151
|
Transcriptional addiction in mixed lineage leukemia: new avenues for target therapies. BLOOD SCIENCE 2019; 1:50-56. [PMID: 35402805 PMCID: PMC8975088 DOI: 10.1097/bs9.0000000000000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022] Open
Abstract
Mixed lineage leukemia (MLL) is an aggressive and refractory blood cancer that predominantly occurs in pediatric patients and is often associated with poor prognosis and dismal outcomes. Thus far, no effective target therapy for the treatment of MLL leukemia is available. MLL leukemia is caused by the rearrangement of MLL genes at 11q23, which generates various MLL chimeric proteins that promote leukemogenesis through transcriptional misregulation of MLL target genes. Biochemical studies on MLL chimeras have identified that the most common partners exist in the superelongation complex (SEC) and DOT1L complex, which activate or sustain MLL target gene expression through processive transcription elongation. The results of these studies indicate a transcription-related mechanism for MLL leukemogenesis and maintenance. In this study, we first review the history of MLL leukemia and its related clinical features. Then, we discuss the biological functions of MLL and MLL chimeras, significant cooperating events, and transcriptional addiction mechanisms in MLL leukemia with an emphasis on potential and rational therapy development. Collectively, we believe that targeting the transcriptional addiction mediated by SEC and the DOT1L complex will provide new avenues for target therapies in MLL leukemia and serve as a novel paradigm for targeting transcriptional addiction in other cancers.
Collapse
|
152
|
Khoueiry P, Ward Gahlawat A, Petretich M, Michon AM, Simola D, Lam E, Furlong EE, Benes V, Dawson MA, Prinjha RK, Drewes G, Grandi P. BRD4 bimodal binding at promoters and drug-induced displacement at Pol II pause sites associates with I-BET sensitivity. Epigenetics Chromatin 2019; 12:39. [PMID: 31266503 PMCID: PMC6604197 DOI: 10.1186/s13072-019-0286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Deregulated transcription is a major driver of diseases such as cancer. Bromodomain and extra-terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are chromatin readers essential for maintaining proper gene transcription by specifically binding acetylated lysine residues. Targeted displacement of BET proteins from chromatin, using BET inhibitors (I-BETs), is a promising therapy, especially for acute myeloid leukemia (AML), and evaluation of resistance mechanisms is necessary to optimize the clinical efficacy of these drugs. Results To uncover mechanisms of intrinsic I-BET resistance, we quantified chromatin binding and displacement for BRD2, BRD3 and BRD4 after dose response treatment with I-BET151, in sensitive and resistant in vitro models of leukemia, and mapped BET proteins/I-BET interactions genome wide using antibody- and compound-affinity capture methods followed by deep sequencing. The genome-wide map of BET proteins sensitivity to I-BET revealed a bimodal pattern of binding flanking transcription start sites (TSSs), in which drug-mediated displacement from chromatin primarily affects BRD4 downstream of the TSS and prolongs the pausing of RNA Pol II. Correlation of BRD4 binding and drug-mediated displacement at RNA Pol II pause sites with gene expression revealed a differential behavior of sensitive and resistant tumor cells to I-BET and identified a BRD4 signature at promoters of sensitive coding and non-coding genes. Conclusions We provide evidence that I-BET-induced shift of Pol II pausing at promoters via displacement of BRD4 is a determinant of intrinsic I-BET sensitivity. This finding may guide pharmacological treatment to enhance the clinical utility of such targeted therapies in AML and potentially other BET proteins-driven diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Khoueiry
- Cellzome GmbH, a GSK Company, Heidelberg, Germany. .,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | - M Petretich
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - A M Michon
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - D Simola
- Target Science Computational Biology, GSK Medicines Research Centre, Upper Providence, USA
| | - E Lam
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - E E Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - V Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - M A Dawson
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - R K Prinjha
- Epigenetics DPU, GSK Medicines Research Centre, Stevenage, UK
| | - G Drewes
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - P Grandi
- Cellzome GmbH, a GSK Company, Heidelberg, Germany.
| |
Collapse
|
153
|
Da Costa EM, Armaos G, McInnes G, Beaudry A, Moquin-Beaudry G, Bertrand-Lehouillier V, Caron M, Richer C, St-Onge P, Johnson JR, Krogan N, Sai Y, Downey M, Rafei M, Boileau M, Eppert K, Flores-Díaz E, Haman A, Hoang T, Sinnett D, Beauséjour C, McGraw S, Raynal NJM. Heart failure drug proscillaridin A targets MYC overexpressing leukemia through global loss of lysine acetylation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:251. [PMID: 31196146 PMCID: PMC6563382 DOI: 10.1186/s13046-019-1242-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Background Cardiac glycosides are approved for the treatment of heart failure as Na+/K+ pump inhibitors. Their repurposing in oncology is currently investigated in preclinical and clinical studies. However, the identification of a specific cancer type defined by a molecular signature to design targeted clinical trials with cardiac glycosides remains to be characterized. Here, we demonstrate that cardiac glycoside proscillaridin A specifically targets MYC overexpressing leukemia cells and leukemia stem cells by causing MYC degradation, epigenetic reprogramming and leukemia differentiation through loss of lysine acetylation. Methods Proscillaridin A anticancer activity was investigated against a panel of human leukemia and solid tumor cell lines with different MYC expression levels, overexpression in vitro systems and leukemia stem cells. RNA-sequencing and differentiation studies were used to characterize transcriptional and phenotypic changes. Drug-induced epigenetic changes were studied by chromatin post-translational modification analysis, expression of chromatin regulators, chromatin immunoprecipitation, and mass-spectrometry. Results At a clinically relevant dose, proscillaridin A rapidly altered MYC protein half-life causing MYC degradation and growth inhibition. Transcriptomic profile of leukemic cells after treatment showed a downregulation of genes involved in MYC pathways, cell replication and an upregulation of hematopoietic differentiation genes. Functional studies confirmed cell cycle inhibition and the onset of leukemia differentiation even after drug removal. Proscillaridin A induced a significant loss of lysine acetylation in histone H3 (at lysine 9, 14, 18 and 27) and in non-histone proteins such as MYC itself, MYC target proteins, and a series of histone acetylation regulators. Global loss of acetylation correlated with the rapid downregulation of histone acetyltransferases. Importantly, proscillaridin A demonstrated anticancer activity against lymphoid and myeloid stem cell populations characterized by MYC overexpression. Conclusion Overall, these results strongly support the repurposing of proscillaridin A in MYC overexpressing leukemia. Electronic supplementary material The online version of this article (10.1186/s13046-019-1242-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie M Da Costa
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Gregory Armaos
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Gabrielle McInnes
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Annie Beaudry
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Gaël Moquin-Beaudry
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Virginie Bertrand-Lehouillier
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.,Département de biochimie et biologie moléculaire, Université de Montréal, Montréal, (Québec), Canada
| | - Maxime Caron
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Chantal Richer
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Pascal St-Onge
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA
| | - Yuka Sai
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, Ottawa, (Ontario), Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, Ottawa, (Ontario), Canada
| | - Moutih Rafei
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, (Québec), Canada.,Department of Microbiology and Immunology, McGill University, Montreal, (Québec), Canada
| | - Meaghan Boileau
- Department of Pediatrics, McGill University, Montreal, (Québec), Canada
| | - Kolja Eppert
- Department of Pediatrics, McGill University, Montreal, (Québec), Canada
| | - Ema Flores-Díaz
- Institute of Research in Immunology and Cancer, Université de Montréal, Montreal, (Québec), Canada
| | - André Haman
- Institute of Research in Immunology and Cancer, Université de Montréal, Montreal, (Québec), Canada
| | - Trang Hoang
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Institute of Research in Immunology and Cancer, Université de Montréal, Montreal, (Québec), Canada
| | - Daniel Sinnett
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.,Département de pédiatrie, Université de Montréal, Montréal, (Québec), Canada
| | - Christian Beauséjour
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada.,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada
| | - Serge McGraw
- Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.,Département de biochimie et biologie moléculaire, Université de Montréal, Montréal, (Québec), Canada.,Département Obstétrique-Gynécologie, Université de Montréal, Montréal, (Québec), Canada
| | - Noël J-M Raynal
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, (Québec), Canada. .,Sainte-Justine University Hospital Research Center (7.17.020), 3175, Chemin de la Côte-Sainte-Catherine, Montréal, (Québec), H3T 1C5, Canada.
| |
Collapse
|
154
|
Chan AKN, Chen CW. Rewiring the Epigenetic Networks in MLL-Rearranged Leukemias: Epigenetic Dysregulation and Pharmacological Interventions. Front Cell Dev Biol 2019; 7:81. [PMID: 31157223 PMCID: PMC6529847 DOI: 10.3389/fcell.2019.00081] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene (MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The resulting chimeric products of MLL gene rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-FPs to reprogram HSPCs toward leukemia requires the involvement of multiple chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic regulators constitute a complicated network that dictates maintenance of the leukemia program, and therefore represent an important cluster of therapeutic opportunities. In this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and hematopoiesis, including the links between chromatin effectors, epigenetic landscapes, and leukemia development, and summarize current approaches to therapeutic targeting of MLL-r leukemias.
