151
|
Zhang X, Eladawi MA, Ryan WG, Fan X, Prevoznik S, Devale T, Ramnani B, Malathi K, Sibille E, Mccullumsmith R, Tomoda T, Shukla R. Ribosomal dysregulation: A conserved pathophysiological mechanism in human depression and mouse chronic stress. PNAS NEXUS 2023; 2:pgad299. [PMID: 37822767 PMCID: PMC10563789 DOI: 10.1093/pnasnexus/pgad299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
The underlying biological mechanisms that contribute to the heterogeneity of major depressive disorder (MDD) presentation remain poorly understood, highlighting the need for a conceptual framework that can explain this variability and bridge the gap between animal models and clinical endpoints. Here, we hypothesize that comparative analysis of molecular data from different experimental systems of chronic stress, and MDD has the potential to provide insight into these mechanisms and address this gap. Thus, we compared transcriptomic profiles of brain tissue from postmortem MDD subjects and from mice exposed to chronic variable stress (CVS) to identify orthologous genes. Ribosomal protein genes (RPGs) were down-regulated, and associated ribosomal protein (RP) pseudogenes were up-regulated in both conditions. A seeded gene co-expression analysis using altered RPGs common between the MDD and CVS groups revealed that down-regulated RPGs homeostatically regulated the synaptic changes in both groups through a RP-pseudogene-driven mechanism. In vitro analysis demonstrated that the RPG dysregulation was a glucocorticoid-driven endocrine response to stress. In silico analysis further demonstrated that the dysregulation was reversed during remission from MDD and selectively responded to ketamine but not to imipramine. This study provides the first evidence that ribosomal dysregulation during stress is a conserved phenotype in human MDD and chronic stress-exposed mouse. Our results establish a foundation for the hypothesis that stress-induced alterations in RPGs and, consequently, ribosomes contribute to the synaptic dysregulation underlying MDD and chronic stress-related mood disorders. We discuss the role of ribosomal heterogeneity in the variable presentations of depression and other mood disorders.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Centre, Shreveport, LA 71105, USA
| | - Mahmoud Ali Eladawi
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - William George Ryan
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaoming Fan
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Stephen Prevoznik
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Trupti Devale
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43614, USA
| | - Barkha Ramnani
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43614, USA
| | - Krishnamurthy Malathi
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43614, USA
| | - Etienne Sibille
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Robert Mccullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada
| | - Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
152
|
Dahl MJ, Kulesza A, Werkle-Bergner M, Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci Biobehav Rev 2023; 153:105358. [PMID: 37597700 PMCID: PMC10591841 DOI: 10.1016/j.neubiorev.2023.105358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Memory is essential in defining our identity by guiding behavior based on past experiences. However, aging leads to declining memory, disrupting older adult's lives. Memories are encoded through experience-dependent modifications of synaptic strength, which are regulated by the catecholamines dopamine and noradrenaline. While cognitive aging research demonstrates how dopaminergic neuromodulation from the substantia nigra-ventral tegmental area regulates hippocampal synaptic plasticity and memory, recent findings indicate that the noradrenergic locus coeruleus sends denser inputs to the hippocampus. The locus coeruleus produces dopamine as biosynthetic precursor of noradrenaline, and releases both to modulate hippocampal plasticity and memory. Crucially, the locus coeruleus is also the first site to accumulate Alzheimer's-related abnormal tau and severely degenerates with disease development. New in-vivo assessments of locus coeruleus integrity reveal associations with Alzheimer's markers and late-life memory impairments, which likely stem from impaired dopaminergic and noradrenergic neurotransmission. Bridging research across species, the reviewed findings suggest that degeneration of the locus coeruleus results in deficient dopaminergic and noradrenergic modulation of hippocampal plasticity and thus memory decline.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Agnieszka Kulesza
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, California, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
153
|
Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 2023; 19:583-598. [PMID: 37644213 DOI: 10.1038/s41582-023-00864-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
154
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
155
|
McNerney MW, Gurkoff GG, Beard C, Berryhill ME. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci 2023; 13:1402. [PMID: 37891771 PMCID: PMC10605899 DOI: 10.3390/brainsci13101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neurostimulation carries high therapeutic potential, accompanied by an excellent safety profile. In this review, we argue that an arena in which these tools could provide breakthrough benefits is traumatic brain injury (TBI). TBI is a major health problem worldwide, with the majority of cases identified as mild TBI (mTBI). MTBI is of concern because it is a modifiable risk factor for dementia. A major challenge in studying mTBI is its inherent heterogeneity across a large feature space (e.g., etiology, age of injury, sex, treatment, initial health status, etc.). Parallel lines of research in human and rodent mTBI can be collated to take advantage of the full suite of neuroscience tools, from neuroimaging (electroencephalography: EEG; functional magnetic resonance imaging: fMRI; diffusion tensor imaging: DTI) to biochemical assays. Despite these attractive components and the need for effective treatments, there are at least two major challenges to implementation. First, there is insufficient understanding of how neurostimulation alters neural mechanisms. Second, there is insufficient understanding of how mTBI alters neural function. The goal of this review is to assemble interrelated but disparate areas of research to identify important gaps in knowledge impeding the implementation of neurostimulation.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, and Center for Neuroscience, University of California, Davis, Sacramento, CA 95817, USA;
- Department of Veterans Affairs, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Charlotte Beard
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Program in Neuroscience and Behavioral Biology, Emory University, Atlanta, GA 30322, USA
| | - Marian E. Berryhill
- Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
156
|
Argunsah AÖ, Israely I. Homosynaptic plasticity induction causes heterosynaptic changes at the unstimulated neighbors in an induction pattern and location-specific manner. Front Cell Neurosci 2023; 17:1253446. [PMID: 37829671 PMCID: PMC10564986 DOI: 10.3389/fncel.2023.1253446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
Dendritic spines are highly dynamic structures whose structural and functional fluctuations depend on multiple factors. Changes in synaptic strength are not limited to synapses directly involved in specific activity patterns. Unstimulated clusters of neighboring spines in and around the site of stimulation can also undergo alterations in strength. Usually, when plasticity is induced at single dendritic spines with glutamate uncaging, neighboring spines do not show any significant structural fluctuations. Here, using two-photon imaging and glutamate uncaging at single dendritic spines of hippocampal pyramidal neurons, we show that structural modifications at unstimulated neighboring spines occur and are a function of the temporal pattern of the plasticity-inducing stimulus. Further, the relative location of the unstimulated neighbors within the local dendritic segment correlates with the extent of heterosynaptic plasticity that is observed. These findings indicate that naturalistic patterns of activity at single spines can shape plasticity at nearby clusters of synapses, and may play a role in priming local inputs for further modifications.
Collapse
Affiliation(s)
- Ali Özgür Argunsah
- Laboratory of Neuronal Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Zurich, Switzerland
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Türkiye
| | - Inbal Israely
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
157
|
Abghari M, Vu JTCM, Eckberg N, Aldana BI, Kohlmeier KA. Decanoic Acid Rescues Differences in AMPA-Mediated Calcium Rises in Hippocampal CA1 Astrocytes and Neurons in the 5xFAD Mouse Model of Alzheimer's Disease. Biomolecules 2023; 13:1461. [PMID: 37892143 PMCID: PMC10604953 DOI: 10.3390/biom13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aβ42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aβ42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells.
Collapse
|
158
|
Chen R, Vakilna YS, Lassers SB, Tang WC, Brewer G. Hippocampal network axons respond to patterned theta burst stimulation with lower activity of initially higher spike train similarity from EC to DG and later similarity of axons from CA1 to EC. J Neural Eng 2023; 20:056004. [PMID: 37666242 DOI: 10.1088/1741-2552/acf68a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Objective. Decoding memory functions for each hippocampal subregion involves extensive understanding of how each hippocampal subnetwork processes input stimuli. Theta burst stimulation (TBS) recapitulates natural brain stimuli which potentiates synapses in hippocampal circuits. TBS is typically applied to a bundle of axons to measure the immediate response in a downstream subregion like the cornu ammonis 1 (CA1). Yet little is known about network processing in response to stimulation, especially because individual axonal transmission between subregions is not accessible.Approach. To address these limitations, we reverse engineered the hippocampal network on a micro-electrode array partitioned by a MEMS four-chambered device with interconnecting microfluidic tunnels. The micro tunnels allowed monitoring single axon transmission which is inaccessible in slices orin vivo. The four chambers were plated separately with entorhinal cortex (EC), dentate gyrus (DG), CA1, and CA3 neurons. The patterned TBS was delivered to the EC hippocampal gateway. Evoked spike pattern similarity in each subregions was quantified with Jaccard distance metrics of spike timing.Main results. We found that the network subregion produced unique axonal responses to different stimulation patterns. Single site and multisite stimulations caused distinct information routing of axonal spikes in the network. The most spatially similar output at axons from CA3 to CA1 reflected the auto association within CA3 recurrent networks. Moreover, the spike pattern similarities shifted from high levels for axons to and from DG at 0.2 s repeat stimuli to greater similarity in axons to and from CA1 for repetitions at 10 s intervals. This time-dependent response suggested that CA3 encoded temporal information and axons transmitted the information to CA1.Significance. Our design and interrogation approach provide first insights into differences in information transmission between the four subregions of the structured hippocampal network and the dynamic pattern variations in response to stimulation at the subregional level to achieve probabilistic pattern separation and novelty detection.
