151
|
Seeking a Role for Translational Control by Alternative Polyadenylation in Saccharomyces cerevisiae. Microorganisms 2021; 9:microorganisms9091885. [PMID: 34576779 PMCID: PMC8464734 DOI: 10.3390/microorganisms9091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.
Collapse
|
152
|
Woo HH, Chambers SK. Regulation of closely juxtaposed proto-oncogene c-fms and HMGXB3 gene expression by mRNA 3' end polymorphism in breast cancer cells. RNA (NEW YORK, N.Y.) 2021; 27:1068-1081. [PMID: 34155128 PMCID: PMC8370744 DOI: 10.1261/rna.078749.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Sense-antisense mRNA pairs generated by convergent transcription is a way of gene regulation. c-fms gene is closely juxtaposed to the HMGXB3 gene in the opposite orientation, in chromosome 5. The intergenic region (IR) between c-fms and HMGXB3 genes is 162 bp. We found that a small portion (∼4.18%) of HMGXB3 mRNA is transcribed further downstream, including the end of the c-fms gene generating antisense mRNA against c-fms mRNA. Similarly, a small portion (∼1.1%) of c-fms mRNA is transcribed further downstream, including the end of the HMGXB3 gene generating antisense mRNA against the HMGXB3 mRNA. Insertion of the strong poly(A) signal sequence in the IR results in decreased c-fms and HMGXB3 antisense mRNAs, resulting in up-regulation of both c-fms and HMGXB3 mRNA expression. miR-324-5p targets HMGXB3 mRNA 3' UTR, and as a result, regulates c-fms mRNA expression. HuR stabilizes c-fms mRNA, and as a result, down-regulates HMGXB3 mRNA expression. UALCAN analysis indicates that the expression pattern between c-fms and HMGXB3 proteins are opposite in vivo in breast cancer tissues. Together, our results indicate that the mRNA encoded by the HMGXB3 gene can influence the expression of adjacent c-fms mRNA, or vice versa.
Collapse
MESH Headings
- 3' Untranslated Regions
- CRISPR-Cas Systems
- Cell Line, Tumor
- Chromosomes, Human, Pair 5
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Female
- Gene Editing
- Gene Expression Regulation, Neoplastic
- Genes, fms
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Humans
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Polymorphism, Genetic
- Proto-Oncogene Mas
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Ho-Hyung Woo
- The University of Arizona Cancer Center, Tucson, Arizona 85724, USA
| | - Setsuko K Chambers
- The University of Arizona Cancer Center, Tucson, Arizona 85724, USA
- Department of Obstetrics and Gynecology, College of Medicine, The University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
153
|
Agarwal V, Lopez-Darwin S, Kelley DR, Shendure J. The landscape of alternative polyadenylation in single cells of the developing mouse embryo. Nat Commun 2021; 12:5101. [PMID: 34429411 PMCID: PMC8385098 DOI: 10.1038/s41467-021-25388-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
3′ untranslated regions (3′ UTRs) post-transcriptionally regulate mRNA stability, localization, and translation rate. While 3′-UTR isoforms have been globally quantified in limited cell types using bulk measurements, their differential usage among cell types during mammalian development remains poorly characterized. In this study, we examine a dataset comprising ~2 million nuclei spanning E9.5–E13.5 of mouse embryonic development to quantify transcriptome-wide changes in alternative polyadenylation (APA). We observe a global lengthening of 3′ UTRs across embryonic stages in all cell types, although we detect shorter 3′ UTRs in hematopoietic lineages and longer 3′ UTRs in neuronal cell types within each stage. An analysis of RNA-binding protein (RBP) dynamics identifies ELAV-like family members, which are concomitantly induced in neuronal lineages and developmental stages experiencing 3′-UTR lengthening, as putative regulators of APA. By measuring 3′-UTR isoforms in an expansive single cell dataset, our work provides a transcriptome-wide and organism-wide map of the dynamic landscape of alternative polyadenylation during mammalian organogenesis. Alternative polyadenylation regulates localization, half-life and translation of mRNA isoforms. Here the authors investigate alternative polyadenylation using single cell RNA sequencing data from mouse embryos and identify 3’-UTR isoforms that are regulated across cell types and developmental time.
Collapse
Affiliation(s)
| | | | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA. .,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
154
|
Albarqi MMY, Ryder SP. The endogenous mex-3 3´UTR is required for germline repression and contributes to optimal fecundity in C. elegans. PLoS Genet 2021; 17:e1009775. [PMID: 34424904 PMCID: PMC8412283 DOI: 10.1371/journal.pgen.1009775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised. In sexually reproducing organisms, germ cells undergo meiosis and differentiate to form oocytes or sperm. Coordination of this process requires a gene regulatory program that acts while the genome is undergoing chromatin condensation. As such, RNA regulatory pathways are an important contributor. The germline of the nematode Caenorhabditis elegans is a suitable model system to study germ cell differentiation. Several RNA-binding proteins (RBPs) coordinate each transition in the germline such as the transition from mitosis to meiosis. MEX-3 is a conserved RNA-binding protein found in most animals including humans. In C. elegans, MEX-3 displays a highly restricted pattern of expression. Here, we define the importance of the 3´UTR in regulating MEX-3 expression pattern in vivo and characterize the RNA-binding proteins involved in this regulation. Our results show that deleting various mex-3 3´UTR regions alter the pattern of expression in the germline in various ways. These mutations also reduced—but did not eliminate—reproductive capacity. Finally, we demonstrate that multiple post-transcriptional mechanisms control MEX-3 levels in different domains of the germline. Our data suggest that coordination of MEX-3 activity requires multiple layers of regulation to ensure reproductive robustness.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
155
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
156
|
Kandhari N, Kraupner-Taylor CA, Harrison PF, Powell DR, Beilharz TH. The Detection and Bioinformatic Analysis of Alternative 3 ' UTR Isoforms as Potential Cancer Biomarkers. Int J Mol Sci 2021; 22:5322. [PMID: 34070203 PMCID: PMC8158509 DOI: 10.3390/ijms22105322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative transcript cleavage and polyadenylation is linked to cancer cell transformation, proliferation and outcome. This has led researchers to develop methods to detect and bioinformatically analyse alternative polyadenylation as potential cancer biomarkers. If incorporated into standard prognostic measures such as gene expression and clinical parameters, these could advance cancer prognostic testing and possibly guide therapy. In this review, we focus on the existing methodologies, both experimental and computational, that have been applied to support the use of alternative polyadenylation as cancer biomarkers.
Collapse
Affiliation(s)
- Nitika Kandhari
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Calvin A. Kraupner-Taylor
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Paul F. Harrison
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - David R. Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - Traude H. Beilharz
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| |
Collapse
|
157
|
Ren L, Li J, Wang C, Lou Z, Gao S, Zhao L, Wang S, Chaulagain A, Zhang M, Li X, Tang J. Single cell RNA sequencing for breast cancer: present and future. Cell Death Discov 2021; 7:104. [PMID: 33990550 PMCID: PMC8121804 DOI: 10.1038/s41420-021-00485-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/03/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is one of the most common malignant tumors in women. It is a heterogeneous disease related to genetic and environmental factors. Presently, the treatment of breast cancer still faces challenges due to recurrence and metastasis. The emergence of single-cell RNA sequencing (scRNA-seq) technology has brought new strategies to deeply understand the biological behaviors of breast cancer. By analyzing cell phenotypes and transcriptome differences at the single-cell level, scRNA-seq reveals the heterogeneity, dynamic growth and differentiation process of cells. This review summarizes the application of scRNA-seq technology in breast cancer research, such as in studies on cell heterogeneity, cancer cell metastasis, drug resistance, and prognosis. scRNA-seq technology is of great significance to deeply analyze the mechanism of breast cancer occurrence and development, identify new therapeutic targets and develop new therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Junyi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Zheqi Lou
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
158
|
Sommerkamp P, Cabezas-Wallscheid N, Trumpp A. Alternative Polyadenylation in Stem Cell Self-Renewal and Differentiation. Trends Mol Med 2021; 27:660-672. [PMID: 33985920 DOI: 10.1016/j.molmed.2021.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is shaped by transcriptional and post-transcriptional mechanisms, including alternative polyadenylation (APA). By directly controlling 3'- untranslated region (UTR) length and the selection of the last exon, APA regulates up to 70% of all cellular transcripts influencing RNA stability, output, and protein isoform expression. Cell-state-dependent 3'-UTR shortening has been identified as a hallmark of cellular proliferation. Hence, quiescent/dormant stem cells are characterized by long 3'-UTRs, whereas proliferative stem/progenitor cells exhibit 3'-UTR shortening. Here, the latest studies analyzing the role of APA in regulating stem cell state, self-renewal, differentiation, and metabolism are reviewed. The new role of APA in controlling stem cell fate opens novel potential therapeutic avenues in the field of regenerative medicine.
