151
|
Mahboubi H, Stochaj U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:884-895. [PMID: 28095315 DOI: 10.1016/j.bbadis.2016.12.022] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022]
Abstract
Stress granule (SG) assembly is a conserved cellular strategy to minimize stress-related damage and promote cell survival. Beyond their fundamental role in the stress response, SGs have emerged as key players for human health. As such, SG assembly is associated with cancer, neurodegenerative disorders, ischemia, and virus infections. SGs and granule-related signaling circuits are therefore promising targets to improve therapeutic intervention for several diseases. This is clinically relevant, because pharmacological drugs can affect treatment outcome by modulating SG formation. As membraneless and highly dynamic compartments, SGs regulate translation, ribostasis and proteostasis. Moreover, they serve as signaling hubs that determine cell viability and stress recovery. Various compounds can modulate SG formation and dynamics. Rewiring cell signaling through SG manipulation thus represents a new strategy to control cell fate under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Canada.
| |
Collapse
|
152
|
Seidel G, Meierhofer D, Şen NE, Guenther A, Krobitsch S, Auburger G. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. J Proteome Res 2016; 16:504-515. [PMID: 27966978 DOI: 10.1021/acs.jproteome.6b00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast protein PBP1 is implicated in very diverse pathways. Intriguingly, its deletion mitigates the toxicity of human neurodegeneration factors. Here, we performed label-free quantitative global proteomics to identify crucial downstream factors, either without stress or under cell stress conditions (heat and NaN3). Compared to the wildtype BY4741 strain, PBP1 deletion always triggered downregulation of the key bioenergetics enzyme KGD2 and the prion protein RNQ1 as well as upregulation of the leucine biosynthesis enzyme LEU1. Without stress, enrichment of stress response factors was consistently detected for both deletion mutants; upon stress, these factors were more pronounced. The selective analysis of components of stress granules and P-bodies revealed a prominent downregulation of GIS2. Our yeast data are in good agreement with a global proteomics and metabolomics publication that the PBP1 ortholog ATAXIN-2 (ATXN2) knockout (KO) in mouse results in mitochondrial deficits in leucine/fatty acid catabolism and bioenergetics, with an obesity phenotype. Furthermore, our data provide the completely novel insight that PBP1 mutations in stress periods involve GIS2, a plausible scenario in view of previous data that both PBP1 and GIS2 relocalize from ribosomes to stress granules, interact with poly(A)-binding protein in translation regulation and prevent mitochondrial precursor overaccumulation stress (mPOS). This may be relevant for human diseases like spinocerebellar ataxias, amyotrophic lateral sclerosis, and the metabolic syndrome.
Collapse
Affiliation(s)
- Gunnar Seidel
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Anika Guenther
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
153
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
154
|
Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kötter P, Klein FAC, Kedersha N, Auburger G. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1558-69. [PMID: 27240544 PMCID: PMC4967000 DOI: 10.1016/j.bbadis.2016.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Ataxin-2 is a cytoplasmic protein, product of the ATXN2 gene, whose deficiency leads to obesity, while its gain-of-function leads to neural atrophy. Ataxin-2 affects RNA homeostasis, but its effects are unclear. Here, immunofluorescence analysis suggested that ataxin-2 associates with 48S pre-initiation components at stress granules in neurons and mouse embryonic fibroblasts, but is not essential for stress granule formation. Coimmunoprecipitation analysis showed associations of ataxin-2 with initiation factors, which were concentrated at monosome fractions of polysome gradients like ataxin-2, unlike its known interactor PABP. Mouse embryonic fibroblasts lacking ataxin-2 showed increased phosphorylation of translation modulators 4E-BP1 and ribosomal protein S6 through the PI3K-mTOR pathways. Indeed, human neuroblastoma cells after trophic deprivation showed a strong induction of ATXN2 transcript via mTOR inhibition. Our results support the notion that ataxin-2 is a nutritional stress-inducible modulator of mRNA translation at the pre-initiation complex.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | - David Nonis
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Eich
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Michael Klinkenberg
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter Kötter
- Center of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Fabrice A C Klein
- Translational Medicine and Neurogenetics Department, Institut de Génétique et Biologie Moléculaire et Cellulaire, UMR7104-CNRS/U964-INSERM/UDS, BP10142, 67404 Illkirch Cédex, France
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, One Jimmy Fund Way, Boston, MA 02115, USA
| | - Georg Auburger
- Section of Molecular Neurogenetics, Dept. of Neurology, Building 89, 3rd floor, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
155
|
Nawaz MS, Vik ES, Berges N, Fladeby C, Bjørås M, Dalhus B, Alseth I. Regulation of Human Endonuclease V Activity and Relocalization to Cytoplasmic Stress Granules. J Biol Chem 2016; 291:21786-21801. [PMID: 27573237 DOI: 10.1074/jbc.m116.730911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Endonuclease V (EndoV) is an enzyme with specificity for inosines in nucleic acids. Whereas the bacterial homologs are active on both DNA and RNA, the mammalian variants only cleave RNA, at least when assayed with recombinant proteins. Here we show that ectopically expressed, as well as endogenously expressed human (h)EndoV, share the same enzymatic properties as the recombinant protein and cleaves RNA with inosine but not DNA. In search for proteins interacting with hEndoV, polyadenylate-binding protein C1 (PABPC1) was identified. The association between PABPC1 and hEndoV is RNA dependent and furthermore, PABPC1 stimulates hEndoV activity and affinity for inosine-containing RNA. Upon cellular stress, PABPC1 relocates to cytoplasmic stress granules that are multimolecular aggregates of stalled translation initiation complexes formed to aid cell recovery. Arsenite, as well as other agents, triggered relocalization also of hEndoV to cytoplasmic stress granules. As inosines in RNA are highly abundant, hEndoV activity is likely regulated in cells to avoid aberrant cleavage of inosine-containing transcripts. Indeed, we find that hEndoV cleavage is inhibited by normal intracellular ATP concentrations. The ATP stores inside a cell do not overlay stress granules and we suggest that hEndoV is redistributed to stress granules as a strategy to create a local environment low in ATP to permit hEndoV activity.
Collapse
Affiliation(s)
- Meh Sameen Nawaz
- From the Department of Microbiology, Oslo University Hospital HF, Rikshospitalet, and University of Oslo, NO-0424 Oslo
| | - Erik Sebastian Vik
- From the Department of Microbiology, Oslo University Hospital HF, Rikshospitalet, and University of Oslo, NO-0424 Oslo
| | - Natalia Berges
- From the Department of Microbiology, Oslo University Hospital HF, Rikshospitalet, and University of Oslo, NO-0424 Oslo
| | - Cathrine Fladeby
- From the Department of Microbiology, Oslo University Hospital HF, Rikshospitalet, and University of Oslo, NO-0424 Oslo
| | - Magnar Bjørås
- From the Department of Microbiology, Oslo University Hospital HF, Rikshospitalet, and University of Oslo, NO-0424 Oslo.,the Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, and
| | - Bjørn Dalhus
- From the Department of Microbiology, Oslo University Hospital HF, Rikshospitalet, and University of Oslo, NO-0424 Oslo.,the Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Ingrun Alseth
- From the Department of Microbiology, Oslo University Hospital HF, Rikshospitalet, and University of Oslo, NO-0424 Oslo,
| |
Collapse
|
156
|
Rousseau A, Bertolotti A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature 2016; 536:184-9. [PMID: 27462806 PMCID: PMC4990136 DOI: 10.1038/nature18943] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/20/2016] [Indexed: 01/01/2023]
Abstract
The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation.
