151
|
Pham J, Keon M, Brennan S, Saksena N. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. Int J Mol Sci 2020; 21:ijms21103464. [PMID: 32422969 PMCID: PMC7278980 DOI: 10.3390/ijms21103464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Beyond traditional approaches in understanding amyotrophic lateral sclerosis (ALS), multiple recent studies in RNA-binding proteins (RBPs)-including transactive response DNA-binding protein (TDP-43) and fused in sarcoma (FUS)-have instigated an interest in their function and prion-like properties. Given their prominence as hallmarks of a highly heterogeneous disease, this prompts a re-examination of the specific functional interrelationships between these proteins, especially as pathological SOD1-a non-RBP commonly associated with familial ALS (fALS)-exhibits similar properties to these RBPs including potential RNA-regulatory capabilities. Moreover, the cytoplasmic mislocalization, aggregation, and co-aggregation of TDP-43, FUS, and SOD1 can be identified as proteinopathies akin to other neurodegenerative diseases (NDs), eliciting strong ties to disrupted RNA splicing, transport, and stability. In recent years, microRNAs (miRNAs) have also been increasingly implicated in the disease, and are of greater significance as they are the master regulators of RNA metabolism in disease pathology. However, little is known about the role of these proteins and how they are regulated by miRNA, which would provide mechanistic insights into ALS pathogenesis. This review seeks to discuss current developments across TDP-43, FUS, and SOD1 to build a detailed snapshot of the network pathophysiology underlying ALS while aiming to highlight possible novel therapeutic targets to guide future research.
Collapse
Affiliation(s)
- Jade Pham
- Faculty of Medicine, The University of New South Wales, Kensington, Sydney, NSW 2033, Australia;
| | - Matt Keon
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Samuel Brennan
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Nitin Saksena
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
- Correspondence:
| |
Collapse
|
152
|
Yoon JSJ, Wu MK, Zhu TH, Zhao H, Cheung ST, Chamberlain TC, Mui ALF. Interleukin-10 control of pre-miR155 maturation involves CELF2. PLoS One 2020; 15:e0231639. [PMID: 32324763 PMCID: PMC7179890 DOI: 10.1371/journal.pone.0231639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/29/2020] [Indexed: 02/01/2023] Open
Abstract
The anti-inflammatory cytokine interleukin-10 (IL10) is essential for attenuating inflammatory responses, which includes reducing the expression of pro-inflammatory microRNA-155 (miR155) in lipopolysaccharide (LPS) activated macrophages. miR155 enhances the expression of pro-inflammatory cytokines such as TNFα and suppresses expression of anti-inflammatory molecules such as SHIP1 and SOCS1. We previously found that IL10 interfered with the maturation of pre-miR155 to miR155. To understand the mechanism by which IL10 interferes with pre-miR155 maturation we isolated proteins that associate with pre-miR155 in response to IL10 in macrophages. We identified CELF2, a member of the CUGBP, ELAV-Like Family (CELF) family of RNA binding proteins, as protein whose association with pre-miR155 increased in IL10 treated cells. CRISPR-Cas9 mediated knockdown of CELF2 impaired IL10’s ability to inhibit both miR155 expression and TNFα expression.
Collapse
Affiliation(s)
- Jeff S. J. Yoon
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Mike K. Wu
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Tian Hao Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Helen Zhao
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Sylvia T. Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Thomas C. Chamberlain
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Alice L-F. Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
153
|
Shang R, Baek SC, Kim K, Kim B, Kim VN, Lai EC. Genomic Clustering Facilitates Nuclear Processing of Suboptimal Pri-miRNA Loci. Mol Cell 2020; 78:303-316.e4. [PMID: 32302542 PMCID: PMC7546447 DOI: 10.1016/j.molcel.2020.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/26/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Nuclear processing of most miRNAs is mediated by Microprocessor, comprised of RNase III enzyme Drosha and its cofactor DGCR8. Here, we uncover a hidden layer of Microprocessor regulation via studies of Dicer-independent mir-451, which is clustered with canonical mir-144. Although mir-451 is fully dependent on Drosha/DGCR8, its short stem and small terminal loop render it an intrinsically weak Microprocessor substrate. Thus, it must reside within a cluster for normal biogenesis, although the identity and orientation of its neighbor are flexible. We use DGCR8 tethering assays and operon structure-function assays to demonstrate that local recruitment and transfer of Microprocessor enhances suboptimal substrate processing. This principle applies more broadly since genomic analysis indicates suboptimal canonical miRNAs are enriched in operons, and we validate several of these experimentally. Proximity-based enhancement of suboptimal hairpin processing provides a rationale for genomic retention of certain miRNA operons and may explain preferential evolutionary emergence of miRNA operons.
Collapse
Affiliation(s)
- Renfu Shang
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| | - S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Boseon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA.
| |
Collapse
|
154
|
Williams FP, Haubrich K, Perez-Borrajero C, Hennig J. Emerging RNA-binding roles in the TRIM family of ubiquitin ligases. Biol Chem 2020; 400:1443-1464. [PMID: 31120853 DOI: 10.1515/hsz-2019-0158] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
TRIM proteins constitute a large, diverse and ancient protein family which play a key role in processes including cellular differentiation, autophagy, apoptosis, DNA repair, and tumour suppression. Mostly known and studied through the lens of their ubiquitination activity as E3 ligases, it has recently emerged that many of these proteins are involved in direct RNA binding through their NHL or PRY/SPRY domains. We summarise the current knowledge concerning the mechanism of RNA binding by TRIM proteins and its biological role. We discuss how RNA-binding relates to their previously described functions such as E3 ubiquitin ligase activity, and we will consider the potential role of enrichment in membrane-less organelles.
Collapse
Affiliation(s)
- Felix Preston Williams
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Cecilia Perez-Borrajero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany, e-mail:
| |
Collapse
|
155
|
Caudron-Herger M, Wassmer E, Nasa I, Schultz AS, Seiler J, Kettenbach AN, Diederichs S. Identification, quantification and bioinformatic analysis of RNA-dependent proteins by RNase treatment and density gradient ultracentrifugation using R-DeeP. Nat Protoc 2020; 15:1338-1370. [PMID: 32094787 PMCID: PMC7212772 DOI: 10.1038/s41596-019-0261-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Analysis of RNA-protein complexes is central to understanding the molecular circuitry governing cellular processes. In recent years, several proteome-wide studies have been dedicated to the identification of RNA-binding proteins. Here, we describe in detail R-DeeP, an approach built on RNA dependence, defined as the ability of a protein to engage in protein complexes only in the presence of RNA, involving direct or indirect interaction with RNA. This approach provides-for the first time, to our knowledge-quantitative information on the fraction of a protein associated with RNA-protein complexes. R-DeeP is independent of any potentially biased purification procedures. It is based on cellular lysate fractionation by density gradient ultracentrifugation and subsequent analysis by proteome-wide mass spectrometry (MS) or individual western blotting. The comparison of lysates with and without previous RNase treatment enables the identification of differences in the apparent molecular weight and, hence, the size of the complexes. In combination with information from databases of protein-protein complexes, R-DeeP facilitates the computational reconstruction of protein complexes from proteins migrating in the same fraction. In addition, we developed a pipeline for the statistical analysis of the MS dataset to automatically identify RNA-dependent proteins (proteins whose interactome depends on RNA). With this protocol, the individual analysis of proteins of interest by western blotting can be completed within 1-2 weeks. For proteome-wide studies, additional time is needed for the integration of the proteomic and statistical analyses. In the future, R-DeeP can be extended to other fractionation techniques, such as chromatography.
Collapse
Affiliation(s)
- Maiwen Caudron-Herger
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elsa Wassmer
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Astrid-Solveig Schultz
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK)-Partner Site Freiburg, Freiburg, Germany
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK)-Partner Site Freiburg, Freiburg, Germany.
