151
|
Webb EK, Ng SY, Mikhail AI, Stouth DW, vanLieshout TL, Syroid AL, Ljubicic V. Impact of short-term, pharmacological CARM1 inhibition on skeletal muscle mass, function, and atrophy in mice. Am J Physiol Endocrinol Metab 2023; 325:E252-E266. [PMID: 37493245 PMCID: PMC10625826 DOI: 10.1152/ajpendo.00047.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins critical for health and disease. The purpose of this study was to characterize the effects of short-term, pharmacological CARM1 inhibition on skeletal muscle size, function, and atrophy. Adult mice (n = 10 or 11/sex) were treated with either a CARM1 inhibitor (150 mg/kg EZM2302; EZM) or vehicle (Veh) via oral gavage for 11-13 days and muscle mass, function, and exercise capacity were assessed. In addition, we investigated the effect of CARM1 suppression on unilateral hindlimb denervation (DEN)-induced muscle atrophy (n = 8/sex). We report that CARM1 inhibition caused significant reductions in the asymmetric dimethylation of known CARM1 substrates but no change in CARM1 protein or mRNA content in skeletal muscle. Reduced CARM1 activity did not affect body or muscle mass, however, we observed a decrease in exercise capacity and muscular endurance in male mice. CARM1 methyltransferase activity increased in the muscle of Veh-treated mice following 7 days of DEN, and this response was blunted in EZM-dosed mice. Skeletal muscle mass and myofiber cross-sectional area were significantly reduced in DEN compared with contralateral, non-DEN limbs to a similar degree in both treatment groups. Furthermore, skeletal muscle atrophy and autophagy gene expression programs were elevated in response to DEN independent of CARM1 suppression. Collectively, these results suggest that short-term, pharmacological CARM1 inhibition in adult animals affects muscle performance in a sex-specific manner but does not impact the maintenance and remodeling of skeletal muscle mass during conditions of neurogenic muscle atrophy.NEW & NOTEWORTHY Short-term pharmacological inhibition of coactivator-associated arginine methyltransferase 1 (CARM1) was effective at significantly reducing CARM1 methyltransferase function in skeletal muscle. CARM1 inhibition did not impact muscle mass, but exercise capacity was impaired, particularly in male mice, whereas morphological and molecular signatures of denervation-induced muscle atrophy were largely maintained in animals administered the inhibitor. Altogether, the role of CARM1 in neuromuscular biology remains complex and requires further investigation of its therapeutic potential in muscle-wasting conditions.
Collapse
Affiliation(s)
- Erin K Webb
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Derek W Stouth
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Tiffany L vanLieshout
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Anika L Syroid
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
152
|
Brown T, Nguyen T, Zhou B, Zheng YG. Chemical probes and methods for the study of protein arginine methylation. RSC Chem Biol 2023; 4:647-669. [PMID: 37654509 PMCID: PMC10467615 DOI: 10.1039/d3cb00018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Protein arginine methylation is a widespread post-translational modification (PTM) in eukaryotic cells. This chemical modification in proteins functionally modulates diverse cellular processes from signal transduction, gene expression, and DNA damage repair to RNA splicing. The chemistry of arginine methylation entails the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet, SAM) onto a guanidino nitrogen atom of an arginine residue of a target protein. This reaction is catalyzed by about 10 members of protein arginine methyltransferases (PRMTs). With impacts on a variety of cellular processes, aberrant expression and activity of PRMTs have been shown in many disease conditions. Particularly in oncology, PRMTs are commonly overexpressed in many cancerous tissues and positively correlated with tumor initiation, development and progression. As such, targeting PRMTs is increasingly recognized as an appealing therapeutic strategy for new drug discovery. In the past decade, a great deal of research efforts has been invested in illuminating PRMT functions in diseases and developing chemical probes for the mechanistic study of PRMTs in biological systems. In this review, we provide a brief developmental history of arginine methylation along with some key updates in arginine methylation research, with a particular emphasis on the chemical aspects of arginine methylation. We highlight the research endeavors for the development and application of chemical approaches and chemical tools for the study of functions of PRMTs and arginine methylation in regulating biology and disease.
Collapse
Affiliation(s)
- Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Bo Zhou
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia Athens GA 30602 USA +1-(706) 542-5358 +1-(706) 542-0277
| |
Collapse
|
153
|
O'Brien S, Butticello M, Thompson C, Wilson B, Wyce A, Mahajan V, Kruger R, Mohammad H, Fedoriw A. Inhibiting PRMT5 induces DNA damage and increases anti-proliferative activity of Niraparib, a PARP inhibitor, in models of breast and ovarian cancer. BMC Cancer 2023; 23:775. [PMID: 37596538 PMCID: PMC10436459 DOI: 10.1186/s12885-023-11260-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Inhibitors of Poly (ADP-Ribose) Polymerases (PARP) provide clinical benefit to patients with breast and ovarian cancers, by compromising the DNA repair activity of cancer cells. Although these agents extend progression-free survival in many patients, responses can be short lived with many patients ultimately progressing. Identification of combination partners that increase dependence of cancer cells to the DNA repair activity of PARPs may represent a strategy to increase the utility of PARP inhibitors. Protein arginine methyltransferase 5 (PRMT5) regulates DNA damage response pathways through splicing and protein modification, and inhibitors of PRMT5 have recently entered clinical trials. METHODS The effect of PRMT5 inhibition on the levels of DNA damage and repair markers including γH2AX, RAD51, and 53BP1 was determined using high content immunofluorescent imaging. The anti-proliferative activity of the combination of PRMT5 and PARP inhibitors was evaluated using in vitro models of breast and ovarian cancers using both cell lines and ex vivo patient derived xenografts. Finally, the combinations of PRMT5 and PARP inhibitors were evaluated in cell line xenograft models in vivo. RESULTS Inhibition of PRMT5 by GSK3326595 led to increased levels of markers of DNA damage. The addition of GSK3326595 to the PARP inhibitor, niraparib, resulted in increased growth inhibition of breast and ovarian cancer cell lines and patient derived spheroids. In vivo, the combination improved the partial effects on tumor growth inhibition achieved by either single agent, producing complete tumor stasis and regression. CONCLUSION These data demonstrate that inhibition of PRMT5 induced signatures of DNA damage in models of breast and ovarian cancer. Furthermore, combination with the PARP inhibitor, Niraparib, resulted in increased anti-tumor activity in vitro and in vivo. Overall, these data suggest inhibition of PRMT5 as a mechanism to broaden and enhance the clinical application of PARP inhibitors.
Collapse
Affiliation(s)
- Shane O'Brien
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | | | | | - Boris Wilson
- Synthetic Lethality RU, GlaxoSmithKline, Collegeville, USA
| | - Anastasia Wyce
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Vivek Mahajan
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Ryan Kruger
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Helai Mohammad
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA
| | - Andy Fedoriw
- Tumor Cell Targeting RU, GlaxoSmithKline, Collegeville, USA.
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA.
| |
Collapse
|
154
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
155
|
Nguyen HP, Le AQ, Liu E, Cesarano A, DiMeo F, Perna F, Kapur R, Walker BA, Tran NT. Protein arginine methyltransferase 1 is a therapeutic vulnerability in multiple myeloma. Front Immunol 2023; 14:1239614. [PMID: 37600810 PMCID: PMC10436492 DOI: 10.3389/fimmu.2023.1239614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Multiple myeloma (MM) is a devastating plasma cell malignancy characterized by the expansion of aberrant monoclonal plasma cells in the bone marrow, leading to severe clinical manifestations and poor prognosis, particularly in relapsed/refractory cases. Identifying novel therapeutic targets is crucial to improve treatment outcomes in these patients. In this study, we investigated the role of the protein arginine methyltransferase 1 (PRMT1) in MM pathogenesis and explored its potential as a therapeutic target. We observed that PRMT1, responsible for most asymmetric di-methylation in cells, exhibited the highest expression among PRMT family members in MM cell lines and primary MM cells. Importantly, PRMT1 expression was significantly elevated in relapsed/refractory patients compared to newly diagnosed patients. High expression of PRMT1 expression was strongly associated with poor prognosis. We found that genetic or enzymatic inhibition of PRMT1 impaired MM cell growth, induced cell cycle arrest, and triggered cell death. Treatment with MS023, a potent PRMT type I inhibitor, demonstrated a robust inhibitory effect on the viability of primary cells isolated from newly diagnosed and proteasome inhibitor-relapsed/refractory patients in a dose-dependent manner. Suppression of PRMT1 downregulated genes related to cell division and upregulated genes associated with apoptosis pathway. We also found that genes related to immune response and lymphocyte activation were significantly upregulated in PRMT1-suppressed cells. Notably, the activation status of T cells was strikingly enhanced upon co-culturing with PRMT1-KO MM cells. In vivo studies using a xenograft model revealed that targeting PRMT1 by either CRISPR/Cas9-mediated knockout or MS023 treatment significantly attenuated MM tumor growth and prolonged the survival of tumor-bearing mice. Histological analysis further confirmed increased apoptotic cell death in MS023-treated tumors. Collectively, our findings establish PRMT1 as an indispensable and novel therapeutic vulnerability in MM. The elevated expression of PRMT1 in relapsed/refractory patients underscores its potential as a target for overcoming treatment resistance. Moreover, our results highlight the efficacy of MS023 as a promising therapeutic agent against MM, offering new avenues for therapeutic approaches in relapsed/refractory MM.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana School of Medicine, Indianapolis, IN, United States
| | - Anh Quynh Le
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana School of Medicine, Indianapolis, IN, United States
| | - Enze Liu
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Annamaria Cesarano
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Francesco DiMeo
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fabiana Perna
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana School of Medicine, Indianapolis, IN, United States
| | - Brian A. Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ngoc Tung Tran
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
156
|
de Almeida RF, Lucena ACR, Batista M, Marchini FK, de Godoy LMF. Non-histone protein methylation in Trypanosoma cruzi epimastigotes. Proteomics 2023; 23:e2200230. [PMID: 37183273 DOI: 10.1002/pmic.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
Post-translational methylation of proteins, which occurs in arginines and lysines, modulates several biological processes at different levels of cell signaling. Recently, methylation has been demonstrated in the regulation beyond histones, for example, in the dynamics of protein-protein and protein-nucleic acid interactions. However, the presence and role of non-histone methylation in Trypanosoma cruzi, the etiologic agent of Chagas disease, has not yet been elucidated. Here, we applied mass spectrometry-based-proteomics (LC-MS/MS) to profile the methylproteome of T. cruzi epimastigotes, describing a total of 1252 methyl sites in 824 proteins. Functional enrichment and protein-protein interaction analysis show that protein methylation impacts important biological processes of the parasite, such as translation, RNA and DNA binding, amino acid, and carbohydrate metabolism. In addition, 171 of the methylated proteins were previously reported to bear phosphorylation sites in T. cruzi, including flagellar proteins and RNA binding proteins, indicating that there may be an interplay between these different modifications in non-histone proteins. Our results show that a broad spectrum of functions is affected by methylation in T. cruzi, indicating its potential to impact important processes in the biology of the parasite and other trypanosomes.
