederick, MD 21702, USA and Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
181
|
Nguyen TN, You DJ, Matsumoto H, Kanaya E, Koga Y, Kanaya S. Crystal structure of metagenome-derived LC11-RNase H1 in complex with RNA/DNA hybrid. J Struct Biol 2013; 182:144-54. [PMID: 23500886 DOI: 10.1016/j.jsb.2013.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
Abstract
LC11-RNase H1 is a Sulfolobus tokodaii RNase H1 (Sto-RNase H1) homologue isolated by metagenomic approach. In this study, the crystal structure of LC11-RNase H1 in complex with an RNA/DNA substrate was determined. Unlike Bacillus halodurans RNase H1 without hybrid binding domain (HBD) (Bh-RNase HC) and human RNase H1 without HBD (Hs-RNase HC), LC11-RNase H1 interacts with four non-consecutive 2'-OH groups of the RNA strand. The lack of interactions with four consecutive 2'-OH groups leads to a dramatic decrease in the ability of LC11-RNase H1 to cleave the DNA-RNA-DNA/DNA substrate containing four ribonucleotides as compared to those to cleave the substrates containing five and six ribonucleotides. The interaction of LC11-RNase H1 with the DNA strand is also different from those of Bh-RNase HC and Hs-RNase HC. Beside the common phosphate-binding pocket, LC11-RNase H1 has a unique DNA-binding channel. Furthermore, the active-site residues of LC11-RNase H1 are located farther away from the scissile phosphate group than those of Bh-RNase HC and Hs-RNase HC. Modeling of Sto-RNase H1 in complex with the 14bp RNA/DNA substrate, together with the structure-based mutational analyses, suggest that the ability of Sto-RNase H1 to cleave double-stranded RNA is dependent on the local conformation of the basic residues located at the DNA binding site.
Collapse
Affiliation(s)
- Tri-Nhan Nguyen
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
182
|
Álvarez M, Barrioluengo V, Afonso-Lehmann RN, Menéndez-Arias L. Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis. Nucleic Acids Res 2013; 41:4601-12. [PMID: 23444139 PMCID: PMC3632107 DOI: 10.1093/nar/gkt109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Asp(443) and Glu(478) are essential active site residues in the RNase H domain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). We have investigated the effects of substituting Asn for Asp(443) or Gln for Glu(478) on the fidelity of DNA-dependent DNA synthesis of phylogenetically diverse HIV-1 RTs. In M13mp2 lacZα-based forward mutation assays, HIV-1 group M (BH10) and group O RTs bearing substitutions D443N, E478Q, V75I/D443N or V75I/E478Q showed 2.0- to 6.6-fold increased accuracy in comparison with the corresponding wild-type enzymes. This was a consequence of their lower base substitution error rates. One-nucleotide deletions and insertions represented between 30 and 68% of all errors identified in the mutational spectra of RNase H-deficient HIV-1 group O RTs. In comparison with the wild-type RT, these enzymes showed higher frameshift error rates and higher dissociation rate constants (koff) for DNA/DNA template-primers. The effects on frameshift fidelity were similar to those reported for mutation E89G and suggest that in HIV-1 group O RT, RNase H inactivation could affect template/primer slippage. Our results support a role for the RNase H domain during plus-strand DNA polymerization and suggest that mutations affecting RNase H function could also contribute to retrovirus variability during the later steps of reverse transcription.
Collapse
Affiliation(s)
- Mar Álvarez
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
183
|
Lapkouski M, Tian L, Miller JT, Le Grice SFJ, Yang W. Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation. Nat Struct Mol Biol 2013; 20:230-236. [PMID: 23314251 PMCID: PMC3973182 DOI: 10.1038/nsmb.2485] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022]
Abstract
Structures of type-1 human immunodeficiency virus (HIV-1) reverse transcriptase (RT) have been determined in several forms, but only one contains an RNA/DNA hybrid. Here we report three structures of HIV-1 RT complexed with a non-nucleotide RT inhibitor (NNRTI) and an RNA/DNA hybrid. In the presence of an NNRTI, the RNA/DNA structure differs from all prior nucleic acid bound to RT including the RNA/DNA hybrid. The enzyme structure also differs from all previous RT–DNA complexes. As a result, the hybrid has ready access to the RNase H active site. These observations indicate that an RT–nucleic acid complex may adopt two structural states, one competent for DNA polymerization and the other for RNA degradation. RT mutations that confer drug resistance but are distant from the inhibitor-binding sites often map to the unique RT–hybrid interface that undergoes conformational changes between two catalytic states.