Collapse
Affiliation(s)
- Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
159
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
160
|
Lan YL, Zhang J. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomed Pharmacother 2021; 137:111416. [DOI: 10.1016/j.biopha.2021.111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
|
161
|
Bhat P, Burkard TR, Herzog VA, Pauli A, Ameres SL. Systematic refinement of gene annotations by parsing mRNA 3' end sequencing datasets. Methods Enzymol 2021; 655:205-223. [PMID: 34183122 DOI: 10.1016/bs.mie.2021.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alternative cleavage and polyadenylation generates mRNA 3' isoforms in a cell type-specific manner. Due to finite available RNA sequencing data of organisms with vast cell type complexity, currently available gene annotation resources are incomplete, which poses significant challenges to the comprehensive interpretation and quantification of transcriptomes. In this chapter, we introduce 3'GAmES, a stand-alone computational pipeline for the identification and quantification of novel mRNA 3'end isoforms from 3'mRNA sequencing data. 3'GAmES expands available repositories and improves comprehensive gene-tag counting by cost-effective 3' mRNA sequencing, faithfully mirroring whole-transcriptome RNAseq measurements. By employing R and bash shell scripts (assembled in a Singularity container) 3'GAmES systematically augments cell type-specific 3' ends of RNA polymerase II transcripts and increases the sensitivity of quantitative gene expression profiling by 3' mRNA sequencing. Public access: https://github.com/AmeresLab/3-GAmES.git.
Collapse
Affiliation(s)
- Pooja Bhat
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Veronika A Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria; Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
162
|
Komini C, Theohari I, Lambrianidou A, Nakopoulou L, Trangas T. PAPOLA contributes to cyclin D1 mRNA alternative polyadenylation and promotes breast cancer cell proliferation. J Cell Sci 2021; 134:237820. [PMID: 33712453 DOI: 10.1242/jcs.252304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(A) polymerases add the poly(A) tail at the 3' end of nearly all eukaryotic mRNA, and are associated with proliferation and cancer. To elucidate the role of the most-studied mammalian poly(A) polymerase, poly(A) polymerase α (PAPOLA), in cancer, we assessed its expression in 221 breast cancer samples and found it to correlate strongly with the aggressive triple-negative subtype. Silencing PAPOLA in MCF-7 and MDA-MB-231 breast cancer cells reduced proliferation and anchorage-independent growth by decreasing steady-state cyclin D1 (CCND1) mRNA and protein levels. Whereas the length of the CCND1 mRNA poly(A) tail was not affected, its 3' untranslated region (3'UTR) lengthened. Overexpressing PAPOLA caused CCND1 mRNA 3'UTR shortening with a concomitant increase in the amount of corresponding transcript and protein, resulting in growth arrest in MCF-7 cells and DNA damage in HEK-293 cells. Such overexpression of PAPOLA promoted proliferation in the p53 mutant MDA-MB-231 cells. Our data suggest that PAPOLA is a possible candidate target for the control of tumor growth that is mostly relevant to triple-negative tumors, a group characterized by PAPOLA overexpression and lack of alternative targeted therapies.
Collapse
Affiliation(s)
- Chrysoula Komini
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| | - Irini Theohari
- First Department of Pathology, Medical School, University of Athens, Athens, 11517, Greece
| | - Andromachi Lambrianidou
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| | - Lydia Nakopoulou
- First Department of Pathology, Medical School, University of Athens, Athens, 11517, Greece
| | - Theoni Trangas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
163
|
Pereira-Castro I, Moreira A. On the function and relevance of alternative 3'-UTRs in gene expression regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1653. [PMID: 33843145 DOI: 10.1002/wrna.1653] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Messanger RNA (mRNA) isoforms with alternative 3'-untranslated regions (3'-UTRs) are produced by alternative polyadenylation (APA), which occurs during transcription in most eukaryotic genes. APA fine-tunes gene expression in a cell-type- and cellular state-dependent manner. Selection of an APA site entails the binding of core cleavage and polyadenylation factors to a particular polyadenylation site localized in the pre-mRNA and is controlled by multiple regulatory determinants, including transcription, pre-mRNA cis-regulatory sequences, and protein factors. Alternative 3'-UTRs serve as platforms for specific RNA binding proteins and microRNAs, which regulate gene expression in a coordinated manner by controlling mRNA fate and function in the cell. Genome-wide studies illustrated the full extent of APA prevalence and revealed that specific 3'-UTR profiles are associated with particular cellular states and diseases. Generally, short 3'-UTRs are associated with proliferative and cancer cells, and long 3'-UTRs are mostly found in polarized and differentiated cells. Fundamental new insights on the physiological consequences of this widespread event and the molecular mechanisms involved have been revealed through single-cell studies. Publicly available comprehensive databases that cover all APA mRNA isoforms identified in many cellular states and diseases reveal specific APA signatures. Therapies tackling APA mRNA isoforms or APA regulators may be regarded as innovative and attractive tools for diagnostics or treatment of several pathologies. We highlight the function of APA and alternative 3'-UTRs in gene expression regulation, the control of these mechanisms, their physiological consequences, and their potential use as new biomarkers and therapeutic tools. This article is categorized under: RNA Processing > 3' End Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
164
|
Zhao LW, Fan HY. Revisiting poly(A)-binding proteins: Multifaceted regulators during gametogenesis and early embryogenesis. Bioessays 2021; 43:e2000335. [PMID: 33830517 DOI: 10.1002/bies.202000335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation faces a distinctive challenge in gametes. Transcription is limited when the germ cells enter the division phase due to condensed chromatin, while gene expression during gamete maturation, fertilization, and early cleavage depends on existing mRNA post-transcriptional coordination. The dynamics of the 3'-poly(A) tail play crucial roles in defining mRNA fate. The 3'-poly(A) tail is covered with poly(A)-binding proteins (PABPs) that help to mediate mRNA metabolism and recent work has shed light on the number and function of germ cell-specific expressed PABPs. There are two structurally different PABP groups distinguished by their cytoplasmic and nuclear localization. Both lack catalytic activity but are coupled with various roles through their interaction with multifunctional partners during mRNA metabolism. Here, we present a synopsis of PABP function during gametogenesis and early embryogenesis and describe both conventional and current models of the functions and regulation of PABPs, with an emphasis on the physiological significance of how germ cell-specific PABPs potentially affect human fertility.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
165
|
Zhao C, He L, Xia H, Zhou X, Geng Y, Hou L, Li P, Li G, Zhao S, Ma C, Tang R, Pandey MK, Varshney RK, Wang X. De novo full length transcriptome analysis of Arachis glabrata provides insights into gene expression dynamics in response to biotic and abiotic stresses. Genomics 2021; 113:1579-1588. [PMID: 33819563 DOI: 10.1016/j.ygeno.2021.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The perennial ornamental peanut Arachis glabrata represents one of the most adaptable wild Arachis species. This study used PacBio combined with BGISEQ-500 RNA-seq technology to study the transcriptome and gene expression dynamics of A. glabrata. Of the total 109,747 unique transcripts obtained, >90,566 transcripts showed significant homology to known proteins and contained the complete coding sequence (CDS). RNA-seq revealed that 1229, 1039, 1671, 3923, 1521 and 1799 transcripts expressed specifically in the root, stem, leaf, flower, peg and pod, respectively. We also identified thousands of differentially expressed transcripts in response to drought, salt, cold and leaf spot disease. Furthermore, we identified 30 polyphenol oxidase encoding genes associated with the quality of forage, making A. glabrata suitable as a forage crop. Our findings presented the first transcriptome study of A. glabrata which will facilitate genetic and genomics studies and lays the groundwork for a deeper understanding of the A. glabrata genome.