Collapse
Affiliation(s)
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
155
|
Cho E, Jung W, Joo HY, Park ER, Kim MY, Kim SB, Kim KS, Lim YB, Lee KH, Shin HJ. Cluh plays a pivotal role during adipogenesis by regulating the activity of mitochondria. Sci Rep 2019; 9:6820. [PMID: 31048716 PMCID: PMC6497719 DOI: 10.1038/s41598-019-43410-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/01/2019] [Indexed: 01/01/2023] Open
Abstract
Cluh is a cytosolic protein that is known to specifically bind the mRNAs of nuclear-encoded mitochondrial proteins and play critical roles in mitochondrial biogenesis. Here, we report the role of Cluh in adipogenesis. Our study shows that mRNA expression of Cluh is stimulated during adipogenesis, and that cAMP/Creb signalling increases its transcription. Cluh depletion impaired proper adipocyte differentiation, with reductions seen in lipid droplets and adipogenic marker gene expression. Interestingly, the inductions of the brown adipocyte-specific genes, Ucp1, Cidea and Cox7a1, are severely blocked by Cluh depletion during brown adipogenesis. Mitochondrial respiration and the stability of mRNAs encoding mitochondrial proteins are reduced by Cluh depletion during brown adipogenesis. These results suggest that Cluh, which is induced during adipogenesis, promotes the post-transcriptional regulation of mitochondrial proteins and supports differentiation.
Collapse
Affiliation(s)
- Eugene Cho
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Wonhee Jung
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyun-Yoo Joo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Eun-Ran Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Mi-Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Su-Bin Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Bin Lim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kee Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyun Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
156
|
Abstract
Recurrent chromosomal rearrangements leading to the generation of oncogenic fusion proteins are a common feature of many cancers. These aberrations are particularly prevalent in sarcomas and haematopoietic malignancies and frequently involve genes required for chromatin regulation and transcriptional control. In many cases, these fusion proteins are thought to be the primary driver of cancer development, altering chromatin dynamics to initiate oncogenic gene expression programmes. In recent years, mechanistic insights into the underlying molecular functions of a number of these oncogenic fusion proteins have been discovered. These insights have allowed the design of mechanistically anchored therapeutic approaches promising substantial treatment advances. In this Review, we discuss how our understanding of fusion protein function is informing therapeutic innovations and illuminating mechanisms of chromatin and transcriptional regulation in cancer and normal cells.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
157
|
Korfhage J, Lombard DB. Malignant Peripheral Nerve Sheath Tumors: From Epigenome to Bedside. Mol Cancer Res 2019; 17:1417-1428. [PMID: 31023785 DOI: 10.1158/1541-7786.mcr-19-0147] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas typically developing in the context of neurofibromatosis type 1 (NF-1). With the exception of surgical resection, these tumors are resistant to all current therapies, and unresectable, recurrent, or metastatic tumors are considered incurable. Preclinical studies have identified several novel candidate molecular targets for therapeutic intervention, but, to date, targeted therapies have proven ineffective. Recent studies have identified recurrent mutations in polycomb repressive complex 2 (PRC2) core components, embryonic ectoderm development protein (EED) and suppressor of zeste 12 homolog (SUZ12), in MPNST. These mutations result in global loss of the histone H3 lysine 27 trimethylation epigenetic mark, normally deposited by PRC2, and subsequent gain in acetylation at this residue. This altered chromatin state has been shown to promote MPNST malignancy; however, acetylation at this residue sensitizes MPNSTs to BRD4 and bromodomain and extra-terminal domain inhibition. Interestingly, the catalytic component of PRC2, enhancer of zeste homolog 2 (EZH2), is not mutated in MPNST, hinting that a noncanonical, PRC2-independent function of EZH2 may play a role in this cancer. This review examines the pathobiology of MPNST, the contribution of PRC2 subunits to this process, and the prospects for PRC2-related therapies for this cancer. IMPLICATIONS: Identification of mutations in the PRC2 components EED and SUZ12 in the majority of MPNSTs may imply noncanonical oncogenic activities of the intact component, EZH2, and provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Justin Korfhage
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
158
|
RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 2019; 134:59-73. [PMID: 31023702 DOI: 10.1182/blood.2018893982] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.
Collapse
|
159
|
Padmanabhan A, Haldar SM. Drugging transcription in heart failure. J Physiol 2019; 598:3005-3014. [PMID: 30927446 DOI: 10.1113/jp276745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Advances in our understanding of the basic biology and biochemistry of chromatin structure and function at genome scales has led to tremendous growth in the fields of epigenomics and transcriptional biology. While it has long been appreciated that transcriptional pathways are dysregulated in failing hearts, only recently has the idea of disrupting altered transcription by targeting chromatin-associated proteins been explored. Here, we provide a brief overview of efforts to drug transcription in the context of heart failure, focusing on the bromo- and extra-terminal domain (BET) family of chromatin co-activator proteins.
Collapse
Affiliation(s)
- Arun Padmanabhan
- Division of Cardiology, Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA.,Gladstone Institutes, San Francisco, CA, USA
| | - Saptarsi M Haldar
- Division of Cardiology, Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA.,Gladstone Institutes, San Francisco, CA, USA.,Cardiometabolic Disorders, Amgen, South San Francisco, CA, USA
| |
Collapse
|
160
|
Epigenetic therapies in heart failure. J Mol Cell Cardiol 2019; 130:197-204. [PMID: 30991033 DOI: 10.1016/j.yjmcc.2019.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a dominant cause of morbidity and mortality in the developed world, with available pharmacotherapies limited by high rates of residual mortality and a failure to directly target the changes in cell state that drive adverse cardiac remodeling. Pathologic cardiac remodeling is driven by stress-activated cardiac signaling cascades that converge on defined components of the chromatin regulatory apparatus in the nucleus, triggering broad shifts in transcription and cell state. Thus, studies focusing on how cytosolic signaling pathways couple to the nuclear gene control machinery has been an area of therapeutic interest in HF. In this review, we discuss current concepts pertaining to the role of chromatin regulators in HF pathogenesis, with a focus on specific proteins and RNA-containing macromolecular complexes that have shown promise as druggable targets in the experimental setting.
Collapse
|
161
|
Identification of a novel enhancer of CEBPE essential for granulocytic differentiation. Blood 2019; 133:2507-2517. [PMID: 30952671 DOI: 10.1182/blood.2018886077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer binding protein ε (CEBPE) is an essential transcription factor for granulocytic differentiation. Mutations of CEBPE occur in individuals with neutrophil-specific granule deficiency (SGD), which is characterized by defects in neutrophil maturation. Cebpe-knockout mice also exhibit defects in terminal differentiation of granulocytes, a phenotype reminiscent of SGD. Analysis of DNase I hypersensitive sites sequencing data revealed an open chromatin region 6 kb downstream of the transcriptional start site of Cebpe in murine myeloid cells. We identified an interaction between this +6-kb region and the core promoter of Cebpe using circular chromosome conformation capture sequencing (4C-seq). To understand the role of this putative enhancer in transcriptional regulation of Cebpe, we targeted it using catalytically inactive Cas9 fused to Krüppel-associated box (KRAB) domain and observed a significant downregulation of transcript and protein levels of CEBPE in cells expressing guide RNA targeting the +6-kb region. To further investigate the role of this novel enhancer further in myelopoiesis, we generated mice with deletion of this region using CRISPR/Cas9 technology. Germline deletion of the +6-kb enhancer resulted in reduced levels of CEBPE and its target genes and caused a severe block in granulocytic differentiation. We also identified binding of CEBPA and CEBPE to the +6-kb enhancer, which suggests their role in regulating the expression of Cebpe In summary, we have identified a novel enhancer crucial for regulating expression of Cebpe and required for normal granulocytic differentiation.