Collapse
|
157
|
Eshleman N, Liu G, McGrath K, Parker R, Buchan JR. Defects in THO/TREX-2 function cause accumulation of novel cytoplasmic mRNP granules that can be cleared by autophagy. RNA (NEW YORK, N.Y.) 2016; 22:1200-14. [PMID: 27251550 PMCID: PMC4931113 DOI: 10.1261/rna.057224.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 05/08/2023]
Abstract
The nuclear THO and TREX-2 complexes are implicated in several steps of nuclear mRNP biogenesis, including transcription, 3' end processing and export. In a recent genomic microscopy screen in Saccharomyces cerevisiae for mutants with constitutive stress granules, we identified that absence of THO and TREX-2 complex subunits leads to the accumulation of Pab1-GFP in cytoplasmic foci. We now show that these THO/TREX-2 mutant induced foci ("TT foci") are not stress granules but instead are a mRNP granule containing poly(A)(+) mRNA, some mRNP components also found in stress granules, as well several proteins involved in mRNA 3' end processing and export not normally seen in stress granules. In addition, TT foci are resistant to cycloheximide-induced disassembly, suggesting the presence of mRNPs impaired for entry into translation. THO mutants also exhibit defects in normal stress granule assembly. Finally, our data also suggest that TT foci are targeted by autophagy. These observations argue that defects in nuclear THO and TREX-2 complexes can affect cytoplasmic mRNP function by producing aberrant mRNPs that are exported to cytosol, where they accumulate in TT foci and ultimately can be cleared by autophagy. This identifies a novel mechanism of quality control for aberrant mRNPs assembled in the nucleus.
Collapse
Affiliation(s)
- Nichole Eshleman
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Guangbo Liu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Kaitlyn McGrath
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
158
|
Jayabalan AK, Sanchez A, Park RY, Yoon SP, Kang GY, Baek JH, Anderson P, Kee Y, Ohn T. NEDDylation promotes stress granule assembly. Nat Commun 2016; 7:12125. [PMID: 27381497 PMCID: PMC4935812 DOI: 10.1038/ncomms12125] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/02/2016] [Indexed: 12/21/2022] Open
Abstract
Stress granules (SGs) harbour translationally stalled messenger ribonucleoproteins and play important roles in regulating gene expression and cell fate. Here we show that neddylation promotes SG assembly in response to arsenite-induced oxidative stress. Inhibition or depletion of key components of the neddylation machinery concomitantly inhibits stress-induced polysome disassembly and SG assembly. Affinity purification and subsequent mass-spectrometric analysis of Nedd8-conjugated proteins from translationally stalled ribosomal fractions identified ribosomal proteins, translation factors and RNA-binding proteins (RBPs), including SRSF3, a previously known SG regulator. We show that SRSF3 is selectively neddylated at Lys85 in response to arsenite. A non-neddylatable SRSF3 (K85R) mutant do not prevent arsenite-induced polysome disassembly, but fails to support the SG assembly, suggesting that the neddylation pathway plays an important role in SG assembly.
Collapse
Affiliation(s)
- Aravinth Kumar Jayabalan
- Department of Cellular &Molecular Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Anthony Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, USA
| | - Ra Young Park
- Department of Cellular &Molecular Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Sang Pil Yoon
- Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do 690-756, Republic of Korea
| | - Gum-Yong Kang
- Diatech Korea Co, Ltd, Saemal-ro 5-gil, Songpa-gu, Seoul 05807, Republic of Korea
| | - Je-Hyun Baek
- Diatech Korea Co, Ltd, Saemal-ro 5-gil, Songpa-gu, Seoul 05807, Republic of Korea
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith652, One Jimmy Fund Way, Boston, Massachusetts 02115, USA
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, USA
| | - Takbum Ohn
- Department of Cellular &Molecular Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
159
|
Gleason LU, Burton RS. Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol Ecol 2016; 25:3557-73. [PMID: 27199218 DOI: 10.1111/mec.13703] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
The balance between natural selection, gene flow and genetic drift is difficult to resolve in marine invertebrates with extensive dispersal and fluctuating population sizes. The intertidal snail Chlorostoma funebralis has planktonic larvae and previous work using mtDNA polymorphism reported no genetic population structure. Nevertheless, recent studies have documented differences in thermal tolerance and transcriptomic responses to heat stress between northern and southern California, USA, populations. To gain insight into the dynamics influencing adaptive divergence, we used double-digest restriction site-associated DNA (ddRAD) sequencing to identify 1861 genomewide, quality-filtered single-nucleotide polymorphism (SNP) loci for C. funebralis collected from three northern and three southern California sites (15 individuals per population). Considering all SNPs, there was no evidence for genetic differentiation among populations or regions (average FST = 0.0042). However, outlier tests revealed 34 loci putatively under divergent selection between northern and southern populations, and structure and SNP tree analyses based on these outliers show clear genetic differentiation between geographic regions. Three of these outliers are known or hypothesized to be involved in stress granule formation, a response to environmental stress such as heat. Combined with previous work that found thermally tolerant southern populations show high baseline expression of stress response genes, these results further suggest that thermal stress is a strong selective pressure across C. funebralis populations. Overall, this study increases our understanding of the factors constraining local adaptation in marine organisms, while suggesting that ecologically driven, strong differentiation can occur at relevant loci in a species with planktonic larvae.
Collapse
Affiliation(s)
- Lani U Gleason
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0202, USA.,Department of Biology, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-0202, USA
| |
Collapse
|
160
|
Poblete-Durán N, Prades-Pérez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverría F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 2016; 8:v8070180. [PMID: 27367717 PMCID: PMC4974515 DOI: 10.3390/v8070180] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).
Collapse
Affiliation(s)
- Natalia Poblete-Durán
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| |
Collapse
|
161
|
Bowden HA, Dormann D. Altered mRNP granule dynamics in FTLD pathogenesis. J Neurochem 2016; 138 Suppl 1:112-33. [PMID: 26938019 DOI: 10.1111/jnc.13601] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
In neurons, RNA-binding proteins (RBPs) play a key role in post-transcriptional gene regulation, for example alternative splicing, mRNA localization in neurites and local translation upon synaptic stimulation. There is increasing evidence that defective or mislocalized RBPs - and consequently altered mRNA processing - lead to neuronal dysfunction and cause neurodegeneration, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Cytosolic RBP aggregates containing TAR DNA-binding protein of 43 kDa (TDP-43) or fused in sarcoma (FUS) are a common hallmark of both disorders. There is mounting evidence that translationally silent mRNP granules, such as stress granules or transport granules, play an important role in the formation of these RBP aggregates. These granules are thought to be 'catalytic convertors' of RBP aggregation by providing a high local concentration of RBPs. As recently shown in vitro, RBPs that contain a so-called low-complexity domain start to 'solidify' and eventually aggregate at high protein concentrations. The same may happen in mRNP granules in vivo, leading to 'solidified' granules that lose their dynamic properties and ability to fulfill their physiological functions. This may result in a disturbed stress response, altered mRNA transport and local translation, and formation of pathological TDP-43 or FUS aggregates, all of which may contribute to neuronal dysfunction and neurodegeneration. Here, we discuss the general functional properties of these mRNP granules, how their dynamics may be disrupted in frontotemporal lobar degeneration/amyotrophic lateral sclerosis, for example by loss or gain of function of TDP-43 and FUS, and how this may contribute to the development of RBP aggregates and neurotoxicity. In this review, we discuss how dynamic mRNP granules, such as stress granules or neuronal transport granules, may be converted into pathological aggregates containing misfolded RNA-binding proteins (RBPs), such as TDP-43 and FUS. Abnormal interactions between low-complexity domains in RBPs may cause dynamic mRNP granules to solidify and become dysfunctional. This may result in a disturbed stress response, altered mRNA transport and local translation, as well as RBP aggregation, all of which may contribute to neuronal dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Hilary A Bowden
- Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
162
|
Protter DSW, Parker R. Principles and Properties of Stress Granules. Trends Cell Biol 2016; 26:668-679. [PMID: 27289443 DOI: 10.1016/j.tcb.2016.05.004] [Citation(s) in RCA: 1176] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
Abstract
Stress granules are assemblies of untranslating messenger ribonucleoproteins (mRNPs) that form from mRNAs stalled in translation initiation. Stress granules form through interactions between mRNA-binding proteins that link together populations of mRNPs. Interactions promoting stress granule formation include conventional protein-protein interactions as well as interactions involving intrinsically disordered regions (IDRs) of proteins. Assembly and disassembly of stress granules are modulated by various post-translational modifications as well as numerous ATP-dependent RNP or protein remodeling complexes, illustrating that stress granules represent an active liquid wherein energy input maintains their dynamic state. Stress granule formation modulates the stress response, viral infection, and signaling pathways. Persistent or aberrant stress granule formation contributes to neurodegenerative disease and some cancers.