Collapse
Affiliation(s)
- Rafael Fogaça de Almeida
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Aline Castro Rodrigues Lucena
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
- Plataforma de Espectrometria de Massas, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Fabricio Klerynton Marchini
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
- Plataforma de Espectrometria de Massas, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Parana, Brazil
| |
Collapse
|
157
|
El-Khoueiry AB, Clarke J, Neff T, Crossman T, Ratia N, Rathi C, Noto P, Tarkar A, Garrido-Laguna I, Calvo E, Rodón J, Tran B, O'Dwyer PJ, Cuker A, Abdul Razak AR. Phase 1 study of GSK3368715, a type I PRMT inhibitor, in patients with advanced solid tumors. Br J Cancer 2023; 129:309-317. [PMID: 37237172 PMCID: PMC10338470 DOI: 10.1038/s41416-023-02276-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND GSK3368715, a first-in-class, reversible inhibitor of type I protein methyltransferases (PRMTs) demonstrated anticancer activity in preclinical studies. This Phase 1 study (NCT03666988) evaluated safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of GSK3368715 in adults with advanced-stage solid tumors. METHODS In part 1, escalating doses of oral once-daily GSK3368715 (50, 100, and 200 mg) were evaluated. Enrollment was paused at 200 mg following a higher-than-expected incidence of thromboembolic events (TEEs) among the first 19 participants, resuming under a protocol amendment starting at 100 mg. Part 2 (to evaluate preliminary efficacy) was not initiated. RESULTS Dose-limiting toxicities were reported in 3/12 (25%) patients at 200 mg. Nine of 31 (29%) patients across dose groups experienced 12 TEEs (8 grade 3 events and 1 grade 5 pulmonary embolism). Best response achieved was stable disease, occurring in 9/31 (29%) patients. Following single and repeat dosing, GSK3368715 maximum plasma concentration was reached within 1 h post dosing. Target engagement was observed in the blood, but was modest and variable in tumor biopsies at 100 mg. CONCLUSION Based on higher-than-expected incidence of TEEs, limited target engagement at lower doses, and lack of observed clinical efficacy, a risk/benefit analysis led to early study termination. TRIAL REGISTRATION NUMBER NCT03666988.
Collapse
Affiliation(s)
- Anthony B El-Khoueiry
- University of Southern California Norris Comprehensive Cancer Center, 1441 Eastlake Ave, Los Angeles, CA, USA.
| | - James Clarke
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Tobias Neff
- GSK, 1250 S Collegeville Road, Collegeville, PA, USA
- Merck&Co, North Wales, PA, USA
| | - Tim Crossman
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Nirav Ratia
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Chetan Rathi
- GSK, 1250 S Collegeville Road, Collegeville, PA, USA
| | - Paul Noto
- GSK, 1250 S Collegeville Road, Collegeville, PA, USA
- Adaptimmune LLC, Philadelphia, PA, USA
| | - Aarti Tarkar
- GSK, 1250 S Collegeville Road, Collegeville, PA, USA
| | | | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Calle Oña, 10, 28050, Madrid, Spain
| | - Jordi Rodón
- Investigational Cancer Therapeutics Department, University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd Unit 455, 8th Floor, Houston, TX, USA
| | - Ben Tran
- Peter MacCallum Cancer Centre (PMCC), 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Peter J O'Dwyer
- University of Pennsylvania, Abramson Cancer Center, 3400 Civic Center Blvd, Philadelphia, PA, USA
| | - Adam Cuker
- Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, USA
| | - Albiruni R Abdul Razak
- Phase 1 Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G2M9, ON, Canada
| |
Collapse
|
158
|
Wójcicka G, Pradiuch A, Fornal E, Stachniuk A, Korolczuk A, Marzec-Kotarska B, Nikolaichuk H, Czechowska G, Kozub A, Trzpil A, Góralczyk A, Bełtowski J. The effect of exenatide (a GLP-1 analogue) and sitagliptin (a DPP-4 inhibitor) on asymmetric dimethylarginine (ADMA) metabolism and selected biomarkers of cardiac fibrosis in rats with fructose-induced metabolic syndrome. Biochem Pharmacol 2023; 214:115637. [PMID: 37290595 DOI: 10.1016/j.bcp.2023.115637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, is a risk factor for endothelial dysfunction, a common pathophysiological denominator for both atherogenesis and cardiac fibrosis. We aimed to investigate whether the cardioprotective and antifibrotic effects of incretin drugs, exenatide and sitagliptin, may be associated with their ability to affect circulating and cardiac ADMA metabolism. Normal and fructose-fed rats were treated with sitagliptin (5.0/10 mg/kg) or exenatide (5/10 µg/kg) for 4 weeks. The following methods were used: LC-MS/MS, ELISA, Real-Time-PCR, colorimetry, IHC and H&E staining, PCA and OPLS-DA projections. Eight-week fructose feeding resulted in an increase in plasma ADMA and a decrease in NO concentration. Exenatide administration into fructose-fed rats reduced the plasma ADMA level and increased NO level. In the heart of these animals exenatide administration increased NO and PRMT1 level, reduced TGF-ß1, α-SMA levels and COL1A1 expression. In the exenatide treated rats renal DDAH activity positively correlated with plasma NO level and negatively with plasma ADMA level and cardiac α-SMA concentration. Sitagliptin treatment of fructose-fed rats increased plasma NO concentration, reduced circulating SDMA level, increased renal DDAH activity and reduced myocardial DDAH activity. Both drugs attenuated the myocardial immunoexpression of Smad2/3/P and perivascular fibrosis. In the metabolic syndrome condition both sitagliptin and exenatide positively modulated cardiac fibrotic remodeling and circulating level of endogenous NOS inhibitors but had no effects on ADMA levels in the myocardium.