Collapse
Affiliation(s)
- Ruiyi Chen
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | - Yash Shashank Vakilna
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
- Texas Institute of Restorative Neurotechnologies (TIRN), The University of Texas Health Science Center (UTHealth), Houston, TX 77030, United States of America
| | - Samuel Brandon Lassers
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
- Department of Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan (ROC)
| | - Gregory Brewer
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
- Center for Neuroscience of Learning and Memory & MIND Center, University of California, Irvine, CA 92697, United States of America
| |
Collapse
|
159
|
Parvez S, Ramachandran B, Kaushik M, Tabassum H, Frey JU. Long-term depression induction and maintenance across regions of the apical branch of CA1 dendrites. Hippocampus 2023; 33:1058-1066. [PMID: 37254828 DOI: 10.1002/hipo.23553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Well known as the center for learning and memory, hippocampus is the crucial brain region to study synaptic plasticity in the context of cellular fundamental mechanisms such as long-term depression (LTD) and long-term potentiation (LTP). However, despite years of extensive research, the key to our LTD queries and their induction mechanisms has not been fully understood. Previously, we reported the induction of late-LTD (L-LTD) in the distally located synapses of apical branch of hippocampal CA1 dendrites using strong low-frequency stimulation (SLFS). In contrast synapses at the proximal site could not express L-LTD. Thus, in the present study, we wanted to investigate whether or not synapses of apical dendritic branch at the proximal location could induce and maintain LTD and its related properties in in vitro rat hippocampal slices. Results indicated that the SLFS in the distal and proximal region triggered the plasticity related proteins (PRP) synthesis in both regions, as evident by the induction and maintenance of L-LTD in the distal region by virtue of synaptic and cross-tagging. In addition, the application of emetine at the time of proximal input stimulation prevented the transition of early-LTD (E-LTD) into L-LTD at the distal region, proving PRP synthesis at the proximal site. Further, it was observed that weak low-frequency stimulation (WLFS) could induce E-LTD in the proximal region along with LTD-specific tag-setting at the synapses. In conclusion, the current study suggests unique findings that the synaptic and cross-tagging mediate L-LTD expression is maintained in the proximal location of hippocampus apical CA1 dendrites.
Collapse
Affiliation(s)
- Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Neurophysiology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Binu Ramachandran
- Department of Neurophysiology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Neuronal Plasticity Group, Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Medha Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Department of Neurophysiology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| | - Julietta U Frey
- Department of Neuroloy, Medical College of Georgia, Brain & Behavior Discovery Institute, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
160
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
161
|
Majumder S, Hirokawa K, Yang Z, Paletzki R, Gerfen CR, Fontolan L, Romani S, Jain A, Yasuda R, Inagaki HK. Cell-type-specific plasticity shapes neocortical dynamics for motor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552699. [PMID: 37609277 PMCID: PMC10441538 DOI: 10.1101/2023.08.09.552699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn new behavior.
Collapse
Affiliation(s)
- Shouvik Majumder
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Koichi Hirokawa
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Zidan Yang
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ronald Paletzki
- National Institute of Mental Health, Bethesda, MD 20814, USA
| | | | - Lorenzo Fontolan
- Turing Centre for Living Systems, Aix- Marseille University, INSERM, INMED U1249, Marseille, France
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Sandro Romani
- Janelia Research Campus, HHMI, Ashburn VA 20147, USA
| | - Anant Jain
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | |
Collapse
|
162
|
Isomura T, Kotani K, Jimbo Y, Friston KJ. Experimental validation of the free-energy principle with in vitro neural networks. Nat Commun 2023; 14:4547. [PMID: 37550277 PMCID: PMC10406890 DOI: 10.1038/s41467-023-40141-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Empirical applications of the free-energy principle are not straightforward because they entail a commitment to a particular process theory, especially at the cellular and synaptic levels. Using a recently established reverse engineering technique, we confirm the quantitative predictions of the free-energy principle using in vitro networks of rat cortical neurons that perform causal inference. Upon receiving electrical stimuli-generated by mixing two hidden sources-neurons self-organised to selectively encode the two sources. Pharmacological up- and downregulation of network excitability disrupted the ensuing inference, consistent with changes in prior beliefs about hidden sources. As predicted, changes in effective synaptic connectivity reduced variational free energy, where the connection strengths encoded parameters of the generative model. In short, we show that variational free energy minimisation can quantitatively predict the self-organisation of neuronal networks, in terms of their responses and plasticity. These results demonstrate the applicability of the free-energy principle to in vitro neural networks and establish its predictive validity in this setting.
Collapse
Affiliation(s)
- Takuya Isomura
- Brain Intelligence Theory Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kiyoshi Kotani
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
- VERSES AI Research Lab, Los Angeles, CA, 90016, USA
| |
Collapse
|
163
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
164
|
Khani F, Pourmotabbed A, Hosseinmardi N, Alaee E, Fathollahi Y, Azizi H. Acute adolescent morphine exposure improves dark avoidance memory and enhances long-term potentiation of ventral hippocampal CA1 during adulthood in rats. Addict Biol 2023; 28:e13308. [PMID: 37500490 DOI: 10.1111/adb.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023]
Abstract
Adolescence represents a distinctive vulnerable period when exposure to stressful situations including opioid exposure can entail lasting effects on brain and can change neural mechanisms involved in memory formation for drug-associated cues, possibly increasing vulnerability of adolescents to addiction. Herein, the effects of acute adolescent morphine exposure (AAME, two injections of 2.5 mg/kg SC morphine on PND 31) were therefore investigated 6 weeks later (adulthood) on avoidance memory and hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in transvers slices from the ventral hippocampus in adult male rats using field recordings technique. Animal body weight was measured from PND 31 throughout PND 40 and also in four time points with 1 week intervals from adolescence to adulthood (PNDs 48, 55, 62 and 69) to evaluate the effect of AAME on the weight gain. We showed that there were no effects on body weight, anxiety-like behaviour and locomotor activity, even until adulthood. There was an improved dark avoidance memory during adulthood. Finally, AAME had no effects on baseline synaptic responses and resulted in a decrease in the mean values of the field excitatory postsynaptic potential slopes required to evoke the half-maximal population spike amplitude and an enhancement of LTP magnitude (%) in the ventral CA1 during adulthood. Briefly, our results suggest long-lasting effects of acute adolescent morphine exposure on the ventral hippocampus, which begin the enhancing of synaptic plasticity and the improving of emotional memory in adulthood.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Alaee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
165
|
Jong YJI, Izumi Y, Harmon SK, Zorumski CF, ÓMalley KL. Striatal mGlu 5-mediated synaptic plasticity is independently regulated by location-specific receptor pools and divergent signaling pathways. J Biol Chem 2023; 299:104949. [PMID: 37354970 PMCID: PMC10388212 DOI: 10.1016/j.jbc.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
Metabotropic glutamate receptor 5 (mGlu5) is widely expressed throughout the central nervous system and is involved in neuronal function, synaptic transmission, and a number of neuropsychiatric disorders such as depression, anxiety, and autism. Recent work from this lab showed that mGlu5 is one of a growing number of G protein-coupled receptors that can signal from intracellular membranes where it drives unique signaling pathways, including upregulation of extracellular signal-regulated kinase (ERK1/2), ETS transcription factor Elk-1, and activity-regulated cytoskeleton-associated protein (Arc). To determine the roles of cell surface mGlu5 as well as the intracellular receptor in a well-known mGlu5 synaptic plasticity model such as long-term depression, we used pharmacological isolation and genetic and physiological approaches to analyze spatially restricted pools of mGlu5 in striatal cultures and slice preparations. Here we show that both intracellular and cell surface receptors activate the phosphatidylinositol-3-kinase-protein kinase B-mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, whereas only intracellular mGlu5 activates protein phosphatase 2 and leads to fragile X mental retardation protein degradation and de novo protein synthesis followed by a protein synthesis-dependent increase in Arc and post-synaptic density protein 95. However, both cell surface and intracellular mGlu5 activation lead to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA2 internalization and chemically induced long-term depression albeit via different signaling mechanisms. These data underscore the importance of intracellular mGlu5 in the cascade of events associated with sustained synaptic transmission in the striatum.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Charles F Zorumski
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Karen L ÓMalley
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
166
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
167
|
Qi F, Nitsche MA, Ren X, Wang D, Wang L. Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective. Front Neurol 2023; 14:1156987. [PMID: 37497013 PMCID: PMC10367110 DOI: 10.3389/fneur.2023.1156987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Stroke is a central nervous system disease that causes structural lesions and functional impairments of the brain, resulting in varying types, and degrees of dysfunction. The bimodal balance-recovery model (interhemispheric competition model and vicariation model) has been proposed as the mechanism of functional recovery after a stroke. We analyzed how combinations of motor observation treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can be taken as accessorial physical therapy methods on symptom reduction of stroke patients. We suggest that top-down and bottom-up stimulation techniques combined with action observation treatment synergistically might develop into valuable physical therapy strategies in neurorehabilitation after stroke. We explored how TES or TMS intervention over the contralesional hemisphere or the lesioned hemisphere combined with PES or PMS of the paretic limbs during motor observation followed by action execution have super-additive effects to potentiate the effect of conventional treatment in stroke patients. The proposed paradigm could be an innovative and adjunctive approach to potentiate the effect of conventional rehabilitation treatment, especially for those patients with severe motor deficits.
