151
|
Kurashina R, Kikuchi K, Iwaki J, Yoshitake H, Takeshita T, Takizawa T. Placenta-specific miRNA (miR-512-3p) targets PPP3R1 encoding the calcineurin B regulatory subunit in BeWo cells. J Obstet Gynaecol Res 2013; 40:650-60. [PMID: 24246042 DOI: 10.1111/jog.12217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/20/2013] [Indexed: 01/01/2023]
Abstract
AIM The microRNAs (miRNAs) derived from the chromosome 19 miRNA cluster (C19MC) are exclusively expressed in the human placenta, but the origin and functions of C19MC miRNAs are not fully understood. The purpose of this study was to elucidate which cells express C19MC miRNAs in chorionic villi and identify their miRNA targets. METHODS A combination of laser microdissection (LMD) and real-time polymerase chain reaction (PCR) to examine the localization of five C19MC miRNAs (i.e. miR-512-3p, miR-518b, miR-520a, miR-524 and miR-1323) in the human placenta was performed. Furthermore, to identify miR-512-3p-target genes, we analyzed gene expression profiles of the trophoblast cell line BeWo using a DNA microarray. Predicted target genes were validated by real-time PCR, western blotting, and 3'-untranslated region reporter assay. RESULTS By LMD and subsequent PCR analysis, five C19MC miRNAs examined in this study were predominantly expressed in villous trophoblast cells; little expression, if any, was observed in villous stroma cells or fetal endothelial cells. Microarray data showed that 334 genes were downregulated in BeWo cells treated with Pre-miR-512-3p (mature miR-512-3p mimic). We found six candidate target genes of miR-512-3p using DNA microarray data and target prediction software. Furthermore, we revealed that protein phosphatase 3, regulatory subunit B, alpha (PPP3R1), one of the six genes, was a miR-512-3p target using an in vitro experimental validation system. CONCLUSION These data suggest that miR-512-3p participates in human trophoblast function[s] by targeting PPP3R1, encoding a regulatory subunit of calcineurin.
Collapse
Affiliation(s)
- Ryuhei Kurashina
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; Department of Reproductive Medicine, Perinatology and Gynecologic Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
152
|
Abstract
Today's world population is currently faced with a new type of non-transmissible pandemic: obesity. This lifestyle-related condition is driving the emergence of the diabetes pandemic through the development of low-level chronic inflammation. In recent years, a novel class of non-coding RNA, microRNA (miRNA), have emerged as being important regulators of numerous biological functions. Among these functions are basic maintenance of cell signalling and tissue architecture. Disruption of miRNA levels can contribute not only to the development of the chronic inflammation observed in obese diabetics, but also the development of both pancreatic β-cell dysfunction and loss, along with insulin resistance in metabolic tissues. These primary events set the scene for dysfunction of other tissues, including the retina, kidney, peripheral nerves, heart and the vasculature as a whole. Here, miRNAs again play a deterministic role in the development of a range of diseases collectively termed diabetic complications. Disturbances in miRNA levels appear to be reflected in the serum of patients and this may prove to be diagnostic in patients prior to clinical manifestation of disease, thus improving management of diabetes and its associated complications. Not only are miRNAs displaying promise as an early biomarker for disease, but a number of these miRNAs are displaying therapeutic potential with several in pre-clinical development. The present review aims to highlight our current understanding of miRNAs and their interaction with inflammatory signalling in the development and progression of diabetes and its complications. Utilization of miRNAs as biomarkers and therapeutic targets will also be considered.
Collapse
|
153
|
Nidadavolu LS, Niedernhofer LJ, Khan SA. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress. Aging (Albany NY) 2013; 5:460-73. [PMID: 23852002 PMCID: PMC3824412 DOI: 10.18632/aging.100571] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
XFE progeroid syndrome, a disease of accelerated aging caused by deficiency in the DNA repair endonuclease XPF-ERCC1, is modeled by Ercc1 knockout and hypomorphic mice. Tissues and primary cells from these mice senesce prematurely, offering a unique opportunity to identify factors that regulate senescence and aging. We compared microRNA (miRNA) expression in Ercc1−/− primary mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs in different growth conditions to identify miRNAs that drive cellular senescence. Microarray analysis showed three differentially expressed miRNAs in passage 7 (P7) Ercc1−/− MEFs grown at 20% O2 compared to Ercc1−/− MEFs grown at 3% O2. Thirty-six differentially expressed miRNAs were identified in Ercc1−/− MEFs at P7 compared to early passage (P3) in 3% O2. Eight of these miRNAs (miR-449a, miR-455*, miR-128, miR-497, miR-543, miR-450b-3p, miR-872 and miR-10b) were similarly downregulated in the liver of progeroid Ercc1−/Δ and old WT mice compared to adult WT mice, a tissue that senesces with aging. Three miRNAs (miR-449a, miR-455* and miR-128) were also downregulated in Ercc1−/Δ and WT old mice kidneys compared to young WT mice. We also discovered that the miRNA expression regulator Dicer is significantly downregulated in tissues of old mice and late passage cells compared to young controls. Collectively these results support the conclusion that the miRNAs identified may play an important role in staving off cellular senescence and their altered expression could be indicative of aging.
Collapse
Affiliation(s)
- Lolita S Nidadavolu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
154
|
Stern HA, Mathews DH. Accelerating calculations of RNA secondary structure partition functions using GPUs. Algorithms Mol Biol 2013; 8:29. [PMID: 24180434 PMCID: PMC4175106 DOI: 10.1186/1748-7188-8-29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 10/14/2013] [Indexed: 01/06/2023] Open
Abstract
Background RNA performs many diverse functions in the cell in addition to its role as a messenger of genetic information. These functions depend on its ability to fold to a unique three-dimensional structure determined by the sequence. The conformation of RNA is in part determined by its secondary structure, or the particular set of contacts between pairs of complementary bases. Prediction of the secondary structure of RNA from its sequence is therefore of great interest, but can be computationally expensive. In this work we accelerate computations of base-pair probababilities using parallel graphics processing units (GPUs). Results Calculation of the probabilities of base pairs in RNA secondary structures using nearest-neighbor standard free energy change parameters has been implemented using CUDA to run on hardware with multiprocessor GPUs. A modified set of recursions was introduced, which reduces memory usage by about 25%. GPUs are fastest in single precision, and for some hardware, restricted to single precision. This may introduce significant roundoff error. However, deviations in base-pair probabilities calculated using single precision were found to be negligible compared to those resulting from shifting the nearest-neighbor parameters by a random amount of magnitude similar to their experimental uncertainties. For large sequences running on our particular hardware, the GPU implementation reduces execution time by a factor of close to 60 compared with an optimized serial implementation, and by a factor of 116 compared with the original code. Conclusions Using GPUs can greatly accelerate computation of RNA secondary structure partition functions, allowing calculation of base-pair probabilities for large sequences in a reasonable amount of time, with a negligible compromise in accuracy due to working in single precision. The source code is integrated into the RNAstructure software package and available for download at http://rna.urmc.rochester.edu.
Collapse
|
155
|
Griepenburg JC, Ruble BK, Dmochowski IJ. Caged oligonucleotides for bidirectional photomodulation of let-7 miRNA in zebrafish embryos. Bioorg Med Chem 2013; 21:6198-204. [PMID: 23721917 PMCID: PMC3789856 DOI: 10.1016/j.bmc.2013.04.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/20/2013] [Accepted: 04/30/2013] [Indexed: 12/17/2022]
Abstract
Many biological functions of microRNA (miRNA) have been identified in the past decade. However, a single miRNA can regulate multiple gene targets, thus it has been a challenge to elucidate the specific functions of each miRNA in different locations and times. New chemical tools make it possible to modulate miRNA activity with higher spatiotemporal resolution. Here, we describe light-activated (caged) constructs for switching let-7 miRNA 'on' or 'off' with 365 nm light in developing zebrafish embryos.
Collapse
Affiliation(s)
- Julianne C. Griepenburg
- Department of Chemistry, University of Pennsylvania, 231 S.34th Street, Philadelphia, PA 19104 USA
| | - Brittani K. Ruble
- Department of Chemistry, University of Pennsylvania, 231 S.34th Street, Philadelphia, PA 19104 USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S.34th Street, Philadelphia, PA 19104 USA
| |
Collapse
|
156
|
Govan JM, Young DD, Lusic H, Liu Q, Lively MO, Deiters A. Optochemical control of RNA interference in mammalian cells. Nucleic Acids Res 2013; 41:10518-28. [PMID: 24021631 PMCID: PMC3905849 DOI: 10.1093/nar/gkt806] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.
