151
|
Xu J, He L, Wu LG. Role of Ca(2+) channels in short-term synaptic plasticity. Curr Opin Neurobiol 2007; 17:352-9. [PMID: 17466513 DOI: 10.1016/j.conb.2007.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Repetitive nerve activity induces various forms of short-term synaptic plasticity that have important computational roles in neuronal networks. Several forms of short-term plasticity are caused largely by changes in transmitter release, but the mechanisms that underlie these changes in the release process have been difficult to address. Recent studies of a giant synapse - the calyx of Held - have shed new light on this issue. Recordings of Ca(2+) currents or Ca(2+) concentrations at nerve terminals reveal that regulation of presynaptic Ca(2+) channels has a significant role in three important forms of short-term plasticity: short-term depression, facilitation and post-tetanic potentiation.
Collapse
Affiliation(s)
- Jianhua Xu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
152
|
Chaudhuri D, Issa JB, Yue DT. Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels. ACTA ACUST UNITED AC 2007; 129:385-401. [PMID: 17438119 PMCID: PMC2154375 DOI: 10.1085/jgp.200709749] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of Ca(V)2.1 (P/Q-type) channels by calmodulin (CaM) showcases the powerful Ca(2+) decoding capabilities of CaM in complex with the family of Ca(V)1-2 Ca(2+) channels. Throughout this family, CaM does not simply exert a binary on/off regulatory effect; rather, Ca(2+) binding to either the C- or N-terminal lobe of CaM alone can selectively trigger a distinct form of channel modulation. Additionally, Ca(2+) binding to the C-terminal lobe triggers regulation that appears preferentially responsive to local Ca(2+) influx through the channel to which CaM is attached (local Ca(2+) preference), whereas Ca(2+) binding to the N-terminal lobe triggers modulation that favors activation via Ca(2+) entry through channels at a distance (global Ca(2+) preference). Ca(V)2.1 channels fully exemplify these features; Ca(2+) binding to the C-terminal lobe induces Ca(2+)-dependent facilitation of opening (CDF), whereas the N-terminal lobe yields Ca(2+)-dependent inactivation of opening (CDI). In mitigation of these interesting indications, support for this local/global Ca(2+) selectivity has been based upon indirect inferences from macroscopic recordings of numerous channels. Nagging uncertainty has also remained as to whether CDF represents a relief of basal inhibition of channel open probability (P(o)) in the presence of external Ca(2+), or an actual enhancement of P(o) over a normal baseline seen with Ba(2+) as the charge carrier. To address these issues, we undertake the first extensive single-channel analysis of Ca(V)2.1 channels with Ca(2+) as charge carrier. A key outcome is that CDF persists at this level, while CDI is entirely lacking. This result directly upholds the local/global Ca(2+) preference of the lobes of CaM, because only a local (but not global) Ca(2+) signal is here present. Furthermore, direct single-channel determinations of P(o) and kinetic simulations demonstrate that CDF represents a genuine enhancement of open probability, without appreciable change of activation kinetics. This enhanced-opening mechanism suggests that the CDF evoked during action-potential trains would produce not only larger, but longer-lasting Ca(2+) responses, an outcome with potential ramifications for short-term synaptic plasticity.
Collapse
Affiliation(s)
- Dipayan Chaudhuri
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
153
|
Affiliation(s)
- Kathleen Dunlap
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
154
|
Wölfel M, Lou X, Schneggenburger R. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J Neurosci 2007; 27:3198-210. [PMID: 17376981 PMCID: PMC6672471 DOI: 10.1523/jneurosci.4471-06.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 02/09/2007] [Accepted: 02/10/2007] [Indexed: 11/21/2022] Open
Abstract
Heterogeneity of release probability p between vesicles in the readily releasable pool (RRP) is expected to strongly influence the kinetics of depression at synapses, but the underlying mechanism(s) are not well understood. To test whether differences in the intrinsic Ca2+ sensitivity of vesicle fusion might cause heterogeneity of p, we made presynaptic Ca2+-uncaging measurements at the calyx of Held and analyzed the time course of transmitter release by EPSC deconvolution. Ca2+ uncaging, which produced spatially homogeneous elevations of [Ca2+]i, evoked a fast and a slow component of release over a wide range of [Ca2+]i, showing that mechanism(s) intrinsic to the vesicle fusion machinery cause fast and slow transmitter release. Surprisingly, the number of vesicles released in the fast component increased with Ca2+-uncaging stimuli of larger amplitudes, a finding that was most obvious below approximately 10 microM [Ca2+]i and that we call "submaximal release" of fast-releasable vesicles. During trains of action potential-like presynaptic depolarizations, submaximal release was also observed as an increase in the cumulative fast release at enhanced release probabilities. A model that assumes two separate subpools of RRP vesicles with different intrinsic Ca2+ sensitivities predicted the observed Ca2+ dependencies of fast and slow transmitter release but could not fully account for submaximal release. Thus, fast and slow transmitter release in response to prolonged [Ca2+]i elevations is caused by intrinsic differences between RRP vesicles, and an "a posteriori" reduction of the Ca2+ sensitivity of vesicle fusion after the onset of the stimulus might cause submaximal release of fast-releasable vesicles and contribute to short-term synaptic depression.