Collapse
Affiliation(s)
- Mikalai Lapkouski
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Tian
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer T Miller
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
184
|
Alla NR, Nicholson AW. Evidence for a dual functional role of a conserved histidine in RNA·DNA heteroduplex cleavage by human RNase H1. FEBS J 2012; 279:4492-500. [PMID: 23078533 DOI: 10.1111/febs.12035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
Ribonuclease H1 is a conserved enzyme that cleaves the RNA strand of RNA·DNA heteroduplexes and has important functions in the nuclear and mitochondrial compartments. The therapeutic action of antisense oligodeoxynucleotides involves the recruitment of RNase H1 to cleave disease-relevant RNA targets. Recombinant human (Hs) RNase H1 was purified from a bacterial expression host, and conditions were identified that provided optimal oligonucleotide-directed RNA cleavage in vitro. Hs-RNase H1 exhibits optimal catalytic activity in pH 7.5 HEPES buffer and a salt (KCl) concentration of ~ 100-150 mm. Mg(2+) best supports Hs-RNase H1 with an optimal concentration of 10 mm, but at higher concentrations inhibits enzyme activity. Mn(2+) and Co(2+) also support catalytic activity, while Ni(2+) and Zn(2+) exhibit only modest activities as cofactors. The optimized assay was used to show that an antisense oligonucleotide, added in substoichiometric amounts to initiate RNA cleavage, supports up to 30 rounds of reaction in 30 min. Mutation to alanine of the conserved histidine at position 264 causes an ~ 100-fold decrease in k(cat) under multiple-turnover conditions, but does not alter K(m) . Under single-turnover conditions, the H264A mutant exhibits a 12-fold higher exponential time constant for substrate cleavage. The defective activity of the H264A mutant is not rescued in either assay condition by higher Mg(2+) concentrations. These data implicate the H264 side chain in phosphodiester hydrolysis as well as in product release, and are consistent with a proposed model in which the H264 side chain interacts with a divalent metal ion to support catalysis.
Collapse
Affiliation(s)
- Nageswara R Alla
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
185
|
Zheng X, Mueller GA, DeRose EF, London RE. Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556. Nucleic Acids Res 2012; 40:10543-53. [PMID: 22941642 PMCID: PMC3488238 DOI: 10.1093/nar/gks791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/14/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) contains a C-terminal ribonuclease H (RH) domain on its p66 subunit that can be expressed as a stable, although inactive protein. Recent studies of several RH enzymes demonstrate that substrate binding plays a major role in the creation of the active site. In the absence of substrate, the C-terminal helix E of the RT RNase H domain is dynamic, characterized by severe exchange broadening of its backbone amide resonances, so that the solution characterization of this region of the protein has been limited. Nuclear magnetic resonance studies of 13C-labeled RH as a function of experimental conditions reveal that the δ1 methyl resonance of Ile556, located in a short, random coil segment following helix E, experiences a large 13C shift corresponding to a conformational change of Ile556 that results from packing of helix E against the central β-sheet. This shift provides a useful basis for monitoring the effects of various ligands on active site formation. Additionally, we report that the RNase H complexes formed with one or both divalent ions can be individually observed and characterized using diamagnetic Zn2+ as a substitute for Mg2+. Ordering of helix E results specifically from the interaction with the lower affinity binding to the A divalent ion site.
Collapse
Affiliation(s)
| | | | | | - Robert E. London
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
186
|
Cornilleau C, Atmane N, Jacquet E, Smits C, Alonso JC, Tavares P, Oliveira L. The nuclease domain of the SPP1 packaging motor coordinates DNA cleavage and encapsidation. Nucleic Acids Res 2012; 41:340-54. [PMID: 23118480 PMCID: PMC3592435 DOI: 10.1093/nar/gks974] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The large terminase subunit is a central component of the genome packaging motor from tailed bacteriophages and herpes viruses. This two-domain enzyme has an N-terminal ATPase activity that fuels DNA translocation during packaging and a C-terminal nuclease activity required for initiation and termination of the packaging cycle. Here, we report that bacteriophage SPP1 large terminase (gp2) is a metal-dependent nuclease whose stability and activity are strongly and preferentially enhanced by Mn(2+) ions. Mutation of conserved residues that coordinate Mn(2+) ions in the nuclease catalytic site affect the metal-induced gp2 stabilization and impair both gp2-specific cleavage at the packaging initiation site pac and unspecific nuclease activity. Several of these mutations block also DNA encapsidation without affecting ATP hydrolysis or gp2 C-terminus binding to the procapsid portal vertex. The data are consistent with a mechanism in which the nuclease domain bound to the portal switches between nuclease activity and a coordinated action with the ATPase domain for DNA translocation. This switch of activities of the nuclease domain is critical to achieve the viral chromosome packaging cycle.