Collapse
Affiliation(s)
- G Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Pradiuch
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - E Fornal
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Stachniuk
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Korolczuk
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - B Marzec-Kotarska
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - H Nikolaichuk
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - G Czechowska
- Department of Pharmacology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Kozub
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Trzpil
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Góralczyk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - J Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
159
|
Yin S, Liu L, Gan W. PRMT1 and PRMT5: on the road of homologous recombination and non-homologous end joining. GENOME INSTABILITY & DISEASE 2023; 4:197-209. [PMID: 37663901 PMCID: PMC10470524 DOI: 10.1007/s42764-022-00095-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 09/05/2023]
Abstract
DNA double-strand breaks (DSBs) are widely accepted to be the most deleterious form of DNA lesions that pose a severe threat to genome integrity. Two predominant pathways are responsible for repair of DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR relies on a template to faithfully repair breaks, while NHEJ is a template-independent and error-prone repair mechanism. Multiple layers of regulation have been documented to dictate the balance between HR and NHEJ, such as cell cycle and post-translational modifications (PTMs). Arginine methylation is one of the most common PTMs, which is catalyzed by protein arginine methyltransferases (PRMTs). PRMT1 and PRMT5 are the predominate PRMTs that promote asymmetric dimethylarginine and symmetric dimethylarginine, respectively. They have emerged to be crucial regulators of DNA damage repair. In this review, we summarize current understanding and unaddressed questions of PRMT1 and PRMT5 in regulation of HR and NHEJ, providing insights into their roles in DSB repair pathway choice and the potential of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
160
|
Dong R, Li X, Flores AD, Lai KO. The translation initiating factor eIF4E and arginine methylation underlie G3BP1 function in dendritic spine development of neurons. J Biol Chem 2023; 299:105029. [PMID: 37442236 PMCID: PMC10432808 DOI: 10.1016/j.jbc.2023.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Communication between neurons relies on neurotransmission that takes place at synapses. Excitatory synapses are located primarily on dendritic spines that possess diverse morphologies, ranging from elongated filopodia to mushroom-shaped spines. Failure in the proper development of dendritic spines has detrimental consequences on neuronal connectivity, but the molecular mechanism that controls the balance of filopodia and mushroom spines is not well understood. G3BP1 is the key RNA-binding protein that assembles the stress granules in non-neuronal cells to adjust protein synthesis upon exogenous stress. Emerging evidence suggests that the biological significance of G3BP1 extends beyond its role in stress response, especially in the nervous system. However, the mechanism underlying the regulation and function of G3BP1 in neurons remains elusive. Here we found that G3BP1 suppresses protein synthesis and binds to the translation initiation factor eIF4E via its NTF2-like domain. Notably, the over-production of filopodia caused by G3BP1 depletion can be alleviated by blocking the formation of the translation initiation complex. We further found that the interaction of G3BP1 with eIF4E is regulated by arginine methylation. Knockdown of the protein arginine methyltransferase PRMT8 leads to elevated protein synthesis and filopodia production, which is reversed by the expression of methylation-mimetic G3BP1. Our study, therefore, reveals arginine methylation as a key regulatory mechanism of G3BP1 during dendritic spine morphogenesis and identifies eIF4E as a novel downstream target of G3BP1 in neuronal development independent of stress response.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Xuejun Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China
| | - Angelo D Flores
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
161
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [PMID: 37569634 PMCID: PMC10418467 DOI: 10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal "leave some out" test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain;
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
162
|
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int J Mol Sci 2023; 24:12258. [DOI: https:/doi.org/10.3390/ijms241512258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Leukemia invades the bone marrow progressively and, through unknown mechanisms, outcompetes healthy hematopoiesis. Protein arginine methyltransferases 1 (PRMT1) are found in prokaryotes and eukaryotes cells. They are necessary for a number of biological processes and have been linked to several human diseases, including cancer. Small compounds that target PRMT1 have a significant impact on both functional research and clinical disease treatment. In fact, numerous PRMT1 inhibitors targeting the S-adenosyl-L-methionine binding region have been studied. Through topographical descriptors, quantitative structure-activity relationships (QSAR) were developed in order to identify the most effective PRMT1 inhibitors among 17 compounds. The model built using linear discriminant analysis allows us to accurately classify over 90% of the investigated active substances. Antileukemic activity is predicted using a multilinear regression analysis, and it can account for more than 56% of the variation. Both analyses are validated using an internal “leave some out” test. The developed model could be utilized in future preclinical experiments with novel drugs.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, 46071 València, Spain
| | - Karina Godoy
- Nucleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Reyes
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
163
|
Kim E, Rahmawati L, Aziz N, Kim HG, Kim JH, Kim KH, Yoo BC, Parameswaran N, Kang JS, Hur H, Manavalan B, Lee J, Cho JY. Protection of c-Fos from autophagic degradation by PRMT1-mediated methylation fosters gastric tumorigenesis. Int J Biol Sci 2023; 19:3640-3660. [PMID: 37564212 PMCID: PMC10411464 DOI: 10.7150/ijbs.85126] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Both AP-1 and PRMT1 are vital molecules in variety of cellular progresssion, but the interaction between these proteins in the context of cellular functions is less clear. Gastric cancer (GC) is one of the pernicious diseases worldwide. An in-depth understanding of the molecular mode of action underlying gastric tumorigenesis is still elusive. In this study, we found that PRMT1 directly interacts with c-Fos and enhances AP-1 activation. PRMT1-mediated arginine methylation (mono- and dimethylation) of c-Fos synergistically enhances c-Fos-mediated AP-1 liveliness and consequently increases c-Fos protein stabilization. Consistent with this finding, PRMT1 knockdown decreases the protein level of c-Fos. We discovered that the c-Fos protein undergoes autophagic degradation and found that PRMT1-mediated methylation at R287 protects c-Fos from autophagosomal degradation and is linked to clinicopathologic variables as well as prognosis in stomach tumor. Together, our data demonstrate that PRMT1-mediated c-Fos protein stabilization promotes gastric tumorigenesis. We contend that targeting this modification could constitute a new therapeutic strategy in gastric cancer.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- R&D Center, Yungjin Pharmaceutical Co, Suwon 16229, Republic of Korea
| | - Laily Rahmawati
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Emergency Department, Hermina Hospital Tangkubanprahu, Malang 65119, Indonesia
| | - Nur Aziz
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Pharmacy Program, Faculty of Science and Engineering, Universitas Ma Chung, Malang 65151, Indonesia
| | - Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Narayana Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hoon Hur
- Department of Surgery, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Balachandran Manavalan
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
164
|
Kim HM, Zheng X, Lee E. Experimental Insights into the Interplay between Histone Modifiers and p53 in Regulating Gene Expression. Int J Mol Sci 2023; 24:11032. [PMID: 37446210 PMCID: PMC10342072 DOI: 10.3390/ijms241311032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chromatin structure plays a fundamental role in regulating gene expression, with histone modifiers shaping the structure of chromatin by adding or removing chemical changes to histone proteins. The p53 transcription factor controls gene expression, binds target genes, and regulates their activity. While p53 has been extensively studied in cancer research, specifically in relation to fundamental cellular processes, including gene transcription, apoptosis, and cell cycle progression, its association with histone modifiers has received limited attention. This review explores the interplay between histone modifiers and p53 in regulating gene expression. We discuss how histone modifications can influence how p53 binds to target genes and how this interplay can be disrupted in cancer cells. This review provides insights into the complex mechanisms underlying gene regulation and their implications for potential cancer therapy.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | | | |
Collapse
|
165
|
Brobbey C, Yin S, Liu L, Ball LE, Howe PH, Delaney JR, Gan W. Autophagy dictates sensitivity to PRMT5 inhibitor in breast cancer. Sci Rep 2023; 13:10752. [PMID: 37400460 DOI: 10.1038/s41598-023-37706-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes mono-methylation and symmetric di-methylation on arginine residues and has emerged as a potential antitumor target with inhibitors being tested in clinical trials. However, it remains unknown how the efficacy of PRMT5 inhibitors is regulated. Here we report that autophagy blockage enhances cellular sensitivity to PRMT5 inhibitor in triple negative breast cancer cells. Genetic ablation or pharmacological inhibition of PRMT5 triggers cytoprotective autophagy. Mechanistically, PRMT5 catalyzes monomethylation of ULK1 at R532 to suppress ULK1 activation, leading to attenuation of autophagy. As a result, ULK1 inhibition blocks PRMT5 deficiency-induced autophagy and sensitizes cells to PRMT5 inhibitor. Our study not only identifies autophagy as an inducible factor that dictates cellular sensitivity to PRMT5 inhibitor, but also unearths a critical molecular mechanism by which PRMT5 regulates autophagy through methylating ULK1, providing a rationale for the combination of PRMT5 and autophagy inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Charles Brobbey
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
166
|
Cho G, Hyun K, Choi J, Shin E, Kim B, Kim H, Kim J, Han YM. Arginine 65 methylation of Neurogenin 3 by PRMT1 is required for pancreatic endocrine development of hESCs. Exp Mol Med 2023; 55:1506-1519. [PMID: 37394590 PMCID: PMC10393949 DOI: 10.1038/s12276-023-01035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Neurogenin 3 (NGN3) is a key transcription factor in the cell fate determination of endocrine progenitors (EPs) in the developing pancreas. Previous studies have shown that the stability and activity of NGN3 are regulated by phosphorylation. However, the role of NGN3 methylation is poorly understood. Here, we report that protein arginine methyltransferase-1 (PRMT1)-mediated arginine 65 methylation of NGN3 is required for the pancreatic endocrine development of human embryonic stem cells (hESCs) in vitro. We found that inducible PRMT1-knockout (P-iKO) hESCs did not differentiate from EPs into endocrine cells (ECs) in the presence of doxycycline. Loss of PRMT1 caused NGN3 accumulation in the cytoplasm of EPs and decreased the transcriptional activity of NGN3. We found that PRMT1 specifically methylates NGN3 arginine 65 and that this modification is a prerequisite for ubiquitin-mediated degradation. Our findings demonstrate that arginine 65 methylation of NGN3 is a key molecular switch in hESCs permitting their differentiation into pancreatic ECs.