Collapse
Affiliation(s)
- Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, People's Republic of China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ximeng Zhou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yun Geng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Pengcheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Guanghui Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ronghua Tang
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, 530007 Nanning, People's Republic of China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, People's Republic of China; College of Life Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| |
Collapse
|
166
|
Sousa-Luís R, Dujardin G, Zukher I, Kimura H, Weldon C, Carmo-Fonseca M, Proudfoot NJ, Nojima T. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol Cell 2021; 81:1935-1950.e6. [PMID: 33735606 PMCID: PMC8122139 DOI: 10.1016/j.molcel.2021.02.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
Mammalian chromatin is the site of both RNA polymerase II (Pol II) transcription and coupled RNA processing. However, molecular details of such co-transcriptional mechanisms remain obscure, partly because of technical limitations in purifying authentic nascent transcripts. We present a new approach to characterize nascent RNA, called polymerase intact nascent transcript (POINT) technology. This three-pronged methodology maps nascent RNA 5′ ends (POINT-5), establishes the kinetics of co-transcriptional splicing patterns (POINT-nano), and profiles whole transcription units (POINT-seq). In particular, we show by depletion of the nuclear exonuclease Xrn2 that this activity acts selectively on cleaved 5′ P-RNA at polyadenylation sites. Furthermore, POINT-nano reveals that co-transcriptional splicing either occurs immediately after splice site transcription or is delayed until Pol II transcribes downstream sequences. Finally, we connect RNA cleavage and splicing with either premature or full-length transcript termination. We anticipate that POINT technology will afford full dissection of the complexity of co-transcriptional RNA processing. POINT methodology dissects intact nascent RNA processing Specificity of Xrn2 exonuclease in co-transcriptional RNA degradation Splicing suppresses Xrn2-dependent premature termination Different kinetic classes of co-transcriptional splicing in human genes
Collapse
Affiliation(s)
- Rui Sousa-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Gwendal Dujardin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Inna Zukher
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hiroshi Kimura
- Cell Biology Centre, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Carika Weldon
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
167
|
Aptardi predicts polyadenylation sites in sample-specific transcriptomes using high-throughput RNA sequencing and DNA sequence. Nat Commun 2021; 12:1652. [PMID: 33712618 PMCID: PMC7955126 DOI: 10.1038/s41467-021-21894-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023] Open
Abstract
Annotation of polyadenylation sites from short-read RNA sequencing alone is a challenging computational task. Other algorithms rooted in DNA sequence predict potential polyadenylation sites; however, in vivo expression of a particular site varies based on a myriad of conditions. Here, we introduce aptardi (alternative polyadenylation transcriptome analysis from RNA-Seq data and DNA sequence information), which leverages both DNA sequence and RNA sequencing in a machine learning paradigm to predict expressed polyadenylation sites. Specifically, as input aptardi takes DNA nucleotide sequence, genome-aligned RNA-Seq data, and an initial transcriptome. The program evaluates these initial transcripts to identify expressed polyadenylation sites in the biological sample and refines transcript 3'-ends accordingly. The average precision of the aptardi model is twice that of a standard transcriptome assembler. In particular, the recall of the aptardi model (the proportion of true polyadenylation sites detected by the algorithm) is improved by over three-fold. Also, the model-trained using the Human Brain Reference RNA commercial standard-performs well when applied to RNA-sequencing samples from different tissues and different mammalian species. Finally, aptardi's input is simple to compile and its output is easily amenable to downstream analyses such as quantitation and differential expression.
Collapse
|
168
|
Chen SL, Zhu ZX, Yang X, Liu LL, He YF, Yang MM, Guan XY, Wang X, Yun JP. Cleavage and Polyadenylation Specific Factor 1 Promotes Tumor Progression via Alternative Polyadenylation and Splicing in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:616835. [PMID: 33748106 PMCID: PMC7969726 DOI: 10.3389/fcell.2021.616835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism required for cleavage and polyadenylation (CPA) of the 3′ untranslated region (3′ UTR) of mRNAs. Several aberrant APA events have been reported in hepatocellular carcinoma (HCC). However, the regulatory mechanisms underlying APA remain unclear. In this study, we found that the expression of cleavage and polyadenylation specific factor 1 (CPSF1), a major component of the CPA complex, was significantly increased in HCC tissues and correlated with unfavorable survival outcomes. Knockdown of CPSF1 inhibited HCC cell proliferation and migration, whereas overexpression of CPSF1 caused the opposite effect. Based on integrative analysis of Iso-Seq and RNA-seq data from HepG2.2.15 cells, we identified a series of transcripts with differential 3′ UTR lengths following the knockdown of CPSF1. These transcripts were related to the biological functions of gene transcription, cytoskeleton maintenance, and endomembrane system transportation. Moreover, knockdown of CPSF1 induced an increase in alternative splicing (AS) events in addition to APA. Taken together, this study provides new insights into our understanding of the post-transcriptional regulatory mechanisms in HCC and implies that CPSF1 may be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Shi-Lu Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhong-Xu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang-Fan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming-Ming Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
169
|
Wang X, Liu L, Whisnant AW, Hennig T, Djakovic L, Haque N, Bach C, Sandri-Goldin RM, Erhard F, Friedel CC, Dölken L, Shi Y. Mechanism and consequences of herpes simplex virus 1-mediated regulation of host mRNA alternative polyadenylation. PLoS Genet 2021; 17:e1009263. [PMID: 33684133 PMCID: PMC7971895 DOI: 10.1371/journal.pgen.1009263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/18/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic gene expression is extensively regulated by cellular stress and pathogen infections. We have previously shown that herpes simplex virus 1 (HSV-1) and several cellular stresses cause widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes and that the viral immediate early factor ICP27 plays an important role in HSV-1-induced DoTT. Here, we show that HSV-1 infection also leads to widespread changes in alternative polyadenylation (APA) of host mRNAs. In the majority of cases, polyadenylation shifts to upstream poly(A) sites (PAS), including many intronic PAS. Mechanistically, ICP27 contributes to HSV-1-mediated APA regulation. HSV-1- and ICP27-induced activation of intronic PAS is sequence-dependent and does not involve general inhibition of U1 snRNP. HSV1-induced intronic polyadenylation is accompanied by early termination of RNAPII. HSV-1-induced mRNAs polyadenylated at intronic PAS (IPA) are exported into the cytoplasm while APA isoforms with extended 3' UTRs are sequestered in the nuclei, both preventing the expression of the full-length gene products. Finally we provide evidence that HSV-induced IPA isoforms are translated. Together with other recent studies, our results suggest that viral infection and cellular stresses induce a multi-faceted host response that includes DoTT and changes in APA profiles.
Collapse
Affiliation(s)
- Xiuye Wang
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States America
| | - Liang Liu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States America
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Germany
| | - Nabila Haque
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States America
| | - Cindy Bach
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States America
| | - Rozanne M. Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States America
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Germany
| | | | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States America
| |
Collapse
|
170
|
Mittleman BE, Pott S, Warland S, Barr K, Cuevas C, Gilad Y. Divergence in alternative polyadenylation contributes to gene regulatory differences between humans and chimpanzees. eLife 2021; 10:e62548. [PMID: 33595436 PMCID: PMC7954529 DOI: 10.7554/elife.62548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
While comparative functional genomic studies have shown that inter-species differences in gene expression can be explained by corresponding inter-species differences in genetic and epigenetic regulatory mechanisms, co-transcriptional mechanisms, such as alternative polyadenylation (APA), have received little attention. We characterized APA in lymphoblastoid cell lines from six humans and six chimpanzees by identifying and estimating the usage for 44,432 polyadenylation sites (PAS) in 9518 genes. Although APA is largely conserved, 1705 genes showed significantly different PAS usage (FDR 0.05) between species. Genes with divergent APA also tend to be differentially expressed, are enriched among genes showing differences in protein translation, and can explain a subset of observed inter-species protein expression differences that do not differ at the transcript level. Finally, we found that genes with a dominant PAS, which is used more often than other PAS, are particularly enriched for differentially expressed genes.
Collapse
Affiliation(s)
- Briana E Mittleman
- Genetics, Genomics and Systems Biology, University of ChicagoChicagoUnited States
| | - Sebastian Pott
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Shane Warland
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Kenneth Barr
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Claudia Cuevas
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Yoav Gilad
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| |
Collapse
|
171
|
Chen H, Yao J, Bao R, Dong Y, Zhang T, Du Y, Wang G, Ni D, Xun Z, Niu X, Ye Y, Li HB. Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer. Mol Cancer 2021; 20:29. [PMID: 33557837 PMCID: PMC7869236 DOI: 10.1186/s12943-021-01322-w] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The four major RNA adenosine modifications, i.e., m6A, m1A, alternative polyadenylation, and adenosine-to-inosine RNA editing, are mediated mostly by the "writer" enzymes and constitute critical mechanisms of epigenetic regulation in immune response and tumorigenesis. However, the cross-talk and potential roles of these "writers" in the tumor microenvironment (TME), drug sensitivity, and immunotherapy remain unknown. METHODS We systematically characterized mRNA expression and genetic alterations of 26 RNA modification "writers" in colorectal cancer (CRC), and evaluated their expression pattern in 1697 CRC samples from 8 datasets. We used an unsupervised clustering method to assign the samples into two patterns of expression of RNA modification "writers". Subsequently, we constructed the RNA modification "writer" Score (WM_Score) model based on differentially expressed genes (DEGs) responsible for the RNA modification patterns to quantify the RNA modification-related subtypes of individual tumors. Furthermore, we performed association analysis for WM_Score and characteristics of TME, consensus molecular subtypes (CMSs), clinical features, transcriptional and post-transcriptional regulation, drug response, and the efficacy of immunotherapy. RESULTS We demonstrated that multi-layer alterations of RNA modification "writer" are associated with patient survival and TME cell-infiltrating characteristics. We identified two distinct RNA modification patterns, characterized by a high and a low WM_Score. The WM_Score-high group was associated with worse patient overall survival and with the infiltration of inhibitory immune cells, such as M2 macrophages, EMT activation, and metastasis, while the WM_Score-low group was associated with a survival advantage, apoptosis, and cell cycle signaling pathways. WM_Score correlated highly with the regulation of transcription and post-transcriptional events contributing to the development of CRC. In response to anti-cancer drugs, WM_Score highly negatively correlated (drug sensitive) with drugs which targeted oncogenic related pathways, such as MAPK, EGFR, and mTOR signaling pathways, positively correlated (drug resistance) with drugs which targeted in apoptosis and cell cycle. Importantly, the WM_Score was associated with the therapeutic efficacy of PD-L1 blockade, suggesting that the development of potential drugs targeting these "writers" to aid the clinical benefits of immunotherapy. CONCLUSIONS Our study is the first to provide a comprehensive analysis of four RNA modifications in CRC. We revealed the potential function of these writers in TME, transcriptional and post-transcriptional events, and identified their therapeutic liability in targeted therapy and immunotherapy. This work highlights the cross-talk and potential clinical utility of RNA modification "writers" in cancer therapy.