Collapse
|
162
|
Mayor-Ruiz C, Winter GE. Identification and characterization of cancer vulnerabilities via targeted protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:81-90. [PMID: 31200863 DOI: 10.1016/j.ddtec.2018.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Target(ed) protein degradation (TPD) is a novel paradigm in drug discovery and a promising therapeutic strategy. TPD is based on small-molecules that catalyze the degradation of proteins by re-directing the ubiquitination activity of ubiquitin E3 ligases. Its unique molecular pharmacology enables robust, selective and fast elimination of proteins in cellular assays and in vivo. In addition to possible clinical applications, TPD is also emerging as an attractive alternative to traditional pharmacologic or genetic perturbation strategies. Directly acting degraders, as well as chemical-genetics derivatives offer unique opportunities in the pre-clinical identification, characterization and mechanistic validation of therapeutic targets.
Collapse
Affiliation(s)
- Cristina Mayor-Ruiz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Vienna, 1090, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Vienna, 1090, Austria.
| |
Collapse
|
163
|
Volpe G, Cauchy P, Walton DS, Ward C, Blakemore D, Bayley R, Clarke ML, Schmidt L, Nerlov C, Garcia P, Dumon S, Grebien F, Frampton J. Dependence on Myb expression is attenuated in myeloid leukaemia with N-terminal CEBPA mutations. Life Sci Alliance 2019; 2:2/2/e201800207. [PMID: 30877232 PMCID: PMC6421631 DOI: 10.26508/lsa.201800207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
We show that for acute myeloid leukaemias with CEBPA mutations, the dependency of leukaemia growth and differentiation on the Myb transcription factor is related to the combination of N- and C-terminal mutations involved and how this affects overall gene expression. Mutations at the N- or C-terminus of C/EBPα are frequent in acute myeloid leukaemia (AML) with normal karyotype. Here, we investigate the role of the transcription factor Myb in AMLs driven by different combinations of CEBPA mutations. Using knockdown of Myb in murine cell lines modelling the spectrum of CEBPA mutations, we show that the effect of reduced Myb depends on the mutational status of the two Cebpa alleles. Importantly, Myb knockdown fails to override the block in myeloid differentiation in cells with biallelic N-terminal C/EBPα mutations, demonstrating for the first time that the dependency on Myb is much lower in AML with this mutational profile. By comparing gene expression following Myb knockdown and chromatin immunoprecipitation sequencing data for the binding of C/EBPα isoforms, we provide evidence for a functional cooperation between C/EBPα and Myb in the maintenance of AML. This co-dependency breaks down when both alleles of CEBPA harbour N-terminal mutations, as a subset of C/EBPα-regulated genes only bind the short p30 C/EBPα isoform and, unlike other C/EBPα-regulated genes, do so without a requirement for Myb.
Collapse
Affiliation(s)
- Giacomo Volpe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK .,Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, and Guangzhou Medical University, Guangzhou, China
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - David S Walton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carl Ward
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, and Guangzhou Medical University, Guangzhou, China
| | - Daniel Blakemore
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachael Bayley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Mary L Clarke
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Luisa Schmidt
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Claus Nerlov
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paloma Garcia
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stéphanie Dumon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
164
|
Li QL, Wang DY, Ju LG, Yao J, Gao C, Lei PJ, Li LY, Zhao XL, Wu M. The hyper-activation of transcriptional enhancers in breast cancer. Clin Epigenetics 2019; 11:48. [PMID: 30867030 PMCID: PMC6417266 DOI: 10.1186/s13148-019-0645-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/01/2019] [Indexed: 12/25/2022] Open
Abstract
Background Activation of transcription enhancers, especially super-enhancers, is one of the critical epigenetic features of tumorigenesis. However, very few studies have systematically identified the enhancers specific in cancer tissues. Methods Here, we studied the change of histone modifications in MMTV-PyVT breast cancer model, combining mass spectrometry-based proteomics and ChIP-seq-based epigenomics approaches. Some of the proteomic results were confirmed with western blotting and IHC staining. An inhibitor of H3K27ac was applied to study its effect on cancer development. Results H3K27ac and H4K8ac are elevated in cancer, which was confirmed in patient tissue chips. ChIP-seq revealed that H4K8ac is co-localized with H3K27ac on chromatin, especially on distal enhancers. Epigenomic studies further identified a subgroup of super-enhancers marked by H3K4me3 peaks in the intergenic regions. The H3K4me3-enriched regions enhancers are associated with higher level of H3K27ac and H4K8ac compared with the average level of conventional super-enhancers and are associated with higher transcription level of their adjacent genes. We identified 148 H3K4me3-enriched super-enhancers with higher gene expression in tumor, which may be critical for breast cancer. One inhibitor for p300 and H3K27ac, C646, repressed tumor formation probably through inhibiting Vegfa and other genes. Conclusions Taken together, our work identifies novel regulators and provides important resource to the genome-wide enhancer studies in breast cancer and raises the possibility of cancer treatment through modulating enhancer activity. Electronic supplementary material The online version of this article (10.1186/s13148-019-0645-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing-Lan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.,Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, 430072, Hubei, China
| | - Dan-Ya Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lin-Gao Ju
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jie Yao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.,Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chuan Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.,Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pin-Ji Lei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.,Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lian-Yun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.,Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiao-Lu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Min Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China. .,Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
165
|
Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 2019; 337:48-53. [PMID: 30832981 DOI: 10.1016/j.cellimm.2019.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
The Bromodomain and Extra-terminal (BET) family of proteins were first recognized as important epigenetic regulators in inflammatory processes; however, there is increasing evidence to support the notion that BET proteins also play a critical role in 'reading' chromatin and recruiting chromatin-regulating enzymes to control gene expression in a number of pathologic processes, including cancer. To this end, the mechanisms by which BET proteins regulate chromatin remodeling and promote tumor-associated inflammation have been heavily studied over the past decade. This article to review the biology of BET protein dysfunction in promoting tumor-associated inflammation and cancer progression and the application of small molecule inhibitors that target specific BET proteins, alone or in combination with immunomodulatory agents as a novel therapeutic strategy for cancer patients.
Collapse
|
166
|
Barth J, Abou-El-Ardat K, Dalic D, Kurrle N, Maier AM, Mohr S, Schütte J, Vassen L, Greve G, Schulz-Fincke J, Schmitt M, Tosic M, Metzger E, Bug G, Khandanpour C, Wagner SA, Lübbert M, Jung M, Serve H, Schüle R, Berg T. LSD1 inhibition by tranylcypromine derivatives interferes with GFI1-mediated repression of PU.1 target genes and induces differentiation in AML. Leukemia 2019; 33:1411-1426. [PMID: 30679800 DOI: 10.1038/s41375-018-0375-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
LSD1 has emerged as a promising epigenetic target in the treatment of acute myeloid leukemia (AML). We used two murine AML models based on retroviral overexpression of Hoxa9/Meis1 (H9M) or MN1 to study LSD1 loss of function in AML. The conditional knockout of Lsd1 resulted in differentiation with both granulocytic and monocytic features and increased ATRA sensitivity and extended the survival of mice with H9M-driven AML. The conditional knockout led to an increased expression of multiple genes regulated by the important myeloid transcription factors GFI1 and PU.1. These include the transcription factors GFI1B and IRF8. We also compared the effect of different irreversible and reversible inhibitors of LSD1 in AML and could show that only tranylcypromine derivatives were capable of inducing a differentiation response. We employed a conditional knock-in model of inactive, mutant LSD1 to study the effect of only interfering with LSD1 enzymatic activity. While this was sufficient to initiate differentiation, it did not result in a survival benefit in mice. Hence, we believe that targeting both enzymatic and scaffolding functions of LSD1 is required to efficiently treat AML. This finding as well as the identified biomarkers may be relevant for the treatment of AML patients with LSD1 inhibitors.
Collapse
Affiliation(s)
- Jessica Barth
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalil Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Denis Dalic
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Nina Kurrle
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Anna-Maria Maier
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Sebastian Mohr
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Judith Schütte
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Lothar Vassen
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Gabriele Greve
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Johannes Schulz-Fincke
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Martin Schmitt
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Milica Tosic
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Eric Metzger
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Gesine Bug
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Sebastian A Wagner
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Lübbert
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Manfred Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany.,German Cancer Consortium (DKTK), Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Schüle
- Department of Urology and Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, 79104, Freiburg, Germany
| | - Tobias Berg
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany. .,German Cancer Consortium (DKTK), Frankfurt, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
167
|
Predicting response to BET inhibitors using computational modeling: A BEAT AML project study. Leuk Res 2019; 77:42-50. [PMID: 30642575 PMCID: PMC6442457 DOI: 10.1016/j.leukres.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/26/2018] [Accepted: 11/18/2018] [Indexed: 12/04/2022]
Abstract
Despite advances in understanding the molecular pathogenesis of acute myeloid leukaemia (AML), overall survival rates remain low. The ability to predict treatment response based on individual cancer genomics using computational modeling will aid in the development of novel therapeutics and personalize care. Here, we used a combination of genomics, computational biology modeling (CBM), ex vivo chemosensitivity assay, and clinical data from 100 randomly selected patients in the Beat AML project to characterize AML sensitivity to a bromodomain (BRD) and extra-terminal (BET) inhibitor. Computational biology modeling was used to generate patient-specific protein network maps of activated and inactivated protein pathways translated from each genomic profile. Digital drug simulations of a BET inhibitor (JQ1) were conducted by quantitatively measuring drug effect using a composite AML disease inhibition score. 93% of predicted disease inhibition scores matched the associated ex vivo IC50 value. Sensitivity and specificity of CBM predictions were 97.67%, and 64.29%, respectively. Genomic predictors of response were identified. Patient samples harbouring chromosomal aberrations del(7q) or −7, +8, or del(5q) and somatic mutations causing ERK pathway dysregulation, responded to JQ1 in both in silico and ex vivo assays. This study shows how a combination of genomics, computational modeling and chemosensitivity testing can identify network signatures associating with treatment response and can inform priority populations for future clinical trials of BET inhibitors.