- National Center for Tumor Diseases (NCT)-Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
156
|
Hör J, Garriss G, Di Giorgio S, Hack LM, Vanselow JT, Förstner KU, Schlosser A, Henriques-Normark B, Vogel J. Grad-seq in a Gram-positive bacterium reveals exonucleolytic sRNA activation in competence control. EMBO J 2020; 39:e103852. [PMID: 32227509 PMCID: PMC7196914 DOI: 10.15252/embj.2019103852] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
RNA–protein interactions are the crucial basis for many steps of bacterial gene expression, including post‐transcriptional control by small regulatory RNAs (sRNAs). In stark contrast to recent progress in the analysis of Gram‐negative bacteria, knowledge about RNA–protein complexes in Gram‐positive species remains scarce. Here, we used the Grad‐seq approach to draft a comprehensive landscape of such complexes in Streptococcus pneumoniae, in total determining the sedimentation profiles of ~ 88% of the transcripts and ~ 62% of the proteins of this important human pathogen. Analysis of in‐gradient distributions and subsequent tag‐based protein capture identified interactions of the exoribonuclease Cbf1/YhaM with sRNAs that control bacterial competence for DNA uptake. Unexpectedly, the nucleolytic activity of Cbf1 stabilizes these sRNAs, thereby promoting their function as repressors of competence. Overall, these results provide the first RNA/protein complexome resource of a Gram‐positive species and illustrate how this can be utilized to identify new molecular factors with functions in RNA‐based regulation of virulence‐relevant pathways.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Geneviève Garriss
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Di Giorgio
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,ZB MED-Information Centre for Life Sciences, Cologne, Germany
| | - Lisa-Marie Hack
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- ZB MED-Information Centre for Life Sciences, Cologne, Germany.,Faculty of Information Science and Communication Studies, TH Köln, Cologne, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,SCELSE and LKC, Nanyang Technological University, NTU, Singapore, Singapore
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
157
|
Jia Y, Wei Y. Modulators of MicroRNA Function in the Immune System. Int J Mol Sci 2020; 21:E2357. [PMID: 32235299 PMCID: PMC7177468 DOI: 10.3390/ijms21072357] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play a key role in fine-tuning host immune homeostasis and responses through the negative regulation of mRNA stability and translation. The pathways regulated by miRNAs are well characterized, but the precise mechanisms that control the miRNA-mediated regulation of gene expression during immune cell-development and immune responses to invading pathogens are incompletely understood. Context-specific interactions of miRNAs with other RNA species or proteins may modulate the function of a given miRNA. Dysregulation of miRNA function is associated with various human diseases, such as cardiovascular diseases and cancers. Here, we review the potential modulators of miRNA function in the immune system, including the transcription regulators of miRNA genes, miRNA-processing enzymes, factors affecting miRNA targeting, and intercellular communication.
Collapse
Affiliation(s)
- Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanyuan Wei
- Department of Immunology, Shanghai Key laboratory of Bioactive Small Molecules, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
158
|
Yi D, Nguyen HP, Sul HS. Epigenetic dynamics of the thermogenic gene program of adipocytes. Biochem J 2020; 477:1137-1148. [PMID: 32219439 PMCID: PMC8594062 DOI: 10.1042/bcj20190599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue (BAT) is a metabolically beneficial organ capable of burning fat by dissipating chemical energy into heat, thereby increasing energy expenditure. Moreover, subcutaneous white adipose tissue can undergo so-called browning/beiging. The recent recognition of the presence of brown or beige adipocytes in human adults has attracted much attention to elucidate the molecular mechanism underlying the thermogenic adipose program. Many key transcriptional regulators critical for the thermogenic gene program centering on activating the UCP1 promoter, have been discovered. Thermogenic gene expression in brown adipocytes rely on co-ordinated actions of a multitude of transcription factors, including EBF2, PPARγ, Zfp516 and Zc3h10. These transcription factors probably integrate into a cohesive network for BAT gene program. Moreover, these transcription factors recruit epigenetic factors, such as LSD1 and MLL3/4, for specific histone signatures to establish the favorable chromatin landscape. In this review, we discuss advances made in understanding the molecular mechanism underlying the thermogenic gene program, particularly epigenetic regulation.
Collapse
Affiliation(s)
- Danielle Yi
- Department of Nutritional Sciences and Toxicology and Endocrinology Program, University of California, Berkeley, CA 94720, U.S.A
| | - Hai P Nguyen
- Department of Nutritional Sciences and Toxicology and Endocrinology Program, University of California, Berkeley, CA 94720, U.S.A
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology and Endocrinology Program, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
159
|
Picchiarelli G, Dupuis L. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress 2020; 4:76-91. [PMID: 32292882 PMCID: PMC7146060 DOI: 10.15698/cst2020.04.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of neuromuscular and muscular diseases, including amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several myopathies, are associated to mutations in related RNA-binding proteins (RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor similar modular primary sequence with RNA binding motifs and low complexity domains, that enables them to phase separate and create liquid microdomains. These RBPs have been shown to critically regulate multiple events of RNA lifecycle, including transcriptional events, splicing and RNA trafficking and sequestration. Here, we review the roles of these disease-related RBPs in muscle and motor neurons, and how their dysfunction in these cell types might contribute to disease.
Collapse
Affiliation(s)
- Gina Picchiarelli
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| |
Collapse
|
160
|
Floriano JF, Willis G, Catapano F, de Lima PR, Reis FVDS, Barbosa AMP, Rudge MVC, Emanueli C. Exosomes Could Offer New Options to Combat the Long-Term Complications Inflicted by Gestational Diabetes Mellitus. Cells 2020; 9:E675. [PMID: 32164322 PMCID: PMC7140615 DOI: 10.3390/cells9030675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes Mellitus (GDM) is a complex clinical condition that promotes pelvic floor myopathy, thus predisposing sufferers to urinary incontinence (UI). GDM usually regresses after birth. Nonetheless, a GDM history is associated with higher risk of subsequently developing type 2 diabetes, cardiovascular diseases (CVD) and UI. Some aspects of the pathophysiology of GDM remain unclear and the associated pathologies (outcomes) are poorly addressed, simultaneously raising public health costs and diminishing women's quality of life. Exosomes are small extracellular vesicles produced and actively secreted by cells as part of their intercellular communication system. Exosomes are heterogenous in their cargo and depending on the cell sources and environment, they can mediate both pathogenetic and therapeutic functions. With the advancement in knowledge of exosomes, new perspectives have emerged to support the mechanistic understanding, prediction/diagnosis and ultimately, treatment of the post-GMD outcomes. Here, we will review recent advances in knowledge of the role of exosomes in GDM and related areas and discuss the possibilities for translating exosomes as therapeutic agents in the GDM clinical setting.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Gareth Willis
- Division of Newborn Medicine/Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| | - Patrícia Rodrigues de Lima
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | | | - Angélica Mercia Pascon Barbosa
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Marilza Vieira Cunha Rudge
- Botucatu Medical School, Sao Paulo State University, 18618687 Botucatu, Brazil; (J.F.F.); (P.R.d.L.); (F.V.D.S.R.); (A.M.P.B.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
161
|
Chen Y, Chan J, Chen W, Li J, Sun M, Kannan GS, Mok YK, Yuan YA, Jobichen C. SYNCRIP, a new player in pri-let-7a processing. RNA (NEW YORK, N.Y.) 2020; 26:290-305. [PMID: 31907208 PMCID: PMC7025501 DOI: 10.1261/rna.072959.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
microRNAs (miRNAs), a class of small and endogenous molecules that control gene expression, are broadly involved in biological processes. Although a number of cofactors that assist or antagonize let-7 miRNA biogenesis are well-established, more auxiliary factors remain to be investigated. Here, we identified SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) as a new player for let-7a miRNA. SYNCRIP interacts with pri-let-7a both in vivo and in vitro. Knockdown of SYNCRIP impairs, while overexpression of SYNCRIP promotes, the expression of let-7a miRNA. A broad miRNA profiling analysis revealed that silencing of SYNCRIP regulates the expression of a set of mature miRNAs positively or negatively. In addition, SYNCRIP is associated with microprocessor complex and promotes the processing of pri-let-7a. Strikingly, the terminal loop of pri-let-7a was shown to be the main contributor for its interaction with SYNCRIP. Functional studies demonstrated that the SYNCRIP RRM2-3 domain can promote the processing of pri-let-7a. Structure-based alignment of RRM2-3 with other RNA binding proteins identified the residues likely to participate in protein-RNA interactions. Taken together, these findings suggest the promising role that SYNCRIP plays in miRNA regulation, thus providing insights into the function of SYNCRIP in eukaryotic development.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jingru Chan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Chen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jianwei Li
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Meng Sun
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Gayathiri Sathyamoorthy Kannan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Chacko Jobichen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
162
|
Shen DJ, Jiang YH, Li JQ, Xu LW, Tao KY. The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/β-catentin signaling. Surg Oncol 2020; 34:31-39. [PMID: 32891348 DOI: 10.1016/j.suronc.2020.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) remains a highly prevalent and deadly form of cancer, with efforts to better understand the molecular basis of the progression of this disease being essential to its effective treatment. Several recent studies have highlighted the ability of RNA-binding proteins (RBPs) to regulate a wide range of cellular processes in both healthy and pathogenic contexts. Among these RBPs, RNA binding motif protein 47 (RBM47) has recently been identified as a tumor suppressor in both breast and colon cancers, whereas its role in NSCLC is poorly understood. METHODS RBM47 expression in NSCLC samples was evaluated by RT-PCR, western blotting and immunohistochemistry analysis. Molecular and cellular techniques including lentiviral vector-mediated knockdown were used to elucidate the functions and mechanisms of RBM47. RESULTS This study sought to analyze the expression and role of RBM47 in NSCLC. In the present study, we observed reduced levels of RBM47 expression in NSCLC, with these reductions corresponding to a poorer prognosis and more advanced disease including a higher TNM stage (p = 0.022), a higher likelihood of tumor thrombus (p = 0.001), and pleural invasion (p = 0.033). Through functional analyses in vitro and in vivo, we further demonstrated that these RBP was able to disrupt the proliferation, migration, and invasion of NSCLC cells. At a molecular level, we determined that RBM47 was able to bind the AXIN1 mRNA, stabilizing it and thereby enhancing the consequent suppression of Wnt/β-catentin signaling. CONCLUSION Together our findings reveal that RBM47 targets AXIN1 in order to disrupt Wnt/β-catenin signaling in NSCLC and thereby disrupting tumor progression. These results thus offer new insights into the molecular biology of NSCLC, and suggest that RBM47 may also have value as a prognostic biomarker and/or therapeutic target in NSCLC patients.