Collapse
Affiliation(s)
- Huifang Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jiameng Yao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Rujuan Bao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yu Dong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ting Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yanhua Du
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Gaoyang Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW 2006 Australia
| | - Zhenzhen Xun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Department of Liver Surgery, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
172
|
Mattijssen S, Kozlov G, Fonseca BD, Gehring K, Maraia RJ. LARP1 and LARP4: up close with PABP for mRNA 3' poly(A) protection and stabilization. RNA Biol 2021; 18:259-274. [PMID: 33522422 PMCID: PMC7928012 DOI: 10.1080/15476286.2020.1868753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
La-related proteins (LARPs) share a La motif (LaM) followed by an RNA recognition motif (RRM). Together these are termed the La-module that, in the prototypical nuclear La protein and LARP7, mediates binding to the UUU-3'OH termination motif of nascent RNA polymerase III transcripts. We briefly review La and LARP7 activities for RNA 3' end binding and protection from exonucleases before moving to the more recently uncovered poly(A)-related activities of LARP1 and LARP4. Two features shared by LARP1 and LARP4 are direct binding to poly(A) and to the cytoplasmic poly(A)-binding protein (PABP, also known as PABPC1). LARP1, LARP4 and other proteins involved in mRNA translation, deadenylation, and decay, contain PAM2 motifs with variable affinities for the MLLE domain of PABP. We discuss a model in which these PABP-interacting activities contribute to poly(A) pruning of active mRNPs. Evidence that the SARS-CoV-2 RNA virus targets PABP, LARP1, LARP 4 and LARP 4B to control mRNP activity is also briefly reviewed. Recent data suggests that LARP4 opposes deadenylation by stabilizing PABP on mRNA poly(A) tails. Other data suggest that LARP1 can protect mRNA from deadenylation. This is dependent on a PAM2 motif with unique characteristics present in its La-module. Thus, while nuclear La and LARP7 stabilize small RNAs with 3' oligo(U) from decay, LARP1 and LARP4 bind and protect mRNA 3' poly(A) tails from deadenylases through close contact with PABP.Abbreviations: 5'TOP: 5' terminal oligopyrimidine, LaM: La motif, LARP: La-related protein, LARP1: La-related protein 1, MLLE: mademoiselle, NTR: N-terminal region, PABP: cytoplasmic poly(A)-binding protein (PABPC1), Pol III: RNA polymerase III, PAM2: PABP-interacting motif 2, PB: processing body, RRM: RNA recognition motif, SG: stress granule.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Guennadi Kozlov
- Department of Biochemistry & Centre for Structural Biology, McGill University, Montreal, Canada
| | | | - Kalle Gehring
- Department of Biochemistry & Centre for Structural Biology, McGill University, Montreal, Canada
| | - Richard J. Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
173
|
Fine gene expression regulation by minor sequence variations downstream of the polyadenylation signal. Mol Biol Rep 2021; 48:1539-1547. [PMID: 33517473 DOI: 10.1007/s11033-021-06160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
The termination of transcription is a complex process that substantially contributes to gene regulation in eukaryotes. Previously, it was noted that a single cytosine deletion at the position + 32 bp relative to the single polyadenylation signal AAUAAA (hereafter the dC mutation) causes a 2-fold increase in the transcription level of the upstream eGFP reporter in mouse embryonic stem cells. Here, we analyzed the conservation of this phenomenon in immortalized mouse, human and drosophila cell lines and the influence of the dC mutation on the choice of the pre-mRNA cleavage sites. We have constructed dual-reporter plasmids to accurately measure the effect of the dC and other nearby located mutations on eGFP mRNA level by RT-qPCR. In this way, we found that the dC mutation leads to a 2-fold increase in the expression level of the upstream eGFP reporter gene in cultured mouse and human, but not in drosophila cells. In addition, 3' RACE analysis demonstrated that eGFP pre-mRNAs are cut at multiple positions between + 14 to + 31, and that the most proximal cleavage site becomes almost exclusively utilized in the presence of the dC mutation. We also identified new short sequence variations located within positions + 25.. + 40 and + 33.. + 48 that increase eGFP expression up to ~2-4-fold. Altogether, the positive effect of the dC mutation seems to be conserved in mouse embryonic stem cells, mouse embryonic 3T3 fibroblasts and human HEK293T cells. In the latter cells, the dC mutation appears to be involved in regulating pre-mRNA cleavage site selection. Finally, a multiplexed approach is proposed to identify motifs located downstream of cleavage site(s) that are essential for transcription termination.
Collapse
|
174
|
Jin W, Zhu Q, Yang Y, Yang W, Wang D, Yang J, Niu X, Yu D, Gong J. Animal-APAdb: a comprehensive animal alternative polyadenylation database. Nucleic Acids Res 2021; 49:D47-D54. [PMID: 32986825 PMCID: PMC7779049 DOI: 10.1093/nar/gkaa778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism that recognizes different polyadenylation signals on transcripts, resulting in transcripts with different lengths of 3′ untranslated regions and thereby influencing a series of biological processes. Recent studies have highlighted the important roles of APA in human. However, APA profiles in other animals have not been fully recognized, and there is no database that provides comprehensive APA information for other animals except human. Here, by using the RNA sequencing data collected from public databases, we systematically characterized the APA profiles in 9244 samples of 18 species. In total, we identified 342 952 APA events with a median of 17 020 per species using the DaPars2 algorithm, and 315 691 APA events with a median of 17 953 per species using the QAPA algorithm in these 18 species, respectively. In addition, we predicted the polyadenylation sites (PAS) and motifs near PAS of these species. We further developed Animal-APAdb, a user-friendly database (http://gong_lab.hzau.edu.cn/Animal-APAdb/) for data searching, browsing and downloading. With comprehensive information of APA events in different tissues of different species, Animal-APAdb may greatly facilitate the exploration of animal APA patterns and novel mechanisms, gene expression regulation and APA evolution across tissues and species.
Collapse
Affiliation(s)
- Weiwei Jin
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qizhao Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanbo Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Wenqian Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dongyang Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jiajun Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaohui Niu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
175
|
Aoyama-Ishiwatari S, Okazaki T, Iemura SI, Natsume T, Okada Y, Gotoh Y. NUDT21 Links Mitochondrial IPS-1 to RLR-Containing Stress Granules and Activates Host Antiviral Defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:154-163. [PMID: 33219146 DOI: 10.4049/jimmunol.2000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
Viral RNA in the cytoplasm of mammalian host cells is recognized by retinoic acid-inducible protein-I-like receptors (RLRs), which localize to cytoplasmic stress granules (SGs). Activated RLRs associate with the mitochondrial adaptor protein IPS-1, which activates antiviral host defense mechanisms, including type I IFN induction. It has remained unclear, however, how RLRs in SGs and IPS-1 in the mitochondrial outer membrane associate physically and engage in information transfer. In this study, we show that NUDT21, an RNA-binding protein that regulates alternative transcript polyadenylation, physically associates with IPS-1 and mediates its localization to SGs in response to transfection with polyinosinic-polycytidylic acid [poly(I:C)], a mimic of viral dsRNA. We found that despite its well-established function in the nucleus, a fraction of NUDT21 localizes to mitochondria in resting cells and becomes localized to SGs in response to poly(I:C) transfection. NUDT21 was also found to be required for efficient type I IFN induction in response to viral infection in both human HeLa cells and mouse macrophage cell line RAW264.7 cells. Our results together indicate that NUDT21 links RLRs in SGs to mitochondrial IPS-1 and thereby activates host defense responses to viral infection.
Collapse
Affiliation(s)
| | - Tomohiko Okazaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shun-Ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan
- Department of Physics, Universal Biology Institute, Tokyo 113-0033, Japan; and
- International Research Center for Neurointelligence, World Premier International Research Center Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence, World Premier International Research Center Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
176
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
177
|
Feng W, Zhao P, Zheng X, Hu Z, Liu J. Profiling Novel Alternative Splicing within Multiple Tissues Provides Useful Insights into Porcine Genome Annotation. Genes (Basel) 2020; 11:genes11121405. [PMID: 33255998 PMCID: PMC7760890 DOI: 10.3390/genes11121405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) is a process during gene expression that results in a single gene coding for different protein variants. AS contributes to transcriptome and proteome diversity. In order to characterize AS in pigs, genome-wide transcripts and AS events were detected using RNA sequencing of 34 different tissues in Duroc pigs. In total, 138,403 AS events and 29,270 expressed genes were identified. An alternative donor site was the most common AS form and accounted for 44% of the total AS events. The percentage of the other three AS forms (exon skipping, alternative acceptor site, and intron retention) was approximately 19%. The results showed that the most common AS events involving alternative donor sites could produce different transcripts or proteins that affect the biological processes. The expression of genes with tissue-specific AS events showed that gene functions were consistent with tissue functions. AS increased proteome diversity and resulted in novel proteins that gained or lost important functional domains. In summary, these findings extend porcine genome annotation and highlight roles that AS could play in determining tissue identity.