Collapse
|
168
|
Abstract
The c-Myb gene encodes a transcription factor that regulates cell proliferation, differentiation, and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is frequently overexpressed in human leukemias, breast cancers, and other solid tumors suggesting that it is a bona fide oncogene. c-MYB is often overexpressed by translocation in human tumors with t(6;7)(q23;q34) resulting in c-MYB-TCRβ in T cell ALL, t(X;6)(p11;q23) with c-MYB-GATA1 in acute basophilic leukemia, and t(6;9)(q22-23;p23-24) with c-MYB-NF1B in adenoid cystic carcinoma. Antisense oligonucleotides to c-MYB were developed to purge bone marrow cells to eliminate tumor cells in leukemias. Recently, small molecules that inhibit c-MYB activity have been developed to disrupt its interaction with p300. The Dmp1 (cyclin D binding myb-like protein 1; Dmtf1) gene was isolated through its virtue for binding to cyclin D2. It is a transcription factor that has a Myb-like repeat for DNA binding. The Dmtf1 protein directly binds to the Arf promoter for transactivation and physically interacts with p53 to activate the p53 pathway. The gene is hemizygously deleted in 35-42% of human cancers and is associated with longer survival. The significances of aberrant expression of c-MYB and DMTF1 proteins in human cancers and their clinical significances are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
169
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
170
|
Keleku-Lukwete N, Suzuki M, Yamamoto M. An Overview of the Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease Treatment. Antioxid Redox Signal 2018; 29:1746-1755. [PMID: 28899203 DOI: 10.1089/ars.2017.7358] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation can be defined as a protective immune response against harmful exogenous and endogenous stimuli. Nevertheless, prolonged or autoimmune inflammatory responses are likely to cause pathological states that are associated with a production of inflammation-associated molecules along with reactive oxygen species (ROS). Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (KEAP1-NRF2) signaling provides a cell protection mechanism against oxidative insults when endogenous stress defense mechanisms are imbalanced. Understanding the roles of the KEAP1-NRF2 system in inflammation caused by various types of stimuli may aid in the development of new therapies. Recent Advances: There have been tremendous advances in understanding the mechanism by which the KEAP1-NRF2 pathway abrogates inflammation. In addition to the well-established ROS-dependent pathway, recent studies have provided evidence of the direct repression of the transcription of pro-inflammatory cytokine genes, such as IL1b and IL6 (encoding Interleukin-1β and Interleukin-6, respectively). Further, the expanding functions of NRF2 have elicited interest in the development of therapeutic modalities for inflammatory diseases, including multiple sclerosis and sickle cell disease. Critical Issues and Future Directions: Despite progress in the understanding of molecular mechanisms supporting the roles that NRF2 plays during inflammation, the relationship between NRF2 and other transcription factors and mediators of inflammation still remains ambiguous. Further studies are required to address the effects of functional polymorphisms in KEAP1 and NRF2 that modify susceptibility to specific disease-related inflammation. Comprehensive analyses in the future should explore tissue- or cell-type specific NRF2 activation to elaborate effects of NRF2 induction. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Nadine Keleku-Lukwete
- 1 Department of Medical Biochemistry, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Mikiko Suzuki
- 2 Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Masayuki Yamamoto
- 1 Department of Medical Biochemistry, Tohoku University Graduate School of Medicine , Sendai, Japan
| |
Collapse
|
171
|
Song J, Yuan C, Yang J, Liu T, Yao Y, Xiao X, Gajendran B, Xu D, Li YJ, Wang C, Liu W, Wen M, Spaner D, Filmus J, Zacksenhaus E, Zhang Y, Hao X, Ben-David Y. Novel flavagline-like compounds with potent Fli-1 inhibitory activity suppress diverse types of leukemia. FEBS J 2018; 285:4631-4645. [PMID: 30387554 DOI: 10.1111/febs.14690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022]
Abstract
E26 transformation-specific (ETS) gene family contains a common DNA-binding domain, the ETS domain, responsible for sequence-specific DNA recognition on target promoters. The Fli-1 oncogene, a member of ETS gene family, plays a critical role in hematopoiesis and is overexpressed in diverse hematological malignancies. This ETS transcription factor regulates genes controlling several hallmarks of cancer and thus represents an excellent target for cancer therapy. By screening compounds isolated from the medicinal plant Dysoxylum binectariferum in China, we identified two chemically related flavagline-like compounds including 4'-demethoxy-3',4'-methylenedioxyrocaglaol and rocaglaol that strongly inhibited Fli-1 transactivation ability. These compounds altered expression of Fli-1 target genes including GATA1, EKLF, SHIP1, and BCL2. Consequently, the flavagline-like compounds suppressed proliferation, induced apoptosis, and promoted erythroid differentiation of leukemic cells in culture. These compounds also suppressed erythroleukemogenesis in vivo in a Fli-1-driven mouse model. Mechanistically, the compounds blocked c-Raf-MEK-MAPK/ERK signaling, reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), and inhibited Fli-1 protein synthesis. Consistent with its high expression in myelomas, B-cell lymphoma, and B chronic lymphocytic leukemia (B-CLL), pharmacological inhibition of Fli-1 by the flavagline-like compounds or genetic knock-down via shRNA significantly hindered proliferation of corresponding cell lines and patients' samples. These results uncover a critical role of Fli-1 in growth and survival of various hematological malignancies and point to flavagline-like agents as lead compounds for the development of anti-Fli-1 drugs to treat leukemias/lymphomas overexpressing Fli-1.
Collapse
Affiliation(s)
- Jialei Song
- The Laboratory of Cell Biochemistry and Topogenic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Jue Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Tangjingjun Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yao Yao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Dahai Xu
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Min Wen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - David Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Jorge Filmus
- Biology Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, China
| | - Xiaojiang Hao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| |
Collapse
|
172
|
Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond transcriptional regulation. Mol Cancer 2018; 17:164. [PMID: 30466442 PMCID: PMC6251205 DOI: 10.1186/s12943-018-0915-9] [Citation(s) in RCA: 488] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
BRD4, member of the Bromodomain and Extraterminal (BET) protein family, is largely acknowledged in cancer for its role in super-enhancers (SEs) organization and oncogenes expression regulation. Inhibition of BRD4 shortcuts the communication between SEs and target promoters with a subsequent cell-specific repression of oncogenes to which cancer cells are addicted and cell death. To date, this is the most credited mechanism of action of BET inhibitors, a class of small molecules targeting BET proteins which are currently in clinical trials in several cancer settings. However, recent evidence indicates that BRD4 relevance in cancer goes beyond its role in transcription regulation and identifies this protein as a keeper of genome stability. Indeed, a non-transcriptional role of BRD4 in controlling DNA damage checkpoint activation and repair as well as telomere maintenance has been proposed, throwing new lights into the multiple functions of this protein and opening new perspectives on the use of BETi in cancer. Here we discuss the current available information on non-canonical, non-transcriptional functions of BRD4 and on their implications in cancer biology. Integrating this information with the already known BRD4 role in gene expression regulation, we propose a “common” model to explain BRD4 genomic function. Furthermore, in light of the transversal function of BRD4, we provide new interpretation for the cytotoxic activity of BETi and we discuss new possibilities for a wide and focused employment of these drugs in clinical settings.