Collapse
Affiliation(s)
- Gahyang Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jieun Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Eunji Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bumsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
167
|
Lucky AB, Wang C, Liu M, Liang X, Min H, Fan Q, Siddiqui FA, Adapa SR, Li X, Jiang RHY, Chen X, Cui L, Miao J. A type II protein arginine methyltransferase regulates merozoite invasion in Plasmodium falciparum. Commun Biol 2023; 6:659. [PMID: 37349497 PMCID: PMC10287762 DOI: 10.1038/s42003-023-05038-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate many important cellular processes, such as transcription and RNA processing in model organisms but their functions in human malaria parasites are not elucidated. Here, we characterize PfPRMT5 in Plasmodium falciparum, which catalyzes symmetric dimethylation of histone H3 at R2 (H3R2me2s) and R8, and histone H4 at R3 in vitro. PfPRMT5 disruption results in asexual stage growth defects primarily due to lower invasion efficiency of the merozoites. Transcriptomic analysis reveals down-regulation of many transcripts related to invasion upon PfPRMT5 disruption, in agreement with H3R2me2s being an active chromatin mark. Genome-wide chromatin profiling detects extensive H3R2me2s marking of genes of different cellular processes, including invasion-related genes in wildtype parasites and PfPRMT5 disruption leads to the depletion of H3R2me2s. Interactome studies identify the association of PfPRMT5 with invasion-related transcriptional regulators such as AP2-I, BDP1, and GCN5. Furthermore, PfPRMT5 is associated with the RNA splicing machinery, and PfPRMT5 disruption caused substantial anomalies in RNA splicing events, including those for invasion-related genes. In summary, PfPRMT5 is critical for regulating parasite invasion and RNA splicing in this early-branching eukaryote.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Min Liu
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Faiza Amber Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoguang Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
168
|
Bloskie T, Storey KB. Histone H3 and H4 Modifications Point to Transcriptional Suppression as a Component of Winter Freeze Tolerance in the Gall Fly Eurosta solidaginis. Int J Mol Sci 2023; 24:10153. [PMID: 37373302 DOI: 10.3390/ijms241210153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The goldenrod gall fly (Eurosta solidaginis) is a well-studied model of insect freeze tolerance. In situations of prolonged winter subzero temperatures, larvae of E. solidaginis accept ice penetration throughout extracellular spaces while protecting the intracellular environment by producing extreme amounts of glycerol and sorbitol as cryoprotectants. Hypometabolism (diapause) is implemented, and energy use is reprioritized to essential pathways. Gene transcription is one energy-expensive process likely suppressed over the winter, in part, due to epigenetic controls. The present study profiled the prevalence of 24 histone H3/H4 modifications of E. solidaginis larvae after 3-week acclimations to decreasing environmental temperatures (5 °C, -5 °C and -15 °C). Using immunoblotting, the data show freeze-mediated reductions (p < 0.05) in seven permissive histone modifications (H3K27me1, H4K20me1, H3K9ac, H3K14ac, H3K27ac, H4K8ac, H3R26me2a). Along with the maintenance of various repressive marks, the data are indicative of a suppressed transcriptional state at subzero temperatures. Elevated nuclear levels of histone H4, but not histone H3, were also observed in response to both cold and freeze acclimation. Together, the present study provides evidence for epigenetic-mediated transcriptional suppression in support of the winter diapause state and freeze tolerance of E. solidaginis.
Collapse
Affiliation(s)
- Tighe Bloskie
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
169
|
Xin Y, Zhang Y. Paralog-based synthetic lethality: rationales and applications. Front Oncol 2023; 13:1168143. [PMID: 37350942 PMCID: PMC10282757 DOI: 10.3389/fonc.2023.1168143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Tumor cells can result from gene mutations and over-expression. Synthetic lethality (SL) offers a desirable setting where cancer cells bearing one mutated gene of an SL gene pair can be specifically targeted by disrupting the function of the other genes, while leaving wide-type normal cells unharmed. Paralogs, a set of homologous genes that have diverged from each other as a consequence of gene duplication, make the concept of SL feasible as the loss of one gene does not affect the cell's survival. Furthermore, homozygous loss of paralogs in tumor cells is more frequent than singletons, making them ideal SL targets. Although high-throughput CRISPR-Cas9 screenings have uncovered numerous paralog-based SL pairs, the unclear mechanisms of targeting these gene pairs and the difficulty in finding specific inhibitors that exclusively target a single but not both paralogs hinder further clinical development. Here, we review the potential mechanisms of paralog-based SL given their function and genetic combination, and discuss the challenge and application prospects of paralog-based SL in cancer therapeutic discovery.
Collapse
|
170
|
Dominici C, Villarreal OD, Dort J, Heckel E, Wang YC, Ragoussis I, Joyal JS, Dumont N, Richard S. Inhibition of type I PRMTs reforms muscle stem cell identity enhancing their therapeutic capacity. eLife 2023; 12:RP84570. [PMID: 37285284 PMCID: PMC10328524 DOI: 10.7554/elife.84570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities. Herein, we show that inhibition of type I protein arginine methyltransferases (PRMTs) with MS023 increases the proliferative capacity of ex vivo cultured MuSCs. Single cell RNA sequencing (scRNAseq) of ex vivo cultured MuSCs revealed the emergence of subpopulations in MS023-treated cells which are defined by elevated Pax7 expression and markers of MuSC quiescence, both features of enhanced self-renewal. Furthermore, the scRNAseq identified MS023-specific subpopulations to be metabolically altered with upregulated glycolysis and oxidative phosphorylation (OxPhos). Transplantation of MuSCs treated with MS023 had a better ability to repopulate the MuSC niche and contributed efficiently to muscle regeneration following injury. Interestingly, the preclinical mouse model of Duchenne muscular dystrophy had increased grip strength with MS023 treatment. Our findings show that inhibition of type I PRMTs increased the proliferation capabilities of MuSCs with altered cellular metabolism, while maintaining their stem-like properties such as self-renewal and engraftment potential.
Collapse
Affiliation(s)
- Claudia Dominici
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
| | - Oscar D Villarreal
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
| | - Junio Dort
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Emilie Heckel
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | | | | | | | - Nicolas Dumont
- CHU Sainte-Justine Research Center, Université de MontréalMontréalCanada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, McGill UniversityMontrealCanada
- Departments of Human Genetics, McGill UniversityMontrealCanada
- Gerald Bronfman, Department of Oncology, McGill UniversityMontréalCanada
- Departments of Medicine, McGill UniversityMontrealCanada
- Departments of Biochemistry, McGill UniversityMontréalCanada
| |
Collapse
|
171
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
172
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
173
|
Bondoc TJ, Lowe TL, Clarke SG. The exquisite specificity of human protein arginine methyltransferase 7 (PRMT7) toward Arg-X-Arg sites. PLoS One 2023; 18:e0285812. [PMID: 37216364 DOI: 10.1371/journal.pone.0285812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Mammalian protein arginine methyltransferase 7 (PRMT7) has been shown to target substrates with motifs containing two arginine residues separated by one other residue (RXR motifs). In particular, the repression domain of human histone H2B (29-RKRSR-33) has been a key substrate in determining PRMT7 activity. We show that incubating human PRMT7 and [3H]-AdoMet with full-length Xenopus laevis histone H2B, containing the substitutions K30R and R31K (RKRSR to RRKSR), results in greatly reduced methylation activity. Using synthetic peptides, we have now focused on the enzymology behind this specificity. We show for the human and Xenopus peptide sequences 23-37 the difference in activity results from changes in the Vmax rather than the apparent binding affinity of the enzyme for the substrates. We then characterized six additional peptides containing a single arginine or a pair of arginine residues flanked by glycine and lysine residues. We have corroborated previous findings that peptides with an RXR motif have much higher activity than peptides that contain only one Arg residue. We show that these peptides have similar apparent km values but significant differences in their Vmax values. Finally, we have examined the effect of ionic strength on these peptides. We found the inclusion of salt had little effect on the Vmax value but a considerable increase in the apparent km value, suggesting that the inhibitory effect of ionic strength on PRMT7 activity occurs largely by decreasing apparent substrate-enzyme binding affinity. In summary, we find that even subtle substitutions in the RXR recognition motif can dramatically affect PRMT7 catalysis.
Collapse
Affiliation(s)
- Timothy J Bondoc
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Troy L Lowe
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
174
|
Mady LJ, Zhong Y, Dhawan P, Christakos S. Role of Coactivator Associated Arginine Methyltransferase 1 (CARM1) in the Regulation of the Biological Function of 1,25-Dihydroxyvitamin D 3. Cells 2023; 12:1407. [PMID: 37408241 DOI: 10.3390/cells12101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, activates the nuclear vitamin D receptor (VDR) to mediate the transcription of target genes involved in calcium homeostasis as well as in non-classical 1,25(OH)2D3 actions. In this study, CARM1, an arginine methyltransferase, was found to mediate coactivator synergy in the presence of GRIP1 (a primary coactivator) and to cooperate with G9a, a lysine methyltransferase, in 1,25(OH)2D3 induced transcription of Cyp24a1 (the gene involved in the metabolic inactivation of 1,25(OH)2D3). In mouse proximal renal tubule (MPCT) cells and in mouse kidney, chromatin immunoprecipitation analysis demonstrated that dimethylation of histone H3 at arginine 17, which is mediated by CARM1, occurs at Cyp24a1 vitamin D response elements in a 1,25(OH)2D3 dependent manner. Treatment with TBBD, an inhibitor of CARM1, repressed 1,25(OH)2D3 induced Cyp24a1 expression in MPCT cells, further suggesting that CARM1 is a significant coactivator of 1,25(OH)2D3 induction of renal Cyp24a1 expression. CARM1 was found to act as a repressor of second messenger-mediated induction of the transcription of CYP27B1 (involved in the synthesis of 1,25(OH)2D3), supporting the role of CARM1 as a dual function coregulator. Our findings indicate a key role for CARM1 in the regulation of the biological function of 1,25(OH)2D3.