Collapse
Affiliation(s)
- Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Duanwei Wang
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
168
|
Han PP, Han Y, Shen XY, Gao ZK, Bi X. Enriched environment-induced neuroplasticity in ischemic stroke and its underlying mechanisms. Front Cell Neurosci 2023; 17:1210361. [PMID: 37484824 PMCID: PMC10360187 DOI: 10.3389/fncel.2023.1210361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Stroke is a common cerebrovascular disease that can interrupt local blood flow in the brain, causing neuronal damage or even death, resulting in varying degrees of neurological dysfunction. Neuroplasticity is an important neurological function that helps neurons reorganize and regain function after injury. After cerebral ischemia, neuroplasticity changes are critical factors for restoring brain function. An enriched environment promotes increased neuroplasticity, thereby aiding stroke recovery. In this review, we discuss the positive effects of the enriched environment on neuroplasticity after cerebral ischemia, including synaptic plasticity, neurogenesis, and angiogenesis. In addition, we also introduce some studies on the clinical application of enriched environments in the rehabilitation of post-stroke patients, hoping that they can provide some inspiration for doctors and therapists looking for new approaches to stroke rehabilitation.
Collapse
Affiliation(s)
- Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
169
|
Michon FX, Laplante I, Bosson A, Robitaille R, Lacaille JC. mTORC1-mediated acquisition of reward-related representations by hippocampal somatostatin interneurons. Mol Brain 2023; 16:55. [PMID: 37400913 DOI: 10.1186/s13041-023-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 07/05/2023] Open
Abstract
Plasticity of principal cells and inhibitory interneurons underlies hippocampal memory. Bidirectional modulation of somatostatin cell mTORC1 activity, a crucial translational control mechanism in synaptic plasticity, causes parallel changes in hippocampal CA1 somatostatin interneuron (SOM-IN) long-term potentiation and hippocampus-dependent memory, indicating a key role in learning. However, SOM-IN activity changes and behavioral correlates during learning, and the role of mTORC1 in these processes, remain ill-defined. To address these questions, we used two-photon Ca2+ imaging from SOM-INs during a virtual reality goal-directed spatial memory task in head-fixed control mice (SOM-IRES-Cre mice) or in mice with conditional knockout of Rptor (SOM-Rptor-KO mice) to block mTORC1 activity in SOM-INs. We found that control mice learn the task, but SOM-Raptor-KO mice exhibit a deficit. Also, SOM-IN Ca2+ activity became increasingly related to reward during learning in control mice but not in SOM-Rptor-KO mice. Four types of SOM-IN activity patterns related to reward location were observed, "reward off sustained", "reward off transient", "reward on sustained" and "reward on transient", and these responses showed reorganization after reward relocation in control but not SOM-Rptor-KO mice. Thus, SOM-INs develop mTORC1-dependent reward- related activity during learning. This coding may bi-directionally interact with pyramidal cells and other structures to represent and consolidate reward location.
Collapse
Affiliation(s)
- François-Xavier Michon
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Anthony Bosson
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Richard Robitaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
170
|
Ma T. Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer disease. J Neurochem 2023; 166:47-57. [PMID: 34796967 PMCID: PMC9117558 DOI: 10.1111/jnc.15541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Understanding the molecular signaling mechanisms underlying cognition and neuronal plasticity would provide insights into the pathogenesis of neuronal disorders characterized by cognitive syndromes such as Alzheimer disease (AD). Phosphorylation of the mRNA translational factor eukaryotic elongation factor 2 (eEF2) by its specific kinase eEF2K is critically involved in protein synthesis regulation. In this review, we discussed recent studies on the roles of eEF2K/eEF2 signaling in the context of regulation/dysregulation of cognitive function and synaptic plasticity. We specifically focus on the discussion of recent evidence indicating suppression of eEF2K signaling as a potential novel therapeutic avenue for AD and related dementias (ADRDs).
Collapse
Affiliation(s)
- Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine
| |
Collapse
|
171
|
Gu J, Ke P, Guo H, Liu J, Liu Y, Tian X, Huang Z, Xu X, Xu D, Ma Y, Wang X, Xiao F. KCTD13-mediated ubiquitination and degradation of GluN1 regulates excitatory synaptic transmission and seizure susceptibility. Cell Death Differ 2023; 30:1726-1741. [PMID: 37142655 PMCID: PMC10307852 DOI: 10.1038/s41418-023-01174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common and severe form of epilepsy in adults; however, its underlying pathomechanisms remain elusive. Dysregulation of ubiquitination is increasingly recognized to contribute to the development and maintenance of epilepsy. Herein, we observed for the first time that potassium channel tetramerization domain containing 13 (KCTD13) protein, a substrate-specific adapter for cullin3-based E3 ubiquitin ligase, was markedly down-regulated in the brain tissue of patients with TLE. In a TLE mouse model, the protein expression of KCTD13 dynamically changed during epileptogenesis. Knockdown of KCTD13 in the mouse hippocampus significantly enhanced seizure susceptibility and severity, whereas overexpression of KCTD13 showed the opposite effect. Mechanistically, GluN1, an obligatory subunit of N-methyl-D-aspartic acid receptors (NMDARs), was identified as a potential substrate protein of KCTD13. Further investigation revealed that KCTD13 facilitates lysine-48-linked polyubiquitination of GluN1 and its degradation through the ubiquitin-proteasome pathway. Besides, the lysine residue 860 of GluN1 is the main ubiquitin site. Importantly, dysregulation of KCTD13 affected membrane expression of glutamate receptors and impaired glutamate synaptic transmission. Systemic administration of the NMDAR inhibitor memantine significantly rescued the epileptic phenotype aggravated by KCTD13 knockdown. In conclusion, our results demonstrated an unrecognized pathway of KCTD13-GluN1 in epilepsy, suggesting KCTD13 as a potential neuroprotective therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Haokun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Demei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
- Institute for Brain Science and Disease of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
172
|
Ma J, Wang F, Wang J, Wang P, Dou X, Yao S, Lin Y. The Effect of Low-Dose Esketamine on Postoperative Neurocognitive Dysfunction in Elderly Patients Undergoing General Anesthesia for Gastrointestinal Tumors: A Randomized Controlled Trial. Drug Des Devel Ther 2023; 17:1945-1957. [PMID: 37408867 PMCID: PMC10318106 DOI: 10.2147/dddt.s406568] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose This study aims to evaluate the effects of the intraoperative application of low-dose esketamine on postoperative neurocognitive dysfunction (PND) in elderly patients undergoing general anesthesia for gastrointestinal tumors. Methods Sixty-eight elderly patients were randomly allocated to two groups: the esketamine group (group Es) (0.25 mg/kg loading, 0.125mg/kg/h infusion) and the control group (group C) (received normal saline). The primary outcome was the incidence of delayed neurocognitive recovery (DNR). The secondary outcomes were intraoperative blood loss, the total amount of fluid given during surgery, propofol and remifentanil consumption, cardiovascular adverse events, use of vasoactive drugs, operating and anesthesia time, the number of cases of sufentanil remedial analgesia, the incidence of postoperative delirium (POD), the intraoperative hemodynamics, bispectral index (BIS) value at 0, 1, 2 h after operation and numeric rating scale (NRS) pain scores within 3 d after surgery. Results The incidence of DNR in group Es (16.13%) was lower than in group C (38.71%) (P <0.05). The intraoperative remifentanil dosage and the number of cases of dopamine used in group Es were lower than in group C (P <0.05). Compared with group C, DBP was higher at 3 min after intubation, and MAP was lower at 30 min after extubation in group Es (P<0.05). The incidence of hypotension and tachycardia in group Es was lower than in group C (P <0.05). The NRS pain score at 3 d after surgery in group Es was lower than in group C (P <0.05). Conclusion Low-dose esketamine infusion reduced to some extent the incidence of DNR in elderly patients undergoing general anesthesia for gastrointestinal tumors, improved intraoperative hemodynamics and BIS value, decreased the incidence of cardiovascular adverse events and the intraoperative consumption of opioids, and relieved postoperative pain.