Collapse
Affiliation(s)
- Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Eugenia Lorenzini
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| |
Collapse
|
173
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 447] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
174
|
Strub T, Ghiraldini FG, Carcamo S, Li M, Wroblewska A, Singh R, Goldberg MS, Hasson D, Wang Z, Gallagher SJ, Hersey P, Ma'ayan A, Long GV, Scolyer RA, Brown B, Zheng B, Bernstein E. SIRT6 haploinsufficiency induces BRAF V600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat Commun 2018; 9:3440. [PMID: 30143629 PMCID: PMC6109055 DOI: 10.1038/s41467-018-05966-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022] Open
Abstract
While multiple mechanisms of BRAFV600-mutant melanoma resistance to targeted MAPK signaling inhibitors (MAPKi) have been reported, the epigenetic regulation of this process remains undetermined. Here, using a CRISPR–Cas9 screen targeting chromatin regulators, we discover that haploinsufficiency of the histone deacetylase SIRT6 allows melanoma cell persistence in the presence of MAPKi. Haploinsufficiency, but not complete loss of SIRT6 promotes IGFBP2 expression via increased chromatin accessibility, H3K56 acetylation at the IGFBP2 locus, and consequent activation of the IGF-1 receptor (IGF-1R) and downstream AKT signaling. Combining a clinically applicable IGF-1Ri with BRAFi overcomes resistance of SIRT6 haploinsufficient melanoma cells in vitro and in vivo. Using matched melanoma samples derived from patients receiving dabrafenib + trametinib, we identify IGFBP2 as a potential biomarker for MAPKi resistance. Our study has not only identified an epigenetic mechanism of drug resistance, but also provides insights into a combinatorial therapy that may overcome resistance to standard-of-care therapy for BRAFV600-mutant melanoma patients. The epigenetic mechanisms of melanoma drug resistance are poorly understood. Here, the authors develop a CRISPR-Cas9 screen targeting epigenetic regulators and discover that SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling.
Collapse
Affiliation(s)
- Thomas Strub
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Man Li
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Aleksandra Wroblewska
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Rajendra Singh
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Pathology, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Pathology, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Stuart J Gallagher
- Centenary Institute, Camperdown NSW 2050, The University of Sydney, Sydney, Australia.,Melanoma Institute Australia, Wollstonecraft NSW 2065, The University of Sydney, Sydney, Australia
| | - Peter Hersey
- Centenary Institute, Camperdown NSW 2050, The University of Sydney, Sydney, Australia.,Melanoma Institute Australia, Wollstonecraft NSW 2065, The University of Sydney, Sydney, Australia
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Georgina V Long
- Melanoma Institute Australia, Wollstonecraft NSW 2065, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2050, Australia.,Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, Wollstonecraft NSW 2065, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2050, Australia.,Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Brian Brown
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Genetics and Genomic Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Bin Zheng
- Centenary Institute, Camperdown NSW 2050, The University of Sydney, Sydney, Australia
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
175
|
Jin X, Yan Y, Wang D, Ding D, Ma T, Ye Z, Jimenez R, Wang L, Wu H, Huang H. DUB3 Promotes BET Inhibitor Resistance and Cancer Progression by Deubiquitinating BRD4. Mol Cell 2018; 71:592-605.e4. [PMID: 30057199 PMCID: PMC6086352 DOI: 10.1016/j.molcel.2018.06.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
The bromodomain and extra-terminal domain (BET) protein BRD4 is emerging as a promising anticancer therapeutic target. However, resistance to BET inhibitors often occurs, and it has been linked to aberrant degradation of BRD4 protein in cancer. Here, we demonstrate that the deubiquitinase DUB3 binds to BRD4 and promotes its deubiquitination and stabilization. Expression of DUB3 is transcriptionally repressed by the NCOR2-HDAC10 complex. The NCOR2 gene is frequently deleted in castration-resistant prostate cancer patient specimens, and loss of NCOR2 induces elevation of DUB3 and BRD4 proteins in cancer cells. DUB3-proficient prostate cancer cells are resistant to the BET inhibitor JQ1 in vitro and in mice, but this effect is diminished by DUB3 inhibitory agents such as CDK4/6 inhibitor in a RB-independent manner. Our findings identify a previously unrecognized mechanism causing BRD4 upregulation and drug resistance, suggesting that DUB3 is a viable therapeutic target to overcome BET inhibitor resistance in cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
176
|
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 2018; 597:1103-1119. [PMID: 29920674 PMCID: PMC6375873 DOI: 10.1113/jp275857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic pulmonary hypertension (PH) is characterized by the accumulation of persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM) remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these activated phenotypes. Furthermore, current approaches to define additional therapeutic targets have focused on determining the initiating signals and their downstream effectors that are important in PH onset and development. Although these approaches have produced a large number of compelling PH treatment targets, many promising human drugs have failed in PH clinical trials. Herein, we propose that one contributing factor to these failures is that processes important in PH development may not be good treatment targets in the established phase of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH cells, resulting in functional differences between the same factor or pathway in normal or early PH cells versus cells in chronic PH. We propose that the high expression of genes involved in the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs, the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus, determining how gene expression is controlled by examining chromatin structure, TFs and epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in chronic PH, may uncover new PH therapeutic targets.
![]()
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
177
|
Rahnamoun H, Lee J, Sun Z, Lu H, Ramsey KM, Komives EA, Lauberth SM. RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat Struct Mol Biol 2018; 25:687-697. [PMID: 30076409 PMCID: PMC6859054 DOI: 10.1038/s41594-018-0102-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
The bromodomain and extra-terminal motif (BET) protein BRD4 binds to acetylated histones at enhancers and promoters via its bromodomains (BDs) to regulate transcriptional elongation. In human colorectal cancer cells, we found that BRD4 was recruited to enhancers that were co-occupied by mutant p53 and supported the synthesis of enhancer-directed transcripts (eRNAs) in response to chronic immune signaling. BRD4 selectively associated with eRNAs that were produced from BRD4-bound enhancers. Using biochemical and biophysical methods, we found that BRD4 BDs function cooperatively as docking sites for eRNAs and that the BDs of BRD2, BRD3, BRDT, BRG1, and BRD7 directly interact with eRNAs. BRD4-eRNA interactions increased BRD4 binding to acetylated histones in vitro and augmented BRD4 enhancer recruitment and transcriptional cofactor activities. Our results suggest a mechanism by which eRNAs are directly involved in gene regulation by modulating enhancer interactions and transcriptional functions of BRD4.
Collapse
Affiliation(s)
- Homa Rahnamoun
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Jihoon Lee
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Zhengxi Sun
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Hanbin Lu
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kristen M Ramsey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Shannon M Lauberth
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
178
|
Gilmour J, Assi SA, Noailles L, Lichtinger M, Obier N, Bonifer C. The Co-operation of RUNX1 with LDB1, CDK9 and BRD4 Drives Transcription Factor Complex Relocation During Haematopoietic Specification. Sci Rep 2018; 8:10410. [PMID: 29991720 PMCID: PMC6039467 DOI: 10.1038/s41598-018-28506-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023] Open
Abstract
Haematopoietic cells arise from endothelial cells within the dorsal aorta of the embryo via a process called the endothelial-haematopoietic transition (EHT). This process crucially depends on the transcription factor RUNX1 which rapidly activates the expression of genes essential for haematopoietic development. Using an inducible version of RUNX1 in a mouse embryonic stem cell differentiation model we showed that prior to the EHT, haematopoietic genes are primed by the binding of the transcription factor FLI1. Once expressed, RUNX1 relocates FLI1 towards its binding sites. However, the nature of the transcription factor assemblies recruited by RUNX1 to reshape the chromatin landscape and initiate mRNA synthesis are unclear. Here, we performed genome-wide analyses of RUNX1-dependent binding of factors associated with transcription elongation to address this question. We demonstrate that RUNX1 induction moves FLI1 from distal ETS/GATA sites to RUNX1/ETS sites and recruits the basal transcription factors CDK9, BRD4, the Mediator complex and the looping factor LDB1. Our study explains how the expression of a single transcription factor can drive rapid and replication independent transitions in cellular shape which are widely observed in development and disease.
Collapse
Affiliation(s)
- Jane Gilmour
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura Noailles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Monika Lichtinger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Clinical Research, University of Freiburg Medical School, Freiburg, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
179
|
|
180
|
Epigenomic Control of Thermogenic Adipocyte Differentiation and Function. Int J Mol Sci 2018; 19:ijms19061793. [PMID: 29914202 PMCID: PMC6032041 DOI: 10.3390/ijms19061793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity and its associated metabolic disorders are spreading at a fast pace throughout the world; thus, effective therapeutic approaches are necessary to combat this epidemic. Obesity develops when there is a greater caloric intake than energy expenditure. Promoting energy expenditure has recently attracted much attention as a promising approach for the management of body weight. Thermogenic adipocytes are capable of burning fat to dissipate chemical energy into heat, thereby enhancing energy expenditure. After the recent re-discovery of thermogenic adipocytes in adult humans, much effort has focused on understanding the molecular mechanisms, especially the epigenetic mechanisms, which regulate thermogenic adipocyte development and function. A number of chromatin signatures, such as histone modifications, DNA methylation, chromatin accessibilities, and interactions, have been profiled at the genome level and analyzed in various murine and human thermogenic fat cell systems. Moreover, writers and erasers, as well as readers of the epigenome are also investigated using genomic tools in thermogenic adipocytes. In this review, we summarize and discuss the recent advance in these studies and highlight the insights gained into the epigenomic regulation of thermogenic program as well as the pathogenesis of human metabolic diseases.