Collapse
Affiliation(s)
- Jeane M Govan
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA, Department of Chemistry, College of William & Mary, Williamsburg, VA 32187, USA, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
157
|
Iwaki J, Kikuchi K, Mizuguchi Y, Kawahigashi Y, Yoshida H, Uchida E, Takizawa T. MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line. PLoS One 2013; 8:e69496. [PMID: 23922722 PMCID: PMC3724868 DOI: 10.1371/journal.pone.0069496] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/10/2013] [Indexed: 12/16/2022] Open
Abstract
MicroRNA miR-376c was expressed in normal intrahepatic biliary epithelial cells (HIBEpiC), but was significantly suppressed in the HuCCT1 intrahepatic cholangiocarcinoma (ICC) cell line. The biological significance of the down-regulation of miR-376c in HuCCT1 cells is unknown. We hypothesized that miR-376c could function as a tumor suppressor in these cells. To test this hypothesis, we sought the targets of miR-376c, and characterized the effect of its down-regulation on HuCCT1 cells. We performed proteomic analysis of miR-376c-overexpressing HuCCT1 cells to identify candidate targets of miR-376c, and validated these targets by 3′-UTR reporter assay. Transwell migration assays were performed to study the migratory response of HuCCT1 cells to miR-376c overexpression. Furthermore, microarrays were used to identify the signaling that were potentially involved in the miR-376c-modulated migration of HuCCT1. Finally, we assessed epigenetic changes within the potential promoter region of the miR-376c gene in these cells. Proteomic analysis and subsequent validation assays showed that growth factor receptor-bound protein 2 (GRB2) was a direct target of miR-376c. The transwell migration assay revealed that miR-376c significantly reduced epidermal growth factor (EGF)-dependent cell migration in HuCCT1 cells. DNA microarray and subsequent pathway analysis showed that interleukin 1 beta and matrix metallopeptidase 9 were possible participants in EGF-dependent migration of HuCCT1 cells. Bisulfite sequencing showed higher methylation levels of CpG sites upstream of the miR-376c gene in HuCCT1 relative to HIBEpiC cells. Combined treatment with the DNA-demethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor trichostatin A significantly upregulated the expression of miR-376c in HuCCT1 cells. We revealed that epigenetic repression of miR-376c accelerated EGF-dependent cell migration through its target GRB2 in HuCCT1 cells. These findings suggest that miR-376c functions as a tumor suppressor. Since metastasis is the major cause of death in ICC, microRNA manipulation could lead to the development of novel anti-cancer therapy strategies for ICC.
Collapse
Affiliation(s)
- Jun Iwaki
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Kunio Kikuchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Mizuguchi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Yutaka Kawahigashi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Eiji Uchida
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
- * E-mail:
| |
Collapse
|
158
|
Rijlaarsdam MA, Rijlaarsdam DJ, Gillis AJM, Dorssers LCJ, Looijenga LHJ. miMsg: a target enrichment algorithm for predicted miR–mRNA interactions based on relative ranking of matched expression data. Bioinformatics 2013; 29:1638-46. [DOI: 10.1093/bioinformatics/btt246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
159
|
Huang F, Li ML, Fang ZF, Hu XQ, Liu QM, Liu ZJ, Tang L, Zhao YS, Zhou SH. Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Cardiology 2013; 125:18-30. [PMID: 23615185 DOI: 10.1159/000347081] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/04/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND The aim of this research was to study whether transplantation of mesenchymal stem cells (MSCs) overexpressing microRNA-1 into mouse infarcted myocardium can enhance cardiac myocyte differentiation and improve cardiac function efficiently. METHODS Eight-week-old female C57BL/6 mice underwent ligation of the left coronary artery to produce models of myocardial infarction. The ligated animals were randomly divided into 4 groups (20 in each). One week later, they were intramyocardially injected at the heart infarcted zone with microRNA-1-transduced MSCs (MSC(miR-1) group), mock-vector-transduced MSCs (MSC(null) group), MSCs (MSC group) or medium (PBS group). At 4 weeks post-transplantation, transthoracic echocardiographic assessment, histological evaluation and Western blot were performed. RESULTS The transplanted MSCs were able to differentiate into cardiomyocytes in the infarcted zone. Cardiac function in the MSC, MSC(null) and MSC(miR-1) groups was significantly improved compared to the PBS group (p < 0.01 or p < 0.001). However, treatment of MSCs expressing microRNA-1 was more effective for cardiac repair and improved cardiac function more efficiently by enhancing cell survival and cardiac myocyte differentiation compared to the MSC group or the MSC(null) groups (p < 0.05 or p < 0.01, respectively). CONCLUSIONS Transplantation of microRNA-1-transfected MSCs was more conducive to repair of infarct injury and improved heart function by enhancing transplanted cells survival and cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Feng Huang
- Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
161
|
Arora S, Rana R, Chhabra A, Jaiswal A, Rani V. miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics 2013; 288:77-87. [PMID: 23334784 DOI: 10.1007/s00438-013-0734-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
Abstract
Developmental processes require a precise spatio-temporal regulation of gene expression wherein a diverse set of transcription factors control the signalling pathways. MicroRNAs (miRNAs), a class of small non-coding RNA molecules have recently drawn attention for their prominent role in development and disease. These tiny sequences are essential for regulation of processes, including cell signalling, cell development, cell death, cell proliferation, patterning and differentiation. The consequence of gene regulation by miRNAs is similar to that by transcription factors (TFs). A regulatory cascade essential for appropriate execution of several biological events is triggered through a combinatorial action of miRNAs and TFs. These two important regulators share similar regulatory logics and bring about a cooperative action in the gene regulatory network, dependent on the binding sites present on the target gene. The review addresses the biogenesis and nomenclature of miRNAs, outlines the mechanism of action and regulation of their expression, and focuses on the combinatorial action of miRNAs and TFs for the expression of genes in various regulatory cascades.
Collapse
Affiliation(s)
- S Arora
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201307, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
162
|
Sullivan RP, Leong JW, Fehniger TA. MicroRNA regulation of natural killer cells. Front Immunol 2013; 4:44. [PMID: 23450173 PMCID: PMC3584293 DOI: 10.3389/fimmu.2013.00044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes critical for host defense against viral infection and surveillance against malignant transformation. MicroRNAs (miRNAs) are a family of small, non-coding RNAs that regulate a wide variety of cellular processes. Recent advances have highlighted the importance of miRNA-mediated post-transcriptional regulation in NK cell development, maturation, and function. This review focuses on several facets of this regulatory mechanism in NK cells: (1) the expressed NK cell miRNA transcriptome; (2) the impact of total miRNA deficiency on NK cells; (3) the role of specific miRNAs regulating NK cell development, survival, and maturation; (4) the intrinsic role of miRNAs regulating NK cell function, including cytokine production, proliferation, and cytotoxicity; and (5) the role of NK cell miRNAs in disease. Currently our knowledge of how miRNAs regulate NK cell biology is limited, and thus we also explore key open questions in the field, as well as approaches and techniques to ascertain the role of individual miRNAs as important molecular regulators.
Collapse
Affiliation(s)
| | | | - Todd A. Fehniger
- *Correspondence: Todd A. Fehniger, Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8007, St. Louis, MO 63110, USA. e-mail:
| |
Collapse
|
163
|
Mucosal Delivery of RNAi Therapeutics. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2013. [PMCID: PMC7121168 DOI: 10.1007/978-1-4614-4744-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The effectiveness of RNA interference-based drugs is dependent on accumulation at the target site in therapeutically relevant amounts. Local administration to the mucosal surfaces lining the respiratory, gastrointestinal and genitourinary tracts allows access into diseased areas without the necessity to overcome serum nuclease degradation, rapid renal and hepatic clearance and non-specific tissue accumulation associated with systemic delivery. This work describes RNAi therapeutics focused on pulmonary, oral, rectal and intravaginal routes of administration. Mucosal barrier components including site variations and delivery considerations are addressed in order to design an effective mucosal delivery strategy.