Collapse
Affiliation(s)
- Di-Jian Shen
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - You-Hua Jiang
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - Jian-Qiang Li
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - Li-Wei Xu
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China
| | - Kai-Yi Tao
- Department of Thoracic Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Gongshu District, Hangzhou, 310022, China.
| |
Collapse
|
163
|
Hau HTA, Ogundele O, Hibbert AH, Monfries CAL, Exelby K, Wood NJ, Nevarez-Mejia J, Carbajal MA, Fleck RA, Dermit M, Mardakheh FK, Williams-Ward VC, Pipalia TG, Conte MR, Hughes SM. Maternal Larp6 controls oocyte development, chorion formation and elevation. Development 2020; 147:dev187385. [PMID: 32054660 PMCID: PMC7055395 DOI: 10.1242/dev.187385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
La-related protein 6 (Larp6) is a conserved RNA-binding protein found across eukaryotes that has been suggested to regulate collagen biogenesis, muscle development, ciliogenesis, and various aspects of cell proliferation and migration. Zebrafish have two Larp6 family genes: larp6a and larp6b Viable and fertile single and double homozygous larp6a and larp6b zygotic mutants revealed no defects in muscle structure, and were indistinguishable from heterozygous or wild-type siblings. However, larp6a mutant females produced eggs with chorions that failed to elevate fully and were fragile. Eggs from larp6b single mutant females showed minor chorion defects, but chorions from eggs laid by larp6a;larp6b double mutant females were more defective than those from larp6a single mutants. Electron microscopy revealed defective chorionogenesis during oocyte development. Despite this, maternal zygotic single and double mutants were viable and fertile. Mass spectrometry analysis provided a description of chorion protein composition and revealed significant reductions in a subset of zona pellucida and lectin-type proteins between wild-type and mutant chorions that paralleled the severity of the phenotype. We conclude that Larp6 proteins are required for normal oocyte development, chorion formation and egg activation.
Collapse
Affiliation(s)
- Hoi Ting A Hau
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Oluwaseun Ogundele
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Andrew H Hibbert
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Clinton A L Monfries
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Katherine Exelby
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Natalie J Wood
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Jessica Nevarez-Mejia
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | | | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Maria Dermit
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Victoria C Williams-Ward
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Tapan G Pipalia
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| |
Collapse
|
164
|
Li L, Ran J, Li L, Chen G, Zhang S, Wang Y. Gli3 is a novel downstream target of miR‑200a with an anti‑fibrotic role for progression of liver fibrosis in vivo and in vitro. Mol Med Rep 2020; 21:1861-1871. [PMID: 32319630 PMCID: PMC7057771 DOI: 10.3892/mmr.2020.10997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
GLI family zinc finger 3 (Gli3), as the upstream transcriptional activator of hedgehog signaling, has previously been demonstrated to participate in the process of liver fibrosis. The present study aimed to investigate the potential functions of microRNA (miR)‑200a and Gli3 in the progression of liver fibrosis. The expression levels of miR‑200a and Gli3 in cells and tissues were determined by PCR and western blotting; the interaction of Gli3 and miR‑200a was evaluated by bioinformatics analysis and dual‑luciferase reporter assay. miR‑200a was significantly reduced in serum samples from clinical patients, liver tissues of a carbon tetrachloride (CCl4)‑induced rat model and activated LX2 cells. The expression of α‑smooth muscle actin (α‑SMA) and albumin at the mRNA and protein levels was increased and decreased in LX2 cells, respectively. However, the expression levels of α‑SMA and albumin were reversed and Gli3 expression was markedly decreased in LX2 cells when transfected with miR‑200a mimics. In addition, the dual‑-luciferase reporter assay confirmed the target interaction between miR‑200a and Gli3. Finally, following the administration of miR‑200a mimics to CCl4‑induced rats, it was revealed that the alterations of α‑SMA, albumin and Gli3 presented a similar trend to that in LX2 cells with miR‑200a mimics transfection. Taken together, these results indicated that downregulation of miR‑200a might enhance the formation of liver fibrosis, probably by targeting Gli3, and elevated miR‑200a may attenuate the progression of liver fibrosis by suppressing Gli3. These findings suggested that miR‑200a may function as a novel anti‑fibrotic agent in liver fibrosis via inhibition of the expression of Gli3.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Jianghua Ran
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Lan Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Gang Chen
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Shengning Zhang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Yingjia Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| |
Collapse
|
165
|
Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem 2020; 188:112008. [DOI: 10.1016/j.ejmech.2019.112008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
|
166
|
To KKW, Fong W, Tong CWS, Wu M, Yan W, Cho WCS. Advances in the discovery of microRNA-based anticancer therapeutics: latest tools and developments. Expert Opin Drug Discov 2020; 15:63-83. [PMID: 31739699 DOI: 10.1080/17460441.2020.1690449] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Introduction: MicroRNAs (miRNAs) are small endogenous non-coding RNAs that repress the expression of their target genes by reducing mRNA stability and/or inhibiting translation. miRNAs are known to be aberrantly regulated in cancers. Modulators of miRNA (mimics and antagonists) have emerged as novel therapeutic tools for cancer treatment.Areas covered: This review summarizes the various strategies that have been applied to correct the dysregulated miRNA in cancer cells. The authors also discuss the recent advances in the technical development and preclinical/clinical evaluation of miRNA-based therapeutic agents.Expert opinion: Application of miRNA-based therapeutics for cancer treatment is appealing because they are able to modulate multiple dysregulated genes and/or signaling pathways in cancer cells. Major obstacles hindering their clinical development include drug delivery, off-target effects, efficacious dose determination, and safety. Tumor site-specific delivery of novel miRNA therapeutics may help to minimize off-target effects and toxicity. Combination of miRNA therapeutics with other anticancer treatment modalities could provide a synergistic effect, thus allowing the use of lower dose, minimizing off-target effects, and improving the overall safety profile in cancer patients. It is critical to identify individual miRNAs with cancer type-specific and context-specific regulation of oncogenes and tumor-suppressor genes in order to facilitate the precise use of miRNA anticancer therapeutics.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
167
|
|
168
|
Kilchert C, Sträßer K, Kunetsky V, Änkö ML. From parts lists to functional significance-RNA-protein interactions in gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1582. [PMID: 31883228 DOI: 10.1002/wrna.1582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022]
Abstract
Hundreds of canonical RNA binding proteins facilitate diverse and essential RNA processing steps in cells forming a central regulatory point in gene expression. However, recent discoveries including the identification of a large number of noncanonical proteins bound to RNA have changed our view on RNA-protein interactions merely as necessary steps in RNA biogenesis. As the list of proteins interacting with RNA has expanded, so has the scope of regulation through RNA-protein interactions. In addition to facilitating RNA metabolism, RNA binding proteins help to form subcellular structures and membraneless organelles, and provide means to recruit components of macromolecular complexes to their sites of action. Moreover, RNA-protein interactions are not static in cells but the ribonucleoprotein (RNP) complexes are highly dynamic in response to cellular cues. The identification of novel proteins in complex with RNA and ways cells use these interactions to control cellular functions continues to broaden the scope of RNA regulation in cells and the current challenge is to move from cataloguing the components of RNPs into assigning them functions. This will not only facilitate our understanding of cellular homeostasis but may bring in key insights into human disease conditions where RNP components play a central role. This review brings together the classical view of regulation accomplished through RNA-protein interactions with the novel insights gained from the identification of RNA binding interactomes. We discuss the challenges in combining molecular mechanism with cellular functions on the journey towards a comprehensive understanding of the regulatory functions of RNA-protein interactions in cells. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications aRNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Vladislav Kunetsky
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
169
|
van der Kwast RV, Quax PH, Nossent AY. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019; 9:cells9010061. [PMID: 31881725 PMCID: PMC7017316 DOI: 10.3390/cells9010061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic neovascularization can facilitate blood flow recovery in patients with ischemic cardiovascular disease, the leading cause of death worldwide. Neovascularization encompasses both angiogenesis, the sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of preexisting collateral arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly multifactorial processes that require a multifactorial regulator to be stimulated simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to their ability to modulate expression of many genes simultaneously. Recent studies have revealed that many microRNAs have variants with altered terminal sequences, known as isomiRs. Additionally, endogenous microRNAs have been identified that carry biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. Both types of microRNA alterations were shown to be dynamically regulated in response to ischemia and are able to influence neovascularization by affecting the microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory layers influence microRNA functioning and could provide new opportunities to stimulate neovascularization. In this review we will highlight the formation and function of isomiRs and various forms of microRNA modifications, and discuss recent findings that demonstrate that both isomiRs and microRNA modifications directly affect neovascularization and vascular remodeling.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul H.A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Laboratory Medicine and Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
170
|
Matsuyama H, Suzuki HI. Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. Int J Mol Sci 2019; 21:E132. [PMID: 31878193 PMCID: PMC6981965 DOI: 10.3390/ijms21010132] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 22-nucleotide-long, small non-coding RNAs that post-transcriptionally regulate gene expression. The biogenesis of miRNAs involves multiple steps, including the transcription of primary miRNAs (pri-miRNAs), nuclear Drosha-mediated processing, cytoplasmic Dicer-mediated processing, and loading onto Argonaute (Ago) proteins. Further, miRNAs control diverse biological and pathological processes via the silencing of target mRNAs. This review summarizes recent findings regarding the quantitative aspects of miRNA homeostasis, including Drosha-mediated pri-miRNA processing, Ago-mediated asymmetric miRNA strand selection, and modifications of miRNA pathway components, as well as the roles of RNA modifications (epitranscriptomics), epigenetics, transcription factor circuits, and super-enhancers in miRNA regulation. These recent advances have facilitated a system-level understanding of miRNA networks, as well as the improvement of RNAi performance for both gene-specific targeting and genome-wide screening. The comprehensive understanding and modeling of miRNA biogenesis and function have been applied to the design of synthetic gene circuits. In addition, the relationships between miRNA genes and super-enhancers provide the molecular basis for the highly biased cell type-specific expression patterns of miRNAs and the evolution of miRNA-target connections, while highlighting the importance of alterations of super-enhancer-associated miRNAs in a variety of human diseases.