Collapse
Affiliation(s)
- Markus Wölfel
- AG Synaptic Dynamics and Modulation, Department of Membrane Biophysics, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany, and
| | - Xuelin Lou
- AG Synaptic Dynamics and Modulation, Department of Membrane Biophysics, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany, and
| | - Ralf Schneggenburger
- AG Synaptic Dynamics and Modulation, Department of Membrane Biophysics, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany, and
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
155
|
Müller M, Felmy F, Schwaller B, Schneggenburger R. Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of Held that accelerates the decay of Ca2+ and short-term facilitation. J Neurosci 2007; 27:2261-71. [PMID: 17329423 PMCID: PMC6673482 DOI: 10.1523/jneurosci.5582-06.2007] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic Ca2+ signaling plays a crucial role in short-term plasticity of synaptic transmission. Here, we studied the role of mobile endogenous presynaptic Ca2+ buffer(s) in modulating paired-pulse facilitation at a large excitatory nerve terminal in the auditory brainstem, the calyx of Held. To do so, we assessed the effect of presynaptic whole-cell recording, which should lead to the diffusional loss of endogenous mobile Ca2+ buffers, on paired-pulse facilitation and on intracellular Ca2+ concentration ([Ca2+]i) transients evoked by action potentials. In unperturbed calyces briefly preloaded with the Ca2+ indicator fura-6F, the [Ca2+]i transient decayed surprisingly fast (tau(fast), approximately 30 ms). Presynaptic whole-cell recordings made without additional Ca2+ buffers slowed the decay kinetics of [Ca2+]i and paired-pulse facilitation (twofold to threefold), but the amplitude of the [Ca2+]i transient was changed only marginally. The fast [Ca2+]i decay was restored by adding the slow Ca2+ buffer EGTA (50-100 microM) or parvalbumin (100 microM), a Ca2+-binding protein with slow Ca2+-binding kinetics, to the presynaptic pipette solution. In contrast, the fast Ca2+ buffer fura-2 strongly reduced the amplitude of the [Ca2+]i transient and slowed its decay, suggesting that the mobile endogenous buffer in calyces of Held has slow, rather than fast, binding kinetics. In parvalbumin knock-out mice, the decay of [Ca2+]i and facilitation was slowed approximately twofold compared with wild-type mice, similar to what is observed during whole-cell recordings in rat calyces of Held. Thus, in young calyces of Held, a mobile Ca2+ buffer with slow binding kinetics, primarily represented by parvalbumin, accelerates the decay of spatially averaged [Ca2+]i and paired-pulse facilitation.
Collapse
Affiliation(s)
- Martin Müller
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Graduate School of Neural and Behavioral Sciences, Universität Tübingen, 72074 Tübingen, Germany
| | - Felix Felmy
- Biology II, Department for Neurobiology, Ludwig-Maximilians-University, 82152 Martinsried, Germany, and
| | - Beat Schwaller
- Unit of Anatomy, Department of Medicine, University of Fribourg, 1705 Fribourg, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
156
|
Habets RLP, Borst JGG. Dynamics of the readily releasable pool during post-tetanic potentiation in the rat calyx of Held synapse. J Physiol 2007; 581:467-78. [PMID: 17363387 PMCID: PMC2075193 DOI: 10.1113/jphysiol.2006.127365] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The size of the readily releasable pool (RRP) of vesicles was measured in control conditions and during post-tetanic potentiation (PTP) in a large glutamatergic terminal called the calyx of Held. We measured excitatory postsynaptic currents evoked by a high frequency train of action potentials in slices of 4-11-day-old rats. After a tetanus the cumulative release during such a train was enlarged by approximately 50%, indicating that the size of the RRP was increased. The amount of enhancement depended on the duration and frequency of the tetanus and on the age of the rat. After the tetanus, the size of the RRP decayed more slowly (t(1/2)=10 versus 3 min) back to control values than the release probability. This difference was mainly due to a very fast initial decay of the release probability, which had a time constant compatible with an augmentation phase (tau approximately 30 s). The overall decay of PTP at physiological temperature was not different from room temperature, but the increase in release probability (P(r)) was restricted to the first minute after the tetanus. Thereafter PTP was dominated by an increase in the size of the RRP. We conclude that due to the short lifetime of the increase in release probability, the contribution of the increase in RRP size during post-tetanic potentiation is more significant at physiological temperature.
Collapse
Affiliation(s)
- Ron L P Habets
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | | |
Collapse
|
157
|
Ertunc M, Sara Y, Chung C, Atasoy D, Virmani T, Kavalali ET. Fast synaptic vesicle reuse slows the rate of synaptic depression in the CA1 region of hippocampus. J Neurosci 2007; 27:341-54. [PMID: 17215395 PMCID: PMC6672081 DOI: 10.1523/jneurosci.4051-06.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During short-term synaptic depression, neurotransmission rapidly decreases in response to repetitive action potential firing. Here, by blocking the vacuolar ATPase, alkalinizing the extracellular pH, or exposing hippocampal slices to pH buffers, we impaired neurotransmitter refilling, and electrophysiologically tested the role of vesicle reuse in synaptic depression. Under all conditions, synapses onto hippocampal CA1 pyramidal cells showed faster depression with increasing stimulation frequencies. At 20 Hz, compromising neurotransmitter refilling increased depression within 300 ms reaching completion within 2 s, suggesting a minimal contribution of reserve vesicles to neurotransmission. In contrast, at 1 Hz, depression emerged gradually and became significant within 100 s. Moreover, the depression induced by pH buffers was reversible with a similar frequency dependence, suggesting that the frequency-dependent increase in depression was caused by impairment of rapid synaptic vesicle reuse. These results indicate that synaptic vesicle trafficking impacts the kinetics of short-term synaptic plasticity at an extremely rapid time scale.