Collapse
|
178
|
Alternative Polyadenylation: a new frontier in post transcriptional regulation. Biomark Res 2020; 8:67. [PMID: 33292571 PMCID: PMC7690165 DOI: 10.1186/s40364-020-00249-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Polyadenylation of pre-messenger RNA (pre-mRNA) specific sites and termination of their downstream transcriptions are signaled by unique sequence motif structures such as AAUAAA and its auxiliary elements. Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism that processes RNA products depending on its 3'-untranslated region (3'-UTR) specific sequence signal. APA processing can generate several mRNA isoforms from a single gene, which may have different biological functions on their target gene. As a result, cellular genomic stability, proliferation capability, and transformation feasibility could all be affected. Furthermore, APA modulation regulates disease initiation and progression. APA status could potentially act as a biomarker for disease diagnosis, severity stratification, and prognosis forecast. While the advance of modern throughout technologies, such as next generation-sequencing (NGS) and single-cell sequencing techniques, have enriched our knowledge about APA, much of APA biological process is unknown and pending for further investigation. Herein, we review the current knowledge on APA and how its regulatory complex factors (CFI/IIm, CPSF, CSTF, and RBPs) work together to determine RNA splicing location, cell cycle velocity, microRNA processing, and oncogenesis regulation. We also discuss various APA experiment strategies and the future direction of APA research.
Collapse
|
179
|
Spöring M, Boneberg R, Hartig JS. Aptamer-Mediated Control of Polyadenylation for Gene Expression Regulation in Mammalian Cells. ACS Synth Biol 2020; 9:3008-3018. [PMID: 33108164 DOI: 10.1021/acssynbio.0c00222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small aptamer-based regulatory devices can be designed to control a range of RNA-dependent cellular processes and emerged as promising tools for fine-tuning gene expression in synthetic biology. Here, we design a conceptually new riboswitch device that allows for the conditional regulation of polyadenylation. By making use of ligand-induced sequence occlusion, the system efficiently controls the accessibility of the eukaryotic polyadenylation signal. Undesirable 3'-extended read-through products are counteracted by the downstream insertion of a microRNA target site. We demonstrate the modularity of the system with regard to sensor aptamers and polyadenylation signals used and combine the newly designed riboswitch with well-known aptazymes to yield superior composite systems. In addition, we show that the switches can be used to control alternative polyadenylation. The presented genetic switches require very little coding space and can be easily optimized by rational adjustments of the thermodynamic stability. The polyadenylation riboswitch extends the repertoire of RNA-based regulators and opens new possibilities for the generation of complex synthetic circuits.
Collapse
Affiliation(s)
- Maike Spöring
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Ronja Boneberg
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
180
|
Zheng Y, Wang H, Zhang Y, Gao X, Xing EP, Xu M. Poly(A)-DG: A deep-learning-based domain generalization method to identify cross-species Poly(A) signal without prior knowledge from target species. PLoS Comput Biol 2020; 16:e1008297. [PMID: 33151940 PMCID: PMC7671507 DOI: 10.1371/journal.pcbi.1008297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/17/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, polyadenylation (poly(A)) is an essential process during mRNA maturation. Identifying the cis-determinants of poly(A) signal (PAS) on the DNA sequence is the key to understand the mechanism of translation regulation and mRNA metabolism. Although machine learning methods were widely used in computationally identifying PAS, the need for tremendous amounts of annotation data hinder applications of existing methods in species without experimental data on PAS. Therefore, cross-species PAS identification, which enables the possibility to predict PAS from untrained species, naturally becomes a promising direction. In our works, we propose a novel deep learning method named Poly(A)-DG for cross-species PAS identification. Poly(A)-DG consists of a Convolution Neural Network-Multilayer Perceptron (CNN-MLP) network and a domain generalization technique. It learns PAS patterns from the training species and identifies PAS in target species without re-training. To test our method, we use four species and build cross-species training sets with two of them and evaluate the performance of the remaining ones. Moreover, we test our method against insufficient data and imbalanced data issues and demonstrate that Poly(A)-DG not only outperforms state-of-the-art methods but also maintains relatively high accuracy when it comes to a smaller or imbalanced training set.
Collapse
Affiliation(s)
- Yumin Zheng
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Haohan Wang
- Language Technologies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Eric P. Xing
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Min Xu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
181
|
Cao M, Zhang M, Yang N, Fu Q, Su B, Zhang X, Li Q, Yan X, Thongda W, Li C. Full length transcriptome profiling reveals novel immune-related genes in black rockfish (Sebastes schlegelii). FISH & SHELLFISH IMMUNOLOGY 2020; 106:1078-1086. [PMID: 32947030 DOI: 10.1016/j.fsi.2020.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Lacking full-length transcriptome for black rockfish (Sebastes schlegelii) limits novel gene discoveries and gene structures analysis. Therefore, we constructed the full-length transcriptome of black rockfish using Single-Molecule Real-Time Sequencing technology. Totally, we produced 21.73 Gb raw reads containing 298,904 circular consensus sequence (CCS) reads. Full-length (FL) and Non-full-length (NFL) isoforms were obtained based on the presence of 5' and 3' primers as well as poly (A) tails. The results showed 70.71% reads were identified as FL isoforms. Moreover, the average length of these PacBio isoforms is 2,632 bp, which is much longer than the length of the unigenes with the average length of 589 bp which generated from Illumina platform. Meanwhile, we identified 43,068 non-redundant transcripts, 12,485 alternative splicing (AS), 6,320 polyadenylation (APA) and 499 gene fusions as well as numerous long non-coding RNAs based on mapped FL isoforms. In addition, we identified 147 and 528 immune-related genes from novel genes and unmapped transcripts. The provided dataset can be utilized to discover novel genes and construct a comprehensive transcript dataset for black rockfish.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xu Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Wilawan Thongda
- Center of Excellence for Shrimp Molecular Biology and Biology (CENTEX Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
182
|
Single-cell RNA cap and tail sequencing (scRCAT-seq) reveals subtype-specific isoforms differing in transcript demarcation. Nat Commun 2020; 11:5148. [PMID: 33051455 PMCID: PMC7555861 DOI: 10.1038/s41467-020-18976-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 09/15/2020] [Indexed: 01/31/2023] Open
Abstract
The differences in transcription start sites (TSS) and transcription end sites (TES) among gene isoforms can affect the stability, localization, and translation efficiency of mRNA. Gene isoforms allow a single gene diverse functions across different cell types, and isoform dynamics allow different functions over time. However, methods to efficiently identify and quantify RNA isoforms genome-wide in single cells are still lacking. Here, we introduce single cell RNA Cap And Tail sequencing (scRCAT-seq), a method to demarcate the boundaries of isoforms based on short-read sequencing, with higher efficiency and lower cost than existing long-read sequencing methods. In conjunction with machine learning algorithms, scRCAT-seq demarcates RNA transcripts with unprecedented accuracy. We identified hundreds of previously uncharacterized transcripts and thousands of alternative transcripts for known genes, revealed cell-type specific isoforms for various cell types across different species, and generated a cell atlas of isoform dynamics during the development of retinal cones.
Collapse
|
183
|
Sun Y, Chen H, Ye H, Liang W, Lam KK, Cheng B, Lu Y, Jiang C. Nudt21-mediated alternative polyadenylation of HMGA2 3'-UTR impairs stemness of human tendon stem cell. Aging (Albany NY) 2020; 12:18436-18452. [PMID: 32979259 PMCID: PMC7585117 DOI: 10.18632/aging.103771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Tendon-derived stem cells (TSCs) play a primary role in tendon physiology, pathology, as well as tendon repair and regeneration after injury. TSCs are often exposed to mechanical loading-related cellular stresses such as oxidative stress, resulting in loss of stemness and multipotent differentiation potential. Cytoprotective autophagy has previously been identified as an important mechanism to protect human TSCs (hTSCs) from oxidative stress induced impairments. In this study, we found that high-mobility AT-hook 2 (HMGA2) overexpression protects hTSCs against H2O2-induced loss of stemness through autophagy activation. Evidentially, H2O2 treatment increases the expression of Nudt21, a protein critical to polyadenylation site selection in alternative polyadenylation (APA) of mRNA transcripts. This leads to increased cleavage and polyadenylation of HMGA2 3'-UTR at the distal site, resulting in increased HMGA2 silencing by the microRNA let-7 and reduced HMGA2 expression. In conclusion, Nudt21-regulated APA of HMGA2 3'-UTR and subsequent HMGA2 downregulation mediates oxidative stress induced hTSC impairments.