Collapse
|
164
|
miR-1-mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1. BIOMED RESEARCH INTERNATIONAL 2012; 2013:216286. [PMID: 23509692 PMCID: PMC3591156 DOI: 10.1155/2013/216286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs, miRs) have the potential to control stem cells fate decisions. The cardiac- and skeletal-muscle-specific miRNA, miR-1, can regulate embryonic stem cells differentiation to cardiac lineage by suppressing gene expression of alternative lineages. Accordingly, we hypothesized that overexpression of miR-1 may also promote cardiac gene expression in mesenchymal stem cells. Since Notch signaling could inhibit muscle differentiation, a process in contrast with the effect of miR-1, miR-1-mediated repression of Notch signaling may contribute to the observed effects of miR-1 in mesenchymal stem cells. Thus, mesenchymal stem cells were infected by lentiviral vectors carrying miR-1, and cells expressing miR-1 were selected. Alterations in Notch signaling and cardiomyocyte markers, Nkx2.5, GATA-4, cTnT, and CX43, were identified by Western blot in the infected cells on days 1, 7, and 14. Our study showed that the downstream target molecule of Notch pathway, Hes-1, was obviously decreased in mesenchymal stem cells modified with miR-1, and overexpression of miR-1 promotes the specific cardiac gene expression in the infected cells. Knockdown of Hes-1 leads to the same effects on cell lineage decisions. Our results indicated that miR-1 promotes the differentiation of MSCs into cardiac lineage in part due to negative regulation of Hes-1.
Collapse
|
165
|
HUANG FENG, ZHU XIAO, HU XINQUN, FANG ZHENFEI, TANG LIANG, LU XIAOLING, ZHOU SHENGHUA. Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med 2012; 31:484-92. [DOI: 10.3892/ijmm.2012.1200] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/09/2012] [Indexed: 11/05/2022] Open
|
166
|
Haubitz M, Neuenschwander S, Vögeli P. Porcine arthrogryposis multiplex congenita (AMC): New diagnostic test and narrowed candidate region. Mol Cell Probes 2012; 26:248-52. [DOI: 10.1016/j.mcp.2012.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/27/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
167
|
Natural killer cell regulation by microRNAs in health and disease. J Biomed Biotechnol 2012; 2012:632329. [PMID: 23226942 PMCID: PMC3514007 DOI: 10.1155/2012/632329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that are critical for normal host defense against infections and mediate antitumor immune responses. MicroRNAs (miRNAs) are a family of small, noncoding RNAs that posttranscriptionally regulate the majority of cellular processes and pathways. Our understanding of how miRNAs regulate NK cells biology is limited, but recent studies have provided novel insight into their expression by NK cells, and how they contribute to the regulation of NK cell development, maturation, survival, and effector function. Here, we review the expression of miRNAs by NK cells, their contribution to cell intrinsic and extrinsic control of NK cell development and effector response, and their dysregulation in NK cell malignancies.
Collapse
|
168
|
Abstract
Animal microRNAs (miRNA) are implicated in the control of nearly all cellular functions. Due to high sequence redundancy within the miRNA gene pool, loss of most of these 21- to 24-bp long RNAs individually does not cause a phenotype. Thus, only very few miRNAs have been associated with clear functional roles. We constructed a transgenic UAS-miRNA library in Drosophila melanogaster that contains 180 fly miRNAs. This library circumvents the redundancy issues by facilitating the controlled misexpression of individual miRNAs and is a useful tool to complement loss-of-function approaches. Demonstrating the effectiveness of our library, 78 miRNAs induced clear phenotypes. Most of these miRNAs were previously unstudied. Furthermore, we present a simple system to create GFP sensors to monitor miRNA expression and test direct functional interactions in vivo. Finally, we focus on the miR-92 family and identify a direct target gene that is responsible for the specific wing phenotype induced by the misexpression of miR-92 family members.
Collapse
|
169
|
Kasiappan R, Shen Z, Tse AKW, Jinwal U, Tang J, Lungchukiet P, Sun Y, Kruk P, Nicosia SV, Zhang X, Bai W. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J Biol Chem 2012; 287:41297-309. [PMID: 23055531 DOI: 10.1074/jbc.m112.407189] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Telomerase is an essential enzyme that counteracts the telomere attrition accompanying DNA replication during cell division. Regulation of the promoter activity of the gene encoding its catalytic subunit, the telomerase reverse transcriptase, is established as the dominant mechanism conferring the high telomerase activity in proliferating cells, such as embryonic stem and cancer cells. This study reveals a new mechanism of telomerase regulation through non-coding small RNA by showing that microRNA-498 (miR-498) induced by 1,25-dihydroxyvitamin D3 (1,25(OH)(2)D(3)) decreases the mRNA expression of the human telomerase reverse transcriptase. MiR-498 was first identified in a microarray analysis as the most induced microRNA by 1,25(OH)(2)D(3) in ovarian cancer cells and subsequently validated by quantitative polymerase chain reaction assays in multiple human cancer types. A functional vitamin D response element was defined in the 5-prime regulatory region of the miR-498 genome, which is occupied by the vitamin D receptor and its coactivators. Further studies showed that miR-498 targeted the 3-prime untranslated region of human telomerase reverse transcriptase mRNA and decreased its expression. The levels of miR-498 expression were decreased in malignant human ovarian tumors as well as human ovarian cancer cell lines. The ability of 1,25(OH)(2)D(3) to decrease human telomerase reverse transcriptase mRNA and to suppress ovarian cancer growth was compromised when miR-498 was depleted using the sponges in cell lines and mouse tumor models. Taken together, our studies define a novel mechanism of telomerase regulation by small non-coding RNAs and identify miR-498 as an important mediator for the anti-tumor activity of 1,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, Florida 33612-4799, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Ahn J, Woo HN, Ko A, Khim M, Kim C, Park NH, Song HY, Kim SW, Lee H. Multispecies-compatible antitumor effects of a cross-species small-interfering RNA against mammalian target of rapamycin. Cell Mol Life Sci 2012; 69:3147-58. [PMID: 22562582 PMCID: PMC11115121 DOI: 10.1007/s00018-012-0998-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 12/11/2022]
Abstract
Successful development of sequence-specific siRNA (small interfering RNA)-based drugs requires an siRNA design that functions consistently in different organisms. Utilizing the CAPSID program previously developed by our group, we here designed siRNAs against mammalian target of rapamycin (mTOR) that are entirely complementary among various species and investigated their multispecies-compatible gene-silencing properties. The mTOR siRNAs markedly reduced mTOR expression at both the mRNA and protein levels in human, mouse, and monkey cell lines. The reduction in mTOR expression resulted in inactivation of both mTOR complex I and II signaling pathways, as confirmed by reduced phosphorylation of p70S6K (70-kDa ribosomal protein S6 kinase), 4EBP1 (eIF4E-binding protein 1), and AKT, and nuclear accumulation of FOXO1 (forkhead box O1), with consequent cell-cycle arrest, proliferation inhibition, and autophagy activation. Moreover, interfering with mTOR activity in vivo using mTOR small-hairpin RNA-expressing recombinant adeno-associated virus led to significant antitumor effects in xenograft and allograft models. Thus, the present study demonstrates that cross-species siRNA successfully silences its target and readily produces multispecies-compatible phenotypic alterations-antitumor effects in the case of mTOR siRNA. Application of cross-species siRNA should greatly facilitate the development of siRNA-based therapeutic agents.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Microbiology, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil Songpa-Gu, Seoul, Korea
- Bio-Medical Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ha-Na Woo
- Department of Microbiology, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil Songpa-Gu, Seoul, Korea
- Bio-Medical Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ara Ko
- Department of Microbiology, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil Songpa-Gu, Seoul, Korea
| | - Maria Khim
- Department of Microbiology, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil Songpa-Gu, Seoul, Korea
| | - Catherine Kim
- Department of Microbiology, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil Songpa-Gu, Seoul, Korea
| | - Nung Hwa Park
- Bio-Medical Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho-Young Song
- Department of Radiology, University of Ulsan College of Medicine, Seoul, Korea
- Asan Medical Center, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- Cellular Dysfunction Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil Songpa-Gu, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
171
|
Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. THE PLANT CELL 2012; 24:3613-29. [PMID: 23023169 PMCID: PMC3480291 DOI: 10.1105/tpc.112.099945] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 05/18/2023]
Abstract
In RNA-directed silencing pathways, ternary complexes result from small RNA-guided ARGONAUTE (AGO) associating with target transcripts. Target transcripts are often silenced through direct cleavage (slicing), destabilization through slicer-independent turnover mechanisms, and translational repression. Here, wild-type and active-site defective forms of several Arabidopsis thaliana AGO proteins involved in posttranscriptional silencing were used to examine several AGO functions, including small RNA binding, interaction with target RNA, slicing or destabilization of target RNA, secondary small interfering RNA formation, and antiviral activity. Complementation analyses in ago mutant plants revealed that the catalytic residues of AGO1, AGO2, and AGO7 are required to restore the defects of Arabidopsis ago1-25, ago2-1, and zip-1 (AGO7-defective) mutants, respectively. AGO2 had slicer activity in transient assays but could not trigger secondary small interfering RNA biogenesis, and catalytically active AGO2 was necessary for local and systemic antiviral activity against Turnip mosaic virus. Slicer-defective AGOs associated with miRNAs and stabilized AGO-miRNA-target RNA ternary complexes in individual target coimmunoprecipitation assays. In genome-wide AGO-miRNA-target RNA coimmunoprecipitation experiments, slicer-defective AGO1-miRNA associated with target RNA more effectively than did wild-type AGO1-miRNA. These data not only reveal functional roles for AGO1, AGO2, and AGO7 slicer activity, but also indicate an approach to capture ternary complexes more efficiently for genome-wide analyses.