Collapse
Affiliation(s)
- David S W Protter
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
163
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
164
|
Satoh R, Hagihara K, Kita A, Sugiura R. [The role of RNA granules as signaling hubs]. Nihon Yakurigaku Zasshi 2016; 147:340-345. [PMID: 27301307 DOI: 10.1254/fpj.147.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
165
|
Stauffer B, Powers T. Target of rapamycin signaling mediates vacuolar fragmentation. Curr Genet 2016; 63:35-42. [PMID: 27233284 DOI: 10.1007/s00294-016-0616-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/26/2022]
Abstract
In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.
Collapse
Affiliation(s)
- Bobbiejane Stauffer
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
166
|
The Activity-Dependent Regulation of Protein Kinase Stability by the Localization to P-Bodies. Genetics 2016; 203:1191-202. [PMID: 27182950 DOI: 10.1534/genetics.116.187419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic cytoplasm contains a variety of ribonucleoprotein (RNP) granules in addition to the better-understood membrane-bound organelles. These granules form in response to specific stress conditions and contain a number of signaling molecules important for the control of cell growth and survival. However, relatively little is known about the mechanisms responsible for, and the ultimate consequences of, this protein localization. Here, we show that the Hrr25/CK1δ protein kinase is recruited to cytoplasmic processing bodies (P-bodies) in an evolutionarily conserved manner. This recruitment requires Hrr25 kinase activity and the Dcp2 decapping enzyme, a core constituent of these RNP granules. Interestingly, the data indicate that this localization sequesters active Hrr25 away from the remainder of the cytoplasm and thereby shields this enzyme from the degradation machinery during these periods of stress. Altogether, this work illustrates how the presence within an RNP granule can alter the ultimate fate of the localized protein.
Collapse
|
167
|
Protein aggregation as a mechanism of adaptive cellular responses. Curr Genet 2016; 62:711-724. [DOI: 10.1007/s00294-016-0596-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/26/2022]
|
168
|
Yuan HX, Wang Z, Yu FX, Li F, Russell RC, Jewell JL, Guan KL. NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes Dev 2016; 29:2362-76. [PMID: 26588989 PMCID: PMC4691891 DOI: 10.1101/gad.265116.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Yuan et al. show that the Nemo-like kinase (NLK) phosphorylates Raptor on S863 to disrupt its interaction with the Rag GTPase, which is important for mTORC1 lysosomal recruitment. Cells with Nlk deletion or knock-in of the Raptor S863 phosphorylation mutants are defective in the rapid mTORC1 inhibition upon osmotic stress. The mechanistic target of rapamycin (mTOR) is a central cell growth controller and forms two distinct complexes: mTORC1 and mTORC2. mTORC1 integrates a wide range of upstream signals, both positive and negative, to regulate cell growth. Although mTORC1 activation by positive signals, such as growth factors and nutrients, has been extensively investigated, the mechanism of mTORC1 regulation by stress signals is less understood. In this study, we identified the Nemo-like kinase (NLK) as an mTORC1 regulator in mediating the osmotic and oxidative stress signals. NLK inhibits mTORC1 lysosomal localization and thereby suppresses mTORC1 activation. Mechanistically, NLK phosphorylates Raptor on S863 to disrupt its interaction with the Rag GTPase, which is important for mTORC1 lysosomal recruitment. Cells with Nlk deletion or knock-in of the Raptor S863 phosphorylation mutants are defective in the rapid mTORC1 inhibition upon osmotic stress. Our study reveals a function of NLK in stress-induced mTORC1 modulation and the underlying biochemical mechanism of NLK in mTORC1 inhibition in stress response.
Collapse
Affiliation(s)
- Hai-Xin Yuan
- Key Laboratory of Molecular Medicine of Ministry of Education, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China; Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Zhen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Fa-Xing Yu
- Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China; Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Fulong Li
- Key Laboratory of Molecular Medicine of Ministry of Education, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 20032, China
| | - Ryan C Russell
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Jenna L Jewell
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, California 92130, USA
| |
Collapse
|
169
|
Meierhofer D, Halbach M, Şen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations. Mol Cell Proteomics 2016; 15:1728-39. [PMID: 26850065 DOI: 10.1074/mcp.m115.056770] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy.
Collapse
Affiliation(s)
- David Meierhofer
- From the ‡Max Planck Institute for Molecular Genetics, Ihnestraβe 63-73, 14195 Berlin, Germany;
| | - Melanie Halbach
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nesli Ece Şen
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
170
|
Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2016; 6:641-52. [PMID: 26739646 PMCID: PMC4777127 DOI: 10.1534/g3.115.023911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Target of Rapamycin Complex I (TORC1) orchestrates global reprogramming of transcriptional programs in response to myriad environmental conditions, yet, despite the commonality of the TORC1 complex components, different TORC1-inhibitory conditions do not elicit a uniform transcriptional response. In Saccharomyces cerevisiae, TORC1 regulates the expression of nitrogen catabolite repressed (NCR) genes by controlling the nuclear translocation of the NCR transactivator Gln3. Moreover, Golgi-to-endosome trafficking was shown to be required for nuclear translocation of Gln3 upon a shift from rich medium to the poor nitrogen source proline, but not upon rapamycin treatment. Here, we employed microarray profiling to survey the full impact of the vesicular trafficking system on yeast TORC1-orchestrated transcriptional programs. In addition to the NCR genes, we found that ribosomal protein, ribosome biogenesis, phosphate-responsive, and sulfur-containing amino acid metabolism genes are perturbed by disruption of Golgi-to-endosome trafficking following a nutritional shift from rich to poor nitrogen source medium, but not upon rapamycin treatment. Similar to Gln3, defects in Golgi-to-endosome trafficking significantly delayed cytoplasmic–nuclear translocation of Sfp1, but did not detectably affect the cytoplasmic–nuclear or nuclear–cytoplasmic translocation of Met4, which are the transactivators of these genes. Thus, Golgi-to-endosome trafficking defects perturb TORC1 transcriptional programs via multiple mechanisms. Our findings further delineate the downstream transcriptional responses of TORC1 inhibition by rapamycin compared with a nitrogen quality downshift. Given the conservation of both TORC1 and endomembrane networks throughout eukaryotes, our findings may also have implications for TORC1-mediated responses to nutritional cues in mammals and other eukaryotes.
Collapse
|
171
|
Genome-Wide Analysis of the TORC1 and Osmotic Stress Signaling Network in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2015; 6:463-74. [PMID: 26681516 PMCID: PMC4751564 DOI: 10.1534/g3.115.025882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Target of Rapamycin kinase Complex I (TORC1) is a master regulator of cell growth and metabolism in eukaryotes. Studies in yeast and human cells have shown that nitrogen/amino acid starvation signals act through Npr2/Npr3 and the small GTPases Gtr1/Gtr2 (Rags in humans) to inhibit TORC1. However, it is unclear how other stress and starvation stimuli inhibit TORC1, and/or act in parallel with the TORC1 pathway, to control cell growth. To help answer these questions, we developed a novel automated pipeline and used it to measure the expression of a TORC1-dependent ribosome biogenesis gene (NSR1) during osmotic stress in 4700 Saccharomyces cerevisiae strains from the yeast knock-out collection. This led to the identification of 440 strains with significant and reproducible defects in NSR1 repression. The cell growth control and stress response proteins deleted in these strains form a highly connected network, including 56 proteins involved in vesicle trafficking and vacuolar function; 53 proteins that act downstream of TORC1 according to a rapamycin assay—including components of the HDAC Rpd3L, Elongator, and the INO80, CAF-1 and SWI/SNF chromatin remodeling complexes; over 100 proteins involved in signaling and metabolism; and 17 proteins that directly interact with TORC1. These data provide an important resource for labs studying cell growth control and stress signaling, and demonstrate the utility of our new, and easily adaptable, method for mapping gene regulatory networks.