Collapse
Affiliation(s)
- Mert Ertunc
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Yildirim Sara
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - ChiHye Chung
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Deniz Atasoy
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Tuhin Virmani
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| | - Ege T. Kavalali
- Center for Basic Neuroscience and Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
158
|
Tokuoka H, Goda Y. Myosin light chain kinase is not a regulator of synaptic vesicle trafficking during repetitive exocytosis in cultured hippocampal neurons. J Neurosci 2006; 26:11606-14. [PMID: 17093082 PMCID: PMC6674773 DOI: 10.1523/jneurosci.3400-06.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which synaptic vesicles (SVs) are recruited to the release site is poorly understood. One candidate mechanism for trafficking of SVs is the myosin-actin motor system. Myosin activity is modulated by myosin light chain kinase (MLCK), which in turn is activated by calmodulin. Ca(2+) signaling in presynaptic terminals, therefore, may serve to regulate SV mobility along actin filaments via MLCK. Previous studies in different types of synapses have supported such a hypothesis. Here, we further investigated the role of MLCK in neurotransmitter release at glutamatergic synapses in cultured hippocampal neurons by examining the effects of two MLCK inhibitors, 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine.HCl (ML-7) and wortmannin. Bath application of ML-7 enhanced short-term depression of EPSCs to repetitive stimulation, whereas it reduced presynaptic release probability. However, ML-7 also inhibited action potential amplitude and voltage-gated Ca(2+) channel currents. These effects were not mimicked by wortmannin, suggesting that ML-7 was not specific to MLCK in hippocampal neurons. When SV exocytosis was directly triggered by a Ca(2+) ionophore, calcimycin, to bypass voltage-gated Ca(2+) channels, ML-7 had no effect on neurotransmitter release. Furthermore, when SV exocytosis elicited by electrical field stimulation was monitored by styryl dye, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide], the unloading kinetics of the dye was not altered in the presence of wortmannin. These data indicate that MLCK is not a major regulator of presynaptic SV trafficking during repetitive exocytosis at hippocampal synapses.
Collapse
Affiliation(s)
- Hirofumi Tokuoka
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and
| | - Yukiko Goda
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
159
|
Li Y, Wu Y, Zhou Y. Modulation of inactivation properties of CaV2.2 channels by 14-3-3 proteins. Neuron 2006; 51:755-71. [PMID: 16982421 DOI: 10.1016/j.neuron.2006.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 05/08/2006] [Accepted: 08/08/2006] [Indexed: 11/28/2022]
Abstract
Inactivation of presynaptic Ca(V)2.2 channels may play a role in regulating short-term synaptic plasticity. Here, we report a direct modulation of Ca(V)2.2 channel inactivation properties by 14-3-3, a family of signaling proteins involved in a wide range of biological processes. The structural elements critical for 14-3-3 binding and channel modulation lie in the carboxyl tail of the pore-forming alpha(1B) subunit, where we have identified two putative 14-3-3 interaction sites, including a phosphoserine-containing motif that directly binds to 14-3-3 and a second region near the EF hand and IQ domain. In transfected tsA 201 cells, 14-3-3 coexpression dramatically slows open-state inactivation and reduces cumulative inactivation of Ca(V)2.2 channels. In hippocampal neurons, interference with 14-3-3 binding accelerates Ca(V)2.2 channel inactivation and enhances short-term synaptic depression. These results demonstrate that 14-3-3 proteins are important regulators of Ca(V)2.2 channel activities and through this mechanism may contribute to their regulation of synaptic transmission and plasticity.
Collapse
MESH Headings
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- 14-3-3 Proteins/physiology
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Binding, Competitive
- Blotting, Western
- Brain/cytology
- Brain/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Cell Line
- Cells, Cultured
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Humans
- Neurons/cytology
- Neurons/metabolism
- Phosphorylation
- Protein Binding
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Synaptic Transmission/physiology
- Time Factors
Collapse
Affiliation(s)
- Yong Li
- Department of Neurobiology, Evelyn F. McKnight Brain Institute and Civitan International Research Center, School of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
160
|
Sullivan JM. A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression. J Neurophysiol 2006; 97:948-50. [PMID: 17079345 DOI: 10.1152/jn.00554.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the second stimulus. Here it is shown that PPD cannot be accounted for by depletion at excitatory synapses made by hippocampal neurons because PPD is unaffected by changes in the fraction of the readily releasable pool (RRP) released by the first of a pair of pulses.