Collapse
Affiliation(s)
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | | | | | - Taiowa A. Montgomery
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Tammy Nguyen
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Josh T. Cuperus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - James C. Carrington
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Address correspondence to
| |
Collapse
|
172
|
Ernoult-Lange M, Baconnais S, Harper M, Minshall N, Souquere S, Boudier T, Bénard M, Andrey P, Pierron G, Kress M, Standart N, le Cam E, Weil D. Multiple binding of repressed mRNAs by the P-body protein Rck/p54. RNA (NEW YORK, N.Y.) 2012; 18:1702-15. [PMID: 22836354 PMCID: PMC3425784 DOI: 10.1261/rna.034314.112] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/24/2012] [Indexed: 05/25/2023]
Abstract
Translational repression is achieved by protein complexes that typically bind 3' UTR mRNA motifs and interfere with the formation of the cap-dependent initiation complex, resulting in mRNPs with a closed-loop conformation. We demonstrate here that the human DEAD-box protein Rck/p54, which is a component of such complexes and central to P-body assembly, is in considerable molecular excess with respect to cellular mRNAs and enriched to a concentration of 0.5 mM in P-bodies, where it is organized in clusters. Accordingly, multiple binding of p54 proteins along mRNA molecules was detected in vivo. Consistently, the purified protein bound RNA with no sequence specificity and high nanomolar affinity. Moreover, bound RNA molecules had a relaxed conformation. While RNA binding was ATP independent, relaxing of bound RNA was dependent on ATP, though not on its hydrolysis. We propose that Rck/p54 recruitment by sequence-specific translational repressors leads to further binding of Rck/p54 along mRNA molecules, resulting in their masking, unwinding, and ultimately recruitment to P-bodies. Rck/p54 proteins located at the 5' extremity of mRNA can then recruit the decapping complex, thus coupling translational repression and mRNA degradation.
Collapse
Affiliation(s)
| | - Sonia Baconnais
- CNRS UMR 8126, Institut Gustave Roussy, 94800 Villejuif, France
| | | | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Sylvie Souquere
- CNRS UMR 8122, Institut Gustave Roussy, 94800 Villejuif, France
| | | | - Marianne Bénard
- UPMC Univ Paris 06, CNRS-FRE 3402, 75252 Paris cedex 5, France
| | - Philippe Andrey
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, 78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, 78000 Versailles, France
| | - Gérard Pierron
- CNRS UMR 8122, Institut Gustave Roussy, 94800 Villejuif, France
| | - Michel Kress
- UPMC Univ Paris 06, CNRS-FRE 3402, 75252 Paris cedex 5, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Eric le Cam
- CNRS UMR 8126, Institut Gustave Roussy, 94800 Villejuif, France
| | - Dominique Weil
- UPMC Univ Paris 06, CNRS-FRE 3402, 75252 Paris cedex 5, France
| |
Collapse
|
173
|
Shi YY, Wu XB, Huang ZY, Wang ZL, Yan WY, Zeng ZJ. Epigenetic modification of gene expression in honey bees by heterospecific gland secretions. PLoS One 2012; 7:e43727. [PMID: 22928024 PMCID: PMC3424160 DOI: 10.1371/journal.pone.0043727] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/23/2012] [Indexed: 01/21/2023] Open
Abstract
Background In the honey bee (Apis mellifera), queen and workers have different behavior and reproductive capacity despite possessing the same genome. The primary substance that leads to this differentiation is royal jelly (RJ), which contains a range of proteins, amino acids, vitamins and nucleic acids. MicroRNA (miRNA) has been found to play an important role in regulating the expression of protein-coding genes and cell biology. In this study, we characterized the miRNAs in RJ from two honey bee sister species and determined their possible effect on transcriptome in one species. Methodology/Principal Findings We sequenced the miRNAs in RJ either from A. mellifera (RJM) or A. cerana (RJC). We then determined the global transcriptomes of adult A. mellifera developed from larvae fed either with RJM (mRJM) or RJC (mRJC). Finally we analyzed the target genes of those miRNA that are species specific or differentially expressed in the two honey bee species. We show that there were differences in miRNA between RJM and RJC, and that transcriptomes of adult A. mellifera were affected by the two types of RJ. A high proportion (23.3%) of the affected genes were target genes of differential miRNAs. Conclusion We show for the first time that there are differences in miRNAs in RJ between A. mellifera and A. cerana. Further, the differences in transcriptomes of bees reared from these two RJs might be related to miRNA differences of the two species. This study provides the first evidence that heterospecific royal jelly can modify gene expression in honey bees through an epigenetic mechanism.
Collapse
Affiliation(s)
- Yuan Yuan Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zachary Y. Huang
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- * E-mail:
| |
Collapse
|
174
|
Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012; 13:357. [PMID: 22849433 PMCID: PMC3532190 DOI: 10.1186/1471-2164-13-357] [Citation(s) in RCA: 423] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported. RESULTS Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146a overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cell types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p). CONCLUSION The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.
Collapse
Affiliation(s)
- Jasenka Guduric-Fuchs
- Centre for Vision and Vascular Science, Queen's University Belfast, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
175
|
Vacchi-Suzzi C, Bauer Y, Berridge BR, Bongiovanni S, Gerrish K, Hamadeh HK, Letzkus M, Lyon J, Moggs J, Paules RS, Pognan F, Staedtler F, Vidgeon-Hart MP, Grenet O, Couttet P. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One 2012; 7:e40395. [PMID: 22859947 PMCID: PMC3409211 DOI: 10.1371/journal.pone.0040395] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
Abstract
Anti-cancer therapy based on anthracyclines (DNA intercalating Topoisomerase II inhibitors) is limited by adverse effects of these compounds on the cardiovascular system, ultimately causing heart failure. Despite extensive investigations into the effects of doxorubicin on the cardiovascular system, the molecular mechanisms of toxicity remain largely unknown. MicroRNAs are endogenously transcribed non-coding 22 nucleotide long RNAs that regulate gene expression by decreasing mRNA stability and translation and play key roles in cardiac physiology and pathologies. Increasing doses of doxorubicin, but not etoposide (a Topoisomerase II inhibitor devoid of cardiovascular toxicity), specifically induced the up-regulation of miR-208b, miR-216b, miR-215, miR-34c and miR-367 in rat hearts. Furthermore, the lowest dosing regime (1 mg/kg/week for 2 weeks) led to a detectable increase of miR-216b in the absence of histopathological findings or alteration of classical cardiac stress biomarkers. In silico microRNA target predictions suggested that a number of doxorubicin-responsive microRNAs may regulate mRNAs involved in cardiac tissue remodeling. In particular miR-34c was able to mediate the DOX-induced changes of Sipa1 mRNA (a mitogen-induced Rap/Ran GTPase activating protein) at the post-transcriptional level and in a seed sequence dependent manner. Our results show that integrated heart tissue microRNA and mRNA profiling can provide valuable early genomic biomarkers of drug-induced cardiac injury as well as novel mechanistic insight into the underlying molecular pathways.
Collapse
Affiliation(s)
- Caterina Vacchi-Suzzi
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Yasmina Bauer
- Translational Science Biology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Brian R. Berridge
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Sandrine Bongiovanni
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Kevin Gerrish
- National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Hisham K. Hamadeh
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Martin Letzkus
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jonathan Lyon
- Investigative Preclinical Toxicology, GlaxoSmithKline, Ware, United Kingdom
| | - Jonathan Moggs
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Richard S. Paules
- National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - François Pognan
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Frank Staedtler
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Olivier Grenet
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Philippe Couttet
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
176
|
Mase Y, Ishibashi O, Ishikawa T, Takizawa T, Kiguchi K, Ohba T, Katabuchi H, Takeshita T, Takizawa T. MiR-21 is enriched in the RNA-induced silencing complex and targets COL4A1 in human granulosa cell lines. Reprod Sci 2012; 19:1030-40. [PMID: 22573493 DOI: 10.1177/1933719112442245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are noncoding small RNAs that play important roles in a variety of physiological and pathological events. In this study, we performed large-scale profiling of EIF2C2-bound miRNAs in 3 human granulosa-derived cell lines (ie, KGN, HSOGT, and GC1a) by high-throughput sequencing and found that miR-21 accounted for more than 80% of EIF2C2-bound miRNAs, suggesting that it was enriched in the RNA-induced silencing complex (RISC) and played a functional role in human granulosa cell (GC) lines. We also found high expression levels of miR-21 in primary human GCs. Assuming that miR-21 target mRNAs are enriched in RISC, we performed cDNA cloning of EIF2C2-bound mRNAs in KGN cells. We identified COL4A1 mRNA as a miR-21 target in the GC lines. These data suggest that miR-21 is involved in the regulation of the synthesis of COL4A1, a component of the basement membrane surrounding the GC layer and granulosa-embedded extracellular structure.