Collapse
Affiliation(s)
- Jiamin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 201620, People’s Republic of China
| | - Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jingxu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Pengcheng Wang
- Department of Anesthesiology, Zhumadian Central Hospital, Zhumadian, 463000, People’s Republic of China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
173
|
Argunsah AÖ, Israely I. The temporal pattern of synaptic activation determines the longevity of structural plasticity at dendritic spines. iScience 2023; 26:106835. [PMID: 37332599 PMCID: PMC10272476 DOI: 10.1016/j.isci.2023.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
Learning is thought to involve physiological and structural changes at individual synapses. Synaptic plasticity has predominantly been studied using regular stimulation patterns, but neuronal activity in the brain normally follows a Poisson distribution. We used two-photon imaging and glutamate uncaging to investigate the structural plasticity of single dendritic spines using naturalistic activation patterns sampled from a Poisson distribution. We showed that naturalistic activation patterns elicit structural plasticity that is both NMDAR and protein synthesis-dependent. Furthermore, we uncovered that the longevity of structural plasticity is dependent on the temporal structure of the naturalistic pattern. Finally, we found that during the delivery of the naturalistic activity, spines underwent rapid structural growth that predicted the longevity of plasticity. This was not observed with regularly spaced activity. These data reveal that different temporal organizations of the same number of synaptic stimulations can produce rather distinct short and long-lasting structural plasticity.
Collapse
Affiliation(s)
- Ali Özgür Argunsah
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
- Laboratory of Neuronal Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Inbal Israely
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
- Department of Pathology and Cell Biology, Department of Neuroscience, in the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
174
|
McIlvried LA, Del Rosario JS, Pullen MY, Wangzhou A, Sheahan TD, Shepherd AJ, Slivicki RA, Lemen JA, Price TJ, Copits BA, Gereau RW. Intrinsic Homeostatic Plasticity in Mouse and Human Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544829. [PMID: 37398430 PMCID: PMC10312743 DOI: 10.1101/2023.06.13.544829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients. However, whether mechanisms of homeostatic plasticity are engaged in sensory neurons under normal conditions or altered after chronic pain is unknown. Here, we showed that sustained depolarization induced by 30mM KCl induces a compensatory decrease in the excitability in mouse and human sensory neurons. Moreover, voltage-gated sodium currents are robustly reduced in mouse sensory neurons contributing to the overall decrease in neuronal excitability. Decreased efficacy of these homeostatic mechanisms could potentially contribute to the development of the pathophysiology of chronic pain.
Collapse
Affiliation(s)
- Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - John Smith Del Rosario
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andrew J. Shepherd
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Department of Neuroscience and Department of Biomedical Engineering; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Lead contact
| |
Collapse
|
175
|
Nachtigall EG, D R de Freitas J, de C Myskiw J, R G Furini C. Role of hippocampal Wnt signaling pathways on contextual fear memory reconsolidation. Neuroscience 2023:S0306-4522(23)00248-8. [PMID: 37286160 DOI: 10.1016/j.neuroscience.2023.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Memories already consolidated when reactivated return to a labile state and can be modified, this process is known as reconsolidation. It is known the Wnt signaling pathways can modulate hippocampal synaptic plasticity as well as learning and memory. Yet, Wnt signaling pathways interact with NMDA (N-methyl-D-aspartate) receptors. However, whether canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ signaling pathways are required in the CA1 region of hippocampus for contextual fear memory reconsolidation remains unclear. So, here we verified that the inhibition of canonical Wnt/β-catenin pathway with DKK1 (Dickkopf-1) into CA1 impaired the reconsolidation of contextual fear conditioning (CFC) memory when administered immediately and 2h after reactivation session but not 6h later, while the inhibition of non-canonical Wnt/Ca2+ signaling pathway with SFRP1 (Secreted frizzled-related protein-1) into CA1 immediately after reactivation session had no effect. Moreover, the impairment induced by DKK1 was blocked by the administration of the agonist of the NMDA receptors glycine site, D-Serine, immediately and 2h after reactivation session. We found that hippocampal canonical Wnt/β-catenin is necessary to the reconsolidation of CFC memory at least two hours after reactivation, while non-canonical Wnt/Ca2+ signaling pathway is not involved in this process and, that there is a link between Wnt/β-catenin signaling pathway and NMDA receptors. In view of this, this study provides new evidence regarding the neural mechanisms underlying contextual fear memory reconsolidation and contributes to provide a new possible target for the treatment of fear related disorders.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil
| | - Jociane de C Myskiw
- Psychobiology and Neurocomputation Laboratory (LPBNC), Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, 9500, Bldg. 43422, room 208A, 91501-970, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Bldg. 63, 3(rd) floor, 90610-000, Porto Alegre, RS, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681 - Bldg. 40, 8(th) floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
176
|
Akitake B, Douglas HM, LaFosse PK, Beiran M, Deveau CE, O'Rawe J, Li AJ, Ryan LN, Duffy SP, Zhou Z, Deng Y, Rajan K, Histed MH. Amplified cortical neural responses as animals learn to use novel activity patterns. Curr Biol 2023; 33:2163-2174.e4. [PMID: 37148876 DOI: 10.1016/j.cub.2023.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Cerebral cortex supports representations of the world in patterns of neural activity, used by the brain to make decisions and guide behavior. Past work has found diverse, or limited, changes in the primary sensory cortex in response to learning, suggesting that the key computations might occur in downstream regions. Alternatively, sensory cortical changes may be central to learning. We studied cortical learning by using controlled inputs we insert: we trained mice to recognize entirely novel, non-sensory patterns of cortical activity in the primary visual cortex (V1) created by optogenetic stimulation. As animals learned to use these novel patterns, we found that their detection abilities improved by an order of magnitude or more. The behavioral change was accompanied by large increases in V1 neural responses to fixed optogenetic input. Neural response amplification to novel optogenetic inputs had little effect on existing visual sensory responses. A recurrent cortical model shows that this amplification can be achieved by a small mean shift in recurrent network synaptic strength. Amplification would seem to be desirable to improve decision-making in a detection task; therefore, these results suggest that adult recurrent cortical plasticity plays a significant role in improving behavioral performance during learning.
Collapse
Affiliation(s)
- Bradley Akitake
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah M Douglas
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul K LaFosse
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manuel Beiran
- Nash Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ciana E Deveau
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan O'Rawe
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna J Li
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren N Ryan
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel P Duffy
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhishang Zhou
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanting Deng
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kanaka Rajan
- Nash Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark H Histed
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
177
|
Ignácz A, Nagy-Herczeg D, Hausser A, Schlett K. Dendritic effects of genetically encoded actin-labeling probes in cultured hippocampal neurons. Mol Biol Cell 2023; 34:br8. [PMID: 36989034 PMCID: PMC10295473 DOI: 10.1091/mbc.e22-08-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Actin cytoskeleton predominantly regulates the formation and maintenance of synapses by controlling dendritic spine morphology and motility. To visualize actin dynamics, actin molecules can be labeled by genetically fusing fluorescent proteins to actin monomers, actin-binding proteins, or single-chain anti-actin antibodies. In the present study, we compared the dendritic effect of EGFP-actin, LifeAct-TagGFP2 (LifeAct-GFP), and Actin-Chromobody-TagGFP2 (AC-GFP) in mouse cultured hippocampal neurons using unbiased quantitative methods. The actin-binding probes LifeAct-GFP and AC-GFP showed similar affinity to F-actin, but in contrast to EGFP-actin, they did not reveal subtle changes in actin remodeling between mushroom-shaped spines and filopodia. All tested actin probes colocalized with phalloidin similarly; however, the enrichment of LifeAct-GFP in dendritic spines was remarkably lower compared with the other constructs. LifeAct-GFP expression was tolerated at a higher expression level compared with EGFP-actin and AC-GFP with only subtle differences identified in dendritic spine morphology and protrusion density. While EGFP-actin and LifeAct-GFP expression did not alter dendritic arborization, AC-GFP-expressing neurons displayed a reduced dendritic tree. Thus, although all tested actin probes may be suitable for actin imaging studies, certain limitations should be considered before performing experiments with a particular actin-labeling probe in primary neurons.