Collapse
Affiliation(s)
- Jane M Sullivan
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA.
| |
Collapse
|
161
|
Abstract
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca(2+)-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.
Collapse
Affiliation(s)
- Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Bâtiment AAB, Station 15, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
162
|
Habets RLP, Borst JGG. An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse. J Neurophysiol 2006; 96:2868-76. [PMID: 16899643 DOI: 10.1152/jn.00427.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the contribution of a change in presynaptic calcium influx to posttetanic potentiation (PTP) in the calyx of Held synapse, an axosomatic synapse in the auditory brain stem. We made whole cell patch-clamp recordings of a principal cell after loading of the presynaptic terminal with a calcium dye. After induction of PTP by a high-frequency train of afferent stimuli, the Fluo-4 fluorescence transients evoked by an action potential became on average 15 +/- 4% larger (n = 7). Model predictions did not match the fluorescence transients evoked by trains of brief calcium currents unless the endogenous calcium buffer had low affinity for calcium, making a contribution of saturation of the endogenous buffer to the synaptic potentiation we observed in the present experiments less likely. Our data therefore suggest that the increase of release probability during PTP at the calyx of Held synapse is largely explained by an increase in the calcium influx per action potential.
Collapse
Affiliation(s)
- Ron L P Habets
- Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | |
Collapse
|
163
|
Abstract
Classically, a high-power association relates the neurotransmitter release probability to the concentration of presynaptic Ca2+. Activated by the action potential waveform, voltage-gated Ca2+ channels mediate Ca2+entry into presynaptic terminals. Inside the terminal, Ca2+ ions rapidly bind to endogenous intracellular buffers and could trigger Ca2+ release from internal Ca2+ stores. The resulting space-time profile of free Ca2+ determines the time course and probability of neurotransmitter release through the interaction with molecular release triggers strategically located in the vicinity of release sites. Following a rapid concentration transient, excess Ca2+ has to be removed from the cytosol through the process involving Ca2+ uptake by the endoplasmatic reticulum stores, sequestration by mitochondria, and/or extrusion into the extracellular medium. The ongoing synaptic activity could affect any of the multiple factors that shape presynaptic Ca2+ dynamics, thus arbitrating use-dependent modification of the neurotransmitter release probability. Here we present an overview of major players involved in Ca2+-dependent presynaptic regulation of neurotransmitter release and discuss the relationships arising between their actions.
Collapse
|
164
|
Sakaba T. Roles of the fast-releasing and the slowly releasing vesicles in synaptic transmission at the calyx of Held. J Neurosci 2006; 26:5863-71. [PMID: 16738227 PMCID: PMC6675208 DOI: 10.1523/jneurosci.0182-06.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the calyx of Held, fast and slow components of neurotransmitter release can be distinguished during a step depolarization. The two components show different sensitivity to molecular/pharmacological manipulations. Here, their roles during a high-frequency train of action potential (AP)-like stimuli were examined by using both deconvolution of EPSCs and presynaptic capacitance measurements. During a 100 Hz train of AP-like stimuli, synchronous release showed a pronounced depression within the 20 stimuli. Asynchronous release persisted during the train, was variable in its amount, and was more prominent during a 300 Hz train. We have shown previously that slowly releasing vesicles were recruited faster than fast-releasing vesicles after depletion. By further slowing recovery of the fast-releasing vesicles by inhibiting calmodulin-dependent processes (Sakaba and Neher, 2001b), the slowly releasing vesicles were isolated during recovery from vesicle depletion. When a high-frequency train was applied, the isolated slowly releasing vesicles were released predominantly asynchronously. In contrast, synchronous release was mediated mainly by the fast-releasing vesicles. The results suggest that fast-releasing vesicles contribute mainly to synchronous release and that depletion of fast-releasing vesicles shape the synaptic depression of the synchronous phase of EPSCs, whereas slowly releasing vesicles are released mainly asynchronously during high-frequency stimulation. The latter is less subject to depression presumably because of a rapid vesicular recruitment process, which is a characteristic of this component.
Collapse
Affiliation(s)
- Takeshi Sakaba
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
165
|
Moulder KL, Meeks JP, Mennerick S. Homeostatic regulation of glutamate release in response to depolarization. Mol Neurobiol 2006; 33:133-53. [PMID: 16603793 DOI: 10.1385/mn:33:2:133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 11/30/1999] [Accepted: 08/04/2005] [Indexed: 11/11/2022]
Abstract
Proper nervous system function requires a balance between excitation and inhibition. Systems of homeostasis may have evolved in neurons to help maintain or restore balance between excitation and inhibition, presumably because excessive excitation can cause dysfunction and cell death. This article reviews evidence for homeostatic mechanisms within the hippocampus that lead to differential regulation of glutamate and gamma-aminobutyric acid release in response to conditions of excess depolarization. We recently found differential effects on glutamate release at the level of action potential coupling to transmitter release, vesicular release probability, and vesicle availability. Such differential regulation may help to prevent excitotoxicity and runaway excitation.