Collapse
|
172
|
Kingsbury JM, Sen ND, Cardenas ME. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005714. [PMID: 26659116 PMCID: PMC4684349 DOI: 10.1371/journal.pgen.1005714] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
The conserved target of rapamycin complex 1 (TORC1) integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT), which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA)-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals. In all organisms from yeasts to mammals the target of rapamycin TORC1 pathway controls growth in response to nutrients such as leucine, but the leucine sensing mechanisms are only partially characterized. We show that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, are similarly capable of activating TORC1 kinase via EGOC GTPase-dependent and -independent mechanisms. Activation of TORC1 by leucine or α-ketoisocaproate is only partially mediated via EGOC-GTPase. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT). Disruption of BCAT caused reduced TORC1 activity, which was partially restored by expression of BCAT active site mutants, arguing for both structural and catalytic roles of BCAT in TORC1 control. We find BCAT interacts with several branched-chain amino acid metabolic enzymes, and in a leucine-dependent fashion with the tricarboxylic acid (TCA)-cycle enzyme aconitase. Both aconitase mutation or TCA-cycle inhibition impaired TORC1 activity. Mutation of BCAT resulted in a TCA-cycle intermediate profile consistent with a TCA-cycle block, low ATP levels, activation of AMPK, and TORC1 inhibition. Our results suggest a model whereby BCAT coordinates leucine and TCA cycle metabolism to control TORC1 signaling. Taken together, our findings forge key insights into how the TORC1 signaling cascade senses nutrients to control cell growth.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Neelam D Sen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
173
|
Caspeta L, Castillo T, Nielsen J. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015; 3:184. [PMID: 26618154 PMCID: PMC4641163 DOI: 10.3389/fbioe.2015.00184] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.
Collapse
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Tania Castillo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , Gothenburg , Sweden ; Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg , Sweden ; Novo Nordisk Foundation Center for Biosustainability , Hørsholm , Denmark
| |
Collapse
|
174
|
Ramiscal RR, Parish IA, Lee-Young RS, Babon JJ, Blagih J, Pratama A, Martin J, Hawley N, Cappello JY, Nieto PF, Ellyard JI, Kershaw NJ, Sweet RA, Goodnow CC, Jones RG, Febbraio MA, Vinuesa CG, Athanasopoulos V. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. eLife 2015; 4. [PMID: 26496200 PMCID: PMC4716841 DOI: 10.7554/elife.08698] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-mediated protection against infection. Yet few signaling pathways have been identified to be unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology. Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged Th1, Th2, Th17, and Tregs during a T-dependent response but show a profoundly defective antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic α1 subunit of adenosine monophosphate-activated protein kinase (AMPK), a central stress-responsive regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent humoral immunity. We therefore unexpectedly uncover a ROQUIN–AMPK metabolic signaling nexus essential for selectively promoting Tfh responses. DOI:http://dx.doi.org/10.7554/eLife.08698.001 The immune system protects the body from invading microbes like bacteria and viruses. Upon recognizing the presence of these microbes, cells in the immune system are activated to destroy the foreign threat and clear it from the body. A type of immune cell called T follicular helper cells (or Tfh for short) are formed during an infection and are essential for coordinating other immune cells to produce high-quality antibody proteins that attack the microbes. Without Tfh cells, life-long production of these protective antibodies is severely crippled, which can cause common variable immune deficiency and other serious immunodeficiency diseases. On the other hand, the body must also avoid generating excessive numbers of Tfh cells, which can lead to the production of antibodies that attack healthy cells of the body. ROQUIN is a protein that inhibits the formation of Tfh cells and other types of active T cells. A region on the protein called the ROQ domain destabilizes particular molecules of ribonucleic acid (RNA) that are required for these specialist T cells to form and work properly. ROQUIN belongs to a large family of enzymes that have a so-called RING domain, which is a feature that enables these enzymes to attach tags onto specific target proteins to modify their activity or stability. However, it was not known whether the RING domain of ROQUIN was active. Ramiscal et al. now address this question in mice. Unexpectedly, the experiments show that the RING domain is required to promote the formation of Tfh cells, but not other types of active T cells. This domain allows ROQUIN to repress an enzyme called AMPK, which normally blocks cell growth by regulating cell metabolism. The findings suggest that the different roles of the ROQ and RING domains allow ROQUIN to fine-tune the numbers of Tfh cells so that they remain within a safe range. In the future, these findings may aid the development of vaccines that are more efficient at generating protective Tfh cells to prevent infectious diseases. DOI:http://dx.doi.org/10.7554/eLife.08698.002
Collapse
Affiliation(s)
- Roybel R Ramiscal
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Ian A Parish
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jeffrey J Babon
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Julianna Blagih
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Alvin Pratama
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Jaime Martin
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Naomi Hawley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Jean Y Cappello
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Pablo F Nieto
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julia I Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nadia J Kershaw
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Rebecca A Sweet
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Christopher C Goodnow
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Immunology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Russell G Jones
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
175
|
Hughes Hallett JE, Luo X, Capaldi AP. Snf1/AMPK promotes the formation of Kog1/Raptor-bodies to increase the activation threshold of TORC1 in budding yeast. eLife 2015; 4. [PMID: 26439012 PMCID: PMC4686425 DOI: 10.7554/elife.09181] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the small GTPases, Gtr1/2. However, little is known about the way that other nutrient signals are transmitted to TORC1. Here we report that glucose starvation triggers disassembly of TORC1, and movement of the key TORC1 component Kog1/Raptor to a single body near the edge of the vacuole. These events are driven by Snf1/AMPK-dependent phosphorylation of Kog1 at Ser 491/494 and two nearby prion-like motifs. Kog1-bodies then serve to increase the threshold for TORC1 activation in cells that have been starved for a significant period of time. Together, our data show that Kog1-bodies create hysteresis (memory) in the TORC1 pathway and help ensure that cells remain committed to a quiescent state under suboptimal conditions. We suggest that other protein bodies formed in starvation conditions have a similar function. DOI:http://dx.doi.org/10.7554/eLife.09181.001 In humans, yeast and other eukaryotes, a group of proteins called the Target of Rapamycin Complex I (TORC1) promote cell growth and increase metabolic activity when nutrients are plentiful. Previous studies have shown how molecules that contain the nutrient nitrogen – which is needed to make proteins – activate TORC1. However, it is not clear how other nutrients regulate this complex. Bakers yeast is a simple, single celled organism that researchers often use as a model to study how cells work. The yeast TORC1 is made up of three core proteins, including Kog1 and Tor1. Kog1 selectively recruits proteins to the complex, where they are modified by Tor1 to regulate their activity. Here, Hughes Hallett et al. used microscopy to study what effect sugar starvation has on the complex. In the experiments, yeast cells were genetically engineered so that Kog1 and Tor1 appeared fluorescent under the microscope. The experiments reveal that, when sugar is in short supply, Kog1 breaks away from the rest of the TORC1 and moves to another part of the cell where it accumulates to form a cluster called a “body”. This movement is driven by a “kinase” enzyme that adds chemical groups called phosphates to Kog1, and by regions within the Kog1 protein known as prion like domains. When sugar first becomes available again, Kog1 is still in the body so Tor1 cannot immediately trigger cell growth. However, once a steady supply of sugar resumes, Kog1 rejoins the rest of the complex and the cells start to grow. Together, Hughes Hallett et al.’s findings reveal that the formation of Kog1 bodies during sugar starvation creates a “memory” that prevents TORC1 from reactivating cell growth if sugar is only temporarily available. Humans have over 100 proteins that contain prion like domains. Therefore a future challenge is to find out whether any of these proteins form similar bodies that enable our cells to remember past events. DOI:http://dx.doi.org/10.7554/eLife.09181.002
Collapse
Affiliation(s)
- James E Hughes Hallett
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Xiangxia Luo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Andrew P Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
176
|
Abstract
Messenger ribonucleoprotein (mRNP) granules are dynamic, self-assembling structures that harbor non-translating mRNAs bound by various proteins that regulate mRNA translation, localization, and turnover. Their importance in gene expression regulation is far reaching, ranging from precise spatial-temporal control of mRNAs that drive developmental programs in oocytes and embryos, to similarly exquisite control of mRNAs in neurons that underpin synaptic plasticity, and thus, memory formation. Analysis of mRNP granules in their various contexts has revealed common themes of assembly, disassembly, and modes of mRNA regulation, yet new studies continue to reveal unexpected and important findings, such as links between aberrant mRNP granule assembly and neurodegenerative disease. Continued study of these enigmatic structures thus promises fascinating new insights into cellular function, and may also suggest novel therapeutic strategies in various disease states.