Collapse
Affiliation(s)
- Leila J Mady
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yan Zhong
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
175
|
Yoo YJ, Cho G, Kim D, Kim Y, Yun N, Oh YJ. Asymmetric dimethylation of AMPKα1 by PRMT6 contributes to the formation of phase-separated puncta. Biochem Biophys Res Commun 2023; 666:92-100. [PMID: 37178510 DOI: 10.1016/j.bbrc.2023.04.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase comprising α, β, and γ subunits. AMPK is involved in intracellular energy metabolism and functions as a switch that turns various biological pathways in eukaryotes on and off. Several post-translational modifications regulating AMPK function have been demonstrated, including phosphorylation, acetylation, and ubiquitination; however, arginine methylation has not been reported in AMPKα1. We investigated whether arginine methylation occurs in AMPKα1. Screening experiments revealed arginine methylation of AMPKα1 mediated by protein arginine methyltransferase 6 (PRMT6). In vitro methylation and co-immunoprecipitation assays indicated that PRMT6 can directly interact with and methylate AMPKα1 without involvement of other intracellular components. In vitro methylation assays with truncated and point mutants of AMPKα1 revealed that Arg403 is the residue methylated by PRMT6. Immunocytochemical studies showed that the number of AMPKα1 puncta was enhanced in saponin-permeabilized cells when AMPKα1 was co-expressed with PRMT6, suggesting that PRMT6-mediated methylation of AMPKα1 at Arg403 alters the physiological characteristics of AMPKα1 and may lead to liquid-liquid phase separation.
Collapse
Affiliation(s)
- Yeon Ju Yoo
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, 03722, South Korea
| | - Giseong Cho
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, 03722, South Korea
| | - Dana Kim
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, 03722, South Korea
| | - Yoonkyung Kim
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, 03722, South Korea
| | - Nuri Yun
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, 03722, South Korea; GNTPharma Science and Technology Center for Health, Incheon, 21983, South Korea.
| | - Young J Oh
- Department of Systems Biology Yonsei University College of Life Science and Biotechnology, Seoul, 03722, South Korea; GNTPharma Science and Technology Center for Health, Incheon, 21983, South Korea.
| |
Collapse
|
176
|
Zhou L, Jia X, Shang Y, Sun Y, Liu Z, Liu J, Jiang W, Deng S, Yao Q, Chen J, Li H. PRMT1 inhibition promotes ferroptosis sensitivity via ACSL1 upregulation in acute myeloid leukemia. Mol Carcinog 2023. [PMID: 37144835 DOI: 10.1002/mc.23550] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with an alarming mortality rate. The development of novel therapeutic targets or drugs for AML is urgently needed. Ferroptosis is a form of regulated cell death driven by iron-dependent lipid peroxidation. Recently, ferroptosis has emerged as a novel method for targeting cancer, including AML. Epigenetic dysregulation is a hallmark of AML, and a growing body of evidence suggests that ferroptosis is subject to epigenetic regulation. Here, we identified protein arginine methyltransferase 1 (PRMT1) as a ferroptosis regulator in AML. The type I PRMT inhibitor GSK3368715 promoted ferroptosis sensitivity in vitro and in vivo. Moreover, PRMT1-knockout cells exhibited significantly increased sensitivity to ferroptosis, suggesting that PRMT1 is the primary target of GSK3368715 in AML. Mechanistically, both GSK3368715 and PRMT1 knockout upregulated acyl-CoA synthetase long-chain family member 1 (ACSL1), which acts as a ferroptosis promoter by increasing lipid peroxidation. Knockout ACSL1 reduced the ferroptosis sensitivity of AML cells following GSK3368715 treatment. Additionally, the GSK3368715 treatment reduced the abundance of H4R3me2a, the main histone methylation modification mediated by PRMT1, in both genome-wide and ACSL1 promoter regions. Overall, our results demonstrated a previously unknown role of the PRMT1/ACSL1 axis in ferroptosis and suggested the potential value and applications of the combination of PRMT1 inhibitor and ferroptosis inducers in AML treatment.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoqing Jia
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yingying Shang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanni Sun
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhilong Liu
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jifeng Liu
- Department of Anus-Intestines, The People's Hospital of Luzhou, Luzhou, China
| | - Wen Jiang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Siyuan Deng
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Li
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
177
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
178
|
Liu L, Yin S, Gan W. TRAF6 Promotes PRMT5 Activity in a Ubiquitination-Dependent Manner. Cancers (Basel) 2023; 15:2501. [PMID: 37173967 PMCID: PMC10177089 DOI: 10.3390/cancers15092501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the primary enzyme generating symmetric dimethylarginine (sDMA) on numerous substrates, through which it regulates many cellular processes, such as transcription and DNA repair. Aberrant expression and activation of PRMT5 is frequently observed in various human cancers and associated with poor prognosis and survival. However, the regulatory mechanisms of PRMT5 remain poorly understood. Here, we report that TRAF6 serves as an upstream E3 ubiquitin ligase to promote PRMT5 ubiquitination and activation. We find that TRAF6 catalyzes K63-linked ubiquitination of PRMT5 and interacts with PRMT5 in a TRAF6-binding-motif-dependent manner. Moreover, we identify six lysine residues located at the N-terminus as the primarily ubiquitinated sites. Disruption of TRAF6-mediated ubiquitination decreases PRMT5 methyltransferase activity towards H4R3 in part by impairing PRMT5 interaction with its co-factor MEP50. As a result, mutating the TRAF6-binding motifs or the six lysine residues significantly suppresses cell proliferation and tumor growth. Lastly, we show that TRAF6 inhibitor enhances cellular sensitivity to PRMT5 inhibitor. Therefore, our study reveals a critical regulatory mechanism of PRMT5 in cancers.
Collapse
Affiliation(s)
| | | | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
179
|
Yin S, Liu L, Ball LE, Wang Y, Bedford MT, Duncan SA, Wang H, Gan W. CDK5-PRMT1-WDR24 signaling cascade promotes mTORC1 signaling and tumor growth. Cell Rep 2023; 42:112316. [PMID: 36995937 PMCID: PMC10539482 DOI: 10.1016/j.celrep.2023.112316] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
The mammalian target of rapamycin complex1 (mTORC1) is a central regulator of metabolism and cell growth by sensing diverse environmental signals, including amino acids. The GATOR2 complex is a key component linking amino acid signals to mTORC1. Here, we identify protein arginine methyltransferase 1 (PRMT1) as a critical regulator of GATOR2. In response to amino acids, cyclin-dependent kinase 5 (CDK5) phosphorylates PRMT1 at S307 to promote PRMT1 translocation from nucleus to cytoplasm and lysosome, which in turn methylates WDR24, an essential component of GATOR2, to activate the mTORC1 pathway. Disruption of the CDK5-PRMT1-WDR24 axis suppresses hepatocellular carcinoma (HCC) cell proliferation and xenograft tumor growth. High PRMT1 protein expression is associated with elevated mTORC1 signaling in patients with HCC. Thus, our study dissects a phosphorylation- and arginine methylation-dependent regulatory mechanism of mTORC1 activation and tumor growth and provides a molecular basis to target this pathway for cancer therapy.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Liu Liu
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 78957, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
180
|
Choi HJ, Lee JY, Kim K. Glutathionylation on RNA-binding proteins: a regulator of liquid‒liquid phase separation in the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med 2023; 55:735-744. [PMID: 37009800 PMCID: PMC10167235 DOI: 10.1038/s12276-023-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 04/04/2023] Open
Abstract
RNA-binding proteins (RBPs) containing low-sequence complexity domains mediate the formation of cellular condensates and membrane-less organelles with biological functions via liquid‒liquid phase separation (LLPS). However, the abnormal phase transition of these proteins induces the formation of insoluble aggregates. Aggregates are pathological hallmarks of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). The molecular mechanisms underlying aggregate formation by ALS-associated RPBs remain largely unknown. This review highlights emerging studies on various posttranslational modifications (PTMs) related to protein aggregation. We begin with the introduction of several ALS-associated RBPs that form aggregates induced by phase separation. In addition, we highlight our recent discovery of a new PTM involved in the phase transition during the pathogenesis of fused-in-sarcoma (FUS)-associated ALS. We suggest a molecular mechanism through which LLPS mediates glutathionylation in FUS-linked ALS. This review aims to provide a detailed overview of the key molecular mechanisms of LLPS-mediated aggregate formation by PTMs, which will help further the understanding of the pathogenesis and development of ALS therapeutics.