Collapse
Affiliation(s)
- Hironori Matsuyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., 1-11-1 Karasaki, Otsu-shi, Shiga 520-0106, Japan;
| | - Hiroshi I. Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
171
|
Francisco-Velilla R, Azman EB, Martinez-Salas E. Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5. Bioessays 2019; 41:e1800241. [PMID: 30919488 DOI: 10.1002/bies.201800241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Embarc-Buh Azman
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
172
|
DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun 2019; 10:5657. [PMID: 31827083 PMCID: PMC6906426 DOI: 10.1038/s41467-019-13527-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) biogenesis initiates co-transcriptionally, but how the Microprocessor machinery pinpoints the locations of short precursor miRNA sequences within long flanking regions of the transcript is not known. Here we show that miRNA biogenesis depends on DNA methylation. When the regions flanking the miRNA coding sequence are highly methylated, the miRNAs are more highly expressed, have greater sequence conservation, and are more likely to drive cancer-related phenotypes than miRNAs encoded by unmethylated loci. We show that the removal of DNA methylation from miRNA loci leads to their downregulation. Further, we found that MeCP2 binding to methylated miRNA loci halts RNA polymerase II elongation, leading to enhanced processing of the primary miRNA by Drosha. Taken together, our data reveal that DNA methylation directly affects miRNA biogenesis.
Collapse
|
173
|
Dock-Bregeon AC, Lewis KA, Conte MR. The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol 2019; 18:178-193. [PMID: 31752575 DOI: 10.1080/15476286.2019.1695712] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The La-related proteins (LaRPs) are an ancient superfamily of RNA-binding proteins orchestrating the major fates of RNA, from processing and maturation to regulation of mRNA translation. LaRPs are instrumental in modulating complex assemblies where the RNA is bound, folded, processed, escorted and presented to the functional effectors often through recruitment of protein partners. This intricate web of protein-RNA and protein-protein interactions is enabled by the modular nature of the LaRPs, comprising several structured domains connected by flexible linkers, and other sequences lacking recognizable folded motifs. Recent structures, together with biochemical and biophysical studies, have provided insights into how each LaRP family has evolved unique mechanisms of RNA recognition, not only through the conserved RNA-binding unit, the La-module, but also mediated by other family-specific motifs. Furthermore, in a series of unexpected twists and turns, they have revealed that the dynamic and conformational interplay of multi-structured domains and disordered regions operate in unison to achieve RNA substrate discrimination. This review proposes a perspective of our current knowledge of the structure-function relationship of the LaRP superfamily.
Collapse
Affiliation(s)
| | - Karen A Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
174
|
In-cell identification and measurement of RNA-protein interactions. Nat Commun 2019; 10:5317. [PMID: 31757954 PMCID: PMC6876571 DOI: 10.1038/s41467-019-13235-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
Regulatory RNAs exert their cellular functions through RNA-binding proteins (RBPs). Identifying RNA-protein interactions is therefore key for a molecular understanding of regulatory RNAs. To date, RNA-bound proteins have been identified primarily through RNA purification followed by mass spectrometry. Here, we develop incPRINT (in cell protein-RNA interaction), a high-throughput method to identify in-cell RNA-protein interactions revealed by quantifiable luminescence. Applying incPRINT to long noncoding RNAs (lncRNAs), we identify RBPs specifically interacting with the lncRNA Firre and three functionally distinct regions of the lncRNA Xist. incPRINT confirms previously known lncRNA-protein interactions and identifies additional interactions that had evaded detection with other approaches. Importantly, the majority of the incPRINT-defined interactions are specific to individual functional regions of the large Xist transcript. Thus, we present an RNA-centric method that enables reliable identification of RNA-region-specific RBPs and is applicable to any RNA of interest. RNA-interacting proteome can be identified by RNA affinity purification followed by mass spectrometry. Here the authors developed a different RNA-centric technology that combines high-throughput immunoprecipitation of RNA binding proteins and luciferase-based detection of their interaction with the RNA.
Collapse
|
175
|
Sherman EJ, Mitchell DC, Garner AL. The RNA-binding protein SART3 promotes miR-34a biogenesis and G 1 cell cycle arrest in lung cancer cells. J Biol Chem 2019; 294:17188-17196. [PMID: 31619517 PMCID: PMC6873168 DOI: 10.1074/jbc.ac119.010419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small, noncoding RNAs that are implicated in the regulation of most biological processes. Global miRNA biogenesis is altered in many cancers, and RNA-binding proteins play a role in miRNA biogenesis, presenting a promising avenue for targeting miRNA dysregulation in diseases. miR-34a exhibits tumor-suppressive activities by targeting cell cycle regulators CDK4/6 and anti-apoptotic factor BCL-2, among other regulatory pathways such as Wnt, TGF-β, and Notch signaling. Many cancers exhibit down-regulation or loss of miR-34a, and synthetic miR-34a supplementation has been shown to inhibit tumor growth in vivo However, the post-transcriptional mechanisms that cause miR-34a loss in cancer are not entirely understood. Here, using a proteomics-mediated approach in non-small-cell lung cancer (NSCLC) cells, we identified squamous cell carcinoma antigen recognized by T-cells 3 (SART3) as a putative pre-miR-34a-binding protein. SART3 is a spliceosome recycling factor and nuclear RNA-binding protein with no previously reported role in miRNA regulation. We found that SART3 binds pre-miR-34a with higher specificity than pre-let-7d (used as a negative control) and elucidated a new functional role for SART3 in NSCLC cells. SART3 overexpression increased miR-34a levels, down-regulated the miR-34a target genes CDK4/6, and caused a cell cycle arrest in the G1 phase. In vitro binding experiments revealed that the RNA-recognition motifs within the SART3 sequence are responsible for selective pre-miR-34a binding. Our results provide evidence for a significant role of SART3 in miR-34a biogenesis and cell cycle progression in NSCLC cells.
Collapse
Affiliation(s)
- Emily J Sherman
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
176
|
Sagar A, Xue B. Recent Advances in Machine Learning Based Prediction of RNA-protein Interactions. Protein Pept Lett 2019; 26:601-619. [PMID: 31215361 DOI: 10.2174/0929866526666190619103853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
Abstract
The interactions between RNAs and proteins play critical roles in many biological processes. Therefore, characterizing these interactions becomes critical for mechanistic, biomedical, and clinical studies. Many experimental methods can be used to determine RNA-protein interactions in multiple aspects. However, due to the facts that RNA-protein interactions are tissuespecific and condition-specific, as well as these interactions are weak and frequently compete with each other, those experimental techniques can not be made full use of to discover the complete spectrum of RNA-protein interactions. To moderate these issues, continuous efforts have been devoted to developing high quality computational techniques to study the interactions between RNAs and proteins. Many important progresses have been achieved with the application of novel techniques and strategies, such as machine learning techniques. Especially, with the development and application of CLIP techniques, more and more experimental data on RNA-protein interaction under specific biological conditions are available. These CLIP data altogether provide a rich source for developing advanced machine learning predictors. In this review, recent progresses on computational predictors for RNA-protein interaction were summarized in the following aspects: dataset, prediction strategies, and input features. Possible future developments were also discussed at the end of the review.