Collapse
Affiliation(s)
- Krista L Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
166
|
Wong AYC, Billups B, Johnston J, Evans RJ, Forsythe ID. Endogenous activation of adenosine A1 receptors, but not P2X receptors, during high-frequency synaptic transmission at the calyx of Held. J Neurophysiol 2006; 95:3336-42. [PMID: 16481462 DOI: 10.1152/jn.00694.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of presynaptic receptors plays an important role in modulation of transmission at many synapses, particularly during high-frequency trains of stimulation. Adenosine-triphosphate (ATP) is coreleased with several neurotransmitters and acts at presynaptic sites to reduce transmitter release; such presynaptic P2X receptors occur at inhibitory and excitatory terminals in the medial nucleus of the trapezoid body (MNTB). We have investigated the mechanism of purinergic modulation during high-frequency repetitive stimulation at the calyx of Held synapse. Suppression of calyceal excitatory postsynaptic currents (EPSCs) by ATP and ATPgammaS (100 microM) was mimicked by adenosine application and was blocked by DPCPX (10 microM), indicating mediation by adenosine A1 receptors. DPCPX enhanced EPSC amplitudes during high-frequency synaptic stimulation, suggesting that adenosine has a physiological role in modulating transmission at the calyx. The Luciferin-Luciferase method was used to probe for endogenous ATP release (at 37 degrees C), but no release was detected. Blockers of ectonucleotidases also had no effect on endogenous synaptic depression, suggesting that it is adenosine acting on A1 receptors, rather than degradation of released ATP, which accounts for presynaptic purinergic suppression of synaptic transmission during physiological stimulus trains at this glutamatergic synapse.
Collapse
Affiliation(s)
- Adrian Y C Wong
- Department of Cell Physiology and Pharmacology, University of Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
167
|
Mukhamedyarov MA, Grishin SN, Zefirov AL, Palotás A. Evidences for calcium-dependent inactivation of calcium current at the frog motor nerve terminal. Brain Res Bull 2006; 69:652-5. [PMID: 16716833 DOI: 10.1016/j.brainresbull.2006.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 03/04/2006] [Accepted: 03/20/2006] [Indexed: 11/25/2022]
Abstract
Assessment of calcium-dependent inactivation of calcium current in nerve terminals is not feasible due to technical reasons. Perineural measurement of calcium-flow, however, might be utilized as indirect means to evaluate synaptic currents. Using perineural recording from frog neuromuscular junction, supra-threshold stimuli applied to motor nerve in paired-pulse manner with varying inter-pulse intervals (5-50 ms) are demonstrated in this study to cause paired-pulse depression (PPD) of Ca(2+)-current. PPD of Ca(2+)-flow was reduced at lower extracellular Ca(2+) concentrations, in BAPTA-AM and EGTA-AM treated preparations and after replacing extracellular Ca(2+) with Sr(2+). Using perineural measurement of calcium current as an indirect model to investigate synaptic ionic activity, our findings demonstrate that PPD may be attributed to calcium-dependent inactivation of Ca(2+)-current, which may serve as negative feedback in response to massive Ca(2+) entry to motor nerve terminals. A putative sensor of Ca(2+)-current is also proposed in this study.
Collapse
Affiliation(s)
- Marat A Mukhamedyarov
- Department of Physiology, Kazan State Medical University, ul. Butlerov 49, R-420012 Kazan, Russia
| | | | | | | |
Collapse
|
168
|
Abstract
Multiple techniques are available to study failure of neuromuscular transmission. Electrophysiological techniques used in patients are well suited to detect failure of neuromuscular transmission; however, these methods offer little insight into the mechanisms underlying failure of transmission. More detailed techniques that are better suited for studying the underlying mechanisms can be performed in animal models of neuromuscular disease. However, it is often difficult to compare studies using different techniques to measure neuromuscular transmission. In this review, I discuss different techniques that are available to study failure of neuromuscular transmission. The strengths and weaknesses of various techniques are compared using several diseases as examples. The review concludes with a discussion of mechanisms that may contribute to failure of neuromuscular transmission during repetitive stimulation.
Collapse
Affiliation(s)
- Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
169
|
Kushmerick C, Renden R, von Gersdorff H. Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment. J Neurosci 2006; 26:1366-77. [PMID: 16452660 PMCID: PMC6675486 DOI: 10.1523/jneurosci.3889-05.2006] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The timing and strength of synaptic transmission is profoundly dependent on temperature. However, the temperature dependence of the multiple mechanisms that contribute to short-term synaptic plasticity is poorly understood. Here, we use voltage-clamp recordings to quantify the temperature dependence of exocytosis at the calyx of Held synapse. EPSC and miniature EPSC amplitudes were larger at physiological temperature, but quantal content during low-frequency (0.05 Hz) stimulation was constant after temperature jumps from 22-24 degrees C to 35-37 degrees C. The initial degree of EPSC depression during 100 Hz stimuli trains was unchanged with temperature, as were estimates of release probability and vesicle pool size. In contrast, physiological temperatures dramatically relieved depression measured after 40 stimuli at 100 Hz by increasing twofold the rate of recovery from depression. Presynaptic calyx recordings revealed that physiological temperature increased capacitance jumps resulting from 0.5 and 1 ms depolarizations by increasing Ca2+ influx. When Ca2+ entry was equalized at the two temperatures, exocytosis exhibited little temperature dependence for brief depolarizations. However, in response to longer depolarizations, raising temperature increased a slow phase of exocytosis, without affecting overall Ca2+ entry or the size of the readily releasable pool of vesicles. Higher temperatures also increased the rate of presynaptic Ca2+ current inactivation; nevertheless, the degree of steady-state EPSC depression was greatly reduced. Our results thus suggest that changes in steady-state EPSCs during stimulus trains at physiological temperature reflect larger quantal amplitudes and faster refilling of synaptic vesicle pools, leading to reduced short-term depression during prolonged high-frequency firing.