Collapse
Affiliation(s)
- Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Sciences, Soonchunhyang University, Cheonan, 31151, Korea
| | - Ji Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Korea
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea.
| |
Collapse
|
181
|
Xie F, Zhang H, Zhu K, Jiang C, Zhang X, Chang H, Qiao Y, Sun M, Wang J, Wang M, Tan J, Wang T, Zhao L, Zhang Y, Lin J, Zhang C, Liu S, Zhao J, Luo C, Zhang S, Shan C. PRMT5 promotes ovarian cancer growth through enhancing Warburg effect by methylating ENO1. MedComm (Beijing) 2023; 4:e245. [PMID: 36999124 PMCID: PMC10044308 DOI: 10.1002/mco2.245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a major type II enzyme responsible for symmetric dimethylation of arginine (SDMA), and plays predominantly roles in human cancers, including in ovarian cancer. However, the exactly roles and underlying mechanisms of PRMT5 contributing to the progression of ovarian cancer mediated by reprogramming cell metabolism remain largely elusive. Here, we report that PRMT5 is highly expressed and correlates with poor survival in ovarian cancer. Knockdown or pharmaceutical inhibition of PRMT5 is sufficient to decrease glycolysis flux, attenuate tumor growth, and enhance the antitumor effect of Taxol. Mechanistically, we find that PRMT5 symmetrically dimethylates alpha-enolase (ENO1) at arginine 9 to promotes active ENO1 dimer formation, which increases glycolysis flux and accelerates tumor growth. Moreover, PRMT5 signals high glucose to increase the methylation modification of ENO1. Together, our data reveal a novel role of PRMT5 in promoting ovarian cancer growth by controlling glycolysis flux mediated by methylating ENO1, and highlights that PRMT5 may represent a promising therapeutic target for treating ovarian cancer.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Kongkai Zhu
- Advanced Medical Research InstituteShandong UniversityJinanChina
| | - Cheng‐Shi Jiang
- School of Biological Science and TechnologyUniversity of JinanJinanChina
| | - Xiaoya Zhang
- Biomedical Translational Research InstituteJinan UniversityGuangzhouGuangdongChina
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yaya Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Junzhen Tan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tao Wang
- Tianjin Key Laboratory of human development and reproductive regulationTianjin Central Hospital of Obstetrics and GynecologyTianjinChina
| | - Lianmei Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yuan Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanGuangdongChina
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical CenterNankai UniversityTianjinChina
| | - Shuangping Liu
- Department of Pathology, Medical SchoolDalian UniversityDalianLiaoningChina
| | - Jianguo Zhao
- Tianjin Key Laboratory of human development and reproductive regulationTianjin Central Hospital of Obstetrics and GynecologyTianjinChina
| | - Cheng Luo
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Shuai Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| |
Collapse
|
182
|
Dowsett L, Duluc L, Higgins E, Alghamdi F, Fast W, Salt IP, Leiper J. Asymmetric dimethylarginine positively modulates calcium-sensing receptor signalling to promote lipid accumulation. Cell Signal 2023; 107:110676. [PMID: 37028778 DOI: 10.1016/j.cellsig.2023.110676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Asymmetric dimethylarginine (ADMA) is generated through the irreversible methylation of arginine residues. It is an independent risk factor for cardiovascular disease, currently thought to be due to its ability to act as a competitive inhibitor of the nitric oxide (NO) synthase enzymes. Plasma ADMA concentrations increase with obesity and fall following weight loss; however, it is unknown whether they play an active role in adipose pathology. Here, we demonstrate that ADMA drives lipid accumulation through a newly identified NO-independent pathway via the amino-acid sensitive calcium-sensing receptor (CaSR). ADMA treatment of 3 T3-L1 and HepG2 cells upregulates a suite of lipogenic genes with an associated increase in triglyceride content. Pharmacological activation of CaSR mimics ADMA while negative modulation of CaSR inhibits ADMA driven lipid accumulation. Further investigation using CaSR overexpressing HEK293 cells demonstrated that ADMA potentiates CaSR signalling via Gq intracellular Ca2+ mobilisation. This study identifies a signalling mechanism for ADMA as an endogenous ligand of the G protein-coupled receptor CaSR that potentially contributes to the impact of ADMA in cardiometabolic disease.
Collapse
Affiliation(s)
- Laura Dowsett
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK.
| | - Lucie Duluc
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Erin Higgins
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fatmah Alghamdi
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ian P Salt
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - James Leiper
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
183
|
Hu X, Chen Z, Wu X, Fu Q, Chen Z, Huang Y, Wu H. PRMT5 Facilitates Infectious Bursal Disease Virus Replication through Arginine Methylation of VP1. J Virol 2023; 97:e0163722. [PMID: 36786602 PMCID: PMC10062139 DOI: 10.1128/jvi.01637-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 02/15/2023] Open
Abstract
The infectious bursal diseases virus (IBDV) polymerase, VP1 protein, is responsible for transcription, initial translation and viral genomic replication. Knowledge about the new kind of post-translational modification of VP1 supports identification of novel drugs against the virus. Because the arginine residue is known to be methylated by protein arginine methyltransferase (PRMT) enzyme, we investigated whether IBDV VP1 is a substrate for known PRMTs. In this study, we show that VP1 is specifically associated with and methylated by PRMT5 at the arginine 426 (R426) residue. IBDV infection causes the accumulation of PRMT5 in the cytoplasm, which colocalizes with VP1 as a punctate structure. In addition, ectopic expression of PRMT5 significantly enhances the viral replication. In the presence of PMRT5, enzyme inhibitor and knockout of PRMT5 remarkably decreased viral replication. The polymerase activity of VP1 was severely damaged when R426 mutated to alanine, resulting in impaired viral replication. Our study reports a novel form of post-translational modification of VP1, which supports its polymerase function to facilitate the viral replication. IMPORTANCE Post-translational modification of infectious bursal disease virus (IBDV) VP1 is important for the regulation of its polymerase activity. Investigation of the significance of specific modification of VP1 can lead to better understanding of viral replication and can probably also help in identifying novel targets for antiviral compounds. Our work demonstrates the molecular mechanism of VP1 methylation mediated by PRMT5, which is critical for viral polymerase activity, as well as viral replication. Our study expands a novel insight into the function of arginine methylation of VP1, which might be useful for limiting the replication of IBDV.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Zheng Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Xiangdong Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou, People’s Republic of China
| | - Zhen Chen
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou, People’s Republic of China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine of Fujian Academy of Agricultural Sciences, Fuzhou, People’s Republic of China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| |
Collapse
|
184
|
Wang YC, Chang CP, Lai YC, Chan CH, Ou SC, Wang SH, Li C. The conservation and diversity of the exons encoding the glycine and arginine rich domain of the fibrillarin gene in vertebrates, with special focus on reptiles and birds. Gene 2023; 866:147345. [PMID: 36893875 DOI: 10.1016/j.gene.2023.147345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2-3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80-130-nt shorter and the lengths of exon 3 in reptiles are around 50-90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ping Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chuan Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Ho Chan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shan-Chia Ou
- Department of Veterinary Medicine, Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
185
|
Liu Y, Wen D, Ho C, Yu L, Zheng D, O'Reilly S, Gao Y, Li Q, Zhang Y. Epigenetics as a versatile regulator of fibrosis. J Transl Med 2023; 21:164. [PMID: 36864460 PMCID: PMC9983257 DOI: 10.1186/s12967-023-04018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Fibrosis, a process caused by excessive deposition of extracellular matrix (ECM), is a common cause and outcome of organ failure and even death. Researchers have made many efforts to understand the mechanism of fibrogenesis and to develop therapeutic strategies; yet, the outcome remains unsatisfactory. In recent years, advances in epigenetics, including chromatin remodeling, histone modification, DNA methylation, and noncoding RNA (ncRNA), have provided more insights into the fibrotic process and have suggested the possibility of novel therapy for organ fibrosis. In this review, we summarize the current research on the epigenetic mechanisms involved in organ fibrosis and their possible clinical applications.
Collapse
Affiliation(s)
- Yangdan Liu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chiakang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | | | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
186
|
Sun X, Chen F, Zhang L, Liu D. A gene-encoded FRET fluorescent sensor designed for detecting asymmetric dimethylation levels in vitro and in living cells. Anal Bioanal Chem 2023; 415:1411-1420. [PMID: 36759390 DOI: 10.1007/s00216-023-04541-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023]
Abstract
Arginine methylation is involved in many important biological processes. PRMT1 is a major arginine methyltransferase in mammalian cells and is highly conserved in eukaryotes. It catalyzes the methylation of various of substrates, including histones, and PRMT1 has been reported to be overexpressed in many cancers, indicating that it is a potential therapeutic target. No tool for efficient methylation level detection in living cells has been available to date. In this work, we designed and constructed a gene-encoded fluorescence resonance energy transfer (FRET) fluorescent sensor for detecting dimethylation levels in living cells and evaluated its functional efficiency both in vitro and in living cells. Both site-directed mutagenesis and PRMT1 inhibition experiments verified that the fluorescent sensor responded to changes in PRMT1 activity and to different PRMT1-induced methylation levels in vitro. Finally, we verified that this optimized methyl sensor responded sensitively to changes in methylation levels in living cells by overexpressing and inhibiting PRMT1, which makes it a useful tool for real-time imaging of arginine methylation. As a new tool for detecting arginine dimethylation levels in living cells, the designed FRET sensor is very important for posttranslational studies and may show a wide range of applications.