Collapse
Affiliation(s)
- J Ross Buchan
- a Department of Molecular and Cellular Biology ; University of Arizona ; Tucson , AZ USA
| |
Collapse
|
177
|
TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae. J Biosci Bioeng 2015; 121:247-52. [PMID: 26272416 DOI: 10.1016/j.jbiosc.2015.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells.
Collapse
|
178
|
Zhou Z, Shirakawa T, Ohbo K, Sada A, Wu Q, Hasegawa K, Saba R, Saga Y. RNA Binding Protein Nanos2 Organizes Post-transcriptional Buffering System to Retain Primitive State of Mouse Spermatogonial Stem Cells. Dev Cell 2015; 34:96-107. [DOI: 10.1016/j.devcel.2015.05.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
|
179
|
Jevtov I, Zacharogianni M, van Oorschot MM, van Zadelhoff G, Aguilera-Gomez A, Vuillez I, Braakman I, Hafen E, Stocker H, Rabouille C. TORC2 mediates the heat stress response in Drosophila by promoting the formation of stress granules. J Cell Sci 2015; 128:2497-508. [PMID: 26054799 PMCID: PMC4510851 DOI: 10.1242/jcs.168724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022] Open
Abstract
The kinase TOR is found in two complexes, TORC1, which is involved in growth control, and TORC2, whose roles are less well defined. Here, we asked whether TORC2 has a role in sustaining cellular stress. We show that TORC2 inhibition in Drosophila melanogaster leads to a reduced tolerance to heat stress, whereas sensitivity to other stresses is not affected. Accordingly, we show that upon heat stress, both in the animal and Drosophila cultured S2 cells, TORC2 is activated and is required for maintaining the level of its known target, Akt1 (also known as PKB). We show that the phosphorylation of the stress-activated protein kinases is not modulated by TORC2 nor is the heat-induced upregulation of heat-shock proteins. Instead, we show, both in vivo and in cultured cells, that TORC2 is required for the assembly of heat-induced cytoprotective ribonucleoprotein particles, the pro-survival stress granules. These granules are formed in response to protein translation inhibition imposed by heat stress that appears to be less efficient in the absence of TORC2 function. We propose that TORC2 mediates heat resistance in Drosophila by promoting the cell autonomous formation of stress granules.
Collapse
Affiliation(s)
- Irena Jevtov
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | | | - Marinke M van Oorschot
- Hubrecht Institute of the KNAW and UMC Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Igor Vuillez
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Ineke Braakman
- Cellular Protein Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Ernst Hafen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Hugo Stocker
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW and UMC Utrecht, Uppsalalaan 8, Utrecht 3584 CT, Netherlands Department of Cell Biology, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
180
|
Heberle AM, Prentzell MT, van Eunen K, Bakker BM, Grellscheid SN, Thedieck K. Molecular mechanisms of mTOR regulation by stress. Mol Cell Oncol 2015; 2:e970489. [PMID: 27308421 PMCID: PMC4904989 DOI: 10.4161/23723548.2014.970489] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 04/12/2023]
Abstract
Tumors are prime examples of cell growth in unfavorable environments that elicit cellular stress. The high metabolic demand and insufficient vascularization of tumors cause a deficiency of oxygen and nutrients. Oncogenic mutations map to signaling events via mammalian target of rapamycin (mTOR), metabolic pathways, and mitochondrial function. These alterations have been linked with cellular stresses, in particular endoplasmic reticulum (ER) stress, hypoxia, and oxidative stress. Yet tumors survive these challenges and acquire highly energy-demanding traits, such as overgrowth and invasiveness. In this review we focus on stresses that occur in cancer cells and discuss them in the context of mTOR signaling. Of note, many tumor traits require mTOR complex 1 (mTORC1) activity, but mTORC1 hyperactivation eventually sensitizes cells to apoptosis. Thus, mTORC1 activity needs to be balanced in cancer cells. We provide an overview of the mechanisms contributing to mTOR regulation by stress and suggest a model wherein stress granules function as guardians of mTORC1 signaling, allowing cancer cells to escape stress-induced cell death.
Collapse
Affiliation(s)
- Alexander Martin Heberle
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
| | - Mirja Tamara Prentzell
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Faculty of Biology; Institute for Biology 3; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Freiburg, Germany
| | - Karen van Eunen
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Top Institute Food and Nutrition; Wageningen, The Netherlands
| | - Barbara Marleen Bakker
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
| | | | - Kathrin Thedieck
- Department of Pediatrics and Centre for Systems Biology of Energy Metabolism and Ageing; University of Groningen; University Medical Center Groningen (UMCG); Groningen, The Netherlands
- Faculty of Biology; Institute for Biology 3; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- School of Medicine and Health Sciences; Carl von Ossietzky University Oldenburg; Oldenburg, Germany
- BIOSS Centre for Biological Signaling Studies; Albert-Ludwigs-University Freiburg; Freiburg, Germany
- Correspondence to: Kathrin Thedieck; E-mail: ;
| |
Collapse
|
181
|
Mazan-Mamczarz K, Peroutka RJ, Steinhardt JJ, Gidoni M, Zhang Y, Lehrmann E, Landon AL, Dai B, Houng S, Muniandy PA, Efroni S, Becker KG, Gartenhaus RB. Distinct inhibitory effects on mTOR signaling by ethanol and INK128 in diffuse large B-cell lymphoma. Cell Commun Signal 2015; 13:15. [PMID: 25849580 PMCID: PMC4350884 DOI: 10.1186/s12964-015-0091-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The mechanistic target of rapamycin, (mTOR) kinase plays a pivotal role in controlling critical cellular growth and survival pathways, and its aberrant induction is implicated in cancer pathogenesis. Therefore, suppression of active mTOR signaling has been of great interest to researchers; several mTOR inhibitors have been discovered to date. Ethanol (EtOH), similar to pharmacologic mTOR inhibitors, has been shown to suppress the mTOR signaling pathway, though in a non-catalytic manner. Despite population studies showing that the consumption of EtOH has a protective effect against hematological malignancies, the mechanisms behind EtOH's modulation of mTOR activity in cells and its downstream consequences are largely unknown. Here we evaluated the effects of EtOH on the mTOR pathway, in comparison to the active-site mTOR inhibitor INK128, and compared translatome analysis of their downstream effects in diffuse large B-cell lymphoma (DLBCL). RESULTS Treatment of DLBCL cells with EtOH suppressed mTORC1 complex formation while increasing AKT phosphorylation and mTORC2 complex assembly. INK128 completely abrogated AKT phosphorylation without affecting the structure of mTORC1/2 complexes. Accordingly, EtOH less profoundly suppressed cap-dependent translation and global protein synthesis, compared to a remarkable inhibitory effect of INK128 treatment. Importantly, EtOH treatment induced the formation of stress granules, while INK128 suppressed their formation. Microarray analysis of polysomal RNA revealed that although both agents primarily affected cell growth and survival, EtOH and INK128 regulated the synthesis of mostly distinct genes involved in these processes. Though both EtOH and INK128 inhibited cell cycle, proliferation and autophagy, EtOH, in contrast to INK128, did not induce cell apoptosis. CONCLUSION Given that EtOH, similar to pharmacologic mTOR inhibitors, inhibits mTOR signaling, we systematically explored the effect of EtOH and INK128 on mTOR signal transduction, components of the mTORC1/2 interaction and their downstream effectors in DLBCL malignancy. We found that EtOH partially inhibits mTOR signaling and protein translation, compared to INK128's complete mTOR inhibition. Translatome analysis of mTOR downstream target genes established that differential inhibition of mTOR by EtOH and INK128 distinctly modulates translation of specific subsets of mRNAs involved in cell growth and survival, leading to differential cellular response and survival.