Collapse
|
181
|
Gollavilli PN, Pawar A, Wilder-Romans K, Natesan R, Engelke CG, Dommeti VL, Krishnamurthy PM, Nallasivam A, Apel IJ, Xu T, Qin ZS, Feng FY, Asangani IA. EWS/ETS-Driven Ewing Sarcoma Requires BET Bromodomain Proteins. Cancer Res 2018; 78:4760-4773. [DOI: 10.1158/0008-5472.can-18-0484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
|
182
|
Garcia-Carpizo V, Ruiz-Llorente S, Sarmentero J, Graña-Castro O, Pisano DG, Barrero MJ. CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation. Epigenetics Chromatin 2018; 11:30. [PMID: 29884215 PMCID: PMC5992658 DOI: 10.1186/s13072-018-0197-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023] Open
Abstract
Background The reported antitumor activity of the BET family bromodomain inhibitors has prompted the development of inhibitors against other bromodomains. However, the human genome encodes more than 60 different bromodomains and most of them remain unexplored. Results We report that the bromodomains of the histone acetyltransferases CREBBP/EP300 are critical to sustain the proliferation of human leukemia and lymphoma cell lines. EP300 is very abundant at super-enhancers in K562 and is coincident with sites of GATA1 and MYC occupancy. In accordance, CREBBP/EP300 bromodomain inhibitors interfere with GATA1- and MYC-driven transcription, causing the accumulation of cells in the G0/G1 phase of the cell cycle. The CREBBP/CBP30 bromodomain inhibitor CBP30 displaces CREBBP and EP300 from GATA1 and MYC binding sites at enhancers, resulting in a decrease in the levels of histone acetylation at these regulatory regions and consequently reduced gene expression of critical genes controlled by these transcription factors. Conclusions Our data shows that inhibition of CREBBP/EP300 bromodomains can interfere with oncogene-driven transcriptional programs in cancer cells and consequently hold therapeutic potential. Electronic supplementary material The online version of this article (10.1186/s13072-018-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronica Garcia-Carpizo
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Sergio Ruiz-Llorente
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Jacinto Sarmentero
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Maria J Barrero
- CNIO-Lilly Epigenetics Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
183
|
Marando L, Huntly BJP. Hematopoietic stem cells made BETter by inhibition. Haematologica 2018; 103:919-921. [PMID: 29866885 PMCID: PMC6058785 DOI: 10.3324/haematol.2018.193706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ludovica Marando
- Wellcome Trust-MRC Cambridge Stem Cell Institute, UK
- Department of Haematology, University of Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, UK
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, UK
- Department of Haematology, University of Cambridge, UK
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, UK
| |
Collapse
|
184
|
|
185
|
Li X, Zhang J, Zhao L, Yang Y, Zhang H, Zhou J. Design, Synthesis, and in vitro Biological Evaluation of 3,5-Dimethylisoxazole Derivatives as BRD4 Inhibitors. ChemMedChem 2018; 13:1363-1368. [DOI: 10.1002/cmdc.201800074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Xiangyang Li
- Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing 210009 P.R. China
| | - Jian Zhang
- Center of Drug Discovery; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing 210009 P.R. China
| | - Leilei Zhao
- Center of Drug Discovery; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing 210009 P.R. China
| | - Yifei Yang
- Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing 210009 P.R. China
| | - Huibin Zhang
- Center of Drug Discovery; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing 210009 P.R. China
| | - Jinpei Zhou
- Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing 210009 P.R. China
| |
Collapse
|
186
|
Depletion of Mediator Kinase Module Subunits Represses Superenhancer-Associated Genes in Colon Cancer Cells. Mol Cell Biol 2018; 38:MCB.00573-17. [PMID: 29507187 DOI: 10.1128/mcb.00573-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by β-catenin, which has previously been shown to associate with MED12. Importantly, β-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4.
Collapse
|
187
|
Chen Z, Stelekati E, Kurachi M, Yu S, Cai Z, Manne S, Khan O, Yang X, Wherry EJ. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb. Cell Rep 2018; 20:2584-2597. [PMID: 28903040 DOI: 10.1016/j.celrep.2017.08.060] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Erietta Stelekati
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sixiang Yu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhangying Cai
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA; College of Life Sciences, Peking University, Beijing, China
| | - Sasikanth Manne
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
188
|
Bhagwat AS, Lu B, Vakoc CR. Enhancer dysfunction in leukemia. Blood 2018; 131:1795-1804. [PMID: 29439951 PMCID: PMC5909760 DOI: 10.1182/blood-2017-11-737379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic cancers are often initiated by deregulation of the transcriptional machinery. Prominent among such regulators are the sequence-specific DNA-binding transcription factors (TFs), which bind to enhancer and promoter elements in the genome to control gene expression through the recruitment of cofactors. Remarkably, perturbing the function of even a single TF or cofactor can modulate the active enhancer landscape of a cell; conversely, knowledge of the enhancer configuration can be used to discover functionally important TFs in a given cellular process. Our expanding insight into enhancer function can be attributed to the emergence of genome-scale measurements of enhancer activity, which can be applied to virtually any cell type to expose regulatory mechanisms. Such approaches are beginning to reveal the abnormal enhancer configurations present in cancer cells, thereby providing a framework for understanding how transcriptional dysregulation can lead to malignancy. Here, we review the evidence for alterations in enhancer landscapes contributing to the pathogenesis of leukemia, a malignancy in which enhancer-binding proteins and enhancer DNA itself are altered via genetic mutation. We will also highlight examples of small molecules that reprogram the enhancer landscape of leukemia cells in association with therapeutic benefit.
Collapse
Affiliation(s)
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | |
Collapse
|
189
|
Carey HA, Hildreth BE, Geisler JA, Nickel MC, Cabrera J, Ghosh S, Jiang Y, Yan J, Lee J, Makam S, Young NA, Valiente GR, Jarjour WN, Huang K, Rosol TJ, Toribio RE, Charles JF, Ostrowski MC, Sharma SM. Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Res 2018; 6:8. [PMID: 29619268 PMCID: PMC5874256 DOI: 10.1038/s41413-018-0011-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/12/2018] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have been instrumental in understanding complex phenotypic traits. However, they have rarely been used to understand lineage-specific pathways and functions that contribute to the trait. In this study, by integrating lineage-specific enhancers from mesenchymal and myeloid compartments with bone mineral density loci, we were able to segregate osteoblast- and osteoclast (OC)-specific functions. Specifically, in OCs, a PU.1-dependent transcription factor (TF) network was revealed. Deletion of PU.1 in OCs in mice resulted in severe osteopetrosis. Functional genomic analysis indicated PU.1 and MITF orchestrated a TF network essential for OC differentiation. Several of these TFs were regulated by cooperative binding of PU.1 with BRD4 to form superenhancers. Further, PU.1 is essential for conformational changes in the superenhancer region of Nfatc1. In summary, our study demonstrates that combining GWASs with genome-wide binding studies and model organisms could decipher lineage-specific pathways contributing to complex disease states. Genetic variation in non-coding regions of DNA could raise osteoporosis risk by affecting osteoclast differentiation. Osteoporosis occurs when the normal process of bone remodeling by osteoblasts and osteoclasts falls out of balance. Genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with osteoporosis, but how these affect specific cell types was unclear. Sudarshana Sharma and Michael Ostrowski at the Medical University of South Carolina and colleagues wondered if variations in non-coding ‘enhancer’ regions of DNA, might shed light on the molecular underpinnings of osteoporosis. So, they overlaid SNPs associated with reduced bone mineral density onto enhancers in mesenchymal and myeloid cells—the precursors of osteoblasts and osteoclasts—identifying a transcription factor network in myeloid cells that drives the differentiation of osteoclasts. When this was disrupted in mice, severe defects in osteoclast differentiation and function resulted.