Collapse
Affiliation(s)
- Yuri Mase
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Gu Y, Xu Y, Jiang L, Cao X, Liu F, Li H, Zhang L, Li Z, Li J, Ye J, Li Q. Differentially expressed microRNAs in Huh-7 cells expressing HCV core genotypes 3a or 1b: potential functions and downstream pathways. Int J Mol Med 2012; 30:374-82. [PMID: 22580575 DOI: 10.3892/ijmm.2012.991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/23/2012] [Indexed: 02/06/2023] Open
Abstract
microRNA (miRNA) dysfunction is believed to play important roles in human diseases, including viral infectious diseases. Hepatitis C virus (HCV) infection promotes the development of steatosis, cirrhosis and hepatocellular carcinoma, which is genotype-specific. In order to characterize the miRNA expression profile of Huh-7 cells expressing the HCV core 3a vs. 1b, microarrays and real-time PCR were performed. Consequently, 16 miRNAs (5 miRNAs upregulated and 11 miRNAs downregulated) were found to be dysregulated. In addition, we generated the predicted and validated targets of the differentially expressed miRNAs and explored potential downstream function categories and pathways of target genes using databases of Gene Ontology (GO) and PANTHER and the database for annotation, visualization and integrated discovery (David). The computational results indicated that the dysregulated miRNAs might perform the functions of cellular metabolism and cellular growth. Finally, these biological effects were preliminarily validated. This study identifies a specific miRNA expression profile in cells expressing HCV core proteins of different genotypes (genotype 3a and 1b), which may account for the variable pathophysiological manifestation associated with HCV infection.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Voliotis M, Cohen N, Molina-París C, Liverpool TB. Proofreading of misincorporated nucleotides in DNA transcription. Phys Biol 2012; 9:036002. [PMID: 22551978 DOI: 10.1088/1478-3975/9/3/036002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighbouring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.
Collapse
Affiliation(s)
- Margaritis Voliotis
- School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK.
| | | | | | | |
Collapse
|
179
|
Beillard E, Ong SC, Giannakakis A, Guccione E, Vardy LA, Voorhoeve PM. miR-Sens--a retroviral dual-luciferase reporter to detect microRNA activity in primary cells. RNA (NEW YORK, N.Y.) 2012; 18:1091-100. [PMID: 22417692 PMCID: PMC3334695 DOI: 10.1261/rna.031831.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.
Collapse
Affiliation(s)
- Emmanuel Beillard
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Siau Chi Ong
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | | | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, Singapore
| | - Leah A. Vardy
- Institute of Medical Biology, Immunos, Singapore 138648, Singapore
| | - P. Mathijs Voorhoeve
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
- Corresponding author.E-mail .
| |
Collapse
|
180
|
Creighton CJ, Hernandez-Herrera A, Jacobsen A, Levine DA, Mankoo P, Schultz N, Du Y, Zhang Y, Larsson E, Sheridan R, Xiao W, Spellman PT, Getz G, Wheeler DA, Perou CM, Gibbs RA, Sander C, Hayes DN, Gunaratne PH, The Cancer Genome Atlas Research Network. Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma. PLoS One 2012; 7:e34546. [PMID: 22479643 PMCID: PMC3315571 DOI: 10.1371/journal.pone.0034546] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/01/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Cancer Genome Atlas (TCGA) Network recently comprehensively catalogued the molecular aberrations in 487 high-grade serous ovarian cancers, with much remaining to be elucidated regarding the microRNAs (miRNAs). Here, using TCGA ovarian data, we surveyed the miRNAs, in the context of their predicted gene targets. METHODS AND RESULTS Integration of miRNA and gene patterns yielded evidence that proximal pairs of miRNAs are processed from polycistronic primary transcripts, and that intronic miRNAs and their host gene mRNAs derive from common transcripts. Patterns of miRNA expression revealed multiple tumor subtypes and a set of 34 miRNAs predictive of overall patient survival. In a global analysis, miRNA:mRNA pairs anti-correlated in expression across tumors showed a higher frequency of in silico predicted target sites in the mRNA 3'-untranslated region (with less frequency observed for coding sequence and 5'-untranslated regions). The miR-29 family and predicted target genes were among the most strongly anti-correlated miRNA:mRNA pairs; over-expression of miR-29a in vitro repressed several anti-correlated genes (including DNMT3A and DNMT3B) and substantially decreased ovarian cancer cell viability. CONCLUSIONS This study establishes miRNAs as having a widespread impact on gene expression programs in ovarian cancer, further strengthening our understanding of miRNA biology as it applies to human cancer. As with gene transcripts, miRNAs exhibit high diversity reflecting the genomic heterogeneity within a clinically homogeneous disease population. Putative miRNA:mRNA interactions, as identified using integrative analysis, can be validated. TCGA data are a valuable resource for the identification of novel tumor suppressive miRNAs in ovarian as well as other cancers.
Collapse
Affiliation(s)
- Chad J. Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (CJC); (PHG)
| | | | - Anders Jacobsen
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Douglas A. Levine
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Parminder Mankoo
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nikolaus Schultz
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ying Du
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yiqun Zhang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erik Larsson
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Robert Sheridan
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Weimin Xiao
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Paul T. Spellman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - David A. Wheeler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - D. Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Internal Medicine, Division of Medical Oncology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Preethi H. Gunaratne
- Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail: (CJC); (PHG)
| | | |
Collapse
|
181
|
Wu X, Brewer G. The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012; 500:10-21. [PMID: 22452843 DOI: 10.1016/j.gene.2012.03.021] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/20/2012] [Accepted: 03/04/2012] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is an essential step in gene expression to set mRNA abundance in the cytoplasm. The binding of proteins and/or noncoding RNAs to specific recognition sequences or secondary structures within mRNAs dictates mRNA decay rates by recruiting specific enzyme complexes that perform the destruction processes. Often, the cell coordinates the degradation or stabilization of functional subsets of mRNAs encoding proteins collectively required for a biological process. As well, extrinsic or intrinsic stimuli activate signal transduction pathways that modify the mRNA decay machinery with consequent effects on decay rates and mRNA abundance. This review is an update to our 2001 Gene review on mRNA stability in mammalian cells, and we survey the enormous progress made over the past decade.
Collapse
Affiliation(s)
- Xiangyue Wu
- Department of Molecular Genetics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
182
|
Jones CI, Zabolotskaya MV, Newbury SF. The 5' → 3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:455-68. [PMID: 22383165 DOI: 10.1002/wrna.1109] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
XRN1 is a 5' → 3' processive exoribonuclease that degrades mRNAs after they have been decapped. It is highly conserved in all eukaryotes, including homologs in Drosophila melanogaster (Pacman), Caenorhabditis elegans (XRN1), and Saccharomyces cerevisiae (Xrn1p). As well as being a key enzyme in RNA turnover, XRN1 is involved in nonsense-mediated mRNA decay and degradation of mRNAs after they have been targeted by small interfering RNAs or microRNAs. The crystal structure of XRN1 can explain its processivity and also the selectivity of the enzyme for 5' monophosphorylated RNA. In eukaryotic cells, XRN1 is often found in particles known as processing bodies (P bodies) together with other proteins involved in the 5' → 3' degradation pathway, such as DCP2 and the helicase DHH1 (Me31B). Although XRN1 shows little specificity to particular 5' monophosphorylated RNAs in vitro, mutations in XRN1 in vivo have specific phenotypes suggesting that it specifically degrades a subset of RNAs. In Drosophila, mutations in the gene encoding the XRN1 homolog pacman result in defects in wound healing, epithelial closure and stem cell renewal in testes. We propose a model where specific mRNAs are targeted to XRN1 via specific binding of miRNAs and/or RNA-binding proteins to instability elements within the RNA. These guide the RNA to the 5' core degradation apparatus for controlled degradation.