Collapse
|
182
|
Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M, Walter M, Müller S, Auburger G. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics 2015; 16:181-92. [PMID: 25721894 PMCID: PMC4475250 DOI: 10.1007/s10048-015-0441-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders, caused or modified by an unstable CAG-repeat expansion in the SCA2 gene, which encodes a polyglutamine (polyQ) domain expansion in ataxin-2 (ATXN2). ATXN2 is an RNA-binding protein and interacts with the poly(A)-binding protein PABPC1, localizing to ribosomes at the rough endoplasmic reticulum. Under cell stress, ATXN2, PABPC1 and small ribosomal subunits are relocated to stress granules, where mRNAs are protected from translation and from degradation. It is unknown whether ATXN2 associates preferentially with specific mRNAs or how it modulates RNA processing. Here, we investigated the RNA profile of the liver and cerebellum from Atxn2 knockout (Atxn2 (-/-)) mice at two adult ages, employing oligonucleotide microarrays. Prominent increases were observed for Lsm12/Paip1 (>2-fold), translation modulators known as protein interactor/competitor of ATXN2 and for Plin3/Mttp (>1.3-fold), known as apolipoprotein modulators in agreement with the hepatosteatosis phenotype of the Atxn2 (-/-) mice. Consistent modest upregulations were also observed for many factors in the ribosome and the translation/secretion apparatus. Quantitative reverse transcriptase PCR in liver tissue validated >1.2-fold upregulations for the ribosomal biogenesis modulator Nop10, the ribosomal components Rps10, Rps18, Rpl14, Rpl18, Gnb2l1, the translation initiation factors Eif2s2, Eif3s6, Eif4b, Pabpc1 and the rER translocase factors Srp14, Ssr1, Sec61b. Quantitative immunoblots substantiated the increased abundance of NOP10, RPS3, RPS6, RPS10, RPS18, GNB2L1 in SDS protein fractions, and of PABPC1. In mouse embryonal fibroblasts, ATXN2 absence also enhanced phosphorylation of the ribosomal protein S6 during growth stimulation, while impairing the rate of overall protein synthesis rates, suggesting a block between the enhanced translation drive and the impaired execution. Thus, the physiological role of ATXN2 subtly modifies the abundance of cellular translation factors as well as global translation.
Collapse
Affiliation(s)
- M Fittschen
- Experimental Neurology, Goethe University Medical School, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 2015; 26:569-82. [PMID: 25428989 PMCID: PMC4310746 DOI: 10.1091/mbc.e14-06-1088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 01/22/2023] Open
Abstract
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.
Collapse
Affiliation(s)
- Desiree DeMille
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Bryan D Badal
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - J Brady Evans
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Andrew D Mathis
- Department of Chemistry, Brigham Young University, Provo, UT 84602
| | - Joseph F Anderson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
184
|
The transcriptional stress response of Candida albicans to weak organic acids. G3-GENES GENOMES GENETICS 2015; 5:497-505. [PMID: 25636313 PMCID: PMC4390566 DOI: 10.1534/g3.114.015941] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Candida albicans is the most important fungal pathogen of humans, causing severe infections, especially in nosocomial and immunocompromised settings. However, it is also the most prevalent fungus of the normal human microbiome, where it shares its habitat with hundreds of trillions of other microbial cells. Despite weak organic acids (WOAs) being among the most abundant metabolites produced by bacterial microbiota, little is known about their effect on C. albicans. Here we used a sequencing-based profiling strategy to systematically investigate the transcriptional stress response of C. albicans to lactic, acetic, propionic, and butyric acid at several time points after treatment. Our data reveal a complex transcriptional response, with individual WOAs triggering unique gene expression profiles and with important differences between acute and chronic exposure. Despite these dissimilarities, we found significant overlaps between the gene expression changes induced by each WOA, which led us to uncover a core transcriptional response that was largely unrelated to other previously published C. albicans transcriptional stress responses. Genes commonly up-regulated by WOAs were enriched in several iron transporters, which was associated with an overall decrease in intracellular iron concentrations. Moreover, chronic exposure to any WOA lead to down-regulation of RNA synthesis and ribosome biogenesis genes, which resulted in significant reduction of total RNA levels and of ribosomal RNA in particular. In conclusion, this study suggests that gastrointestinal microbiota might directly influence C. albicans physiology via production of WOAs, with possible implications of how this fungus interacts with its host in both health and disease.
Collapse
|
185
|
Higa M, Kita A, Hagihara K, Kitai Y, Doi A, Nagasoko R, Satoh R, Sugiura R. Spatial control of calcineurin in response to heat shock in fission yeast. Genes Cells 2014; 20:95-107. [DOI: 10.1111/gtc.12203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mari Higa
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yuki Kitai
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Akira Doi
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Rie Nagasoko
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
186
|
Bley N, Lederer M, Pfalz B, Reinke C, Fuchs T, Glaß M, Möller B, Hüttelmaier S. Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Res 2014; 43:e26. [PMID: 25488811 PMCID: PMC4344486 DOI: 10.1093/nar/gku1275] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During cellular stress, protein synthesis is severely reduced and bulk mRNA is recruited to stress granules (SGs). Previously, we showed that the SG-recruited IGF2 mRNA-binding protein 1 (IGF2BP1) interferes with target mRNA degradation during cellular stress. Whether this requires the formation of SGs remained elusive. Here, we demonstrate that the sustained inhibition of visible SGs requires the concomitant knockdown of TIA1, TIAR and G3BP1. FRAP and photo-conversion studies, however, indicate that these proteins only transiently associate with SGs. This suggests that instead of forming a rigid scaffold for mRNP recruitment, TIA proteins and G3BP1 promote SG-formation by constantly replenishing mRNPs. In contrast, RNA-binding proteins like IGF2BP1 or HUR, which are dispensable for SG-assembly, are stably associated with SGs and the IGF2BP1/HUR-G3BP1 association is increased during stress. The depletion of IGF2BP1 enhances the degradation of target mRNAs irrespective of inhibiting SG-formation, whereas the turnover of bulk mRNA remains unaffected when SG-formation is impaired. Together these findings indicate that the stabilization of mRNAs during cellular stress is facilitated by the formation of stable mRNPs, which are recruited to SGs by TIA proteins and/or G3BP1. Importantly, however, the aggregation of mRNPs to visible SGs is dispensable for preventing mRNA degradation.