Collapse
Affiliation(s)
- Xuan Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lili Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Dan Liu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China. .,The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
187
|
Dong XL, Yuan BH, Yu SZ, Liu H, Pan XH, Sun J, Pan LL. Adriamycin induces cardiac fibrosis in mice via PRMT5-mediated cardiac fibroblast activation. Acta Pharmacol Sin 2023; 44:573-583. [PMID: 36056082 PMCID: PMC9958096 DOI: 10.1038/s41401-022-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Long-term treatment with adriamycin (ADR) is associated with higher incidences of cumulative cardiotoxicity manifest as heart failure. ADR-induced cardiomyopathy is characterized by extensive fibrosis that is caused by cardiac fibroblast activation. To date, however, no specific treatment is available to alleviate ADR-induced cardiotoxicity. Protein arginine methyltransferase 5 (PRMT5), a major enzyme responsible for methylation of arginine, regulates numerous cellular processes such as cell differentiation. In the present study we investigated the role of PRMT5 in cardiac fibrosis. Mice were administered ADR (3 mg/kg, i.p., every 2 days) for 2 weeks. We showed that aberrant PRMT5 expression was largely co-localized with α-SMA-positive activated cardiac fibroblasts in ADR-injected mice and in ADR-treated cardiac fibroblasts in vitro. PRMT5-overexpression exacerbated, whereas PRMT5 knockdown alleviated ADR-induced cardiac fibrosis in vivo and TGF-β1-induced cardiac fibroblast activation in vitro. We demonstrated that PRMT5-overexpression enhanced methylated-Smad3 levels in vivo and in vitro. Pretreatment with a specific PRMT5 inhibitor EPZ015666 (5 nM) or overexpression of a catalytically inactive mutant of PRMT5, PRMT5(E444Q), reduced PRMT5-induced methylation of Smad3, thus suppressing PRMT5-mediated cardiac fibroblast activation in vitro. Furthermore, ADR activated cardiac fibroblasts was depending on autocrine TGF-β1. Taken together, our results demonstrate that PRMT5 promotes ADR-induced cardiac fibrosis via activating cardiac fibroblasts, suggesting that it may be a potential therapeutic target of ADR-caused cardiotoxicity.
Collapse
Affiliation(s)
- Xiao-Liang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Bao-Hui Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Sheng-Zhou Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - He Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Hua Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Sun
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
188
|
Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat Commun 2023; 14:1078. [PMID: 36841868 PMCID: PMC9968330 DOI: 10.1038/s41467-023-36826-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Protein arginine methyltransferase (PRMT) 5 is over-expressed in a variety of cancers and the master transcription regulator E2F1 is an important methylation target. We have explored the role of PRMT5 and E2F1 in regulating the non-coding genome and report here a striking effect on long non-coding (lnc) RNA gene expression. Moreover, many MHC class I protein-associated peptides were derived from small open reading frames in the lncRNA genes. Pharmacological inhibition of PRMT5 or adjusting E2F1 levels qualitatively altered the repertoire of lncRNA-derived peptide antigens displayed by tumour cells. When presented to the immune system as either ex vivo-loaded dendritic cells or expressed from a viral vector, lncRNA-derived peptides drove a potent antigen-specific CD8 T lymphocyte response, which translated into a significant delay in tumour growth. Thus, lncRNA genes encode immunogenic peptides that can be deployed as a cancer vaccine.
Collapse
|
189
|
Wang K, Luo L, Fu S, Wang M, Wang Z, Dong L, Wu X, Dai L, Peng Y, Shen G, Chen HN, Nice EC, Wei X, Huang C. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat Commun 2023; 14:1011. [PMID: 36823188 PMCID: PMC9950448 DOI: 10.1038/s41467-023-36708-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Serine synthesis is crucial for tumor growth and survival, but its regulatory mechanism in cancer remains elusive. Here, using integrative metabolomics and transcriptomics analyses, we show a heterogeneity between metabolite and transcript profiles. Specifically, the level of serine in hepatocellular carcinoma (HCC) tissues is increased, whereas the expression of phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in serine biosynthesis pathway, is markedly downregulated. Interestingly, the increased serine level is obtained by enhanced PHGDH catalytic activity due to protein arginine methyltransferase 1 (PRMT1)-mediated methylation of PHGDH at arginine 236. PRMT1-mediated PHGDH methylation and activation potentiates serine synthesis, ameliorates oxidative stress, and promotes HCC growth in vitro and in vivo. Furthermore, PRMT1-mediated PHGDH methylation correlates with PHGDH hyperactivation and serine accumulation in human HCC tissues, and is predictive of poor prognosis of HCC patients. Notably, blocking PHGDH methylation with a TAT-tagged nonmethylated peptide inhibits serine synthesis and restrains HCC growth in an HCC patient-derived xenograft (PDX) model and subcutaneous HCC cell-derived xenograft model. Overall, our findings reveal a regulatory mechanism of PHGDH activity and serine synthesis, and suggest PHGDH methylation as a potential therapeutic vulnerability in HCC.
Collapse
Affiliation(s)
- Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, PR China
| | - Shuyue Fu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zihao Wang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lixia Dong
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Lunzhi Dai
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Yong Peng
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Guobo Shen
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
190
|
Wang J, Huang X, Zheng D, Li Q, Mei M, Bao S. PRMT5 determines the pattern of polyploidization and prevents liver from cirrhosis and carcinogenesis. J Genet Genomics 2023; 50:87-98. [PMID: 35500745 DOI: 10.1016/j.jgg.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Human hepatocellular carcinoma (HCC) occurs almost exclusively in cirrhotic livers. Here, we report that hepatic loss of protein arginine methyltransferase 5 (PRMT5) in mice is sufficient to cause cirrhosis and HCC in a clinically relevant way. Furthermore, pathological polyploidization induced by hepatic loss of PRMT5 promotes liver cirrhosis and hepatic tumorigenesis in aged liver. The loss of PRMT5 leads to hyper-accumulation of P21 and endoreplication-dependent formation of pathological mono-nuclear polyploid hepatocytes. PRMT5 and symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) directly associate with chromatin of P21 to suppress its transcription. More importantly, loss of P21 rescues the pathological mono-nuclear polyploidy and prevents PRMT5-deficiency-induced liver cirrhosis and HCC. Thus, our results indicate that PRMT5-mediated symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) is crucial for preventing pathological polyploidization, liver cirrhosis and tumorigenesis in mouse liver.
Collapse
Affiliation(s)
- Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiang Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoshan Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
191
|
Cheng N, Liu J, Chen C, Zheng T, Li C, Huang J. Prediction of lung cancer metastasis by gene expression. Comput Biol Med 2023; 153:106490. [PMID: 36638618 DOI: 10.1016/j.compbiomed.2022.106490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Tumor metastasis is the main cause of death in cancer patients. Early prediction of tumor metastasis can allow for timely intervention. At present, research on tumor metastasis mainly focuses on manual diagnosis by imaging or diagnosis by computational methods. With the deterioration of the tumor, gene expression levels in blood change greatly. It is feasible to measure the transcripts of key genes to predict whether cancer will metastasize. Therefore, in this paper, we obtained gene expression data from 226 patients from TCGA. These data included 239,322 transcripts. Background screening and LASSO analysis were used to select 31 transcripts as features. Finally, a deep neural network (DNN) was used to determine whether or not lung cancer would metastasize. We compared our methods with several other methods and found that our method achieved the best precision. In addition, in a previous study, we identified 7 genes that play a vital role in lung cancer. We added those gene transcripts into the DNN and found that the AUC and AUPR of the model were increased.
Collapse
Affiliation(s)
- Nitao Cheng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junliang Liu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, China
| | - Tang Zheng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Changsheng Li
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
192
|
Scagnoli F, Palma A, Favia A, Scuoppo C, Illi B, Nasi S. A New Insight into MYC Action: Control of RNA Polymerase II Methylation and Transcription Termination. Biomedicines 2023; 11:biomedicines11020412. [PMID: 36830948 PMCID: PMC9952900 DOI: 10.3390/biomedicines11020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
MYC oncoprotein deregulation is a common catastrophic event in human cancer and limiting its activity restrains tumor development and maintenance, as clearly shown via Omomyc, an MYC-interfering 90 amino acid mini-protein. MYC is a multifunctional transcription factor that regulates many aspects of transcription by RNA polymerase II (RNAPII), such as transcription activation, pause release, and elongation. MYC directly associates with Protein Arginine Methyltransferase 5 (PRMT5), a protein that methylates a variety of targets, including RNAPII at the arginine residue R1810 (R1810me2s), crucial for proper transcription termination and splicing of transcripts. Therefore, we asked whether MYC controls termination as well, by affecting R1810me2S. We show that MYC overexpression strongly increases R1810me2s, while Omomyc, an MYC shRNA, or a PRMT5 inhibitor and siRNA counteract this phenomenon. Omomyc also impairs Serine 2 phosphorylation in the RNAPII carboxyterminal domain, a modification that sustains transcription elongation. ChIP-seq experiments show that Omomyc replaces MYC and reshapes RNAPII distribution, increasing occupancy at promoter and termination sites. It is unclear how this may affect gene expression. Transcriptomic analysis shows that transcripts pivotal to key signaling pathways are both up- or down-regulated by Omomyc, whereas genes directly controlled by MYC and belonging to a specific signature are strongly down-regulated. Overall, our data point to an MYC/PRMT5/RNAPII axis that controls termination via RNAPII symmetrical dimethylation and contributes to rewiring the expression of genes altered by MYC overexpression in cancer cells. It remains to be clarified which role this may have in tumor development.