Collapse
Affiliation(s)
- Heather A Carey
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Blake E Hildreth
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jennifer A Geisler
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Mara C Nickel
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jennifer Cabrera
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Sankha Ghosh
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yue Jiang
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jing Yan
- 4Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - James Lee
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Sandeep Makam
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Nicholas A Young
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Giancarlo R Valiente
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Wael N Jarjour
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Kun Huang
- 6Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Thomas J Rosol
- 2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Ramiro E Toribio
- 2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Julia F Charles
- 4Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - Michael C Ostrowski
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Sudarshana M Sharma
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
190
|
Wroblewski M, Scheller-Wendorff M, Udonta F, Bauer R, Schlichting J, Zhao L, Ben Batalla I, Gensch V, Päsler S, Wu L, Wanior M, Taipaleenmäki H, Bolamperti S, Najafova Z, Pantel K, Bokemeyer C, Qi J, Hesse E, Knapp S, Johnsen S, Loges S. BET-inhibition by JQ1 promotes proliferation and self-renewal capacity of hematopoietic stem cells. Haematologica 2018; 103:939-948. [PMID: 29567778 PMCID: PMC6058788 DOI: 10.3324/haematol.2017.181354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/25/2022] Open
Abstract
Although inhibitors of bromodomain and extra terminal domain (BET) proteins show promising clinical activity in different hematologic malignancies, a systematic analysis of the consequences of pharmacological BET inhibition on healthy hematopoietic (stem) cells is urgently needed. We found that JQ1 treatment decreases the numbers of pre-, immature and mature B cells while numbers of early pro-B cells remain constant. In addition, JQ1 treatment increases apoptosis in T cells, all together leading to reduced cellularity in thymus, bone marrow and spleen. Furthermore, JQ1 induces proliferation of long-term hematopoietic stem cells, thereby increasing stem cell numbers. Due to increased numbers, JQ1-treated hematopoietic stem cells engrafted better after stem cell transplantation and repopulated the hematopoietic system significantly faster after sublethal myeloablation. As quantity and functionality of hematopoietic stem cells determine the duration of life-threatening myelosuppression, BET inhibition might benefit patients in myelosuppressive conditions.
Collapse
Affiliation(s)
- Mark Wroblewski
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Scheller-Wendorff
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Germany
| | - Florian Udonta
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raimund Bauer
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jara Schlichting
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lin Zhao
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Isabel Ben Batalla
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victoria Gensch
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarina Päsler
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lei Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marek Wanior
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Hanna Taipaleenmäki
- Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma, Hand & Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simona Bolamperti
- Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma, Hand & Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eric Hesse
- Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma, Hand & Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany.,Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus Research Building, UK.,German Cancer Consortium (DKTK) Frankfurt am Main, Germany
| | - Steven Johnsen
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Sonja Loges
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany .,Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
191
|
Kim YH, Marhon SA, Zhang Y, Steger DJ, Won KJ, Lazar MA. Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription. Science 2018; 359:1274-1277. [PMID: 29439026 PMCID: PMC5995144 DOI: 10.1126/science.aao6891] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
Mammalian physiology exhibits 24-hour cyclicity due to circadian rhythms of gene expression controlled by transcription factors that constitute molecular clocks. Core clock transcription factors bind to the genome at enhancer sequences to regulate circadian gene expression, but not all binding sites are equally functional. We found that in mice, circadian gene expression in the liver is controlled by rhythmic chromatin interactions between enhancers and promoters. Rev-erbα, a core repressive transcription factor of the clock, opposes functional loop formation between Rev-erbα-regulated enhancers and circadian target gene promoters by recruitment of the NCoR-HDAC3 co-repressor complex, histone deacetylation, and eviction of the elongation factor BRD4 and the looping factor MED1. Thus, a repressive arm of the molecular clock operates by rhythmically modulating chromatin loops to control circadian gene transcription.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sajid A Marhon
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuxiang Zhang
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David J Steger
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
192
|
Liu X, Xu Y, Han L, Yi Y. Reassessing the Potential of Myb-targeted Anti-cancer Therapy. J Cancer 2018; 9:1259-1266. [PMID: 29675107 PMCID: PMC5907674 DOI: 10.7150/jca.23992] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Abstract
Transcription factor MYB is essential for the tumorigenesis of multiple cancers, especially leukemia, breast cancer, colon cancer, adenoid cystic carcinoma and brain cancer. Thus, MYB has been regarded as an attractive target for tumor therapy. However, pioneer studies of antisense oligodeoxynucleotides against MYB, which were launched three decades ago in leukemia therapy, were discontinued because of their unsatisfactory clinical outcomes. In recent years, the roles of MYB in tumor transformation have become increasingly clear. Moreover, the regulatory mechanisms of MYB, such as the vital effects of MYB co-regulators on MYB activity and of transcriptional elongation on MYB expression, have been unveiled. These observations have underpinned novel approaches in inhibiting MYB. This review discusses the structure, function and regulation of MYB, focusing on recent insights into MYB-associated oncogenesis and how MYB-targeted therapeutics can be explored. Additionally, the main MYB-targeted therapies, including novel genetic therapy, RNA interference, microRNAs and low-molecular-weight compounds, which are especially promising inhibitors that target MYB co-regulators and transcriptional elongation, are described, and their prospects are assessed.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yunxiao Xu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Liping Han
- School of Life Science, Changchun Normal University, Changchun, Jilin Province, P.R. China
| | - Yan Yi
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
193
|
Gerlach D, Tontsch-Grunt U, Baum A, Popow J, Scharn D, Hofmann MH, Engelhardt H, Kaya O, Beck J, Schweifer N, Gerstberger T, Zuber J, Savarese F, Kraut N. The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene 2018; 37:2687-2701. [PMID: 29491412 PMCID: PMC5955861 DOI: 10.1038/s41388-018-0150-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/22/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Bromodomain and extra-terminal (BET) protein inhibitors have been reported as treatment options for acute myeloid leukemia (AML) in preclinical models and are currently being evaluated in clinical trials. This work presents a novel potent and selective BET inhibitor (BI 894999), which has recently entered clinical trials (NCT02516553). In preclinical studies, this compound is highly active in AML cell lines, primary patient samples, and xenografts. HEXIM1 is described as an excellent pharmacodynamic biomarker for target engagement in tumors as well as in blood. Mechanistic studies show that BI 894999 targets super-enhancer-regulated oncogenes and other lineage-specific factors, which are involved in the maintenance of the disease state. BI 894999 is active as monotherapy in AML xenografts, and in addition leads to strongly enhanced antitumor effects in combination with CDK9 inhibitors. This treatment combination results in a marked decrease of global p-Ser2 RNA polymerase II levels and leads to rapid induction of apoptosis in vitro and in vivo. Together, these data provide a strong rationale for the clinical evaluation of BI 894999 in AML.
Collapse
Affiliation(s)
- Daniel Gerlach
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Anke Baum
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Johannes Popow
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Dirk Scharn
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Marco H Hofmann
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | - Onur Kaya
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | - Janina Beck
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria
| | | | | | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.,Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Fabio Savarese
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria.
| | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, 1120, Vienna, Austria.
| |
Collapse
|
194
|
Abstract
Developmental transitions are guided by master regulatory transcription factors. During adipogenesis, a transcriptional cascade culminates in the expression of PPARγ and C/EBPα, which orchestrate activation of the adipocyte gene expression program. However, the coactivators controlling PPARγ and C/EBPα expression are less well characterized. Here, we show the bromodomain-containing protein, BRD4, regulates transcription of PPARγ and C/EBPα. Analysis of BRD4 chromatin occupancy reveals that induction of adipogenesis in 3T3L1 fibroblasts provokes dynamic redistribution of BRD4 to de novo super-enhancers proximal to genes controlling adipocyte differentiation. Inhibition of the bromodomain and extraterminal domain (BET) family of bromodomain-containing proteins impedes BRD4 occupancy at these de novo enhancers and disrupts transcription of Pparg and Cebpa, thereby blocking adipogenesis. Furthermore, silencing of these BRD4-occupied distal regulatory elements at the Pparg locus by CRISPRi demonstrates a critical role for these enhancers in the control of Pparg gene expression and adipogenesis in 3T3L1s. Together, these data establish BET bromodomain proteins as time- and context-dependent coactivators of the adipocyte cell state transition.
Collapse
|
195
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
196
|
Sacta MA, Tharmalingam B, Coppo M, Rollins DA, Deochand DK, Benjamin B, Yu L, Zhang B, Hu X, Li R, Chinenov Y, Rogatsky I. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages. eLife 2018; 7:34864. [PMID: 29424686 PMCID: PMC5821458 DOI: 10.7554/elife.34864] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 01/28/2018] [Indexed: 01/13/2023] Open
Abstract
The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.