Collapse
|
183
|
A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 2012; 31:1985-98. [PMID: 22354042 DOI: 10.1038/emboj.2012.45] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/27/2012] [Indexed: 12/15/2022] Open
Abstract
Cancer cells preferentially metabolize glucose through aerobic glycolysis. This phenomenon, known as the Warburg effect, is an anomalous characteristic of glucose metabolism in cancer cells. Chronic inflammation is a key promoting factor of tumourigenesis. It remains, however, largely unexplored whether and how pro-tumourigenic inflammation regulates glucose metabolism in cancer cells. Here, we show that pro-inflammatory cytokines promote glycolysis in breast cancer cells, and that the inflammation-induced miR-155 functions as an important mediator in this process. We further show that miR-155 acts to upregulate hexokinase 2 (hk2), through two distinct mechanisms. First, miR-155 promotes hk2 transcription by activation of signal transducer and activator of transcription 3 (STAT3), a transcriptional activator for hk2. Second, via targeting C/EBPβ (a transcriptional activator for mir-143), miR-155 represses mir-143, a negative regulator of hk2, thus resulting in upregulation of hk2 expression at the post-transcriptional level. The miR-155-mediated hk2 upregulation also appears to operate in other types of cancer cells examined. We suggest that the miR-155/miR-143/HK2 axis may represent a common mechanism linking inflammation to the altered metabolism in cancer cells.
Collapse
|
184
|
Low JT, Knoepfel SA, Watts JM, ter Brake O, Berkhout B, Weeks KM. SHAPE-directed discovery of potent shRNA inhibitors of HIV-1. Mol Ther 2012; 20:820-8. [PMID: 22314289 DOI: 10.1038/mt.2011.299] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The RNA interference (RNAi) pathway can be exploited using short hairpin RNAs (shRNAs) to durably inactivate pathogenic genes. Prediction of optimal target sites is notoriously inaccurate and current approaches applied to HIV-1 show weak correlations with virus inhibition. In contrast, using a high-content model for disrupting pre-existing intramolecular structure in the HIV-1 RNA, as achievable using high-resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemical probing information, we discovered strong correlations between inhibition of HIV-1 production in a quantitative cell-based assay and very simple thermodynamic features in the target RNA. Strongest inhibition occurs at RNA target sites that both have an accessible "seed region" and, unexpectedly, are structurally accessible in a newly identified downstream flanking sequence. We then used these simple rules to create a new set of shRNAs and achieved inhibition of HIV-1 production of 90% or greater for up to 82% of designed shRNAs. These shRNAs inhibit HIV-1 replication in therapy-relevant T cells and show no or low cytotoxicity. The remarkable success of this straightforward SHAPE-based approach emphasizes that RNAi is governed, in significant part, by very simple, predictable rules reflecting the underlying RNA structure and illustrates principles likely to prove broadly useful in understanding transcriptome-scale biological recognition and therapeutics involving RNA.
Collapse
Affiliation(s)
- Justin T Low
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | |
Collapse
|
185
|
Seetin MG, Mathews DH. TurboKnot: rapid prediction of conserved RNA secondary structures including pseudoknots. ACTA ACUST UNITED AC 2012; 28:792-8. [PMID: 22285566 DOI: 10.1093/bioinformatics/bts044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MOTIVATION Many RNA molecules function without being translated into proteins, and function depends on structure. Pseudoknots are motifs in RNA secondary structures that are difficult to predict but are also often functionally important. RESULTS TurboKnot is a new algorithm for predicting the secondary structure, including pseudoknotted pairs, conserved across multiple sequences. TurboKnot finds 81.6% of all known base pairs in the systems tested, and 75.6% of predicted pairs were found in the known structures. Pseudoknots are found with half or better of the false-positive rate of previous methods.
Collapse
Affiliation(s)
- Matthew G Seetin
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
186
|
Abstract
RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.
Collapse
Affiliation(s)
- Lirui Guan
- Department of Chemistry, The Kellogg School of Science
and Technology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458,
United States
| | - Matthew D. Disney
- Department of Chemistry, The Kellogg School of Science
and Technology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458,
United States
| |
Collapse
|
187
|
Sculpting the maturation, softening and ethylene pathway: the influences of microRNAs on tomato fruits. BMC Genomics 2012; 13:7. [PMID: 22230737 PMCID: PMC3266637 DOI: 10.1186/1471-2164-13-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRNAs), a ubiquitous class of short RNAs, play vital roles in physiological and biochemical processes in plants by mediating gene silencing at post-transcriptional (PTGS) level. Tomato is a model system to study molecular basis of fleshy fruit ripening and senescence, ethylene biosynthesis and signal transduction owing to its genetic and molecular tractability. To study the functions of miRNAs in tomato fruit ripening and senescence, and their possible roles in ethylene response, the next generation sequencing method was employed to identify miRNAs in tomato fruit. Bioinformatics and molecular biology approaches were combined to profile the miRNAs expression patterns at three different fruit ripening stages and by exogenous ethylene treatment. Results In addition to 7 novel miRNA families, 103 conserved miRNAs belonging to 24 families and 10 non-conserved miRNAs matching 9 families were identified in our libraries. The targets of many these miRNAs were predicted to be transcriptional factors. Other targets are known to play roles in the regulation of metabolic processes. Interestingly, some targets were predicted to be involved in fruit ripening and softening, such as Pectate Lyase, beta-galactosidase, while a few others were predicted to be involved in ethylene biosynthesis and signaling pathway, such as ACS, EIN2 and CTR1. The expression patterns of a number of such miRNAs at three ripening stages were confirmed by stem-loop RT-PCR, which showed a strong negative correlation with that of their targets. The regulation of exogenous ethylene on miRNAs expression profiles were analyzed simultaneously, and 3 down-regulated, 5 up-regulated miRNAs were found in this study. Conclusions A combination of high throughput sequencing and molecular biology approaches was used to explore the involvement of miRNAs during fruit ripening. Several miRNAs showed differential expression profiles during fruit ripening, and a number of miRNAs were influenced by ethylene treatment. The results suggest the importance of miRNAs in fruit ripening and ethylene response.
Collapse
|
188
|
Ishibashi O, Ohkuchi A, Ali MM, Kurashina R, Luo SS, Ishikawa T, Takizawa T, Hirashima C, Takahashi K, Migita M, Ishikawa G, Yoneyama K, Asakura H, Izumi A, Matsubara S, Takeshita T, Takizawa T. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia. Hypertension 2011; 59:265-73. [PMID: 22203747 DOI: 10.1161/hypertensionaha.111.180232] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, to search for novel preeclampsia (PE) biomarkers, we focused on microRNA expression and function in the human placenta complicated with PE. By comprehensive analyses of microRNA expression, we identified 22 microRNAs significantly upregulated in preeclamptic placentas, 5 of which were predicted in silico to commonly target the mRNA encoding hydroxysteroid (17-β) dehydrogenase 1 (HSD17B1), a steroidogenetic enzyme expressed predominantly in the placenta. In vivo HSD17B1 expression, at both the mRNA and protein levels, was significantly decreased in preeclamptic placentas. Of these microRNAs, miR-210 and miR-518c were experimentally validated to target HSD17B1 by luciferase assay, real-time PCR, and ELISA. Furthermore, we found that plasma HSD17B1 protein levels in preeclamptic pregnant women reflected the decrease of its placental expression. Moreover, a prospective cohort study of plasma HSD17B1 revealed a significant reduction of plasma HSD17B1 levels in pregnant women at 20 to 23 and 27 to 30 weeks of gestation before PE onset compared with those with normal pregnancies. The sensitivities/specificities for predicting PE at 20 to 23 and 27 to 30 weeks of gestation were 0.75/0.67 (cutoff value=21.9 ng/mL) and 0.88/0.51 (cutoff value=30.5 ng/mL), and the odds ratios were 6.09 (95% CI: 2.35-15.77) and 7.83 (95% CI: 1.70-36.14), respectively. We conclude that HSD17B1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placenta and that reducing plasma level of HSD17B1 precedes the onset of PE and is a potential prognostic factor for PE.