Collapse
Affiliation(s)
- Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Domonkos Nagy-Herczeg
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
178
|
Han J, Shan X, Lin Y, Tao Y, Zhao X, Wang Z, Xu H, Liu Y. Multi-Wavelength-Recognizable Memristive Devices via Surface Plasmon Resonance Effect for Color Visual System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207928. [PMID: 36890789 DOI: 10.1002/smll.202207928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Photoelectric memristor has attracted many attentions thanks to their promising potential in optical communication chips and artificial vision systems. However, the implementation of an artificial visual system based on memristive devices remains a considerable challenge because most photoelectric memristors cannot recognize color. Herein, multi-wavelength recognizable memristive devices based on silver(Ag) nanoparticles (NPs) and porous silicon oxide (SiOx ) nanocomposites are presented. Rely on the effects of localized surface plasmon resonance (LSPR) and optical excitation of Ag NPs in SiOx , the set voltage of the device can be gradually reduced. Moreover, the current overshoot problem is alleviated to suppress conducting filament overgrowth after visible light irradiation with different wavelengths, resulting in diverse low resistance states (LRS). Taking advantage of the characteristics of controlled switching voltage and LRS resistance distribution, color image recognition is finally realized in the present work. X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (C-AFM) show that the light irradiation plays an important role on resistive switching (RS) process: the photo-assisted Ag ionization leads to a significant reduction of set voltage and overshoot current. This work provides an effective method toward the development of multi-wavelength-recognizable memristive devices for future artificial color vision system.
Collapse
Affiliation(s)
- Jiaqi Han
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Xuanyu Shan
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Ya Lin
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Ye Tao
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Xiaoning Zhao
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Zhongqiang Wang
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Haiyang Xu
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| | - Yichun Liu
- Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
179
|
Wang L, Wang X, Liu C, Xu W, Kuang W, Bu Q, Li H, Zhao Y, Jiang L, Chen Y, Qin F, Li S, Wei Q, Liu X, Liu B, Chen Y, Dai Y, Wang H, Tian J, Cao G, Zhao Y, Cen X. Morphine Re-arranges Chromatin Spatial Architecture of Primate Cortical Neurons. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:551-572. [PMID: 37209997 PMCID: PMC10787020 DOI: 10.1016/j.gpb.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/22/2023]
Abstract
The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunqi Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Shenzhen Key Laboratory of Drug Addiction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qinfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaocong Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
180
|
Taheri F, Joushi S, Esmaeilpour K, Sheibani V, Ebrahimi MN, Taheri Zadeh Z. Music alleviates cognitive impairments in an animal model of autism. Int J Dev Neurosci 2023. [PMID: 37246451 DOI: 10.1002/jdn.10260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 05/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms including impairment in social communication and restrictive and repetitive behaviors and interests. Music has emerged in the past decade as an intervention therapy for children with ASD. The aim of the present study was to evaluate the effects of music on cognition impairments in the valproic acid (VPA) rat model of autism. The VPA was administered for animal modeling of autism on embryonic day 12.5 (E12.5) (600 mg/kg). Male and female pups were sub divided into four main groups (Saline.Non-music, VPA.Non-music, Saline.Music, and VPA.Music). The rats in the music groups were exposed to Mozart's piano sonata K.448 for 30 days (4 h/day), from postnatal day (PND) 21 to 50. Autistic-like behaviors were tested using a social interaction, the Morris water maze (MWM), and a passive avoidance tasks at the end of the PND 50. Our results demonstrated that VPA-exposed rat pups had significantly lower sociability and social memory performance compared with the saline-exposed rats in both sexes. VPA-exposed rat pups exhibited learning and memory impairments in the MWM and passive avoidance tasks. Our results demonstrated that music improved sociability in VPA-exposed rats, especially in males. Furthermore, our findings revealed that music improved learning impairments in VPA-exposed male rats in MWM task. In addition, music improved spatial memory impairments in VPA-exposed rats of both sexes. We also found that music improved passive avoidance memory impairments in VPA-exposed rats of both sexes, especially in females. More investigation in future studies are needed.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy department, University of Waterloo, Waterloo, Ontario, Canada
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Taheri Zadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
181
|
Nageeb Hasan SM, Clarke CL, McManamon Strand TP, Bambico FR. Putative pathological mechanisms of late-life depression and Alzheimer's Disease. Brain Res 2023:148423. [PMID: 37244602 DOI: 10.1016/j.brainres.2023.148423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive impairment in cognition and memory. AD is accompanied by several neuropsychiatric symptoms, with depression being the most prominent. Although depression has long been known to be associated with AD, controversial findings from preclinical and clinical studies have obscured the precise nature of this association. However recent evidence suggests that depression could be a prodrome or harbinger of AD. Evidence indicates that the major central serotonergic nucleus-the dorsal raphe nucleus (DRN)-shows very early AD pathology: neurofibrillary tangles made of hyperphosphorylated tau protein and degenerated neurites. AD and depression share common pathophysiologies, including functional deficits of the serotonin (5-HT) system. 5-HT receptors have modulatory effects on the progression of AD pathology i.e., reduction in Aβ load, increased hyper-phosphorylation of tau, decreased oxidative stress etc. Moreover, preclinical models show a role for specific channelopathies that result in abnormal regional activational and neuroplasticity patterns. One of these concerns the pathological upregulation of the small conductance calcium-activated potassium (SK) channel in corticolimbic structure. This has also been observed in the DRN in both diseases. The SKC is a key regulator of cell excitability and long-term potentiation (LTP). SKC over-expression is positively correlated with aging and cognitive decline, and is evident in AD. Pharmacological blockade of SKCs has been reported to reverse symptoms of depression and AD. Thus, aberrant SKC functioning could be related to depression pathophysiology and diverts its late-life progression towards the development of AD. We summarize findings from preclinical and clinical studies suggesting a molecular linkage between depression and AD pathology. We also provide a rationale for considering SKCs as a novel pharmacological target for the treatment of AD-associated symptoms.
Collapse
Affiliation(s)
- S M Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada.
| | - Courtney Leigh Clarke
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada
| | | | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland and Labrador, Newfoundland and Labrador, A1B3Xs, Canada; Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T1R8, Canada
| |
Collapse
|
182
|
Tullis JE, Bayer KU. Distinct synaptic pools of DAPK1 differentially regulate activity-dependent synaptic CaMKII accumulation. iScience 2023; 26:106723. [PMID: 37216104 PMCID: PMC10192646 DOI: 10.1016/j.isci.2023.106723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
The death-associated protein kinase 1 (DAPK1) regulates the synaptic movement of the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). Synaptic CaMKII accumulation is mediated via binding to the NMDA-receptor subunit GluN2B and is required for long-term potentiation (LTP). By contrast, long-term depression (LTD) instead requires specific suppression of this movement, which is mediated by competitive DAPK1 binding to GluN2B. We find here that DAPK1 localizes to synapses via two distinct mechanisms: basal localization requires F-actin, but retention of DAPK1 at synapses during LTD requires an additional binding mode, likely to GluN2B. While F-actin binding mediates DAPK1 enrichment at synapses, it is not sufficient to suppress synaptic CaMKII movement. However, it is a prerequisite that enables the additional LTD-specific binding mode of DAPK1, which in turn mediates suppression of the CaMKII movement. Thus, both modes of synaptic DAPK1 localization work together to regulate synaptic CaMKII localization and thereby synaptic plasticity.
Collapse
Affiliation(s)
- Jonathan E. Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
183
|
Rumian NL, Brown CN, Hendry-Hofer TB, Rossetti T, Orfila JE, Tullis JE, Dwoskin LP, Buonarati OR, Lisman JE, Quillinan N, Herson PS, Bebarta VS, Bayer KU. Short-term CaMKII inhibition with tatCN19o does not erase pre-formed memory in mice and is neuroprotective in pigs. J Biol Chem 2023; 299:104693. [PMID: 37037305 PMCID: PMC10189404 DOI: 10.1016/j.jbc.2023.104693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/12/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of learning and memory, which poses a problem for targeting it therapeutically. Indeed, our study supports prior conclusions that long-term interference with CaMKII signaling can erase pre-formed memories. By contrast, short-term pharmacological CaMKII inhibition with the neuroprotective peptide tatCN19o interfered with learning in mice only mildly and transiently (for less than 1 h) and did not at all reverse pre-formed memories. These results were obtained with ≥500-fold of the dose that protected hippocampal neurons from cell death after a highly clinically relevant pig model of transient global cerebral ischemia: ventricular fibrillation followed by advanced life support and electrical defibrillation to induce the return of spontaneous circulation. Of additional importance for therapy development, our preliminary cardiovascular safety studies in mice and pig did not indicate any concerns with acute tatCN19o injection. Taken together, although prolonged interference with CaMKII signaling can erase memory, acute short-term CaMKII inhibition with tatCN19o did not cause such retrograde amnesia that would pose a contraindication for therapy.