Collapse
|
170
|
Abstract
Synaptic vesicle recycling is essential for maintaining neurotransmission during rhythmic activity. To test whether the demands imposed by ambient activity influences synaptic vesicle trafficking, we compared the kinetics of synaptic depression in hippocampal versus neocortical cultures, which have high and low levels of intrinsic activity, respectively. In response to moderate 10 Hz stimulation, hippocampal synapses depressed less compared with neocortical synapses, although they reused vesicles more slowly. Therefore, during stimulation, hippocampal synapses used more vesicles from the reserve pool, whereas neocortical synapses relied on vesicle reuse. In hippocampal cultures, chronic block of network activity increased synaptic depression by decreasing the rate of vesicle mobilization, with little effect on the rate of vesicle reuse. In contrast, in neocortical cultures, an increase in the normally low network activity reduced synaptic depression by robustly increasing vesicle reuse with no effect on vesicle mobilization. These results suggest that synaptic vesicle trafficking and the resulting synaptic dynamics adapt to meet the changing demands on neurotransmitter release. Furthermore, during these functional modifications, synapses use alternate strategies to adjust to changes in activity.
Collapse
|
171
|
Schlüter OM, Basu J, Südhof TC, Rosenmund C. Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J Neurosci 2006; 26:1239-46. [PMID: 16436611 PMCID: PMC6674574 DOI: 10.1523/jneurosci.3553-05.2006] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic vesicle trafficking and priming are important steps in regulating synaptic transmission and plasticity. The four closely related small GTP-binding proteins Rab3A, Rab3B, Rab3C, and Rab3D are believed to be important for these steps. In mice, the complete absence of all Rab3s leads to perinatal lethality accompanied by a 30% reduction of probability of Ca2+-triggered synaptic release. This study examines the role of Rab3 during Ca2+-triggered release in more detail and identifies its impact on short-term plasticity. Using patch-clamp electrophysiology of autaptic neuronal cultures from Rab3-deficient mouse hippocampus, we show that excitatory Rab3-deficient neurons display unique time- and frequency-dependent short-term plasticity characteristics in response to spike trains. Analysis of vesicle release and repriming kinetics as well as Ca2+ sensitivity of release indicate that Rab3 acts on a subset of primed, fusion competent vesicles. They lower the amount of Ca2+ required for action potential-triggered release, which leads to a boosting of release probability, but their action also introduces a significant delay in the supply of these modified vesicles. As a result, Rab3-induced modifications to primed vesicles causes a transient increase in the transduction efficacy of synaptic action potential trains and optimizes the encoding of synaptic information at an intermediate spike frequency range.
Collapse
|
172
|
Custer KL, Austin NS, Sullivan JM, Bajjalieh SM. Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 2006; 26:1303-13. [PMID: 16436618 PMCID: PMC6674579 DOI: 10.1523/jneurosci.2699-05.2006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a thorough analysis of neurotransmission in cultured hippocampal neurons lacking synaptic vesicle protein 2 (SV2), a membrane glycoprotein present in all vesicles that undergo regulated secretion. We found that SV2 selectively enhances low-frequency neurotransmission by priming morphologically docked vesicles. Loss of SV2 reduced initial release probability during a train of action potentials but had no effect on steady-state responses. The amount and decay rate of asynchronous release, two measures sensitive to presynaptic calcium concentrations, are not altered in SV2 knock-outs, suggesting that SV2 does not act by modulating presynaptic calcium. Normal neurotransmission could be temporarily recovered by delivering an exhaustive stimulus train. Our results indicate that SV2 primes vesicles in quiescent neurons and that SV2 function can be bypassed by an activity-dependent priming mechanism. We propose that SV2 action modulates synaptic networks by ensuring that low-frequency neurotransmission is faithfully conveyed.
Collapse
Affiliation(s)
- Kenneth L Custer
- Department of Pharmacology, University of Washington, Seattle, Washington 98103, USA
| | | | | | | |
Collapse
|
173
|
Chaudhuri D, Alseikhan BA, Chang SY, Soong TW, Yue DT. Developmental activation of calmodulin-dependent facilitation of cerebellar P-type Ca2+ current. J Neurosci 2006; 25:8282-94. [PMID: 16148236 PMCID: PMC6725527 DOI: 10.1523/jneurosci.2253-05.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P-type (CaV2.1) Ca2+ channels are a central conduit of neuronal Ca2+ entry, so their Ca2+ feedback regulation promises widespread neurobiological impact. Heterologous expression of recombinant CaV2.1 channels demonstrates that the Ca2+ sensor calmodulin can trigger Ca2+-dependent facilitation (CDF) of channel opening. This facilitation occurs when local Ca2+ influx through individual channels selectively activates the C-terminal lobe of calmodulin. In neurons, however, such calmodulin-mediated processes have yet to be detected, and CDF of native P-type current has thus far appeared different, arguably triggered by other Ca2+ sensing molecules. Here, in cerebellar Purkinje somata abundant with prototypic P-type channels, we find that the C-terminal lobe of calmodulin does produce CDF, and such facilitation augments Ca2+ entry during stimulation by repetitive action-potential and complex-spike waveforms. Beyond recapitulating key features of recombinant channels, these neurons exhibit an additional modulatory dimension: developmental upregulation of CDF during postnatal week 2. This phenomenon reflects increasing somatic expression of CaV2.1 splice variants that manifest CDF and progressive dendritic targeting of variants lacking CDF. Calmodulin-triggered facilitation is thus fundamental to native CaV2.1 and rapidly enhanced during early development.