Collapse
Affiliation(s)
- Osamu Ishibashi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Nakayama H, Takahashi N, Isobe T. Informatics for mass spectrometry-based RNA analysis. MASS SPECTROMETRY REVIEWS 2011; 30:1000-1012. [PMID: 21328601 DOI: 10.1002/mas.20325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS) allows the sensitive and direct characterization of biological macromolecules and therefore has the potential to complement the more conventional genetic and biochemical methods used for RNA characterization. Although MS has been used much less frequently for RNA research than it has been for protein research, recent technical improvements in both instrumentation and software make MS a powerful tool for RNA analysis because it can now be used to sequence, quantify, and chemically analyze RNAs. Mass spectrometry is particularly well suited for the characterization of RNAs associated with ribonucleoprotein complexes. This review focuses on the software and databases that can be used for MS-based RNA studies. Software for the processing of raw mass spectra, the identification and characterization of RNAs by mass mapping, de novo sequencing, and tandem MS-based database searching are available.
Collapse
Affiliation(s)
- Hiroshi Nakayama
- Biomolecular Characterization Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
190
|
Vicinus B, Rubie C, Faust SK, Frick VO, Ghadjar P, Wagner M, Graeber S, Schilling MK. miR-21 functionally interacts with the 3'UTR of chemokine CCL20 and down-regulates CCL20 expression in miR-21 transfected colorectal cancer cells. Cancer Lett 2011; 316:105-12. [PMID: 22099878 DOI: 10.1016/j.canlet.2011.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
As deregulation of miRNAs and chemokine CCL20 was shown to play a role in colorectal cancer (CRC) pathogenesis, we analyzed the functional interactions of candidate miRNAs with CCL20 mRNA. After target prediction software programs indicated a role for miR-21 in CCL20 regulation, we applied the luciferase reporter assay system to demonstrate that miR-21 functionally interacts with the 3'UTR of CCL20 mRNA and down-regulates CCL20 in miR-21 mimic transfected CRC cell lines (Caco-2, SW480 and SW620). Thus, regulation of CCL20 expression by miR-21 might be a regulatory mechanism involved in progression of CRC.
Collapse
Affiliation(s)
- Benjamin Vicinus
- Department of General, Visceral, Vascular and Paediatric Surgery, University of the Saarland, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Wu J, Bao J, Wang L, Hu Y, Xu C. MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC DEVELOPMENTAL BIOLOGY 2011; 11:64. [PMID: 22017809 PMCID: PMC3227627 DOI: 10.1186/1471-213x-11-64] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/24/2011] [Indexed: 11/22/2024]
Abstract
Background There have been increasing attentions on the role of small RNAs, especially microRNAs in post-transcriptional gene regulation during spermatogenesis. MicroRNA-184 (miR-184) has been shown to be mainly expressed in the testis and brain, and that its expression levels are by far the highest in the testis. However, the role of miR-184 in mammalian spermatogenesis remains unclear. Results In this study, we demonstrated that miR-184 levels were increased during mouse postnatal testis development. Specifically, miR-184 expression was restricted to the germ cells from spermatogonia to round spermatids. Overexpression of miR-184 promoted the proliferation of a germ cell line, GC-1spg. Moreover, miR-184 downregulated nuclear receptor corepressor 2 (Ncor2) by targeting its 3' untranslated region through inhibiting NCOR2 protein translation. Conclusions MiR-184 may be involved in the post-transcription regulation of mRNAs such as Ncor2 in mammalian spermatogenesis.
Collapse
Affiliation(s)
- Jingwen Wu
- Department of Histology & Embryology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
192
|
Juliano C, Wang J, Lin H. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 2011; 45:447-69. [PMID: 21942366 DOI: 10.1146/annurev-genet-110410-132541] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The topipotency of the germline is the full manifestation of the pluri- and multipotency of embryonic and adult stem cells, thus the germline and stem cells must share common mechanisms that guarantee their multipotentials in development. One of the few such known shared mechanisms is represented by Piwi proteins, which constitute one of the two subfamilies of the Argonaute protein family. Piwi proteins bind to Piwi-interacting RNAs (piRNAs) that are generally 26 to 31 nucleotides in length. Both Piwi proteins and piRNAs are most abundantly expressed in the germline. Moreover, Piwi proteins are expressed broadly in certain types of somatic stem/progenitor cells and other somatic cells across animal phylogeny. Recent studies indicate that the Piwi-piRNA pathway mediates epigenetic programming and posttranscriptional regulation, which may be responsible for its function in germline specification, gametogenesis, stem cell maintenance, transposon silencing, and genome integrity in diverse organisms.
Collapse
Affiliation(s)
- Celina Juliano
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA.
| | | | | |
Collapse
|
193
|
Biasiolo M, Sales G, Lionetti M, Agnelli L, Todoerti K, Bisognin A, Coppe A, Romualdi C, Neri A, Bortoluzzi S. Impact of host genes and strand selection on miRNA and miRNA* expression. PLoS One 2011; 6:e23854. [PMID: 21909367 PMCID: PMC3166117 DOI: 10.1371/journal.pone.0023854] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/26/2011] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of miRNAs expression plays a critical role in the pathogenesis of genetic, multifactorial disorders and in human cancers. We exploited sequence, genomic and expression information to investigate two main aspects of post-transcriptional regulation in miRNA biogenesis, namely strand selection regulation and expression relationships between intragenic miRNAs and host genes. We considered miRNAs expression profiles, measured in five sizeable microarray datasets, including samples from different normal cell types and tissues, as well as different tumours and disease states. First, the study of expression profiles of “sister” miRNA pairs (miRNA/miRNA*, 5′ and 3′ strands of the same hairpin precursor) showed that the strand selection is highly regulated since it shows tissue-/cell-/condition-specific modulation. We used information about the direction and the strength of the strand selection bias to perform an unsupervised cluster analysis for the sample classification evidencing that is able to distinguish among different tissues, and sometimes between normal and malignant cells. Then, considering a minimum expression threshold, in few miRNA pairs only one mature miRNA is always present in all considered cell types, whereas the majority of pairs were concurrently expressed in some cell types and alternatively in others. In a significant fraction of concurrently expressed pairs, the major and the minor forms found at comparable levels may contribute to post-transcriptional gene silencing, possibly in a coordinate way. In the second part of the study, the behaved tendency to co-expression of intragenic miRNAs and their “host” mRNA genes was confuted by expression profiles examination, suggesting that the expression profile of a given host gene can hardly be a good estimator of co-transcribed miRNA(s) for post-transcriptional regulatory networks inference. Our results point out the regulatory importance of post-transcriptional phases of miRNAs biogenesis, reinforcing the role of such layer of miRNA biogenesis in miRNA-based regulation of cell activities.
Collapse
Affiliation(s)
- Marta Biasiolo
- Department of Biology, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | - Marta Lionetti
- Matarelli Foundation, Department of Pharmacology, University of Milano, Milano, Italy
- Department of Medical Sciences, University of Milano, Hematology 1-CTMO, Foundation IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Luca Agnelli
- Department of Medical Sciences, University of Milano, Hematology 1-CTMO, Foundation IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Katia Todoerti
- Department of Medical Sciences, University of Milano, Hematology 1-CTMO, Foundation IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | - Antonino Neri
- Matarelli Foundation, Department of Pharmacology, University of Milano, Milano, Italy
| | | |
Collapse
|
194
|
MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 2011; 31:4087-96. [PMID: 21807897 DOI: 10.1128/mcb.01276-10] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hypoxia-inducible factor (HIF) is a key regulator of the transcriptional response to hypoxia. While the mechanism underpinning HIF activation is well understood, little is known about its resolution. Both the protein and the mRNA levels of HIF-1α (but not HIF-2α) were decreased in intestinal epithelial cells exposed to prolonged hypoxia. Coincident with this, microRNA (miRNA) array analysis revealed multiple hypoxia-inducible miRNAs. Among these was miRNA-155 (miR-155), which is predicted to target HIF-1α mRNA. We confirmed the hypoxic upregulation of miR-155 in cultured cells and intestinal tissue from mice exposed to hypoxia. Furthermore, a role for HIF-1α in the induction of miR-155 in hypoxia was suggested by the identification of hypoxia response elements in the miR-155 promoter and confirmed experimentally. Application of miR-155 decreased the HIF-1α mRNA, protein, and transcriptional activity in hypoxia, and neutralization of endogenous miR-155 reversed the resolution of HIF-1α stabilization and activity. Based on these data and a mathematical model of HIF-1α suppression by miR-155, we propose that miR-155 induction contributes to an isoform-specific negative-feedback loop for the resolution of HIF-1α activity in cells exposed to prolonged hypoxia, leading to oscillatory behavior of HIF-1α-dependent transcription.