Collapse
Affiliation(s)
- Nicole L Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tara B Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Rossetti
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - James E Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan E Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Olivia R Buonarati
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John E Lisman
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
184
|
Barrio-Alonso E, Lituma PJ, Notaras MJ, Albero R, Bouchekioua Y, Wayland N, Stankovic IN, Jain T, Gao S, Calderon DP, Castillo PE, Colak D. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep 2023; 42:112375. [PMID: 37043347 PMCID: PMC10564971 DOI: 10.1016/j.celrep.2023.112375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus. We identify TIMELESS as a chromatin-bound protein that targets synaptic-plasticity-related genes such as phosphodiesterase 4B (Pde4b). By promoting Pde4b transcription, TIMELESS negatively regulates cAMP signaling to modulate AMPA receptor GluA1 function and influence synaptic plasticity. Conditional deletion of Timeless in the adult forebrain impairs working and contextual fear memory in mice. These cognitive phenotypes were accompanied by attenuation of hippocampal Schaffer-collateral synapse long-term potentiation. Together, these data establish a neuron-specific function of mammalian TIMELESS by defining a mechanism that regulates synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Robert Albero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Youcef Bouchekioua
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Natalie Wayland
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Isidora N Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Tanya Jain
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA; Gale & Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
185
|
Eiro T, Miyazaki T, Hatano M, Nakajima W, Arisawa T, Takada Y, Kimura K, Sano A, Nakano K, Mihara T, Takayama Y, Ikegaya N, Iwasaki M, Hishimoto A, Noda Y, Miyazaki T, Uchida H, Tani H, Nagai N, Koizumi T, Nakajima S, Mimura M, Matsuda N, Kanai K, Takahashi K, Ito H, Hirano Y, Kimura Y, Matsumoto R, Ikeda A, Takahashi T. Dynamics of AMPA receptors regulate epileptogenesis in patients with epilepsy. Cell Rep Med 2023; 4:101020. [PMID: 37080205 DOI: 10.1016/j.xcrm.2023.101020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
The excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) contribute to epileptogenesis. Thirty patients with epilepsy and 31 healthy controls are scanned using positron emission tomography with our recently developed radiotracer for AMPARs, [11C]K-2, which measures the density of cell-surface AMPARs. In patients with focal-onset seizures, an increase in AMPAR trafficking augments the amplitude of abnormal gamma activity detected by electroencephalography. In contrast, patients with generalized-onset seizures exhibit a decrease in AMPARs coupled with increased amplitude of abnormal gamma activity. Patients with epilepsy had reduced AMPAR levels compared with healthy controls, and AMPARs are reduced in larger areas of the cortex in patients with generalized-onset seizures compared with those with focal-onset seizures. Thus, epileptic brain function can be regulated by the enhanced trafficking of AMPAR due to Hebbian plasticity with increased simultaneous neuronal firing and compensational downregulation of cell-surface AMPARs by the synaptic scaling.
Collapse
Affiliation(s)
- Tsuyoshi Eiro
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tomoyuki Miyazaki
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Mai Hatano
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Waki Nakajima
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tetsu Arisawa
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yuuki Takada
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kimito Kimura
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Akane Sano
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kotaro Nakano
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takahiro Mihara
- Department of Health Data Science, Yokohama City University Graduate School of Data Science, Yokohama 236-0004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Hideaki Tani
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Nobuhiro Nagai
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Teruki Koizumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Nozomu Matsuda
- Department of Neurology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Kazuaki Kanai
- Department of Neurology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroshi Ito
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima 960-1295, Japan; Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yuichi Kimura
- Faculty of Informatics, Cyber Informatics Research Institute, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takuya Takahashi
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; The University of Tokyo, International Research Center for Neurointelligence, Tokyo 113-0033, Japan.
| |
Collapse
|
186
|
Lutzu S, Alviña K, Puente N, Grandes P, Castillo PE. Target cell-specific plasticity rules of NMDA receptor-mediated synaptic transmission in the hippocampus. Front Cell Neurosci 2023; 17:1068472. [PMID: 37091922 PMCID: PMC10113460 DOI: 10.3389/fncel.2023.1068472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Long-term potentiation and depression of NMDA receptor-mediated synaptic transmission (NMDAR LTP/LTD) can significantly impact synapse function and information transfer in several brain areas. However, the mechanisms that determine the direction of NMDAR plasticity are poorly understood. Here, using physiologically relevant patterns of presynaptic and postsynaptic burst activities, whole-cell patch clamp recordings, 2-photon laser calcium imaging in acute rat hippocampal slices and immunoelectron microscopy, we tested whether distinct calcium dynamics and group I metabotropic glutamate receptor (I-mGluR) subtypes control the sign of NMDAR plasticity. We found that postsynaptic calcium transients (CaTs) in response to hippocampal MF stimulation were significantly larger during the induction of NMDAR-LTP compared to NMDAR-LTD at the MF-to-CA3 pyramidal cell (MF-CA3) synapse. This difference was abolished by pharmacological blockade of mGluR5 and was significantly reduced by depletion of intracellular calcium stores, whereas blocking mGluR1 had no effect on these CaTs. In addition, we discovered that MF to hilar mossy cell (MF-MC) synapses, which share several structural and functional commonalities with MF-CA3 synapses, also undergoes NMDAR plasticity. To our surprise, however, we found that the postsynaptic distribution of I-mGluR subtypes at these two synapses differ, and the same induction protocol that induces NMDAR-LTD at MF-CA3 synapses, only triggered NMDAR-LTP at MF-MC synapses, despite a comparable calcium dynamics. Thus, postsynaptic calcium dynamics alone cannot predict the sign of NMDAR plasticity, indicating that both postsynaptic calcium rise and the relative contribution of I-mGluR subtypes likely determine the learning rules of NMDAR plasticity.
Collapse
Affiliation(s)
- Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Pablo E. Castillo,
| |
Collapse
|
187
|
Navarri X, Vosberg DE, Shin J, Richer L, Leonard G, Pike GB, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Pausova Z, Paus T. A biologically informed polygenic score of neuronal plasticity moderates the association between cognitive aptitudes and cortical thickness in adolescents. Dev Cogn Neurosci 2023; 60:101232. [PMID: 36963244 PMCID: PMC10064237 DOI: 10.1016/j.dcn.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Although many studies of the adolescent brain identified positive associations between cognitive abilities and cortical thickness, little is known about mechanisms underlying such brain-behavior relationships. With experience-induced plasticity playing an important role in shaping the cerebral cortex throughout life, it is likely that some of the inter-individual variations in cortical thickness could be explained by genetic variations in relevant molecular processes, as indexed by a polygenic score of neuronal plasticity (PGS-NP). Here, we studied associations between PGS-NP, cognitive abilities, and thickness of the cerebral cortex, estimated from magnetic resonance images, in the Saguenay Youth Study (SYS, 533 females, 496 males: age=15.0 ± 1.8 years of age; cross-sectional), and the IMAGEN Study (566 females, 556 males; between 14 and 19 years; longitudinal). Using Gene Ontology, we first identified 199 genes implicated in neuronal plasticity, which mapped to 155,600 single nucleotide polymorphisms (SNPs). Second, we estimated their effect sizes from an educational attainment meta-GWAS to build a PGS-NP. Third, we examined a possible moderating role of PGS-NP in the relationship between performance intelligence quotient (PIQ), and its subtests, and the thickness of 34 cortical regions. In SYS, we observed a significant interaction between PGS-NP and object assembly vis-à-vis thickness in male adolescents (p = 0.026). A median-split analysis showed that, in males with a 'high' PGS-NP, stronger associations between object assembly and thickness were found in regions with larger age-related changes in thickness (r = 0.55, p = 0.00075). Although the interaction between PIQ and PGS-NP was non-significant (p = 0.064), we performed a similar median-split analysis. Again, in the high PGS-NP males, positive associations between PIQ and thickness were observed in regions with larger age-related changes in thickness (r = 0.40, p = 0.018). In the IMAGEN cohort, we did not replicate the first set of results (interaction between PGS-NP and cognitive abilities via-a-vis cortical thickness) while we did observe the same relationship between the brain-behaviour relationship and (longitudinal) changes in cortical thickness (Matrix reasoning: r = 0.63, p = 6.5e-05). No statistically significant results were observed in female adolescents in either cohort. Overall, these cross-sectional and longitudinal results suggest that molecular mechanisms involved in neuronal plasticity may contribute to inter-individual variations of cortical thickness related to cognitive abilities during adolescence in a sex-specific manner.