Collapse
Affiliation(s)
- Yangbai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hua Chen
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Hui Ye
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenqing Liang
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, Zhejiang, China
| | - Kun-kuan Lam
- Department of Orthopaedic Surgery and Sports Medicine, University Hospital of Macau University of Science and Technology, Macau 999078, China
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Yong Lu
- Department of Radiology, Rui Jin Hospital, Lu Wan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai 200020, China
| | - Chaoyin Jiang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China,Department of Orthopedic Surgery, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Hainan 570300, China
| |
Collapse
|
184
|
Weng T, Huang J, Wagner EJ, Ko J, Wu M, Wareing NE, Xiang Y, Chen NY, Ji P, Molina JG, Volcik KA, Han L, Mayes MD, Blackburn MR, Assassi S. Downregulation of CFIm25 amplifies dermal fibrosis through alternative polyadenylation. J Exp Med 2020; 217:jem.20181384. [PMID: 31757866 PMCID: PMC7041714 DOI: 10.1084/jem.20181384] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/19/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
This study implicates the key regulator of alternative polyadenylation, CFIm25 in dermal fibrosis and in systemic sclerosis (scleroderma) pathogenesis. CFIm25 downregulation promotes the expression of profibrotic factors, exaggerates bleomycin-induced skin fibrosis, while CFIm25 restoration attenuates skin fibrosis. Systemic sclerosis (SSc; scleroderma) is a multisystem fibrotic disease. The mammalian cleavage factor I 25-kD subunit (CFIm25; encoded by NUDT21) is a key regulator of alternative polyadenylation, and its depletion causes predominantly 3′UTR shortening through loss of stimulation of distal polyadenylation sites. A shortened 3′UTR will often lack microRNA target sites, resulting in increased mRNA translation due to evasion of microRNA-mediated repression. Herein, we report that CFlm25 is downregulated in SSc skin, primary dermal fibroblasts, and two murine models of dermal fibrosis. Knockdown of CFIm25 in normal skin fibroblasts is sufficient to promote the 3′UTR shortening of key TGFβ-regulated fibrotic genes and enhance their protein expression. Moreover, several of these fibrotic transcripts show 3′UTR shortening in SSc skin. Finally, mice with CFIm25 deletion in fibroblasts show exaggerated skin fibrosis upon bleomycin treatment, and CFIm25 restoration attenuates bleomycin-induced skin fibrosis. Overall, our data link this novel RNA-processing mechanism to dermal fibrosis and SSc pathogenesis.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Jingjing Huang
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Minghua Wu
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Nancy E Wareing
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Yu Xiang
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX
| | - Jose G Molina
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Kelly A Volcik
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Leng Han
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Maureen D Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston, Houston, TX
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
185
|
Role of Arginine Methylation in Alternative Polyadenylation of VEGFR-1 (Flt-1) pre-mRNA. Int J Mol Sci 2020; 21:ijms21186460. [PMID: 32899690 PMCID: PMC7554721 DOI: 10.3390/ijms21186460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Mature mRNA is generated by the 3ʹ end cleavage and polyadenylation of its precursor pre-mRNA. Eukaryotic genes frequently have multiple polyadenylation sites, resulting in mRNA isoforms with different 3ʹ-UTR lengths that often encode different C-terminal amino acid sequences. It is well-known that this form of post-transcriptional modification, termed alternative polyadenylation, can affect mRNA stability, localization, translation, and nuclear export. We focus on the alternative polyadenylation of pre-mRNA for vascular endothelial growth factor receptor-1 (VEGFR-1), the receptor for VEGF. VEGFR-1 is a transmembrane protein with a tyrosine kinase in the intracellular region. Secreted forms of VEGFR-1 (sVEGFR-1) are also produced from the same gene by alternative polyadenylation, and sVEGFR-1 has a function opposite to that of VEGFR-1 because it acts as a decoy receptor for VEGF. However, the mechanism that regulates the production of sVEGFR-1 by alternative polyadenylation remains poorly understood. In this review, we introduce and discuss the mechanism of alternative polyadenylation of VEGFR-1 mediated by protein arginine methylation.
Collapse
|
186
|
Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Rep 2020; 21:e50799. [PMID: 32803873 PMCID: PMC7507372 DOI: 10.15252/embr.202050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription of DNA into mRNA and translation of mRNA into proteins are two major processes underlying gene expression. Due to the distinct molecular mechanisms, timings, and locales of action, these processes are mainly considered to be independent. During the last two decades, however, multiple factors and elements were shown to coordinate transcription and translation, suggesting an intricate level of synchronization. This review discusses the molecular mechanisms that impact both processes in eukaryotic cells of different origins. The emerging global picture suggests evolutionarily conserved regulation and coordination between transcription and mRNA translation, indicating the importance of this phenomenon for the fine-tuning of gene expression and the adjustment to constantly changing conditions.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
187
|
Wang L, Lang GT, Xue MZ, Yang L, Chen L, Yao L, Li XG, Wang P, Hu X, Shao ZM. Dissecting the heterogeneity of the alternative polyadenylation profiles in triple-negative breast cancers. Am J Cancer Res 2020; 10:10531-10547. [PMID: 32929364 PMCID: PMC7482814 DOI: 10.7150/thno.40944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive malignancy with high heterogeneity. However, the alternative polyadenylation (APA) profiles of TNBC remain unknown. Here, we aimed to define the characteristics of the APA events at post-transcription level among TNBCs. Methods: Using transcriptome microarray data, we analyzed APA profiles of 165 TNBC samples and 33 paired normal tissues. A pooled short hairpin RNA screen targeting 23 core cleavage and polyadenylation (C/P) genes was used to identify key C/P factors. Results: We established an unconventional APA subtyping system composed of four stable subtypes: 1) luminal androgen receptor (LAR), 2) mesenchymal-like immune-activated (MLIA), 3) basal-like (BL), 4) suppressed (S) subtypes. Patients in the S subtype had the worst disease-free survival comparing to other patients (log-rank p = 0.021). Enriched clinically actionable pathways and putative therapeutic APA events were analyzed among each APA subtype. Furthermore, CPSF1 and PABPN1 were identified as the master C/P factors in regulating APA events and TNBC proliferation. The depletion of CPSF1 or PABPN1 weakened cell proliferation, enhanced apoptosis, resulted in cell cycle redistribution and a reversion of APA events of genes associated with tumorigenesis, proliferation, metastasis and chemosensitivity in breast cancer. Conclusions: Our findings advance the understanding of tumor heterogeneity regulation in APA and yield new insights into therapeutic target identification in TNBC.
Collapse
|
188
|
A genome-wide scan for candidate lethal variants in Thoroughbred horses. Sci Rep 2020; 10:13153. [PMID: 32753654 PMCID: PMC7403398 DOI: 10.1038/s41598-020-68946-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022] Open
Abstract
Domestic animal populations are often characterised by high rates of inbreeding and low effective population sizes due to selective breeding practices. These practices can result in otherwise rare recessive deleterious alleles drifting to high frequencies, resulting in reduced fertility rates. This study aimed to identify potential recessive lethal haplotypes in the Thoroughbred horse breed, a closed population that has been selectively bred for racing performance. In this study, we identified a haplotype in the LY49B gene that shows strong evidence of being homozygous lethal, despite having high frequencies of heterozygotes in Thoroughbreds and other domestic horse breeds. Variant analysis of whole-genome sequence data identified two SNPs in the 3'UTR of the LY49B gene that may result in loss of function. Analysis of transcriptomic data from equine embryonic tissue revealed that LY49B is expressed in the trophoblast during placentation stage of development. These findings suggest that LY49B may have an essential, but as yet unknown function in the implantation stage of equine development. Further investigation of this region may allow for the development of a genetic test to improve fertility rates in horse populations. Identification of other lethal variants could assist in improving natural levels of fertility in horse populations.