Collapse
Affiliation(s)
- Nadine Bley
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany Core Facility Imaging (CFI) of the Medical Faculty, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Marcell Lederer
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Birgit Pfalz
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Claudia Reinke
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany Core Facility Imaging (CFI) of the Medical Faculty, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Tommy Fuchs
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Markus Glaß
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany Core Facility Imaging (CFI) of the Medical Faculty, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06099 Halle, Germany
| | - Stefan Hüttelmaier
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany Core Facility Imaging (CFI) of the Medical Faculty, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| |
Collapse
|
187
|
Yang X, Shen Y, Garre E, Hao X, Krumlinde D, Cvijović M, Arens C, Nyström T, Liu B, Sunnerhagen P. Stress granule-defective mutants deregulate stress responsive transcripts. PLoS Genet 2014; 10:e1004763. [PMID: 25375155 PMCID: PMC4222700 DOI: 10.1371/journal.pgen.1004763] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
To reduce expression of gene products not required under stress conditions, eukaryotic cells form large and complex cytoplasmic aggregates of RNA and proteins (stress granules; SGs), where transcripts are kept translationally inert. The overall composition of SGs, as well as their assembly requirements and regulation through stress-activated signaling pathways remain largely unknown. We have performed a genome-wide screen of S. cerevisiae gene deletion mutants for defects in SG formation upon glucose starvation stress. The screen revealed numerous genes not previously implicated in SG formation. Most mutants with strong phenotypes are equally SG defective when challenged with other stresses, but a considerable fraction is stress-specific. Proteins associated with SG defects are enriched in low-complexity regions, indicating that multiple weak macromolecule interactions are responsible for the structural integrity of SGs. Certain SG-defective mutants, but not all, display an enhanced heat-induced mutation rate. We found several mutations affecting the Ran GTPase, regulating nucleocytoplasmic transport of RNA and proteins, to confer SG defects. Unexpectedly, we found stress-regulated transcripts to reach more extreme levels in mutants unable to form SGs: stress-induced mRNAs accumulate to higher levels than in the wild-type, whereas stress-repressed mRNAs are reduced further in such mutants. Our findings are consistent with the view that, not only are SGs being regulated by stress signaling pathways, but SGs also modulate the extent of stress responses. We speculate that nucleocytoplasmic shuttling of RNA-binding proteins is required for gene expression regulation during stress, and that SGs modulate this traffic. The absence of SGs thus leads the cell to excessive, and potentially deleterious, reactions to stress. When cells encounter harsh conditions, they face an energy crisis since the stress will reduce their energy production, and at the same time cause extra demands on energy expenditure. To tackle this dilemma, cells under stress form giant agglomerates of RNA and protein, called stress granules. In these, mRNA molecules are kept silent, preventing waste of energy on producing proteins not needed under these conditions. A few mRNAs, encoding proteins required for the cell to survive, stay outside of stress granules and escape this silencing. This mechanism can protect plants and microbes against cold spells or heat shocks, and human cells exposed to oxidative damage or toxic drugs. We have investigated which genes are necessary to form stress granules, and their impact on the stress response. We discovered that mutant cells unable to form stress granules overreacted to stress, in that they produced much higher levels of the induced mRNAs. We think this means that gene regulatory proteins are sequestered inside stress granules, inhibiting their action. Stress granules may thus function as moderators that dampen the stress response, safeguarding the cell against excessive reactions.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Yi Shen
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Elena Garre
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Daniel Krumlinde
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Marija Cvijović
- Department of Mathematical Sciences, Chalmers University of Technology, Göteborg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Göteborg, Sweden
| | - Christina Arens
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- School of Life Science and Engineering, Harbin Institute of Technology, Harbin, China
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
- * E-mail: (BL); (PS)
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, Göteborg, Sweden
- * E-mail: (BL); (PS)
| |
Collapse
|
188
|
Roles for Pbp1 and caloric restriction in genome and lifespan maintenance via suppression of RNA-DNA hybrids. Dev Cell 2014; 30:177-91. [PMID: 25073155 DOI: 10.1016/j.devcel.2014.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/13/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022]
Abstract
Intergenic transcription within repetitive loci such as the ribosomal DNA (rDNA) repeats of yeast commonly triggers aberrant recombination. Major mechanisms suppressing aberrant rDNA recombination rely on chromatin silencing or RNAPII repression at intergenic spacers within the repeats. We find ancient processes operating at rDNA intergenic spacers and other loci to maintain genome stability via repression of RNA-DNA hybrids. The yeast Ataxin-2 protein Pbp1 binds noncoding RNA, suppresses RNA-DNA hybrids, and prevents aberrant rDNA recombination. Repression of RNA-DNA hybrids in Pbp1-deficient cells through RNaseH overexpression, deletion of the G4DNA-stabilizing Stm1, or caloric restriction operating via RNaseH/Pif1 restores rDNA stability. Pbp1 also limits hybrids at non-rDNA G4DNA loci including telomeres. Moreover, cells lacking Pbp1 have a short replicative lifespan that is extended upon hybrid suppression. Thus, we find roles for Pbp1 in genome maintenance and reveal that caloric restriction counteracts Pbp1 deficiencies by engaging RNaseH and Pif1.
Collapse
|
189
|
Algret R, Fernandez-Martinez J, Shi Y, Kim SJ, Pellarin R, Cimermancic P, Cochet E, Sali A, Chait BT, Rout MP, Dokudovskaya S. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol Cell Proteomics 2014; 13:2855-70. [PMID: 25073740 DOI: 10.1074/mcp.m114.039388] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway.
Collapse
Affiliation(s)
- Romain Algret
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Javier Fernandez-Martinez
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Yi Shi
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Seung Joong Kim
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Riccardo Pellarin
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Peter Cimermancic
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Emilie Cochet
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Andrej Sali
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Brian T Chait
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Michael P Rout
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Svetlana Dokudovskaya
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France;
| |
Collapse
|
190
|
Rousakis A, Vlanti A, Borbolis F, Roumelioti F, Kapetanou M, Syntichaki P. Diverse functions of mRNA metabolism factors in stress defense and aging of Caenorhabditis elegans. PLoS One 2014; 9:e103365. [PMID: 25061667 PMCID: PMC4111499 DOI: 10.1371/journal.pone.0103365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/01/2014] [Indexed: 01/04/2023] Open
Abstract
Processing bodies (PBs) and stress granules (SGs) are related, cytoplasmic RNA-protein complexes that contribute to post-transcriptional gene regulation in all eukaryotic cells. Both structures contain translationally repressed mRNAs and several proteins involved in silencing, stabilization or degradation of mRNAs, especially under environmental stress. Here, we monitored the dynamic formation of PBs and SGs, in somatic cells of adult worms, using fluorescently tagged protein markers of each complex. Both complexes were accumulated in response to various stress conditions, but distinct modes of SG formation were induced, depending on the insult. We also observed an age-dependent accumulation of PBs but not of SGs. We further showed that direct alterations in PB-related genes can influence aging and normal stress responses, beyond their developmental role. In addition, disruption of SG-related genes had diverse effects on development, fertility, lifespan and stress resistance of worms. Our work therefore underlines the important roles of mRNA metabolism factors in several vital cellular processes and provides insight into their diverse functions in a multicellular organism.
Collapse
Affiliation(s)
- Aris Rousakis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Faculty of Medicine, University of Athens, Athens, Greece
| | - Anna Vlanti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
| | - Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Fani Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Faculty of Biology, School of Science, University of Athens, Athens, Greece
| | - Marianna Kapetanou
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- Department of Biology, School of Science and Engineering, University of Crete, Heraklio, Crete, Greece
| | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research II, Athens, Greece
- * E-mail:
| |
Collapse
|
191
|
Jiménez-López D, Guzmán P. Insights into the evolution and domain structure of Ataxin-2 proteins across eukaryotes. BMC Res Notes 2014; 7:453. [PMID: 25027299 PMCID: PMC4105795 DOI: 10.1186/1756-0500-7-453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/03/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. RESULTS We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein. CONCLUSION Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, México
| |
Collapse
|
192
|
Hyper-Activation of the Target of Rapamycin (Tor) Kinase 1 Decreases Intracellular Glutathione Content inSaccharomyces cerevisiaeas Revealed by LC-MS/MS Analysis. Biosci Biotechnol Biochem 2014; 77:1608-11. [DOI: 10.1271/bbb.130314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
193
|
|
194
|
Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proc Natl Acad Sci U S A 2014; 111:7012-7. [PMID: 24706893 DOI: 10.1073/pnas.1319221111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The yeast Hsp31 minifamily proteins (Hsp31, Hsp32, Hsp33, Hsp34) belong to the highly conserved DJ-1 superfamily. The human DJ-1 protein is associated with cancer and neurodegenerative disorders, such as Parkinson disease. However, the precise function of human and yeast DJ-1 proteins is unclear. Here we show that the yeast DJ-1 homologs have a role in diauxic-shift (DS), characterized by metabolic reprogramming because of glucose limitation. We find that the Hsp31 genes are strongly induced in DS and in stationary phase (SP), and that deletion of these genes reduces chronological lifespan, impairs transcriptional reprogramming at DS, and impairs the acquisition of several typical characteristics of SP, including autophagy induction. In addition, under carbon starvation, the HSP31 family gene-deletion strains display impaired autophagy, disrupted target of rapamycin complex 1 (TORC1) localization to P-bodies, and caused abnormal TORC1-mediated Atg13 phosphorylation. Repression of TORC1 by rapamycin in the gene-deletion strains completely reversed their sensitivity to heat shock. Taken together, our data indicate that Hsp31 minifamily is required for DS reprogramming and cell survival in SP, and plays a role upstream of TORC1. The enhanced understanding of the cellular function of these genes sheds light into the biological role of other members of the superfamily, including DJ-1, which is an attractive target for therapeutic intervention in cancer and in Parkinson disease.