Collapse
Affiliation(s)
- Maria A Sacta
- Weill Cornell/ Rockefeller/ Sloan Kettering Tri-Institutional MD-PhD Program, New York, United States.,Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Bowranigan Tharmalingam
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Maddalena Coppo
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - David A Rollins
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Dinesh K Deochand
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Bradley Benjamin
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Li Yu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Yurii Chinenov
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
197
|
Huang M, Zhu L, Garcia JS, Li MX, Gentles AJ, Mitchell BS. Brd4 regulates the expression of essential autophagy genes and Keap1 in AML cells. Oncotarget 2018; 9:11665-11676. [PMID: 29545928 PMCID: PMC5837743 DOI: 10.18632/oncotarget.24432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 01/10/2023] Open
Abstract
We have recently reported that activation of Brd4 is associated with the presence of autophagy in NPMc+ and MLL AML cells. In order to determine the mechanisms underlying this relationship, we have examined the role of Brd4 in regulating the expression of several genes that are central to the process of autophagy. We found that Brd4 binds to the promoters of ATG 3, 7 and CEBPβ, and expression of these genes is markedly reduced by inhibitors of Brd4, as well as by Brd4-shRNA and depletion of CEBPβ. Inhibitors of Brd4 also dramatically suppress the transcription of Keap1, thereby increasing the expression of anti-oxidant genes through the Nrf2 pathway and reducing the cytotoxicity induced by Brd4 inhibitors. Elimination of ATG3 or KEAP1 expression using CRISPR-cas9 mediated genomic editing markedly reduced autophagy. We conclude that Brd4 plays a significant role in autophagy activation through the direct transcriptional regulation of genes essential for it, as well as through the Keap1-Nrf2 axis in NPMc+ and MLL-fusion AML cells.
Collapse
Affiliation(s)
- Min Huang
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Li Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Jacqueline S Garcia
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael X Li
- Department of Electrical Engineering and Computer Science, College of Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Andrew J Gentles
- Department of Medicine, Biomedical Informatics Research, Stanford University, Stanford, California, USA
| | - Beverly S Mitchell
- Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
198
|
Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB. BET Family Protein BRD4: An Emerging Actor in NFκB Signaling in Inflammation and Cancer. Biomedicines 2018; 6:biomedicines6010016. [PMID: 29415456 PMCID: PMC5874673 DOI: 10.3390/biomedicines6010016] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/04/2023] Open
Abstract
NFκB (Nuclear Factor-κ-light-chain-enhancer of activated B cells) signaling elicits global transcriptional changes by activating cognate promoters and through genome-wide remodeling of cognate regulatory elements called “super enhancers”. BET (Bromodomain and Extra-Terminal domain) protein family inhibitor studies have implicated BET protein member BRD4 and possibly other BET proteins in NFκB-dependent promoter and super-enhancer modulation. Members of the BET protein family are known to bind acetylated chromatin to facilitate access by transcriptional regulators to chromatin, as well as to assist the activity of transcription elongation complexes via CDK9/pTEFb. BET family member BRD4 has been shown to bind non-histone proteins and modulate their activity. One such protein is RELA, the NFκB co-activator. Specifically, BRD4 binds acetylated RELA, which increases its transcriptional transactivation activity and stability in the nucleus. In aggregate, this establishes an intimate link between NFκB and BET signaling, at least via BRD4. The present review provides a brief overview of the structure and function of BET family proteins and then examines the connections between NFκB and BRD4 signaling, using the inflammatory response and cancer cell signaling as study models. We also discuss the potential of BET inhibitors for relief of aberrant NFκB signaling in cancer, focusing on non-histone, acetyl-lysine binding functions.
Collapse
Affiliation(s)
- Azadeh Hajmirza
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
| | - Anouk Emadali
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
- Pôle Recherche, Grenoble-Alpes University Hospital, F-38043 Grenoble, France.
| | - Arnaud Gauthier
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
| | - Olivier Casasnovas
- Département d'Hématologie Clinique, Dijon University Hospital, F-21000 Dijon, France.
| | - Rémy Gressin
- Département d'Hématologie Clinique, Grenoble-Alpes University Hospital, F-38043 Grenoble, France.
| | - Mary B Callanan
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
- Centre for Innovation in Cancer Genetics and Epigenetics, Dijon University Hospital, F-21000 Dijon, France.
| |
Collapse
|
199
|
Coulibaly A, Haas A, Steinmann S, Jakobs A, Schmidt TJ, Klempnauer KH. The natural anti-tumor compound Celastrol targets a Myb-C/EBPβ-p300 transcriptional module implicated in myeloid gene expression. PLoS One 2018; 13:e0190934. [PMID: 29394256 PMCID: PMC5796697 DOI: 10.1371/journal.pone.0190934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
Myb is a key regulator of hematopoietic progenitor cell proliferation and differentiation and has emerged as a potential target for the treatment of acute leukemia. Using a myeloid cell line with a stably integrated Myb-inducible reporter gene as a screening tool we have previously identified Celastrol, a natural compound with anti-tumor activity, as a potent Myb inhibitor that disrupts the interaction of Myb with the co-activator p300. We showed that Celastrol inhibits the proliferation of acute myeloid leukemia (AML) cells and prolongs the survival of mice in an in vivo model of AML, demonstrating that targeting Myb with a small-molecule inhibitor is feasible and might have potential as a therapeutic approach against AML. Recently we became aware that the reporter system used for Myb inhibitor screening also responds to inhibition of C/EBPβ, a transcription factor known to cooperate with Myb in myeloid cells. By re-investigating the inhibitory potential of Celastrol we have found that Celastrol also strongly inhibits the activity of C/EBPβ by disrupting its interaction with the Taz2 domain of p300. Together with previous studies our work reveals that Celastrol independently targets Myb and C/EBPβ by disrupting the interaction of both transcription factors with p300. Myb, C/EBPβ and p300 cooperate in myeloid-specific gene expression and, as shown recently, are associated with so-called super-enhancers in AML cells that have been implicated in the maintenance of the leukemia. We hypothesize that the ability of Celastrol to disrupt the activity of a transcriptional Myb-C/EBPβ-p300 module might explain its promising anti-leukemic activity.
Collapse
Affiliation(s)
- Anna Coulibaly
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Astrid Haas
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Simone Steinmann
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Anke Jakobs
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Thomas J. Schmidt
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
200
|
Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Saenz DT, Mill CP, Nowak AJ, Jain N, Zhang L, Wang M, Khoury JD, Coarfa C, Crews CM, Bhalla KN. BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia 2018; 32:343-352. [PMID: 28663582 DOI: 10.1038/leu.2017.207] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 11/09/2022]
Abstract
Bromodomain extraterminal protein (BETP) inhibitors transcriptionally repress oncoproteins and nuclear factor-κB (NF-κB) target genes that undermines the growth and survival of mantle cell lymphoma (MCL) cells. However, BET bromodomain inhibitor (BETi) treatment causes accumulation of BETPs, associated with reversible binding and incomplete inhibition of BRD4 that potentially compromises the activity of BETi in MCL cells. Unlike BETi, BET-PROTACs (proteolysis-targeting chimera) ARV-825 and ARV-771 (Arvinas, Inc.) recruit and utilize an E3-ubiquitin ligase to effectively degrade BETPs in MCL cells. BET-PROTACs induce more apoptosis than BETi of MCL cells, including those resistant to ibrutinib. BET-PROTAC treatment induced more perturbations in the mRNA and protein expressions than BETi, with depletion of c-Myc, CDK4, cyclin D1 and the NF-κB transcriptional targets Bcl-xL, XIAP and BTK, while inducing the levels of HEXIM1, NOXA and CDKN1A/p21. Treatment with ARV-771, which possesses superior pharmacological properties compared with ARV-825, inhibited the in vivo growth and induced greater survival improvement than the BETi OTX015 of immune-depleted mice engrafted with MCL cells. Cotreatment of ARV-771 with ibrutinib or the BCL2 antagonist venetoclax or CDK4/6 inhibitor palbociclib synergistically induced apoptosis of MCL cells. These studies highlight promising and superior preclinical activity of BET-PROTAC than BETi, requiring further in vivo evaluation of BET-PROTAC as a therapy for ibrutinib-sensitive or -resistant MCL.
Collapse
Affiliation(s)
- B Sun
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Qian
- Arvinas LLC, New Haven, CT, USA
| | - K Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - K Raina
- Arvinas LLC, New Haven, CT, USA
| | | | | | - A Shen
- Arvinas LLC, New Haven, CT, USA
| | - D T Saenz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C P Mill
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A J Nowak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - N Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J D Khoury
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - C M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - K N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|