Collapse
Affiliation(s)
- Amit Sagar
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
177
|
Mallam AL, Sae-Lee W, Schaub JM, Tu F, Battenhouse A, Jang YJ, Kim J, Wallingford JB, Finkelstein IJ, Marcotte EM, Drew K. Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell Rep 2019; 29:1351-1368.e5. [PMID: 31665645 PMCID: PMC6873818 DOI: 10.1016/j.celrep.2019.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in biology and are frequently associated with human disease. Although recent studies have systematically identified individual RNA-binding proteins, their higher-order assembly into ribonucleoprotein (RNP) complexes has not been systematically investigated. Here, we describe a proteomics method for systematic identification of RNP complexes in human cells. We identify 1,428 protein complexes that associate with RNA, indicating that more than 20% of known human protein complexes contain RNA. To explore the role of RNA in the assembly of each complex, we identify complexes that dissociate, change composition, or form stable protein-only complexes in the absence of RNA. We use our method to systematically identify cell-type-specific RNA-associated proteins in mouse embryonic stem cells and finally, distribute our resource, rna.MAP, in an easy-to-use online interface (rna.proteincomplexes.org). Our system thus provides a methodology for explorations across human tissues, disease states, and throughout all domains of life.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Wisath Sae-Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna Battenhouse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Kevin Drew
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
178
|
van der Kwast RVCT, Woudenberg T, Quax PHA, Nossent AY. MicroRNA-411 and Its 5'-IsomiR Have Distinct Targets and Functions and Are Differentially Regulated in the Vasculature under Ischemia. Mol Ther 2019; 28:157-170. [PMID: 31636041 DOI: 10.1016/j.ymthe.2019.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are posttranscriptional regulators of gene expression. As microRNAs can target many genes simultaneously, microRNAs can regulate complex multifactorial processes, including post-ischemic neovascularization, a major recovery pathway in cardiovascular disease. MicroRNAs select their target mRNAs via full complementary binding with their seed sequence, i.e., nucleotides 2-8 from the 5' end of a microRNA. The exact sequence of a mature microRNA, and thus of its 5' and 3' ends, is determined by two sequential cleavage steps of microRNA precursors, Drosha/DGCR8 and Dicer. When these cleavage steps result in nucleotide switches at the 5' end, forming a so-called 5'-isomiR, this results in a shift in the mature microRNA's seed sequence. The role of 5'-isomiRs in cardiovascular diseases is still unknown. Here, we characterize the expression and function of the 5'-isomiR of miR-411 (ISO-miR-411). ISO-miR-411 is abundantly expressed in human primary vascular cells. ISO-miR-411 has a different "targetome" from WT-miR-411, with only minor overlap. The ISO-miR-411/WT-miR-411 ratio is downregulated under acute ischemia, both in cells and a murine ischemia model, but is upregulated instead in chronically ischemic human blood vessels. ISO-miR-411 negatively influences vascular cell migration, whereas WT-miR-411 does not. Our data demonstrate that isomiR formation is a functional pathway that is actively regulated during ischemia.
Collapse
Affiliation(s)
- Reginald V C T van der Kwast
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria; Department of Internal Medicine II, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
179
|
Li L, Veksler-Lublinsky I, Zinovyeva A. HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development. PLoS Genet 2019; 15:e1008067. [PMID: 31584932 PMCID: PMC6795461 DOI: 10.1371/journal.pgen.1008067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/16/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023] Open
Abstract
microRNAs (miRNAs) are potent regulators of gene expression that function in diverse developmental and physiological processes. Argonaute proteins loaded with miRNAs form the miRNA Induced Silencing Complexes (miRISCs) that repress gene expression at the post-transcriptional level. miRISCs target genes through partial sequence complementarity between the miRNA and the target mRNA’s 3’ UTR. In addition to being targeted by miRNAs, these mRNAs are also extensively regulated by RNA-binding proteins (RBPs) through RNA processing, transport, stability, and translation regulation. While the degree to which RBPs and miRISCs interact to regulate gene expression is likely extensive, we have only begun to unravel the mechanisms of this functional cooperation. An RNAi-based screen of putative ALG-1 Argonaute interactors has identified a role for a conserved RNA binding protein, HRPK-1, in modulating miRNA activity during C. elegans development. Here, we report the physical and genetic interaction between HRPK-1 and ALG-1/miRNAs. Specifically, we report the genetic and molecular characterizations of hrpk-1 and its role in C. elegans development and miRNA-mediated target repression. We show that loss of hrpk-1 causes numerous developmental defects and enhances the mutant phenotypes associated with reduction of miRNA activity, including those of lsy-6, mir-35-family, and let-7-family miRNAs. In addition to hrpk-1 genetic interaction with these miRNA families, hrpk-1 is required for efficient regulation of lsy-6 target cog-1. We report that hrpk-1 plays a role in processing of some but not all miRNAs and is not required for ALG-1/AIN-1 miRISC assembly. We suggest that HRPK-1 may functionally interact with miRNAs by both affecting miRNA processing and by enhancing miRNA/miRISC gene regulatory activity and present models for its activity. microRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level. The core microRNA Induced Silencing Complex (miRISC), composed of Argonaute, mature microRNA, and GW182 protein effector, assembles on the target messenger RNA and inhibits translation or leads to messenger RNA degradation. RNA binding proteins interface with miRNA pathways on multiple levels to coordinate gene expression regulation. Here, we report identification and characterization of HRPK-1, a conserved RNA binding protein, as a physical and functional interactor of miRNAs. We confirm the physical interaction between HRPK-1, an hnRNPK homolog, and Argonaute ALG-1. We report characterizations of hrpk-1 role in development and its functional interactions with multiple miRNA families. We suggest that HRPK-1 promotes miRNA activity on multiple levels in part by contributing to miRNA processing and by coordinating with miRISC at the level of target RNAs. This work contributes to our understanding of how RNA binding proteins and auxiliary miRNA cofactors may interface with miRNA pathways to modulate miRNA gene regulatory activity.
Collapse
Affiliation(s)
- Li Li
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-sheva, Israel
| | - Anna Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
180
|
Vos PD, Leedman PJ, Filipovska A, Rackham O. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer. Cell Mol Life Sci 2019; 76:3745-3752. [PMID: 31165201 PMCID: PMC11105495 DOI: 10.1007/s00018-019-03163-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
RNA-binding proteins (RBPs) and microRNAs (miRNAs) are the most important regulators of mRNA stability and translation in eukaryotic cells; however, the complex interplay between these systems is only now coming to light. RBPs and miRNAs regulate a unique set of targets in either a positive or negative manner and their regulation is mainly opposed to each other on overlapping targets. In some cases, the levels of RBPs or miRNAs regulate the cellular levels of one another and decreased levels of either results in changes in translation of their targets. There is growing evidence that these regulatory circuits are crucial in the development and progression of cancer; however, the rules underlying synergism and antagonism between miRNAs and RNA-binding proteins remain unclear. Synthetic biology seeks to develop artificial systems to better understand their natural counterparts and to develop new, useful technologies for manipulation of gene expression at the RNA level. The recent development of artificial RNA-binding proteins promises to enable a much greater understanding of the importance of the functional interactions between RNA-binding proteins and miRNAs, as well as enabling their manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Pascal D Vos
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Molecular and Chemical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peter J Leedman
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- Medical School, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Molecular and Chemical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
181
|
Radine C, Peters D, Reese A, Neuwahl J, Budach W, Jänicke RU, Sohn D. The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53-p21-axis. Cell Death Differ 2019; 27:1274-1285. [PMID: 31511650 DOI: 10.1038/s41418-019-0414-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022] Open
Abstract
In recent years it has become more and more apparent that the regulation of gene expression by RNA-binding proteins (RBPs) is of utmost importance for most cellular signaling pathways. RBPs control several aspects of RNA biogenesis including splicing, localization, stability, and translation efficiency. One of these RBPs is RBM47 that recently has been suggested to function as a tumor suppressor as it was shown to suppress breast and colon cancer progression. Here we demonstrate that RBM47 is an important regulator of basal and DNA damage-induced p53 and p21WAF1/CIP1 protein expression. Knockdown of RBM47 by siRNAs results in a strong reduction in p53 mRNA and protein levels due to an impaired p53 promoter activity. Accordingly, overexpression of Flag-RBM47 enhances p53 promoter activity demonstrating that RBM47 regulates p53 at the transcriptional level. By controlling p53, knockdown of RBM47 concomitantly decreases also p21 expression at the transcriptional level, driving irradiated carcinoma cell lines from different entities into cell death rather than into senescence. Thus, RBM47 represents a novel molecular switch of cell fate decisions that functions as a regulator of the p53/p21-signaling axis.