Collapse
|
189
|
Jia Q, Nie H, Yu P, Xie B, Wang C, Yang F, Wei G, Ni T. HNRNPA1-mediated 3' UTR length changes of HN1 contributes to cancer- and senescence-associated phenotypes. Aging (Albany NY) 2020; 11:4407-4437. [PMID: 31257225 PMCID: PMC6660030 DOI: 10.18632/aging.102060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/24/2019] [Indexed: 01/10/2023]
Abstract
Cellular senescence has been regarded as a mechanism of tumor suppression. Studying the regulation of gene expression at various levels in cell senescence will shed light on cancer therapy. Alternative polyadenylation (APA) regulates gene expression by altering 3′ untranslated regions (3′ UTR) and plays important roles in diverse biological processes. However, whether APA of a specific gene functions in both cancer and senescence remains unclear. Here, we discovered that 3′ UTR of HN1 (or JPT1) showed shortening in cancers and lengthening in senescence, correlated well with its high expression in cancer cells and low expression in senescent cells, respectively. HN1 transcripts with longer 3′ UTR were less stable and produced less protein. Down-regulation of HN1 induced senescence-associated phenotypes in both normal and cancer cells. Patients with higher HN1 expression had lower survival rates in various carcinomas. Interestingly, down-regulating the splicing factor HNRNPA1 induced 3′ UTR lengthening of HN1 and senescence-associated phenotypes, which could be partially reversed by overexpressing HN1. Together, we revealed for the first time that HNRNPA1-mediated APA of HN1 contributed to cancer- and senescence-related phenotypes. Given senescence is a cancer prevention mechanism, our discovery indicates the HNRNPA1-HN1 axis as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Hongbo Nie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Peng Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Baiyun Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
190
|
Linder J, Bogard N, Rosenberg AB, Seelig G. A Generative Neural Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences. Cell Syst 2020; 11:49-62.e16. [PMID: 32711843 PMCID: PMC8694568 DOI: 10.1016/j.cels.2020.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Engineering gene and protein sequences with defined functional properties is a major goal of synthetic biology. Deep neural network models, together with gradient ascent-style optimization, show promise for sequence design. The generated sequences can however get stuck in local minima and often have low diversity. Here, we develop deep exploration networks (DENs), a class of activation-maximizing generative models, which minimize the cost of a neural network fitness predictor by gradient descent. By penalizing any two generated patterns on the basis of a similarity metric, DENs explicitly maximize sequence diversity. To avoid drifting into low-confidence regions of the predictor, we incorporate variational autoencoders to maintain the likelihood ratio of generated sequences. Using DENs, we engineered polyadenylation signals with more than 10-fold higher selection odds than the best gradient ascent-generated patterns, identified splice regulatory sequences predicted to result in highly differential splicing between cell lines, and improved on state-of-the-art results for protein design tasks.
Collapse
Affiliation(s)
- Johannes Linder
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Nicholas Bogard
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander B Rosenberg
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
191
|
Tamaddon M, Shokri G, Hosseini Rad SMA, Rad I, Emami Razavi À, Kouhkan F. Involved microRNAs in alternative polyadenylation intervene in breast cancer via regulation of cleavage factor "CFIm25". Sci Rep 2020; 10:11608. [PMID: 32665581 PMCID: PMC7360588 DOI: 10.1038/s41598-020-68406-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cleavage factor “CFIm25”, as a key repressor at proximal poly (A) site, negatively correlates to cell proliferation and tumorigenicity in various cancers. Hence, understanding CFIm25 mechanism of action in breast cancer would be a great benefit. To this aim four steps were designed. First, potential miRNAs that target 3′-UTR of CFIm25 mRNA, retrieved from Targetscan web server. Second, screened miRNAs were profiled in 100 breast cancer and 100 normal adjacent samples. Third, miRNAs that their expression was inversely correlated to the CFIm25, overexpressed in MDA-MB-231 cell line, and their effect on proliferation and migration monitored via MTT and wound healing assays, respectively. Fourth, interaction of miRNAs of interest with 3′-UTR of CFIm25 confirmed via luciferase assay and western blot. Our results indicate that CFIm25 considerably down-regulates in human breast cancer tissue. qRT-PCR assay, luciferase test, and western blotting confirm that CFIm25 itself could be directly regulated by oncomiRs such as miR-23, -24, -27, -135, -182 and -374. Besides, according to MTT and wound healing assays of cell lines, CFIm25 knockdown intensifies cell growth, proliferation and migration. Our results also confirm indirect impact of CFIm25 on regulation of mRNA’s 3′–UTR length, which then control corresponding miRNAs’ action. miRNAs directly control CFIm25 expression level, which then tunes expression of the oncogenes and tumor proliferation. Therefore, regulation of CFIm25 expression level via miRNAs is expected to improve treatment responses in breast cancer.
Collapse
Affiliation(s)
- Mona Tamaddon
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran
| | - Gelareh Shokri
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran
| | | | - Iman Rad
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran
| | - Àmirnader Emami Razavi
- Ìran National Tumor Bank, Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran.
| |
Collapse
|
192
|
Arefeen A, Xiao X, Jiang T. DeepPASTA: deep neural network based polyadenylation site analysis. Bioinformatics 2020; 35:4577-4585. [PMID: 31081512 DOI: 10.1093/bioinformatics/btz283] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Alternative polyadenylation (polyA) sites near the 3' end of a pre-mRNA create multiple mRNA transcripts with different 3' untranslated regions (3' UTRs). The sequence elements of a 3' UTR are essential for many biological activities such as mRNA stability, sub-cellular localization, protein translation, protein binding and translation efficiency. Moreover, numerous studies in the literature have reported the correlation between diseases and the shortening (or lengthening) of 3' UTRs. As alternative polyA sites are common in mammalian genes, several machine learning tools have been published for predicting polyA sites from sequence data. These tools either consider limited sequence features or use relatively old algorithms for polyA site prediction. Moreover, none of the previous tools consider RNA secondary structures as a feature to predict polyA sites. RESULTS In this paper, we propose a new deep learning model, called DeepPASTA, for predicting polyA sites from both sequence and RNA secondary structure data. The model is then extended to predict tissue-specific polyA sites. Moreover, the tool can predict the most dominant (i.e. frequently used) polyA site of a gene in a specific tissue and relative dominance when two polyA sites of the same gene are given. Our extensive experiments demonstrate that DeepPASTA signisficantly outperforms the existing tools for polyA site prediction and tissue-specific relative and absolute dominant polyA site prediction. AVAILABILITY AND IMPLEMENTATION https://github.com/arefeen/DeepPASTA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ashraful Arefeen
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA.,Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.,Bioinformatics Division, BNRIST, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
193
|
Wang Y, Feng W, Xu S, He B. Extensive Involvement of Alternative Polyadenylation in Single-Nucleus Neurons. Genes (Basel) 2020; 11:genes11060709. [PMID: 32604877 PMCID: PMC7349645 DOI: 10.3390/genes11060709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cleavage and polyadenylation are essential processes that can impact many aspects of mRNA fate. Most eukaryotic genes have alternative polyadenylation (APA) events. While the heterogeneity of mRNA polyadenylation isoform choice has been studied in specific tissues, less attention has been paid to the neuronal heterogeneity of APA selection at single-nucleus resolution. APA is highly controlled during development and neuronal activation, however, to what extent APA events vary in a specific neuronal cell population and the regulatory mechanisms are still unclear. In this paper, we investigated dynamic APA usage in different cell types using snRNA-seq data of 1424 human brain cells generated by single-cell 3' RNA sequencing. We found that distal APA sites are not only favored by global neuronal cells, but that their usage also varies between the principal types of neuronal cell populations (excitatory neurons and inhibitory neurons). A motif analysis and a gene functional analysis indicated the enrichment of RNA-binding protein (RBP) binding sites and neuronal functions for the set of genes with neuron-enhanced distal PAS usage. Our results revealed the extensive involvement of APA regulation in neuronal populations at the single-nucleus level, providing new insights into roles for APA in specific neuronal cell populations, as well as utility in future functional studies.
Collapse
|
194
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
195
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of essential "housekeeping" enzymes ubiquitous in the three major domains of life. ARSs uniquely connect the essential minimal units of both major oligomer classes-the 3-nucleotide codons of oligonucleotides and the amino acids of proteins. They catalyze the esterification of amino acids to the 3'-end of cognate transfer RNAs (tRNAs) bearing the correct anticodon triplet to ensure accurate transfer of information from mRNA to protein according to the genetic code. As an essential translation factor responsible for the first biochemical reaction in protein biosynthesis, ARSs control protein production by catalyzing aminoacylation, and by editing of mischarged aminoacyl-tRNAs to maintain translational fidelity. In addition to their primary enzymatic activities, many ARSs have noncanonical functions unrelated to their catalytic activity in protein synthesis. Among the ARSs with "moonlighting" activities, several, including GluProRS (or EPRS), LeuRS, LysRS, SerRS, TyrRS, and TrpRS, exhibit cell signaling-related activities that sense environmental signals, regulate gene expression, and modulate cellular functions. ARS signaling functions generally depend on catalytically-inactive, appended domains not present in ancient enzyme forms, and are activated by stimulus-dependent post-translational modification. Activation often results in cellular re-localization and gain of new interacting partners. The newly formed ARS-bearing complexes conduct a host of signal transduction functions, including immune response, mTORC1 pathway signaling, and fibrogenic and angiogenic signaling, among others. Because noncanonical functions of ARSs in signal transduction are uncoupled from canonical aminoacylation functions, function-specific inhibitors can be developed, thus providing promising opportunities and therapeutic targets for treatment of human disease.