Collapse
Affiliation(s)
- Charlène Cornilleau
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
187
|
Tannous E, Yokoyama K, You DJ, Koga Y, Kanaya S. A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. FEBS Open Bio 2012; 2:345-52. [PMID: 23772368 PMCID: PMC3678122 DOI: 10.1016/j.fob.2012.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/03/2022] Open
Abstract
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNH1) consists of an N-terminal domain with unknown function and a C-terminal RNase H domain. It is characterized by the high content of acidic residues on the protein surface. The far- and near-UV CD spectra of Halo-RNH1 suggested that Halo-RNH1 assumes a partially folded structure in the absence of salt and divalent metal ions. It requires either salt or divalent metal ions for folding. However, thermal denaturation of Halo-RNH1 analyzed in the presence of salt and/or divalent metal ions by CD spectroscopy suggested that salt and divalent metal ions independently stabilize the protein and thereby facilitate folding. Divalent metal ions stabilize the protein probably by binding mainly to the active site and suppressing negative charge repulsions at this site. Salt stabilizes the protein probably by increasing hydrophobic interactions at the protein core and decreasing negative charge repulsions on the protein surface. Halo-RNH1 exhibited activity in the presence of divalent metal ions regardless of the presence or absence of 3 M NaCl. However, higher concentrations of divalent metal ions are required for activity in the absence of salt to facilitate folding. Thus, divalent metal ions play a dual role in catalysis and folding of Halo-RNH1. Construction of the Halo-RNH1 derivatives lacking an N- or C-terminal domain, followed by biochemical characterizations, indicated that an N-terminal domain is dispensable for stability, activity, folding, and substrate binding of Halo-RNH1.
Collapse
Affiliation(s)
- Elias Tannous
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
188
|
Le Grice SFJ. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem 2012; 287:40850-7. [PMID: 23043108 DOI: 10.1074/jbc.r112.389056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of integration-competent, double-stranded DNA from the (+)-RNA strand genome of retroviruses and long terminal repeat-containing retrotransposons reflects a multistep process catalyzed by the virus-encoded reverse transcriptase (RT). In conjunction with RNA- and DNA-templated DNA synthesis, a hydrolytic activity of the same enzyme (RNase H) is required to remove genomic RNA of the RNA/DNA replication intermediate. Together, these combined synthetic and degradative functions ensure correct selection, extension, and removal of the RNA primers of (-)- and (+)-strand DNA synthesis (tRNA and the polypurine tract, respectively). For HIV-1 RT, a quarter century of research has not only illuminated the biochemical properties, structure, and conformational dynamics of this highly versatile enzyme but has also witnessed drug discovery advances from the first Food and Drug Administration-approved anti-RT drug to recent use of RT inhibitors as potential colorectal microbicides. Salient features of HIV-1 RT and extension of these findings into programs of drug discovery are reviewed here.
Collapse
Affiliation(s)
- Stuart F J Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA.
| |
Collapse
|
189
|
Leo B, Schweimer K, Rösch P, Hartl MJ, Wöhrl BM. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Retrovirology 2012; 9:73. [PMID: 22962864 PMCID: PMC3443672 DOI: 10.1186/1742-4690-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/10/2012] [Indexed: 11/13/2022] Open
Abstract
Background The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. Results The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. Conclusions The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.