Collapse
Affiliation(s)
- Claudia Radine
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dominik Peters
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alina Reese
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Judith Neuwahl
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
182
|
Goossens EAC, de Vries MR, Simons KH, Putter H, Quax PHA, Nossent AY. miRMap: Profiling 14q32 microRNA Expression and DNA Methylation Throughout the Human Vasculature. Front Cardiovasc Med 2019; 6:113. [PMID: 31440517 PMCID: PMC6694280 DOI: 10.3389/fcvm.2019.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Aims: MicroRNAs are regulators of (patho)physiological functions with tissue-specific expression patterns. However, little is known about inter-vascular differences in microRNA expression between blood vessel types or vascular beds. Differences in microRNA expression could influence cardiovascular pathophysiology at specific sites in the vasculature. Therefore, we aimed to map expression profiles of vasoactive 14q32 microRNAs throughout the human vasculature, as well as expression of vasoactive target genes of the 14q32 microRNAs. Furthermore, we aimed to map the DNA methylation status of the 14q32 locus, which has been linked to cardiovascular disease. Methods and Results: We collected 109 samples from different blood vessels, dissected during general surgery. Expression of a representative set of 17 14q32 microRNAs was measured in each sample. All 17 microRNAs showed a unique expression pattern throughout the vasculature. 14q32 microRNA expression was highest in lower limb vessels and lowest in head and neck vessels. All 17 microRNAs were expressed more abundantly in arteries than in veins. Throughout the human vasculature, we observed trends toward an inverse correlation between expression levels of the 14q32 microRNAs and their vasoactive target genes. DNA methylation of the 3 Differentially Methylated Regions (DMRs) along the 14q32 locus did not associate with primary or mature microRNA expression. However, hyper-methylation in venous coronary artery bypass grafts compared to arterial bypass grafts was observed in the Intergenic-DMR and MEG3-DMR. In patients with end-stage peripheral arterial disease we found differential DNA methylation throughout all DMRs in their lower limb veins. These findings were confirmed in a mouse model for vein-graft disease in which we found regulated 14q32 DNA methylation during the active phase of vascular remodeling. In ischemic tissues of a murine hind limb ischemia model we observed an increase in DNA methylation associated with increased ischemia over time. Conclusions: We show that 14q32 microRNAs are abundantly expressed in the human vasculature and that expression differs significantly between different blood vessels. 14q32 DNA methylation also varies throughout the vasculature and is associated with vascular health, independently of microRNA levels. These findings could have important implications for future research and for future site-specific targeting of epigenetics-based therapeutics.
Collapse
Affiliation(s)
- Eveline A C Goossens
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
183
|
A bioinformatic analysis identifies circadian expression of splicing factors and time-dependent alternative splicing events in the HD-MY-Z cell line. Sci Rep 2019; 9:11062. [PMID: 31363108 PMCID: PMC6667479 DOI: 10.1038/s41598-019-47343-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
The circadian clock regulates key cellular processes and its dysregulation is associated to several pathologies including cancer. Although the transcriptional regulation of gene expression by the clock machinery is well described, the role of the clock in the regulation of post-transcriptional processes, including splicing, remains poorly understood. In the present work, we investigated the putative interplay between the circadian clock and splicing in a cancer context. For this, we applied a computational pipeline to identify oscillating genes and alternatively spliced transcripts in time-course high-throughput data sets from normal cells and tissues, and cancer cell lines. We investigated the temporal phenotype of clock-controlled genes and splicing factors, and evaluated their impact in alternative splice patterns in the Hodgkin Lymphoma cell line HD-MY-Z. Our data points to a connection between clock-controlled genes and splicing factors, which correlates with temporal alternative splicing in several genes in the HD-MY-Z cell line. These include the genes DPYD, SS18, VIPR1 and IRF4, involved in metabolism, cell cycle, apoptosis and proliferation. Our results highlight a role for the clock as a temporal regulator of alternative splicing, which may impact malignancy in this cellular model.
Collapse
|
184
|
Braun J, Fischer S, Xu ZZ, Sun H, Ghoneim DH, Gimbel AT, Plessmann U, Urlaub H, Mathews DH, Weigand JE. Identification of new high affinity targets for Roquin based on structural conservation. Nucleic Acids Res 2019; 46:12109-12125. [PMID: 30295819 PMCID: PMC6294493 DOI: 10.1093/nar/gky908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional gene regulation controls the amount of protein produced from a specific mRNA by altering both its decay and translation rates. Such regulation is primarily achieved by the interaction of trans-acting factors with cis-regulatory elements in the untranslated regions (UTRs) of mRNAs. These interactions are guided either by sequence- or structure-based recognition. Similar to sequence conservation, the evolutionary conservation of a UTR’s structure thus reflects its functional importance. We used such structural conservation to identify previously unknown cis-regulatory elements. Using the RNA folding program Dynalign, we scanned all UTRs of humans and mice for conserved structures. Characterizing a subset of putative conserved structures revealed a binding site of the RNA-binding protein Roquin. Detailed functional characterization in vivo enabled us to redefine the binding preferences of Roquin and identify new target genes. Many of these new targets are unrelated to the established role of Roquin in inflammation and immune responses and thus highlight additional, unstudied cellular functions of this important repressor. Moreover, the expression of several Roquin targets is highly cell-type-specific. In consequence, these targets are difficult to detect using methods dependent on mRNA abundance, yet easily detectable with our unbiased strategy.
Collapse
Affiliation(s)
- Johannes Braun
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Sandra Fischer
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Zhenjiang Z Xu
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongying Sun
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dalia H Ghoneim
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anna T Gimbel
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Uwe Plessmann
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Henning Urlaub
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center, 37073 Göttingen, Germany
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Julia E Weigand
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
185
|
Sherman EJ, Lorenz DA, Garner AL. Click Chemistry-Mediated Complementation Assay for RNA-Protein Interactions. ACS COMBINATORIAL SCIENCE 2019; 21:522-527. [PMID: 31181888 DOI: 10.1021/acscombsci.9b00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Click chemistry-based assays are a growing class of biochemical assay for facilitating the discovery of modulators of important biological processes. To date, most have relied on the use of immobilized biomolecules, which increases the cost of the assay and decreases throughput because of the necessary washing steps. To overcome these challenges, we have developed a click chemistry-mediated complementation assay that retains many of the advantages of the previous technology, including catalytic signal amplification for assay robustness and applicability to full-length biomolecules, but that can be performed in a homogeneous format. As demonstration of this methodology, we have developed a new high-throughput screening method for RNA-protein interactions using the interaction of Lin28 with the pre-microRNA, prelet-7, as a model.
Collapse
|
186
|
Velasco MX, Kosti A, Guardia GDA, Santos MC, Tegge A, Qiao M, Correa BRS, Hernández G, Kokovay E, Galante PAF, Penalva LOF. Antagonism between the RNA-binding protein Musashi1 and miR-137 and its potential impact on neurogenesis and glioblastoma development. RNA (NEW YORK, N.Y.) 2019; 25:768-782. [PMID: 31004009 PMCID: PMC6573790 DOI: 10.1261/rna.069211.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in cooperative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between self-renewal and differentiation. Msi1 and miR-137 have opposite expression patterns and functions, and Msi1 is repressed by miR-137. Msi1 is a stem-cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the balance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute to neurodegenerative diseases and glioma development. Genomic analyses revealed that Msi1 and miR-137 share 141 target genes associated with differentiation, development, and morphogenesis. Initial results pointed out that these two regulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different outcomes (self-renewal, proliferation, tumorigenesis).
Collapse
Affiliation(s)
- Mitzli X Velasco
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Adam Kosti
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Gabriela D A Guardia
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Marcia C Santos
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Allison Tegge
- Department of Statistics, Virginia Tech, Blacksburg, Virginia 14080, USA
| | - Mei Qiao
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Bruna R S Correa
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Luiz O F Penalva
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
187
|
Oncogenic Biogenesis of pri-miR-17∼92 Reveals Hierarchy and Competition among Polycistronic MicroRNAs. Mol Cell 2019; 75:340-356.e10. [PMID: 31253575 DOI: 10.1016/j.molcel.2019.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 05/23/2019] [Indexed: 01/07/2023]
Abstract
The microRNAs encoded by the miR-17∼92 polycistron are commonly overexpressed in cancer and orchestrate a wide range of oncogenic functions. Here, we identify a mechanism for miR-17∼92 oncogenic function through the disruption of endogenous microRNA (miRNA) processing. We show that, upon oncogenic overexpression of the miR-17∼92 primary transcript (pri-miR-17∼92), the microprocessor complex remains associated with partially processed intermediates that aberrantly accumulate. These intermediates reflect a series of hierarchical and conserved steps in the early processing of the pri-miR-17∼92 transcript. Encumbrance of the microprocessor by miR-17∼92 intermediates leads to the broad but selective downregulation of co-expressed polycistronic miRNAs, including miRNAs derived from tumor-suppressive miR-34b/c and from the Dlk1-Dio3 polycistrons. We propose that the identified steps of polycistronic miR-17∼92 biogenesis contribute to the oncogenic re-wiring of gene regulation networks. Our results reveal previously unappreciated functional paradigms for polycistronic miRNAs in cancer.
Collapse
|
188
|
Mellis D, Caporali A. MicroRNA regulation of vascular function. ACTA ACUST UNITED AC 2019; 1:H41-H46. [PMID: 32923952 PMCID: PMC7439840 DOI: 10.1530/vb-19-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that orchestrate genetic networks by modulating gene expression. Given their importance in vascular development, homeostasis and diseases, along with the technical feasibility in deploying their function in vivo, the so-called ‘vascular miRNAs’ have become key targets for therapeutic intervention. Herein, we have summarised the state-of-the-art on vascular miRNAs and we have discussed the role miRNA biogenesis and the extracellular vesicles (EVs) miRNA transport in vascular biology.