Collapse
|
195
|
Atkin J, Halova L, Ferguson J, Hitchin JR, Lichawska-Cieslar A, Jordan AM, Pines J, Wellbrock C, Petersen J. Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells. J Cell Sci 2014; 127:1346-56. [PMID: 24424027 PMCID: PMC3953821 DOI: 10.1242/jcs.146373] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/13/2013] [Indexed: 01/07/2023] Open
Abstract
The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.
Collapse
Affiliation(s)
- Jane Atkin
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Lenka Halova
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Jennifer Ferguson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - James R. Hitchin
- Cancer Research UK Drug Discovery Unit, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Allan M. Jordan
- Cancer Research UK Drug Discovery Unit, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Jonathon Pines
- The Gurdon Institute and Department of Zoology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Claudia Wellbrock
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Janni Petersen
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| |
Collapse
|
196
|
Abstract
Target of rapamycin (TOR) forms two conserved, structurally distinct kinase complexes termed TOR complex 1 (TORC1) and TORC2. Each complex phosphorylates a different set of substrates to regulate cell growth. In mammals, mTOR is stimulated by nutrients and growth factors and inhibited by stress to ensure that cells grow only during favorable conditions. Studies in different organisms have reported localization of TOR to several distinct subcellular compartments. Notably, the finding that mTORC1 is localized to the lysosome has significantly enhanced our understanding of mTORC1 regulation. Subcellular localization may be a general principle used by TOR to enact precise spatial and temporal control of cell growth.
Collapse
Affiliation(s)
- Charles Betz
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
197
|
Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 2014; 196:1077-89. [PMID: 24514902 DOI: 10.1534/genetics.114.161646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rapamycin-sensitive and endomembrane-associated TORC1 pathway controls cell growth in response to nutrients in eukaryotes. Mutations in class C Vps (Vps-C) complexes are synthetically lethal with tor1 mutations and confer rapamycin hypersensitivity in Saccharomyces cerevisiae, suggesting a role for these complexes in TORC1 signaling. Vps-C complexes are required for vesicular trafficking and fusion and comprise four distinct complexes: HOPS and CORVET and their minor intermediaries (i)-CORVET and i-HOPS. We show that at least one Vps-C complex is required to promote TORC1 activity, with the HOPS complex having the greatest input. The vps-c mutants fail to recover from rapamycin-induced growth arrest and show low levels of TORC1 activity. TORC1 promotes cell growth via Sch9, a p70(S6) kinase ortholog. Constitutively active SCH9 or hyperactive TOR1 alleles restored rapamycin recovery and TORC1 activity of vps-c mutants, supporting a role for the Vps-C complexes upstream of TORC1. The EGO GTPase complex Exit from G0 Complex (EGOC) and its homologous Rag-GTPase complex convey amino acid signals to TORC1 in yeast and mammals, respectively. Expression of the activated EGOC GTPase subunits Gtr1(GTP) and Gtr2(GDP) partially suppressed vps-c mutant rapamycin recovery defects, and this suppression was enhanced by increased amino acid concentrations. Moreover, vps-c mutations disrupted EGOC-TORC1 interactions. TORC1 defects were more severe for vps-c mutants than those observed in EGOC mutants. Taken together, our results support a model in which distinct endolysosomal trafficking Vps-C complexes promote rapamycin-sensitive TORC1 activity via multiple inputs, one of which involves maintenance of amino acid homeostasis that is sensed and transmitted to TORC1 via interactions with EGOC.
Collapse
|
198
|
Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, Nitschke R, Kuehn EW, Jonker JW, Groen AK, Reth M, Hall MN, Baumeister R. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 2013; 154:859-74. [PMID: 23953116 DOI: 10.1016/j.cell.2013.07.031] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/03/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) controls growth and survival in response to metabolic cues. Oxidative stress affects mTORC1 via inhibitory and stimulatory inputs. Whereas downregulation of TSC1-TSC2 activates mTORC1 upon oxidative stress, the molecular mechanism of mTORC1 inhibition remains unknown. Here, we identify astrin as an essential negative mTORC1 regulator in the cellular stress response. Upon stress, astrin inhibits mTORC1 association and recruits the mTORC1 component raptor to stress granules (SGs), thereby preventing mTORC1-hyperactivation-induced apoptosis. In turn, balanced mTORC1 activity enables expression of stress factors. By identifying astrin as a direct molecular link between mTORC1, SG assembly, and the stress response, we establish a unifying model of mTORC1 inhibition and activation upon stress. Importantly, we show that in cancer cells, apoptosis suppression during stress depends on astrin. Being frequently upregulated in tumors, astrin is a potential clinically relevant target to sensitize tumors to apoptosis.
Collapse
Affiliation(s)
- Kathrin Thedieck
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 2013; 38:494-506. [PMID: 24029419 DOI: 10.1016/j.tibs.2013.07.004] [Citation(s) in RCA: 479] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Abstract
Stress granules (SGs) contain translationally-stalled mRNAs, associated preinitiation factors, and specific RNA-binding proteins. In addition, many signaling proteins are recruited to SGs and/or influence their assembly, which is transient, lasting only until the cells adapt to stress or die. Beyond their role as mRNA triage centers, we posit that SGs constitute RNA-centric signaling hubs analogous to classical multiprotein signaling domains such as transmembrane receptor complexes. As signaling centers, SG formation communicates a 'state of emergency', and their transient existence alters multiple signaling pathways by intercepting and sequestering signaling components. SG assembly and downstream signaling functions may require a cytosolic phase transition facilitated by intrinsically disordered, aggregation-prone protein regions shared by RNA-binding and signaling proteins.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | |
Collapse
|
200
|
Buchan JR, Kolaitis RM, Taylor JP, Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013; 153:1461-74. [PMID: 23791177 PMCID: PMC3760148 DOI: 10.1016/j.cell.2013.05.037] [Citation(s) in RCA: 586] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/26/2013] [Accepted: 05/20/2013] [Indexed: 02/08/2023]
Abstract
Stress granules and P bodies are conserved cytoplasmic aggregates of nontranslating messenger ribonucleoprotein complexes (mRNPs) implicated in the regulation of mRNA translation and decay and are related to RNP granules in embryos, neurons, and pathological inclusions in some degenerative diseases. Using baker's yeast, 125 genes were identified in a genetic screen that affected the dynamics of P bodies and/or stress granules. Analyses of such mutants, including CDC48 alleles, provide evidence that stress granules can be targeted to the vacuole by autophagy, in a process termed granulophagy. Moreover, stress granule clearance in mammalian cells is reduced by inhibition of autophagy or by depletion or pathogenic mutations in valosin-containing protein (VCP), the human ortholog of CDC48. Because mutations in VCP predispose humans to amyotrophic lateral sclerosis, frontotemporal lobar degeneration, inclusion body myopathy, and multisystem proteinopathy, this work suggests that autophagic clearance of stress granule related and pathogenic RNP granules that arise in degenerative diseases may be important in reducing their pathology.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | | | | | | |
Collapse
|