Collapse
Affiliation(s)
- Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr, 30, D-95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
190
|
Jongruja N, You DJ, Angkawidjaja C, Kanaya E, Koga Y, Kanaya S. Structure and characterization of RNase H3 from Aquifex aeolicus. FEBS J 2012; 279:2737-53. [PMID: 22686566 DOI: 10.1111/j.1742-4658.2012.08657.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of ribonuclease H3 from Aquifex aeolicus (Aae-RNase H3) was determined at 2.0 Å resolution. Aae-RNase H3 consists of an N-terminal TATA box-binding protein (TBP)-like domain (N-domain) and a C-terminal RNase H domain (C-domain). The structure of the C-domain highly resembles that of Bacillus stearothermophilus RNase H3 (Bst-RNase H3), except that it contains three disulfide bonds, and the fourth conserved glutamate residue of the Asp-Glu-Asp-Glu active site motif (Glu198) is located far from the active site. These disulfide bonds were shown to contribute to hyper-stabilization of the protein. Non-conserved Glu194 was identified as the fourth active site residue. The structure of the N-domain without the C-domain also highly resembles that of Bst-RNase H3. However, the arrangement of the N-domain relative to the C-domain greatly varies for these proteins because of the difference in the linker size between the domains. The linker of Bst-RNase H3 is relatively long and flexible, while that of Aae-RNase H3 is short and assumes a helix formation. Biochemical characterizations of Aae-RNase H3 and its derivatives without the N- or C-domain or with a mutation in the N-domain indicate that the N-domain of Aae-RNase H3 is important for substrate binding, and uses the flat surface of the β-sheet for substrate binding. However, this surface is located far from the active site and on the opposite side to the active site. We propose that the N-domain of Aae-RNase H3 is required for initial contact with the substrate. The resulting complex may be rearranged such that only the C-domain forms a complex with the substrate.
Collapse
Affiliation(s)
- Nujarin Jongruja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
191
|
Abstract
Packaging of viral genomes into preformed procapsids requires the controlled and synchronized activity of an ATPase and a genome-processing nuclease, both located in the large terminase (L-terminase) subunit. In this paper, we have characterized the structure and regulation of bacteriophage P22 L-terminase (gp2). Limited proteolysis reveals a bipartite organization consisting of an N-terminal ATPase core flexibly connected to a C-terminal nuclease domain. The 2.02 Å crystal structure of P22 headful nuclease obtained by in-drop proteolysis of full-length L-terminase (FL-L-terminase) reveals a central seven-stranded β-sheet core that harbors two magnesium ions. Modeling studies with DNA suggest that the two ions are poised for two-metal ion-dependent catalysis, but the nuclease DNA binding surface is sterically hindered by a loop-helix (L(1)-α(2)) motif, which is incompatible with catalysis. Accordingly, the isolated nuclease is completely inactive in vitro, whereas it exhibits endonucleolytic activity in the context of FL-L-terminase. Deleting the autoinhibitory L(1)-α(2) motif (or just the loop L(1)) restores nuclease activity to a level comparable with FL-L-terminase. Together, these results suggest that the activity of P22 headful nuclease is regulated by intramolecular cross-talk with the N-terminal ATPase domain. This cross-talk allows for precise and controlled cleavage of DNA that is essential for genome packaging.
Collapse
Affiliation(s)
- Ankoor Roy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
192
|
Reijns M, Rabe B, Rigby R, Mill P, Astell K, Lettice L, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney P, Sexton D, Grimes G, Holt I, Hill R, Taylor M, Lawson K, Dorin J, Jackson A. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 2012; 149:1008-22. [PMID: 22579044 PMCID: PMC3383994 DOI: 10.1016/j.cell.2012.04.011] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/21/2012] [Accepted: 04/23/2012] [Indexed: 12/01/2022]
Abstract
The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.