Collapse
Affiliation(s)
- Xavier Navarri
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Daniel E Vosberg
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales & psychiatrie", University Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS; Centre Borelli, Gif-sur-Yvette, France; and AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany; Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Zdenka Pausova
- Departments of Physiology and Nutritional Sciences, Hospital for Sick Children, University of Toronto, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S3G3, Canada.
| |
Collapse
|
188
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
189
|
Dainauskas JJ, Marie H, Migliore M, Saudargiene A. GluN2B-NMDAR subunit contribution on synaptic plasticity: A phenomenological model for CA3-CA1 synapses. Front Synaptic Neurosci 2023; 15:1113957. [PMID: 37008680 PMCID: PMC10050887 DOI: 10.3389/fnsyn.2023.1113957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Synaptic plasticity is believed to be a key mechanism underlying learning and memory. We developed a phenomenological N-methyl-D-aspartate (NMDA) receptor-based voltage-dependent synaptic plasticity model for synaptic modifications at hippocampal CA3-CA1 synapses on a hippocampal CA1 pyramidal neuron. The model incorporates the GluN2A-NMDA and GluN2B-NMDA receptor subunit-based functions and accounts for the synaptic strength dependence on the postsynaptic NMDA receptor composition and functioning without explicitly modeling the NMDA receptor-mediated intracellular calcium, a local trigger of synaptic plasticity. We embedded the model into a two-compartmental model of a hippocampal CA1 pyramidal cell and validated it against experimental data of spike-timing-dependent synaptic plasticity (STDP), high and low-frequency stimulation. The developed model predicts altered learning rules in synapses formed on the apical dendrites of the detailed compartmental model of CA1 pyramidal neuron in the presence of the GluN2B-NMDA receptor hypofunction and can be used in hippocampal networks to model learning in health and disease.
Collapse
Affiliation(s)
- Justinas J. Dainauskas
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Hélène Marie
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Ausra Saudargiene
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Ausra Saudargiene
| |
Collapse
|
190
|
Bermudez-Contreras E, Schjetnan AGP, Luczak A, Mohajerani MH. Sensory experience selectively reorganizes the late component of evoked responses. Cereb Cortex 2023; 33:2626-2640. [PMID: 35704850 PMCID: PMC10016043 DOI: 10.1093/cercor/bhac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/13/2022] Open
Abstract
In response to sensory stimulation, the cortex exhibits an early transient response followed by late and slower activation. Recent studies suggest that the early component represents features of the stimulus while the late component is associated with stimulus perception. Although very informative, these studies only focus on the amplitude of the evoked responses to study its relationship with sensory perception. In this work, we expand upon the study of how patterns of evoked and spontaneous activity are modified by experience at the mesoscale level using voltage and extracellular glutamate transient recordings over widespread regions of mouse dorsal neocortex. We find that repeated tactile or auditory stimulation selectively modifies the spatiotemporal patterns of cortical activity, mainly of the late evoked response in anesthetized mice injected with amphetamine and also in awake mice. This modification lasted up to 60 min and results in an increase in the amplitude of the late response after repeated stimulation and in an increase in the similarity between the spatiotemporal patterns of the late early evoked response. This similarity increase occurs only for the evoked responses of the sensory modality that received the repeated stimulation. Thus, this selective long-lasting spatiotemporal modification of the cortical activity patterns might provide evidence that evoked responses are a cortex-wide phenomenon. This work opens new questions about how perception-related cortical activity changes with sensory experience across the cortex.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Majid H Mohajerani
- Corresponding author: Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
191
|
Chen H, Li H, Ma T, Han S, Zhao Q. Biological function simulation in neuromorphic devices: from synapse and neuron to behavior. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2183712. [PMID: 36926202 PMCID: PMC10013381 DOI: 10.1080/14686996.2023.2183712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
As the boom of data storage and processing, brain-inspired computing provides an effective approach to solve the current problem. Various emerging materials and devices have been reported to promote the development of neuromorphic computing. Thereinto, the neuromorphic device represented by memristor has attracted extensive research due to its outstanding property to emulate the brain's functions from synaptic plasticity, sensory-memory neurons to some intelligent behaviors of living creatures. Herein, we mainly review the progress of these brain functions mimicked by neuromorphic devices, concentrating on synapse (i.e. various synaptic plasticity trigger by electricity and/or light), neurons (including the various sensory nervous system) and intelligent behaviors (such as conditioned reflex represented by Pavlov's dog experiment). Finally, some challenges and prospects related to neuromorphic devices are presented.
Collapse
Affiliation(s)
- Hui Chen
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Huilin Li
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, P. R. China
| | - Ting Ma
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, P. R. China
| | - Shuangshuang Han
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, P. R. China
| | - Qiuping Zhao
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
192
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
193
|
Tovar ÁE, Torres-Chávez Á, Mofrad AA, Arntzen E. Computational models of stimulus equivalence: An intersection for the study of symbolic behavior. J Exp Anal Behav 2023; 119:407-425. [PMID: 36752316 DOI: 10.1002/jeab.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Stimulus equivalence is a central paradigm in the analysis of symbolic behavior, language, and cognition. It describes emergent relations between stimuli that were not explicitly trained and cannot be explained by primary stimulus generalization. In recent years, researchers have developed computational models to simulate the learning of equivalence relations. These models have been used to address primary theoretical and methodological issues in this field, such as exploring the underlying mechanisms that explain emergent equivalence relations and analyzing the effects of training and testing protocols on equivalence outcomes. Nonetheless, although these models build upon general learning principles, their operation is usually obscure for nonmodelers, and in the field of stimulus equivalence computational models have been developed with a variety of approaches, architectures, and algorithms that make it difficult to understand the scope and contributions of these tools. In this paper, we present the state of the art in computational modeling of stimulus equivalence. We seek to provide concise and accessible descriptions of the models' functioning and operation, highlight their main theoretical and methodological contributions, identify the existing software available for researchers to run experiments, and suggest future directions in the emergent field of computational modeling of stimulus equivalence.
Collapse
Affiliation(s)
| | | | - Asieh Abolpour Mofrad
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | |
Collapse
|
194
|
Chi X, Wang L, Liu H, Zhang Y, Shen W. Post-stroke cognitive impairment and synaptic plasticity: A review about the mechanisms and Chinese herbal drugs strategies. Front Neurosci 2023; 17:1123817. [PMID: 36937659 PMCID: PMC10014821 DOI: 10.3389/fnins.2023.1123817] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Post-stroke cognitive impairment, is a major complication of stroke, characterized by cognitive dysfunction, which directly affects the quality of life. Post-stroke cognitive impairment highlights the causal relationship between stroke and cognitive impairment. The pathological damage of stroke, including the increased release of excitatory amino acids, oxidative stress, inflammatory responses, apoptosis, changed neurotrophic factor levels and gene expression, influence synaptic plasticity. Synaptic plasticity refers to the activity-dependent changes in the strength of synaptic connections and efficiency of synaptic transmission at pre-existing synapses and can be divided into structural synaptic plasticity and functional synaptic plasticity. Changes in synaptic plasticity have been proven to play important roles in the occurrence and treatment of post-stroke cognitive impairment. Evidence has indicated that Chinese herbal drugs have effect of treating post-stroke cognitive impairment. In this review, we overview the influence of pathological damage of stroke on synaptic plasticity, analyze the changes of synaptic plasticity in post-stroke cognitive impairment, and summarize the commonly used Chinese herbal drugs whose active ingredient or extracts can regulate synaptic plasticity. This review will summarize the relationship between post-stroke cognitive impairment and synaptic plasticity, provide new ideas for future exploration of the mechanism of post-stroke cognitive impairment, compile evidence of applying Chinese herbal drugs to treat post-stroke cognitive impairment and lay a foundation for the development of novel formulas for treating post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liuding Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxi Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Shen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
195
|
Franz A, Weber AI, Preußner M, Dimos N, Stumpf A, Ji Y, Moreno-Velasquez L, Voigt A, Schulz F, Neumann A, Kuropka B, Kühn R, Urlaub H, Schmitz D, Wahl MC, Heyd F. Branch point strength controls species-specific CAMK2B alternative splicing and regulates LTP. Life Sci Alliance 2023; 6:6/3/e202201826. [PMID: 36543542 PMCID: PMC9772828 DOI: 10.26508/lsa.202201826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Regulation and functionality of species-specific alternative splicing has remained enigmatic to the present date. Calcium/calmodulin-dependent protein kinase IIβ (CaMKIIβ) is expressed in several splice variants and plays a key role in learning and memory. Here, we identify and characterize several primate-specific CAMK2B splice isoforms, which show altered kinetic properties and changes in substrate specificity. Furthermore, we demonstrate that primate-specific CAMK2B alternative splicing is achieved through branch point weakening during evolution. We show that reducing branch point and splice site strengths during evolution globally renders constitutive exons alternative, thus providing novel mechanistic insight into cis-directed species-specific alternative splicing regulation. Using CRISPR/Cas9, we introduce a weaker, human branch point sequence into the mouse genome, resulting in strongly altered Camk2b splicing in the brains of mutant mice. We observe a strong impairment of long-term potentiation in CA3-CA1 synapses of mutant mice, thus connecting branch point-controlled CAMK2B alternative splicing with a fundamental function in learning and memory.