Collapse
Affiliation(s)
- Dipayan Chaudhuri
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
174
|
Rabl K, Cadetti L, Thoreson WB. Paired-pulse depression at photoreceptor synapses. J Neurosci 2006; 26:2555-63. [PMID: 16510733 PMCID: PMC3108433 DOI: 10.1523/jneurosci.3667-05.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/21/2022] Open
Abstract
Synaptic depression produced by repetitive stimulation is likely to be particularly important in shaping responses of second-order retinal neurons at the tonically active photoreceptor synapse. We analyzed the time course and mechanisms of synaptic depression at rod and cone synapses using paired-pulse protocols involving two complementary measurements of exocytosis: (1) paired whole-cell recordings of the postsynaptic current (PSC) in second-order retinal neurons and (2) capacitance measurements of vesicular membrane fusion in rods and cones. PSCs in ON bipolar, OFF bipolar, and horizontal cells evoked by stimulation of either rods or cones recovered from paired-pulse depression (PPD) at rates similar to the recovery of exocytotic capacitance changes in rods and cones. Correlation between presynaptic and postsynaptic measures of recovery from PPD suggests that 80-90% of the depression at these synapses is presynaptic in origin. Consistent with a predominantly presynaptic mechanism, inhibiting desensitization of postsynaptic glutamate receptors had little effect on PPD. The depression of exocytotic capacitance changes exceeded depression of the presynaptic calcium current, suggesting that it is primarily caused by a depletion of synaptic vesicles. In support of this idea, limiting Ca2+ influx by using weaker depolarizing stimuli promoted faster recovery from PPD. Although cones exhibit much faster exocytotic kinetics than rods, exocytotic capacitance changes recovered from PPD at similar rates in both cell types. Thus, depression of release is not likely to contribute to differences in the kinetics of transmission from rods and cones.
Collapse
|
175
|
Harata NC, Choi S, Pyle JL, Aravanis AM, Tsien RW. Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 2006; 49:243-56. [PMID: 16423698 DOI: 10.1016/j.neuron.2005.12.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 10/12/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022]
Abstract
The kinetics of exo-endocytotic recycling could restrict information transfer at central synapses if neurotransmission were entirely reliant on classical full-collapse fusion. Nonclassical fusion retrieval by kiss-and-run would be kinetically advantageous but remains controversial. We used a hydrophilic quencher, bromophenol blue (BPB), to help detect nonclassical events. Upon stimulation, extracellular BPB entered synaptic vesicles and quenched FM1-43 fluorescence, indicating retention of FM dye beyond first fusion. BPB also quenched fluorescence of VAMP (synaptobrevin-2)-EGFP, thus indicating the timing of first fusion of vesicles in the total recycling pool. Comparison with FM dye destaining revealed that kiss-and-run strongly prevailed over full-collapse fusion at low frequency, giving way to a near-even balance at high frequency. Quickening of kiss-and-run vesicle reuse was also observed at higher frequency in the average single vesicle fluorescence response. Kiss-and-run and reuse could enable hippocampal nerve terminals to conserve scarce vesicular resources when responding to widely varying input patterns.
Collapse
Affiliation(s)
- Nobutoshi C Harata
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
176
|
Hjelmstad GO. Interactions between asynchronous release and short-term plasticity in the nucleus accumbens slice. J Neurophysiol 2005; 95:2020-3. [PMID: 16338991 DOI: 10.1152/jn.01149.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate synapses in the nucleus accumbens (NAc) display asynchronous release in response to trains of stimulation. However, it is unclear what role this asynchronous release plays in synaptic transmission in this nucleus. This process was studied, specifically looking at the interaction between short-term depression and asynchronous release. These results indicate that synchronous and asynchronous release do not compete for a depleted readily releasable pool of vesicles.