Collapse
Affiliation(s)
- Martin A.M. Reijns
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Björn Rabe
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rachel E. Rigby
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pleasantine Mill
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katy R. Astell
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Laura A. Lettice
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrea Leitch
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Margaret Keighren
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Fiona Kilanowski
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Paul S. Devenney
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David Sexton
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Graeme Grimes
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ian J. Holt
- Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - Robert E. Hill
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Martin S. Taylor
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kirstie A. Lawson
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Julia R. Dorin
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew P. Jackson
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
193
|
Nguyen TN, Angkawidjaja C, Kanaya E, Koga Y, Takano K, Kanaya S. Activity, stability, and structure of metagenome-derived LC11-RNase H1, a homolog of Sulfolobus tokodaii RNase H1. Protein Sci 2012; 21:553-61. [PMID: 22389131 DOI: 10.1002/pro.2043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/07/2022]
Abstract
Metagenome-derived LC11-RNase H1 is a homolog of Sulfolobus tokodaii RNase H1 (Sto-RNase H1). It lacks a C-terminal tail, which is responsible for hyperstabilization of Sto-RNase H1. Sto-RNase H1 is characterized by its ability to cleave not only an RNA/DNA hybrid but also a double-stranded RNA (dsRNA). To examine whether LC11-RNase H1 also exhibits both RNase H and dsRNase activities, LC11-RNase H1 was overproduced in Escherichia coli, purified, and characterized. LC11-RNase H1 exhibited RNase H activity with similar metal ion preference, optimum pH, and cleavage mode of substrate with those of Sto-RNase H1. However, LC11-RNase H1 did not exhibit dsRNase activity at any condition examined. LC11-RNase H1 was less stable than Sto-RNases H1 and its derivative lacking the C-terminal tail (Sto-RNase H1ΔC6) by 37 and 13 °C in T(m) , respectively. To understand the structural bases for these differences, the crystal structure of LC11-RNase H1 was determined at 1.4 Å resolution. The LC11-RNase H1 structure is highly similar to the Sto-RNase H1 structure. However, LC11-RNase H1 has two grooves on protein surface, one containing the active site and the other containing DNA-phosphate binding pocket, while Sto-RNase H1 has one groove containing the active site. In addition, LC11-RNase H1 contains more cavities and buried charged residues than Sto-RNase H1. We propose that LC11-RNase H1 does not exhibit dsRNase activity because dsRNA cannot fit to the two grooves on protein surface and that LC11-RNase H1 is less stable than Sto-RNase H1ΔC6 because of the increase in cavity volume and number of buried charged residues.
Collapse
Affiliation(s)
- Tri-Nhan Nguyen
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
194
|
Zhou D, Chung S, Miller M, Grice SFJL, Wlodawer A. Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus. J Struct Biol 2012; 177:638-45. [PMID: 22366278 DOI: 10.1016/j.jsb.2012.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site α-hydroxytropolone inhibitor. Enzymatic assays showed that the intact RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with β-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.
Collapse
Affiliation(s)
- Dongwen Zhou
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
195
|
Leo B, Hartl MJ, Schweimer K, Mayr F, Wöhrl BM. Insights into the structure and activity of prototype foamy virus RNase H. Retrovirology 2012; 9:14. [PMID: 22325739 PMCID: PMC3305377 DOI: 10.1186/1742-4690-9-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNase H is an endonuclease that hydrolyzes the RNA strand in RNA/DNA hybrids. Retroviral reverse transcriptases harbor a C-terminal RNase H domain whose activity is essential for viral replication. The RNase H degrades the viral genomic RNA after the first DNA strand is synthesized. Here, we report the biophysical and enzymatic properties of the RNase H domain of prototype foamy virus (PFV) as an independently purified protein. Sequence comparisons with other retroviral RNases H indicated that PFV RNase H harbors a basic protrusion, including a basic loop and the so-called C-helix, which was suggested to be important for activity and substrate binding and is absent in the RNase H domain of human immunodeficiency virus. So far, no structure of a retroviral RNase H containing a C-helix is available. RESULTS RNase H activity assays demonstrate that the PFV RNase H domain is active, although its activity is about 200-fold reduced as compared to the full length protease-reverse transcriptase enzyme. Fluorescence equilibrium titrations with an RNA/DNA substrate revealed a KD for the RNase H domain in the low micromolar range which is about 4000-fold higher than that of the full-length protease-reverse transcriptase enzyme. Analysis of the RNase H cleavage pattern using a [32P]-labeled substrate indicates that the independent RNase H domain cleaves the substrate non-specifically. The purified RNase H domain exhibits a well defined three-dimensional structure in solution which is stabilized in the presence of Mg2+ ions. CONCLUSIONS Our data demonstrate that the independent PFV RNase H domain is structured and active. The presence of the C-helix in PFV RNase H could be confirmed by assigning the protein backbone and calculating the chemical shift index using NMR spectroscopy.