Collapse
Affiliation(s)
- David Mellis
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
189
|
Li L, Zhang L, Zhao X, Cao J, Li J, Chu G. Downregulation of miR-152 contributes to the progression of liver fibrosis via targeting Gli3 in vivo and in vitro. Exp Ther Med 2019; 18:425-434. [PMID: 31258681 PMCID: PMC6566101 DOI: 10.3892/etm.2019.7595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The Gli family is known to be required for the activation of hedgehog signalling, which participates in the pathogenesis of liver fibrosis. The aim of the present study was to identify the association between microRNA (miR)-152 and GLI family zinc finger 3 (Gli3) and their roles in liver fibrosis. In a carbon tetrachloride (CCl4)-treated rat model, fibrogenesis-associated indexes, including hydroxyproline content, collagen deposition, and α-smooth muscle actin (α-SMA) and albumin expression, were examined in in vivo and in vitro models. The expression of miR-152 and Gli3 in cells and tissues was determined by reverse transcription quantitative polymerase chain reaction and western blot analysis. The interaction of Gli3 and miR-152 was evaluated by bioinformatical analysis and a dual-luciferase reporter assay. The results demonstrated that miR-152 was significantly downregulated in serum samples from clinical patients, liver tissues from CCl4-treated rats and activated LX2 cells. Furthermore, at the cellular level, the mRNA and protein expression levels of α-SMA and albumin were increased and decreased, respectively, in LX2 cells. Nevertheless, following transfection with an miR-152 mimic, the expression levels of α-SMA and albumin were reversed, and Gli3 expression was notably decreased in LX2 cells. Additionally, the target interaction between miR-152 and Gli3 was demonstrated. Finally, an miR-152 mimic was introduced into the rat model and additionally demonstrated that the changes in α-SMA, albumin and Gli3 expression levels were similar to the expression pattern in LX2 cells following miR-152 mimic transfection. These data provided insight into the potential function of miR-152 as an anti-fibrotic therapy through the modulation of Gli3.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Xiongqi Zhao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Jun Cao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Jingfeng Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Guang Chu
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| |
Collapse
|
190
|
Fu K, Tian S, Tan H, Wang C, Wang H, Wang M, Wang Y, Chen Z, Wang Y, Yue Q, Xu Q, Zhang S, Li H, Xie J, Lin M, Luo M, Chen F, Ye L, Zheng K. Biological and RNA regulatory function of MOV10 in mammalian germ cells. BMC Biol 2019; 17:39. [PMID: 31088452 PMCID: PMC6515687 DOI: 10.1186/s12915-019-0659-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. Results MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3′-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. Conclusions These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network. Electronic supplementary material The online version of this article (10.1186/s12915-019-0659-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Suwen Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Preventive Medicine, Heze Medical College, Heze, 274000, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Caifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingyan Lin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
191
|
Caudron-Herger M, Rusin SF, Adamo ME, Seiler J, Schmid VK, Barreau E, Kettenbach AN, Diederichs S. R-DeeP: Proteome-wide and Quantitative Identification of RNA-Dependent Proteins by Density Gradient Ultracentrifugation. Mol Cell 2019; 75:184-199.e10. [PMID: 31076284 DOI: 10.1016/j.molcel.2019.04.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
The comprehensive but specific identification of RNA-binding proteins as well as the discovery of RNA-associated protein functions remain major challenges in RNA biology. Here we adapt the concept of RNA dependence, defining a protein as RNA dependent when its interactome depends on RNA. We converted this concept into a proteome-wide, unbiased, and enrichment-free screen called R-DeeP (RNA-dependent proteins), based on density gradient ultracentrifugation. Quantitative mass spectrometry identified 1,784 RNA-dependent proteins, including 537 lacking known links to RNA. Exploiting the quantitative nature of R-DeeP, proteins were classified as not, partially, or completely RNA dependent. R-DeeP identified the transcription factor CTCF as completely RNA dependent, and we uncovered that RNA is required for the CTCF-chromatin association. Additionally, R-DeeP allows reconstruction of protein complexes based on co-segregation. The whole dataset is available at http://R-DeeP.dkfz.de, providing proteome-wide, specific, and quantitative identification of proteins with RNA-dependent interactions and aiming at future functional discovery of RNA-protein complexes.
Collapse
Affiliation(s)
- Maiwen Caudron-Herger
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Scott F Rusin
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jeanette Seiler
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Vera K Schmid
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Elsa Barreau
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK)- Partner Site Freiburg, 79106 Freiburg, Germany; National Center for Tumor Diseases (NCT), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
192
|
The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response. Nat Immunol 2019; 20:812-823. [PMID: 31036902 DOI: 10.1038/s41590-019-0379-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Abstract
The helicase RIG-I initiates an antiviral immune response after recognition of pathogenic RNA. TRIM25, an E3 ubiquitin ligase, mediates K63-linked ubiquitination of RIG-I, which is crucial for RIG-I downstream signaling and the antiviral innate immune response. The components and mode of the RIG-I-initiated innate signaling remain to be fully understood. Here we identify a novel long noncoding RNA (Lnczc3h7a) that binds to TRIM25 and promotes RIG-I-mediated antiviral innate immune responses. Depletion of Lnczc3h7a impairs RIG-I signaling and the antiviral innate response to RNA viruses in vitro and in vivo. Mechanistically, Lnczc3h7a binds to both TRIM25 and activated RIG-I, serving as a molecular scaffold for stabilization of the RIG-I-TRIM25 complex at the early stage of viral infection. Lnczc3h7a facilitates TRIM25-mediated K63-linked ubiquitination of RIG-I and thus promotes downstream signaling transduction. Our findings reveal that host RNAs can enhance the response of innate immune sensors to foreign RNAs, ensuring effective antiviral defense.
Collapse
|
193
|
Chen Y, Li X, Liao H, Leung X, He J, Wang X, Li F, Yue H, Xu W. CFTR mutation compromises spermatogenesis by enhancing miR-15b maturation and suppressing its regulatory target CDC25A†. Biol Reprod 2019; 101:50-62. [PMID: 30985893 DOI: 10.1093/biolre/ioz062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/17/2018] [Accepted: 04/14/2019] [Indexed: 01/27/2023] Open
Abstract
Abstract
MicroRNAs (miRNAs) have recently been shown to be important for spermatogenesis; both DROSHA and Dicer1 KO mice exhibit infertility due to abnormal miRNA expression. However, the roles of individual miRNAs in spermatogenesis remain elusive. Here we demonstrated that miR-15b, a member of the miR-15/16 family, is primarily expressed in testis. A miR-15b transgenic mouse model was constructed to investigate the role of miR-15b in spermatogenesis. Impaired spermatogenesis was observed in miR-15b transgenic mice, suggesting that appropriate expression of miR-15b is vital for spermatogenesis. Furthermore, we demonstrated that overexpression of miR-15b reduced CDC25A gene post-transcriptional activity by targeting the 3′-UTR region of CDC25A, thus regulating spermatogenesis. In vitro results further demonstrated that a mutation in CFTR could affect the interaction between Ago2 with Dicer1 and that Dicer1 activity regulates miR-15b expression. We extended our study to azoospermia patients and found that infertile patients have a significantly higher level of miR-15b in semen and plasma samples. Taken together, we propose that CFTR regulation of miR-15b could be involved in the post-transcriptional regulation of CDC25A in mammalian testis and that miR-15b is important for spermatogenesis.
Collapse
Affiliation(s)
- Yan Chen
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoliang Li
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Huijuan Liao
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaotong Leung
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jiabei He
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiang Wang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Fuping Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huanxun Yue
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
194
|
Blockade of miR-3614 maturation by IGF2BP3 increases TRIM25 expression and promotes breast cancer cell proliferation. EBioMedicine 2019; 41:357-369. [PMID: 30797711 PMCID: PMC6444029 DOI: 10.1016/j.ebiom.2018.12.061] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The cross-talk between RNA binding proteins (RBPs) and microRNAs (miRNAs) in the regulation of gene expression is a complex process. Here, we describe a new mode of regulation of TRIM25 expression mediated by an antagonistic interplay between IGF2BP3 and miR-3614-3p. METHODS The expression level of TRIM25, IGF2BP3, pri-miR-3614 and miR-3614-3p in breast cancer (BC) tissues, non-tumor tissues and BC cell lines were detected by qRT-PCR, Western blot and Immunohistochemistry (IHC). Binding of miR-3614-3p and IGF2BP3 to TRIM25 RNA was verified using luciferase activation assays, RNA immunoprecipitation (RIP) and biotin pull-down assays. In vitro and in vivo loss- and gain-of-function studies were performed to reveal the effects and related mechanism of IGF2BP3-miR-3614-3p-TRIM25 axis in in breast cancer cells proliferation. FINDINGS We found that an intragenic miRNA-3614-3p inhibits the expression of its host gene TRIM25 by binding to its 3'- untranslated region (UTR). Interestingly, IGF2BP3 can competitively occupy this binding site and inhibit miRNA-3614 maturation, thereby protecting TRIM25 mRNA from miR-3614-mediated degradation. The overexpression of miR-3614-3p dramatically inhibited breast cancer cell growth through the downregulation of TRIM25. Furthermore, the silencing of IGF2BP3 reduced TRIM25 expression, suppressed cell proliferation, and exhibited a synergistic effect with miR-3614-3p overexpression. INTERPRETATION Collectively, these results demonstrate that control of TRIM25 RNA by an interplay between IGF2BP3 and miR-3614-3p represents a mechanism for breast cancer cell proliferation. FUND: The scientific research and sharing platform construction project of Shaanxi Province, Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, China Postdoctoral Science Foundation and The National Natural Science Foundation of China.