Collapse
Affiliation(s)
- Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - A Ioana Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Nicole Dimos
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Laura Moreno-Velasquez
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Voigt
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederic Schulz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Mass Spectrometry Core Facility (BioSupraMol), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar Schmitz
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| |
Collapse
|
196
|
Hydroxychloroquine lowers Alzheimer's disease and related dementias risk and rescues molecular phenotypes related to Alzheimer's disease. Mol Psychiatry 2023; 28:1312-1326. [PMID: 36577843 PMCID: PMC10005941 DOI: 10.1038/s41380-022-01912-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aβ1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.
Collapse
|
197
|
Zhou L, Sun X, Duan J. NMDARs regulate the excitatory-inhibitory balance within neural circuits. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2022.9050020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Excitatory-inhibitory (E/I) balance is essential for normal neural development, behavior and cognition. E/I imbalance leads to a variety of neurological disorders, such as autism and schizophrenia. NMDA receptors (NMDARs) regulate AMPAR-mediated excitatory and GABAAR-mediated inhibitory synaptic transmission, suggesting that NMDARs play an important role in the establishment and maintenance of the E/I balance. In this review, we briefly introduced NMDARs, AMPARs and GABAARs, summarized the current studies on E/I balance mediated by NMDARs, and discussed the current advances in NMDAR-mediated AMPAR and GABAAR development. Specifically, we analyzed the role of NMDAR subunits in the establishment and maintenance of E/I balance, which may provide new therapeutic strategies for the recovery of E/I imbalance in neurological disorders.
Collapse
Affiliation(s)
- Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaohui Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
198
|
Burgdorf JS, Yoon S, Dos Santos M, Lammert CR, Moskal JR, Penzes P. An IGFBP2-derived peptide promotes neuroplasticity and rescues deficits in a mouse model of Phelan-McDermid syndrome. Mol Psychiatry 2023; 28:1101-1111. [PMID: 36481930 PMCID: PMC10084719 DOI: 10.1038/s41380-022-01904-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
We developed an IGFBP2-mimetic peptide fragment, JB2, and showed that it promotes basal synaptic structural and functional plasticity in cultured neurons and mice. We demonstrate that JB2 directly binds to dendrites and synapses, and its biological activity involves NMDA receptor activation, gene transcription and translation, and IGF2 receptors. It is not IGF1 receptor-dependent. In neurons, JB2 induced extensive remodeling of the membrane phosphoproteome. Synapse and cytoskeletal regulation, autism spectrum disorder (ASD) risk factors, and a Shank3-associated protein network were significantly enriched among phosphorylated and dephosphorylated proteins. Haploinsufficiency of the SHANK3 gene on chromosome 22q13.3 often causes Phelan-McDermid Syndrome (PMS), a genetically defined form of autism with profound deficits in motor behavior, sensory processing, language, and cognitive function. We identified multiple disease-relevant phenotypes in a Shank3 heterozygous mouse and showed that JB2 rescued deficits in synaptic function and plasticity, learning and memory, ultrasonic vocalizations, and motor function; it also normalized neuronal excitability and seizure susceptibility. Notably, JB2 rescued deficits in the auditory evoked response latency, alpha peak frequency, and steady-state electroencephalography response, measures with direct translational value to human subjects. These data demonstrate that JB2 is a potent modulator of neuroplasticity with therapeutic potential for the treatment of PMS and ASD.
Collapse
Affiliation(s)
- Jeffrey S Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60201, USA
- Gate neurosciences, Inc., Carmel, IN, 46032, USA
| | - Sehyoun Yoon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Catherine R Lammert
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60201, USA
- Gate neurosciences, Inc., Carmel, IN, 46032, USA
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, 60611, USA.
| |
Collapse
|
199
|
Kumar S, Zomorrodi R, Ghazala Z, Goodman MS, Blumberger DM, Daskalakis ZJ, Fischer CE, Mulsant BH, Pollock BG, Rajji TK. Effects of repetitive paired associative stimulation on brain plasticity and working memory in Alzheimer's disease: a pilot randomized double-blind-controlled trial. Int Psychogeriatr 2023; 35:143-155. [PMID: 33190659 DOI: 10.1017/s1041610220003518] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DESIGN Pilot randomized double-blind-controlled trial of repetitive paired associative stimulation (rPAS), a paradigm that combines transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) with peripheral median nerve stimulation. OBJECTIVES To study the impact of rPAS on DLPFC plasticity and working memory performance in Alzheimer's disease (AD). METHODS Thirty-two patients with AD (females = 16), mean (SD) age = 76.4 (6.3) years were randomized 1:1 to receive a 2-week (5 days/week) course of active or control rPAS. DLPFC plasticity was assessed using single session PAS combined with electroencephalography (EEG) at baseline and on days 1, 7, and 14 post-rPAS. Working memory and theta-gamma coupling were assessed at the same time points using the N-back task and EEG. RESULTS There were no significant differences between the active and control rPAS groups on DLPFC plasticity or working memory performance after the rPAS intervention. There were significant main effects of time on DLPFC plasticity, working memory, and theta-gamma coupling, only for the active rPAS group. Further, on post hoc within-group analyses done to generate hypotheses for future research, as compared to baseline, only the rPAS group improved on post-rPAS day 1 on all three indices. Finally, there was a positive correlation between working memory performance and theta-gamma coupling. CONCLUSIONS This study did not show a beneficial effect of rPAS for DLPFC plasticity or working memory in AD. However, post hoc analyses showed promising results favoring rPAS and supporting further research on this topic. (Clinicaltrials.gov-NCT01847586).
Collapse
Affiliation(s)
- Sanjeev Kumar
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zaid Ghazala
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michelle S Goodman
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Corinne E Fischer
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Benoit H Mulsant
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bruce G Pollock
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
200
|
The times they are a-changin': a proposal on how brain flexibility goes beyond the obvious to include the concepts of "upward" and "downward" to neuroplasticity. Mol Psychiatry 2023; 28:977-992. [PMID: 36575306 PMCID: PMC10005965 DOI: 10.1038/s41380-022-01931-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Since the brain was found to be somehow flexible, plastic, researchers worldwide have been trying to comprehend its fundamentals to better understand the brain itself, make predictions, disentangle the neurobiology of brain diseases, and finally propose up-to-date treatments. Neuroplasticity is simple as a concept, but extremely complex when it comes to its mechanisms. This review aims to bring to light an aspect about neuroplasticity that is often not given enough attention as it should, the fact that the brain's ability to change would include its ability to disconnect synapses. So, neuronal shrinkage, decrease in spine density or dendritic complexity should be included within the concept of neuroplasticity as part of its mechanisms, not as an impairment of it. To that end, we extensively describe a variety of studies involving topics such as neurodevelopment, aging, stress, memory and homeostatic plasticity to highlight how the weakening and disconnection of synapses organically permeate the brain in so many ways as a good practice of its intrinsic physiology. Therefore, we propose to break down neuroplasticity into two sub-concepts, "upward neuroplasticity" for changes related to synaptic construction and "downward neuroplasticity" for changes related to synaptic deconstruction. With these sub-concepts, neuroplasticity could be better understood from a bigger landscape as a vector in which both directions could be taken for the brain to flexibly adapt to certain demands. Such a paradigm shift would allow a better understanding of the concept of neuroplasticity to avoid any data interpretation bias, once it makes clear that there is no morality with regard to the organic and physiological changes that involve dynamic biological systems as seen in the brain.
Collapse
|