Collapse
Affiliation(s)
- Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine and Department of Biochemistry & Biophysics, The Center for RNA Biology, The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.
| | - Paul L Fox
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
196
|
Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3'-end processing. Transcription 2020; 11:83-96. [PMID: 32522085 DOI: 10.1080/21541264.2020.1777047] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The majority of eukaryotic messenger RNA precursors (pre-mRNAs) undergo cleavage and polyadenylation at their 3' end. This canonical 3'-end processing depends on sequence elements in the pre-mRNA as well as a mega-dalton protein machinery. The cleavage site in mammalian pre-mRNAs is located between an upstream poly(A) signal, most frequently an AAUAAA hexamer, and a GU-rich downstream sequence element. This review will summarize recent advances from the studies on this canonical 3'-end processing machinery. They have revealed the molecular mechanism for the recognition of the poly(A) signal and provided the first glimpse into the overall architecture of the machinery. The studies also show that the machinery is highly dynamic conformationally, and extensive re-arrangements are necessary for its activation. Inhibitors targeting the active site of the CPSF73 nuclease of this machinery have anti-cancer, anti-inflammatory and anti-protozoal effects, indicating that CPSF73 and pre-mRNA 3'-end processing in general are attractive targets for drug discovery. ABBREVIATIONS APA: alternative polyadenylation; β-CASP: metallo-β-lactamase-associated CPSF Artemis SNM1/PSO2; CTD: C-terminal domain; CF: cleavage factor; CPF: cleavage and polyadenylation factor; CPSF: cleavage and polyadenylation specificity factor; CstF: cleavage stimulation factor; DSE: downstream element; HAT: half a TPR; HCC: histone pre-mRNA cleavage complex; mCF: mammalian cleavage factor; mPSF: mammalian polyadenylation specificity factor; mRNA: messenger RNA; nt: nucleotide; NTD: N-terminal domain; PAP: polyadenylate polymerase; PAS: polyadenylation signal; PIM: mPSF interaction motif; Poly(A): polyadenylation, polyadenylate; Pol II: RNA polymerase II; pre-mRNA: messenger RNA precursor; RRM: RNA recognition module, RNA recognition motif; snRNP: small nuclear ribonucleoprotein; TPR: tetratricopeptide repeat; UTR: untranslated region; ZF: zinc finger.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University , New York, NY, USA
| |
Collapse
|
197
|
Di C, So BR, Cai Z, Arai C, Duan J, Dreyfuss G. U1 snRNP Telescripting Roles in Transcription and Its Mechanism. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:115-122. [PMID: 32518092 DOI: 10.1101/sqb.2019.84.040451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Telescripting is a fundamental cotranscriptional gene regulation process that relies on U1 snRNP (U1) to suppress premature 3'-end cleavage and polyadenylation (PCPA) in RNA polymerase II (Pol II) transcripts, which is necessary for full-length transcription of thousands of protein-coding (pre-mRNAs) and long noncoding (lncRNA) genes. Like U1 role in splicing, telescripting requires U1 snRNA base-pairing with nascent transcripts. Inhibition of U1 base-pairing with U1 snRNA antisense morpholino oligonucleotide (U1 AMO) mimics widespread PCPA from cryptic polyadenylation signals (PASs) in human tissues, including PCPA in introns and last exons' 3'-untranslated regions (3' UTRs). U1 telescripting-PCPA balance changes generate diverse RNAs depending on where in a gene it occurs. Long genes are highly U1-telescripting-dependent because of PASs in introns compared to short genes. Enrichment of cell cycle control, differentiation, and developmental functions in long genes, compared to housekeeping and acute cell stress response genes in short genes, reveals a gene size-function relationship in mammalian genomes. This polarization increased in metazoan evolution by previously unexplained intron expansion, suggesting that U1 telescripting could shift global gene expression priorities. We show that that modulating U1 availability can profoundly alter cell phenotype, such as cancer cell migration and invasion, underscoring the critical role of U1 homeostasis and suggesting it as a potential target for therapies. We describe a complex of U1 with cleavage and polyadenylation factors that silences PASs in introns and 3' UTR, which gives insights into U1 telescripting mechanism and transcription elongation regulation.
Collapse
Affiliation(s)
- Chao Di
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | - Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | - Zhiqiang Cai
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | - Chie Arai
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | - Jingqi Duan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| |
Collapse
|
198
|
Shen T, Li H, Song Y, Li L, Lin J, Wei G, Ni T. Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. Aging (Albany NY) 2020; 11:1356-1388. [PMID: 30835716 PMCID: PMC6428108 DOI: 10.18632/aging.101836] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022]
Abstract
Down-regulated splicing factor SRSF3 is known to promote cellular senescence, an important biological process in preventing cancer and contributing to individual aging, via its alternative splicing dependent function in human cells. Here we discovered alternative polyadenylation (APA) dependent function of SRSF3 as a novel mechanism explaining SRSF3 downregulation induced cellular senescence. Knockdown of SRSF3 resulted in preference usage of proximal poly(A) sites and thus global shortening of 3′ untranslated regions (3′ UTRs) of mRNAs. SRSF3-depletion also induced senescence-related phenotypes in both human and mouse cells. These 3′ UTR shortened genes were enriched in senescence-associated pathways. Shortened 3′ UTRs tended to produce more proteins than the longer ones. Simulating the effects of 3′ UTR shortening by overexpression of three candidate genes (PTEN, PIAS1 and DNMT3A) all led to senescence-associated phenotypes. Mechanistically, SRSF3 has higher binding density near proximal poly(A) site than distal one in 3′ UTR shortened genes. Further, upregulation of PTEN by either ectopic overexpression or SRSF3-knockdown induction both led to reduced phosphorylation of AKT and ultimately senescence-associated phenotypes. We revealed for the first time that reduced SRSF3 expression could promote cellular senescence through its APA-dependent function, largely extending our mechanistic understanding in splicing factor regulated cellular senescence.
Collapse
Affiliation(s)
- Ting Shen
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Huan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Yifang Song
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| |
Collapse
|
199
|
Yang Y, Zhang Q, Miao YR, Yang J, Yang W, Yu F, Wang D, Guo AY, Gong J. SNP2APA: a database for evaluating effects of genetic variants on alternative polyadenylation in human cancers. Nucleic Acids Res 2020; 48:D226-D232. [PMID: 31511885 PMCID: PMC6943033 DOI: 10.1093/nar/gkz793] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulation that recognizes different polyadenylation signals (PASs), resulting in transcripts with different 3' untranslated regions, thereby influencing a series of biological processes and functions. Recent studies have revealed that some single nucleotide polymorphisms (SNPs) could contribute to tumorigenesis and development through dysregulating APA. However, the associations between SNPs and APA in human cancers remain largely unknown. Here, using genotype and APA data of 9082 samples from The Cancer Genome Atlas (TCGA) and The Cancer 3'UTR Altas (TC3A), we systematically identified SNPs affecting APA events across 32 cancer types and defined them as APA quantitative trait loci (apaQTLs). As a result, a total of 467 942 cis-apaQTLs and 30 721 trans-apaQTLs were identified. By integrating apaQTLs with survival and genome-wide association studies (GWAS) data, we further identified 2154 apaQTLs associated with patient survival time and 151 342 apaQTLs located in GWAS loci. In addition, we designed an online tool to predict the effects of SNPs on PASs by utilizing PAS motif prediction tool. Finally, we developed SNP2APA, a user-friendly and intuitive database (http://gong_lab.hzau.edu.cn/SNP2APA/) for data browsing, searching, and downloading. SNP2APA will significantly improve our understanding of genetic variants and APA in human cancers.
Collapse
Affiliation(s)
- Yanbo Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiong Zhang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ya-Ru Miao
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiajun Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenqian Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Fangda Yu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Dongyang Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jing Gong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
200
|
Nanavaty V, Abrash EW, Hong C, Park S, Fink EE, Li Z, Sweet TJ, Bhasin JM, Singuri S, Lee BH, Hwang TH, Ting AH. DNA Methylation Regulates Alternative Polyadenylation via CTCF and the Cohesin Complex. Mol Cell 2020; 78:752-764.e6. [PMID: 32333838 PMCID: PMC7245569 DOI: 10.1016/j.molcel.2020.03.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023]
Abstract
Dysregulation of DNA methylation and mRNA alternative cleavage and polyadenylation (APA) are both prevalent in cancer and have been studied as independent processes. We discovered a DNA methylation-regulated APA mechanism when we compared genome-wide DNA methylation and polyadenylation site usage between DNA methylation-competent and DNA methylation-deficient cells. Here, we show that removal of DNA methylation enables CTCF binding and recruitment of the cohesin complex, which, in turn, form chromatin loops that promote proximal polyadenylation site usage. In this DNA demethylated context, either deletion of the CTCF binding site or depletion of RAD21 cohesin complex protein can recover distal polyadenylation site usage. Using data from The Cancer Genome Atlas, we authenticated the relationship between DNA methylation and mRNA polyadenylation isoform expression in vivo. This DNA methylation-regulated APA mechanism demonstrates how aberrant DNA methylation impacts transcriptome diversity and highlights the potential sequelae of global DNA methylation inhibition as a cancer treatment.
Collapse
Affiliation(s)
- Vishal Nanavaty
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Elizabeth W Abrash
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Changjin Hong
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sunho Park
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhuangyue Li
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas J Sweet
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for RNA Sciences and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey M Bhasin
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Srinidhi Singuri
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Byron H Lee
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tae Hyun Hwang
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|