Collapse
|
195
|
The nuclear matrix protein Matr3 regulates processing of the synaptic microRNA-138-5p. Neurobiol Learn Mem 2019; 159:36-45. [PMID: 30790622 DOI: 10.1016/j.nlm.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/16/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
Abstract
microRNA-dependent post-transcriptional control represents an important gene-regulatory layer in post-mitotic neuronal development and synaptic plasticity. We recently identified the brain-enriched miR-138 as a negative regulator of dendritic spine morphogenesis in rat hippocampal neurons. A potential involvement of miR-138 in cognition is further supported by a recent GWAS study on memory performance in a cohort of aged (>60 years) individuals. The expression of miR-138, which is encoded in two independent genomic loci (miR-138-1 and -2), is subject to both cell-type and developmental stage-specific regulation, the underlying molecular mechanisms however are poorly understood. Here, we show that miR-138-2 is the primary source of mature miR-138 in developing rat hippocampal neurons. Furthermore, we obtained evidence for the regulation of miR-138-2 biogenesis at the level of primary miRNA processing. Using biochemical pull-down assays, we identified the nuclear matrix protein Matrin-3 as pri/pre-miR-138 interacting protein and mapped the interaction to the pri/pre-miR-138-2 loop region. Matrin-3 loss-of-function experiments in HEK293 cells and primary neurons together with protein localization studies suggest an inhibitory function of Matrin-3 in nuclear pri-miR-138-2 processing. Together, our experiments unravel a new mechanism of miR-138 regulation in neurons, with important implications for miR-138 regulation during neuronal development, synaptic plasticity and memory-related processes.
Collapse
|
196
|
Levengood JD, Tolbert BS. Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function. Semin Cell Dev Biol 2019; 86:150-161. [PMID: 29625167 PMCID: PMC6177329 DOI: 10.1016/j.semcdb.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
197
|
Nussbacher JK, Yeo GW. Systematic Discovery of RNA Binding Proteins that Regulate MicroRNA Levels. Mol Cell 2019; 69:1005-1016.e7. [PMID: 29547715 DOI: 10.1016/j.molcel.2018.02.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/26/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022]
Abstract
RNA binding proteins (RBPs) interact with primary, precursor, and mature microRNAs (miRs) to influence mature miR levels, which in turn affect critical aspects of human development and disease. To understand how RBPs contribute to miR biogenesis, we analyzed human enhanced UV crosslinking followed by immunoprecipitation (eCLIP) datasets for 126 RBPs to discover miR-encoding genomic loci that are statistically enriched for RBP binding. We find that 92% of RBPs interact directly with at least one miR locus, and that some interactions are cell line specific despite expression of the miR locus in both cell lines evaluated. We validated that ILF3 and BUD13 directly interact with and stabilize miR-144 and that BUD13 suppresses mir-210 processing to the mature species. We also observed that DDX3X regulates primary miR-20a, while LARP4 stabilizes precursor mir-210. Our approach to identifying regulators of miR loci can be applied to any user-defined RNA annotation, thereby guiding the discovery of uncharacterized regulators of RNA processing.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Molecular Engineering Laboratory, A★STAR, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
198
|
Shi Y, Huang X, Chen G, Wang Y, Liu Y, Xu W, Tang S, Guleng B, Liu J, Ren J. miR-632 promotes gastric cancer progression by accelerating angiogenesis in a TFF1-dependent manner. BMC Cancer 2019; 19:14. [PMID: 30612555 PMCID: PMC6322242 DOI: 10.1186/s12885-018-5247-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cancer (GC) is a common malignant disease worldwide. Aberrant miRNAs expression contributes to malignant cells behaviour, and in preclinical research, miRNA targeting has shown potential for improving GC therapy. Our present study demonstrated that miR-632 promotes GC progression in a trefoil factor 1 (TFF1)-dependent manner. Methods We collected GC tissues and serum samples to detect miR-632 expression using real-time PCR. A dual-luciferase reporter assay was used to identify whether miR-632 directly regulates TFF1 expression. Tube formation and endothelial cell recruitment assays were performed with or without miR-632 treatment. Western blot and in situ hybridization assays were performed to detect angiogenesis and endothelial recruitment markers that are affected by miR-632. Results Our results showed that miR-632 is highly expressed in GC tissue and serum and negatively associated with TFF1 in GC. miR-632 improves tube formation and endothelial cell recruitment by negatively regulating TFF1 in GC cells. Recombinant TFF1 reversed miR-632-mediated angiogenesis. TFF1 is a target gene of miR-632. Conclusions Our study demonstrated that miR-632 promotes GC progression by accelerating angiogenesis in a TFF1-dependent manner. Targeting of miR-632 may be a potential therapeutic approach for GC patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-5247-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, People's Republic of China. .,The First Clinical Medical College, Jinan University, Guangzhou, 510630, People's Republic of China.
| | - Xiaoxiao Huang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, People's Republic of China
| | - Guobin Chen
- Xiamen branch, Zhongshan hospital, Fudan University, Xiamen, 361015, People's Republic of China
| | - Ying Wang
- Xiamen branch, Zhongshan hospital, Fudan University, Xiamen, 361015, People's Republic of China
| | - Yuansheng Liu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, People's Republic of China
| | - Wei Xu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Shaohui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, People's Republic of China.,The First Clinical Medical College, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, People's Republic of China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, People's Republic of China.
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, People's Republic of China.
| |
Collapse
|
199
|
Lu P, Yan M, He L, Li J, Ji Y, Ji J. Crosstalk between Epigenetic Modulations in Valproic Acid Deactivated Hepatic Stellate Cells: An Integrated Protein and miRNA Profiling Study. Int J Biol Sci 2019; 15:93-104. [PMID: 30662350 PMCID: PMC6329925 DOI: 10.7150/ijbs.28642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/27/2018] [Indexed: 01/20/2023] Open
Abstract
Reverting activated hepatic stellate cells (HSCs) to less activation or quiescent status is a promising strategy for liver fibrosis. Histone deacetylase inhibitor (HDACI) could suppress HSCs activation. Our previous study demonstrated a critical role of miRNAs in HSCs activation. Here, we explored the involvement of miRNAs in HDACI induced HSCs deactivation. Human cell line LX2 that resembled activated HSCs was treated with an HDACI - valproic acid (VPA). The effects of VPA on the protein and miRNA profile of LX2 were comprehensively analyzed by iTraq quantitative proteomics and miRNA microarray. The interaction between miRNA and proteins was investigated systematically. The biofunctions of differentially expressed proteins and miRNA targeted proteins were annotated. VPA treatment attenuated the activation phenotype of LX2. In VPA treated LX2, among 1548 quantified proteins, only 86 proteins were differentially expressed (VPA-proteins). While among 282 high-abundance miRNAs, 123 were differentially expressed (VPA-miRNAs), with 104 down-regulated and 19 up-regulated. The top biofunctions of VPA-proteins were closely related to HSCs activation, including cell death and survival, cell movement, cellular growth and proliferation. Furthermore, 22 out of the 36 VPA-proteins involved in cell death and survival, and 19 out of the 30 VPA-proteins involved in cellular movement were predicted targets of VPA-miRNAs. A direct regulatory effect of histone acetylation on miRNA expression was also established. In conclusion, our data provided the molecular mechanisms for VPA induced HSCs deactivation at the protein level and suggested crosstalk between histone acetylation and miRNAs in the inhibitory effects of HDACI on HSCs activation.
Collapse
Affiliation(s)
- Peng Lu
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Min Yan
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Li He
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Jing Li
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
200
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression that bind complementary target mRNAs and repress their expression. Precursor miRNA molecules undergo nuclear and cytoplasmic processing events, carried out by the endoribonucleases DROSHA and DICER, respectively, to produce mature miRNAs that are loaded onto the RISC (RNA-induced silencing complex) to exert their biological function. Regulation of mature miRNA levels is critical in development, differentiation, and disease, as demonstrated by multiple levels of control during their biogenesis cascade. Here, we will focus on post-transcriptional mechanisms and will discuss the impact of cis-acting sequences in precursor miRNAs, as well as trans-acting factors that bind to these precursors and influence their processing. In particular, we will highlight the role of general RNA-binding proteins (RBPs) as factors that control the processing of specific miRNAs, revealing a complex layer of regulation in miRNA production and function.
Collapse
Affiliation(s)
- Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Zhejiang 314400, P.R. China
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|