Collapse
Affiliation(s)
- Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr, 30, D-95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
196
|
Radzvilavicius T, Lagunavicius A. Selective inactivation of M-MuLV RT RNase H activity by site-directed PEGylation: an improved ability to synthesize long cDNA molecules. N Biotechnol 2012; 29:285-92. [DOI: 10.1016/j.nbt.2011.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/27/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
|
197
|
Structural and inhibition studies of the RNase H function of xenotropic murine leukemia virus-related virus reverse transcriptase. Antimicrob Agents Chemother 2012; 56:2048-61. [PMID: 22252812 DOI: 10.1128/aac.06000-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNase H inhibitors (RNHIs) have gained attention as potential HIV-1 therapeutics. Although several RNHIs have been studied in the context of HIV-1 reverse transcriptase (RT) RNase H, there is no information on inhibitors that might affect the RNase H activity of other RTs. We performed biochemical, virological, crystallographic, and molecular modeling studies to compare the RNase H function and inhibition profiles of the gammaretroviral xenotropic murine leukemia virus-related virus (XMRV) and Moloney murine leukemia virus (MoMLV) RTs to those of HIV-1 RT. The RNase H activity of XMRV RT is significantly lower than that of HIV-1 RT and comparable to that of MoMLV RT. XMRV and MoMLV, but not HIV-1 RT, had optimal RNase H activities in the presence of Mn²⁺ and not Mg²⁺. Using hydroxyl-radical footprinting assays, we demonstrated that the distance between the polymerase and RNase H domains in the MoMLV and XMRV RTs is longer than that in the HIV-1 RT by ∼3.4 Å. We identified one naphthyridinone and one hydroxyisoquinolinedione as potent inhibitors of HIV-1 and XMRV RT RNases H with 50% inhibitory concentrations ranging from ∼0.8 to 0.02 μM. Two acylhydrazones effective against HIV-1 RT RNase H were less potent against the XMRV enzyme. We also solved the crystal structure of an XMRV RNase H fragment at high resolution (1.5 Å) and determined the molecular details of the XMRV RNase H active site, thus providing a framework that would be useful for the design of antivirals that target RNase H.
Collapse
|
198
|
The increasing role of QM/MM in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 87:337-62. [PMID: 22607760 DOI: 10.1016/b978-0-12-398312-1.00011-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since its first appearance in 1976, the quantum mechanics/molecular mechanics (QM/MM) approach has mostly been used to study the chemical reactions of enzymes, which are frequently the target of drug discovery programs. In principle, a detailed understanding of the enzymatic mechanism should help researchers to design a potent enzyme inhibitor or new drug. However, QM/MM has not yet had a widespread impact on structure-based drug design. This is mostly due to its high computational cost. We expect this to change with the recent and extraordinary increases in computational power, and with the availability of more efficient algorithms for QM/MM calculations. Here, we report on some representative examples of QM/MM studies, including our own research, of pharmaceutically relevant enzymes, such as ribonuclease H and fatty acid amide hydrolase (FAAH). We aim to show how QM/MM has traditionally been used to study enzymatic catalysis. In this regard, we discuss its potential to become a routinely used drug design tool. To support this, we also discuss selected computational studies where QM/MM insights have been helpful in improving the potency of covalent inhibitors of FAAH.
Collapse
|
199
|
Elsässer B, Fels G. Atomistic details of the phosphodiester cleavage of ribonuclease H. J Cheminform 2011. [PMCID: PMC3083580 DOI: 10.1186/1758-2946-3-s1-p25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
200
|
Joshua-Tor L, Hannon GJ. Ancestral roles of small RNAs: an Ago-centric perspective. Cold Spring Harb Perspect Biol 2011; 3:a003772. [PMID: 20810548 DOI: 10.1101/cshperspect.a003772] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNAi has existed at least since the divergence of prokaryotes and eukaryotes. This collection of pathways responds to a diversity of "abberant" RNAs and generally silences or eliminates genes sharing sequence content with the silencing trigger. In the canonical pathway, double-stranded RNAs are processed into small RNAs, which guide effector complexes to their targets by complementary base pairing. Many alternative routes from silencing trigger to small RNA are continuously being uncovered. Though the triggers of the pathway and the mechanisms of small RNA production are many, all RNAi-related mechanisms share Argonaute proteins as the heart of their effector complexes. These can act as self-contained silencing machines, binding directly to small RNAs, carrying out homology-based target recognition, and in some cases cleaving targets using an endogenous nuclease domain. Here, we discuss the diversity of Argonaute proteins from a structural and functional perspective.
Collapse
Affiliation(s)
- Leemor Joshua-Tor
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|