Collapse
|
195
|
Wilson PA, Plucinski M. A simple Bayesian estimate of direct RNAi gene regulation events from differential gene expression profiles. BMC Genomics 2011; 12:250. [PMID: 21599879 PMCID: PMC3128064 DOI: 10.1186/1471-2164-12-250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 05/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microarrays are commonly used to investigate both the therapeutic potential and functional effects of RNA interfering (RNAi) oligonucleotides such as microRNA (miRNA) and small interfering RNA (siRNA). However, the resulting datasets are often challenging to interpret as they include extensive information relating to both indirect transcription effects and off-target interference events. METHOD In an attempt to refine the utility of microarray expression data when evaluating the direct transcriptional affects of an RNAi agent we have developed SBSE (Simple Bayesian Seed Estimate). The key assumption implemented in SBSE is that both direct regulation of transcription by miRNA, and siRNA off-target interference, can be estimated using the differential distribution of an RNAi sequence (seed) motif in a ranked 3' untranslated region (3' UTR) sequence repository. SBSE uses common microarray summary statistics (i.e. fold change) and a simple Bayesian analysis to estimate how the RNAi agent dictated the observed differential expression profile. On completion a trace of the estimate and the location of the optimal partitioning of the dataset are plotted within a simple graphical representation of the 3'UTR landscape. The combined estimates define the differential distribution of the query motif within the dataset and by inference are used to quantify the magnitude of the direct RNAi transcription effect. RESULTS SBSE has been evaluated using five diverse human RNAi microarray focused investigations. In each instance SBSE unambiguously identified the most likely location of the direct RNAi effects for each of the differential gene expression profiles. CONCLUSION These analyses indicate that miRNA with conserved seed regions may share minimal biological activity and that SBSE can be used to differentiate siRNAs of similar efficacy but with different off-target signalling potential.
Collapse
Affiliation(s)
- Paul A Wilson
- Computational Biology, GlaxoSmithKline Medicine Research Centre, Stevenage, UK.
| | | |
Collapse
|
196
|
Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases. PLoS One 2011; 6:e20069. [PMID: 21603574 PMCID: PMC3095640 DOI: 10.1371/journal.pone.0020069] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/15/2011] [Indexed: 12/19/2022] Open
Abstract
Therapeutic targeting of host cell factors required for virus replication rather than of pathogen components opens new perspectives to counteract virus infections. Anticipated advantages of this approach include a heightened barrier against the development of viral resistance and a broadened pathogen target spectrum. Myxoviruses are predominantly associated with acute disease and thus are particularly attractive for this approach since treatment time can be kept limited. To identify inhibitor candidates, we have analyzed hit compounds that emerged from a large-scale high-throughput screen for their ability to block replication of members of both the orthomyxovirus and paramyxovirus families. This has returned a compound class with broad anti-viral activity including potent inhibition of different influenza virus and paramyxovirus strains. After hit-to-lead chemistry, inhibitory concentrations are in the nanomolar range in the context of immortalized cell lines and human PBMCs. The compound shows high metabolic stability when exposed to human S-9 hepatocyte subcellular fractions. Antiviral activity is host-cell species specific and most pronounced in cells of higher mammalian origin, supporting a host-cell target. While the compound induces a temporary cell cycle arrest, host mRNA and protein biosynthesis are largely unaffected and treated cells maintain full metabolic activity. Viral replication is blocked at a post-entry step and resembles the inhibition profile of a known inhibitor of viral RNA-dependent RNA-polymerase (RdRp) activity. Direct assessment of RdRp activity in the presence of the reagent reveals strong inhibition both in the context of viral infection and in reporter-based minireplicon assays. In toto, we have identified a compound class with broad viral target range that blocks host factors required for viral RdRp activity. Viral adaptation attempts did not induce resistance after prolonged exposure, in contrast to rapid adaptation to a pathogen-directed inhibitor of RdRp activity.
Collapse
|
197
|
Poulton JS, Huang YC, Smith L, Sun J, Leake N, Schleede J, Stevens LM, Deng WM. The microRNA pathway regulates the temporal pattern of Notch signaling in Drosophila follicle cells. Development 2011; 138:1737-45. [PMID: 21447549 DOI: 10.1242/dev.059352] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular development requires the correct spatial and temporal regulation of cell division and differentiation. These processes are frequently coordinated by the activities of various signaling pathways such as Notch signaling. From a screen for modifiers of Notch signaling in Drosophila we have identified the RNA helicase Belle, a recently described component of the RNA interference pathway, as an important regulator of the timing of Notch activity in follicle cells. We found that loss of Belle delays activation of Notch signaling, which results in delayed follicle cell differentiation and defects in the cell cycle. Because mutations in well-characterized microRNA components phenocopied the Notch defects observed in belle mutants, Belle might be functioning in the microRNA pathway in follicle cells. The effect of loss of microRNAs on Notch signaling occurs upstream of Notch cleavage, as expression of the constitutively active intracellular domain of Notch in microRNA-defective cells restored proper activation of Notch. Furthermore, we present evidence that the Notch ligand Delta is an important target of microRNA regulation in follicle cells and regulates the timing of Notch activation through cis inhibition of Notch. Here we have uncovered a complex regulatory process in which the microRNA pathway promotes Notch activation by repressing Delta-mediated inhibition of Notch in follicle cells.
Collapse
Affiliation(s)
- John S Poulton
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Perruisseau-Carrier C, Jurga M, Forraz N, McGuckin CP. miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol 2011; 43:215-27. [PMID: 21541853 DOI: 10.1007/s12035-011-8179-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/10/2011] [Indexed: 12/15/2022]
Abstract
Mimicking the natural brain environment during neurogenesis represents the main challenge for efficient in vitro neuronal differentiation of stem cells. The discovery of miRNAs opens new possibilities in terms of modulation of stem cells lineage commitment and differentiation. Many studies demonstrated that in vitro transient overexpression or inhibition of brain-specific miRNAs in stem cells significantly directed differentiation along neuronal cell lineages. Modulating miRNA expression offers new pathways for post-transcriptional gene regulation and stem cell commitment. Neurotrophins and neuropoietins signaling pathways are the main field of investigation for neuronal commitment, differentiation, and maturation. This review will highlight examples of crosstalk between stem-cell-specific and brain-specific signaling pathways and key miRNA candidates for neuronal commitment. Recent progress on understanding miRNAs genetic networks offers promising prospects for their increasing application in the development of new cellular therapies in humans.
Collapse
Affiliation(s)
- Claire Perruisseau-Carrier
- CTI-LYON, Cell Therapy Research Institute, Parc Technologique de Lyon Saint-Priest, Saint-Priest, Lyon, France
| | | | | | | |
Collapse
|
199
|
Junker A. Pathophysiology of translational regulation by microRNAs in multiple sclerosis. FEBS Lett 2011; 585:3738-46. [PMID: 21453702 DOI: 10.1016/j.febslet.2011.03.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/24/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) comprise a group of several hundred, small non-coding RNA molecules with a fundamental influence on the regulation of gene expression. Certain miRNAs are altered in blood cells of multiple sclerosis (MS), and active and inactive MS brain lesions have distinct miRNA expression profiles. Several miRNAs such as miR-155 or miR-326 are considerably overexpressed in active MS lesions versus controls, and mice lacking these miRNAs either through knock-out (miR-155) or by in vivo silencing (miR-326) show a reduction of symptoms in experimental autoimmune encephalomyelitis (EAE), a model system for multiple sclerosis. This review describes miRNAs regulated in the blood or in brain lesions of MS patients in the context of their previously described functions in physiology and pathophysiology.
Collapse
Affiliation(s)
- Andreas Junker
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany.
| |
Collapse
|
200
|
Wittmann J, Jäck HM. microRNAs in rheumatoid arthritis: midget RNAs with a giant impact. Ann Rheum Dis 2011; 70 Suppl 1:i92-6. [PMID: 21339228 DOI: 10.1136/ard.2010.140152] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) are tiny, non-coding molecules that primarily modulate gene expression at the post-transcriptional level by predominantly hybridising to complementary sequences in the 3'-untranslated region of their corresponding mRNAs. Depending on the degree of Watson-Crick base pairing, a miRNA either accelerates the degradation of the corresponding transcript or restricts its translation. There is compelling evidence that miRNAs have crucial roles in controlling and modulating immunity, while dysregulation of miRNAs can lead to autoimmunity and promote tumourigenesis, making miRNA regulation a balancing act between immunity and tumourigenesis. Here, the focus is on the role of miRNAs during the establishment and sustainment of rheumatoid arthritis (RA), a systemic, inflammatory autoimmune disease with irreversible joint destruction. An overview of the known function of miRNAs in RA and what the future might hold for the use of these small RNA molecules in RA diagnosis and treatment is provided.
Collapse
Affiliation(s)
- Jürgen Wittmann
- Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|