Collapse
Affiliation(s)
- Fiorella Scagnoli
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Annarita Favia
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
| | - Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Barbara Illi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Sergio Nasi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| |
Collapse
|
193
|
Karner C, Anders I, Vejzovic D, Szkandera J, Scheipl S, Deutsch AJA, Weiss L, Vierlinger K, Kolb D, Kühberger S, Heitzer E, Habisch H, Zhang F, Madl T, Reininger-Gutmann B, Liegl-Atzwanger B, Rinner B. Targeting epigenetic features in clear cell sarcomas based on patient-derived cell lines. J Transl Med 2023; 21:54. [PMID: 36710341 PMCID: PMC9884415 DOI: 10.1186/s12967-022-03843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Clear cell sarcomas (CCSs) are translocated aggressive malignancies, most commonly affecting young adults with a high incidence of metastases and a poor prognosis. Research into the disease is more feasible when adequate models are available. By establishing CCS cell lines from a primary and metastatic lesion and isolating healthy fibroblasts from the same patient, the in vivo process is accurately reflected and aspects of clinical multistep carcinogenesis recapitulated. METHODS Isolated tumor cells and normal healthy skin fibroblasts from the same patient were compared in terms of growth behavior and morphological characteristics using light and electron microscopy. Tumorigenicity potential was determined by soft agar colony formation assay and in vivo xenograft applications. While genetic differences between the two lineages were examined by copy number alternation profiles, nuclear magnetic resonance spectroscopy determined arginine methylation as epigenetic features. Potential anti-tumor effects of a protein arginine N-methyltransferase type I (PRMT1) inhibitor were elicited in 2D and 3D cell culture experiments using cell viability and apoptosis assays. Statistical significance was calculated by one-way ANOVA and unpaired t-test. RESULTS The two established CCS cell lines named MUG Lucifer prim and MUG Lucifer met showed differences in morphology, genetic and epigenetic data, reflecting the respective original tissue. The detailed cell line characterization especially in regards to the epigenetic domain allows investigation of new innovative therapies. Based on the epigenetic data, a PRMT1 inhibitor was used to demonstrate the targeted antitumor effect; normal tissue cells isolated and immortalized from the same patient were not affected with the IC50 used. CONCLUSIONS MUG Lucifer prim, MUG Lucifer met and isolated and immortalized fibroblasts from the same patient represent an ideal in vitro model to explore the biology of CCS. Based on this cell culture model, novel therapies could be tested in the form of PRMT1 inhibitors, which drive tumor cells into apoptosis, but show no effect on fibroblasts, further supporting their potential as promising treatment options in the combat against CCS. The data substantiate the importance of tailored therapies in the advanced metastatic stage of CCS.
Collapse
Affiliation(s)
- Christina Karner
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria
| | - Ines Anders
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria
| | - Djenana Vejzovic
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria
| | - Joanna Szkandera
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Susanne Scheipl
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | | | - Larissa Weiss
- Institute for Health Care Engineering With European Testing Center of Medical Devices, University of Technology, Graz, Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Stefan Kühberger
- Diagnostic and Research Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Research Unit Integrative Structural Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Research Unit Integrative Structural Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Birgit Reininger-Gutmann
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| | - Beate Rinner
- Division of Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Roseggerweg 48, 8036, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
194
|
Identification and Characterization of Glycine- and Arginine-Rich Motifs in Proteins by a Novel GAR Motif Finder Program. Genes (Basel) 2023; 14:genes14020330. [PMID: 36833257 PMCID: PMC9957100 DOI: 10.3390/genes14020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Glycine- and arginine-rich (GAR) motifs with different combinations of RG/RGG repeats are present in many proteins. The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a conserved long N-terminal GAR domain with more than 10 RGG plus RG repeats separated by specific amino acids, mostly phenylanalines. We developed a GAR motif finder (GMF) program based on the features of the GAR domain of FBL. The G(0,3)-X(0,1)-R-G(1,2)-X(0,5)-G(0,2)-X(0,1)-R-G(1,2) pattern allows the accommodation of extra-long GAR motifs with continuous RG/RGG interrupted by polyglycine or other amino acids. The program has a graphic interface and can easily output the results as .csv and .txt files. We used GMF to show the characteristics of the long GAR domains in FBL and two other nucleolar proteins, nucleolin and GAR1. GMF analyses can illustrate the similarities and also differences between the long GAR domains in the three nucleolar proteins and motifs in other typical RG/RGG-repeat-containing proteins, specifically the FET family members FUS, EWS, and TAF15 in position, motif length, RG/RGG number, and amino acid composition. We also used GMF to analyze the human proteome and focused on the ones with at least 10 RGG plus RG repeats. We showed the classification of the long GAR motifs and their putative correlation with protein/RNA interactions and liquid-liquid phase separation. The GMF algorithm can facilitate further systematic analyses of the GAR motifs in proteins and proteomes.
Collapse
|
195
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
196
|
Papanikolaou NA, Nikolaidis M, Amoutzias GD, Fouza A, Papaioannou M, Pandey A, Papavassiliou AG. The Dynamic and Crucial Role of the Arginine Methylproteome in Myoblast Cell Differentiation. Int J Mol Sci 2023; 24:2124. [PMID: 36768448 PMCID: PMC9916730 DOI: 10.3390/ijms24032124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methylation is an extensive and functionally significant post-translational modification. However, little is known about its role in differentiation at the systems level. Using stable isotope labeling by amino acids in cell culture (SILAC) proteomics of whole proteome analysis in proliferating or five-day differentiated mouse C2C12 myoblasts, followed by high-resolution mass spectrometry, biochemical assays, and specific immunoprecipitation of mono- or dimethylated arginine peptides, we identified several protein families that were differentially methylated on arginine. Our study is the first to reveal global changes in the arginine mono- or dimethylation of proteins in proliferating myoblasts and differentiated myocytes and to identify enriched protein domains and novel short linear motifs (SLiMs). Our data may be crucial for dissecting the links between differentiation and cancer growth.
Collapse
Affiliation(s)
- Nikolaos A. Papanikolaou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Ariadni Fouza
- Fifth Surgical Department, Ippokrateio General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Macedonia, Greece
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
197
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
198
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
199
|
Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Recent applications of computational methods to allosteric drug discovery. Front Mol Biosci 2023; 9:1070328. [PMID: 36710877 PMCID: PMC9877542 DOI: 10.3389/fmolb.2022.1070328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Interest in exploiting allosteric sites for the development of new therapeutics has grown considerably over the last two decades. The chief driving force behind the interest in allostery for drug discovery stems from the fact that in comparison to orthosteric sites, allosteric sites are less conserved across a protein family, thereby offering greater opportunity for selectivity and ultimately tolerability. While there is significant overlap between structure-based drug design for orthosteric and allosteric sites, allosteric sites offer additional challenges mostly involving the need to better understand protein flexibility and its relationship to protein function. Here we examine the extent to which structure-based drug design is impacting allosteric drug design by highlighting several targets across a variety of target classes.
Collapse
Affiliation(s)
- Rajiv Gandhi Govindaraj
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States,*Correspondence: Rajiv Gandhi Govindaraj,
| | | | - Michael Schauperl
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| | | | - David J. Diller
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| |
Collapse
|
200
|
The Prmt5-Vasa module is essential for spermatogenesis in Bombyx mori. PLoS Genet 2023; 19:e1010600. [PMID: 36634107 PMCID: PMC9876381 DOI: 10.1371/journal.pgen.1010600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
In lepidopteran insects, dichotomous spermatogenesis produces eupyrene spermatozoa, which are nucleated, and apyrene spermatozoa, which are anucleated. Both sperm morphs are essential for fertilization, as eupyrene sperm fertilize the egg, and apyrene sperm is necessary for the migration of eupyrene sperm. In Drosophila, Prmt5 acts as a type II arginine methyltransferase that catalyzes the symmetrical dimethylation of arginine residues in the RNA helicase Vasa. Prmt5 is critical for the regulation of spermatogenesis, but Vasa is not. To date, functional genetic studies of spermatogenesis in the lepidopteran model Bombyx mori has been limited. In this study, we engineered mutations in BmPrmt5 and BmVasa through CRISPR/Cas9-based gene editing. Both BmPrmt5 and BmVasa loss-of-function mutants had similar male and female sterility phenotypes. Through immunofluorescence staining analysis, we found that the morphs of sperm from both BmPrmt5 and BmVasa mutants have severe defects, indicating essential roles for both BmPrmt5 and BmVasa in the regulation of spermatogenesis. Mass spectrometry results identified that R35, R54, and R56 of BmVasa were dimethylated in WT while unmethylated in BmPrmt5 mutants. RNA-seq analyses indicate that the defects in spermatogenesis in mutants resulted from reduced expression of the spermatogenesis-related genes, including BmSxl, implying that BmSxl acts downstream of BmPrmt5 and BmVasa to regulate apyrene sperm development. These findings indicate that BmPrmt5 and BmVasa constitute an integral regulatory module essential for spermatogenesis in B. mori.
Collapse
|