Collapse
Affiliation(s)
- Gregory O Hjelmstad
- Department of Neurology, Wheeler Center for the Neurobiology of Addiction and the Ernest Gallo Clinic and Research Ctr., 5858 Horton St., Suite 200, Emeryville, CA 94608, USA.
| |
Collapse
|
177
|
Abrahamsson T, Gustafsson B, Hanse E. Synaptic fatigue at the naive perforant path-dentate granule cell synapse in the rat. J Physiol 2005; 569:737-50. [PMID: 16239273 PMCID: PMC1464272 DOI: 10.1113/jphysiol.2005.097725] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic activation at low frequency is often used to probe synaptic function and synaptic plasticity, but little is known about how such low-frequency activation itself affects synaptic transmission. In the present study, we have examined how the perforant path-dentate granule cell (PP-GC) synapse adapts to low-frequency activation from a previously non-activated (naive) state. Stimulation at 0.2 Hz in acute slices from developing rats (7-12 days old) caused a gradual depression of the AMPA EPSC (at -80 mV) to about half within 50 stimuli. This synaptic fatigue was unaffected by the NMDA and metabotropic glutamate (mGlu) receptor antagonists d-AP5 and LY-341495. A smaller component of this synaptic fatigue was readily reversible when switching to very low-frequency stimulation (0.033-0.017 Hz) and is attributed to a reversible decrease in release probability, which is probably due to depletion of readily releasable vesicles. Thus, it was expressed to the same extent by AMPA and NMDA EPSCs, and was associated with a decrease in quantal content (measured as 1/CV(2)) with no change in the paired-pulse ratio. The larger component of the synaptic fatigue was not readily reversible, was selective for AMPA EPSCs and was associated with a decrease in 1/CV(2), thus probably representing silencing of AMPA signalling in a subset of synapses. In adult rats (> 30 days old), the AMPA silencing had disappeared while the low-frequency depression remained unaltered. The present study has thus identified two forms of synaptic plasticity that contribute to fatigue of synaptic transmission at low frequencies at the developing PP-GC synapse; AMPA silencing and a low-frequency depression of release probability.
Collapse
Affiliation(s)
- Therése Abrahamsson
- Göteborg University, Department of Physiology, Box 432, Medicinaregatan 11, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
178
|
Renden R, Taschenberger H, Puente N, Rusakov DA, Duvoisin R, Wang LY, Lehre KP, von Gersdorff H. Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of Held synapses. J Neurosci 2005; 25:8482-97. [PMID: 16162930 PMCID: PMC3375655 DOI: 10.1523/jneurosci.1848-05.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/29/2005] [Accepted: 07/21/2005] [Indexed: 11/21/2022] Open
Abstract
We examined the effect of glutamate transporter blockade at the calyx of Held synapse. In immature synapses [defined as postnatal day 8 (P8) to P10 rats], transporter blockade causes tonic activation of NMDA receptors and strong inhibition of the AMPA receptor-mediated EPSC amplitude. EPSC inhibition was blocked with a metabotropic glutamate receptor (mGluR) antagonist [1 microm LY341495 (2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid)], suggesting that elevated resting glutamate concentration specifically activates group II and group III mGluRs. Using mGluR subtype-specific agonists and antagonists, we determined that increased glutamate activates presynaptic mGluR2/3 and mGluR8 receptors but not mGluR4, although this receptor is present. Surprisingly, in older animals (P16-P18), transporter blockade had no effect on EPSC amplitude because of a developmental downregulation of group II/III mGluR activation in rats and mice. In contrast to other CNS synapses, we observed no effect of transporter blockade on EPSC decay kinetics, although expression of glutamate transporters was strong in nearby glial processes at both P9 and P17. Finally, using a low-affinity AMPA receptor antagonist (gamma-D-glutamylglycine), we show that desensitization occurs at P8-P10 but is absent at P16-P18, even during trains of high-frequency (100-300 Hz) stimulation. We suggest that diffusion and transporter activation are insufficient to clear synaptically released glutamate at immature calyces, resulting in significant desensitization. Thus, mGluRs may be expressed in the immature calyx to help limit glutamate release. In the more mature calyx, there is a far smaller diffusional barrier attributable to the highly fenestrated synaptic terminal morphology, so AMPA receptor desensitization is avoided and mGluR-mediated inhibition is not necessary.
Collapse
Affiliation(s)
- Robert Renden
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Synapses respond to brief, repetitive stimulation with synaptic depression when initial transmitter release probability is high. Vesicle depletion has been a long-standing hypothesis for depression, but results unexplained by the depletion hypothesis have been nagging. In this issue of Neuron, Xu and Wu show that, under some conditions, calcium current inactivation explains stimulus-dependent depression at the calyx of Held.
Collapse
Affiliation(s)
- Krista L Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
180
|
Ishikawa T, Kaneko M, Shin HS, Takahashi T. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol 2005; 568:199-209. [PMID: 16037093 PMCID: PMC1474759 DOI: 10.1113/jphysiol.2005.089912] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At the nerve terminal, both N- and P/Q-type Ca2+ channels mediate synaptic transmission, with their relative contribution varying between synapses and with postnatal age. To clarify functional significance of different presynaptic Ca2+ channel subtypes, we recorded N-type and P/Q-type Ca2+ currents directly from calyces of Held nerve terminals in alpha1A-subunit-deficient mice and wild-type (WT) mice, respectively. The most prominent feature of P/Q-type Ca2+ currents was activity-dependent facilitation, which was absent for N-type Ca2+ currents. EPSCs mediated by P/Q-type Ca2+ currents showed less depression during high-frequency stimulation compared with those mediated by N-type Ca2+ currents. In addition, the maximal inhibition by the GABAB receptor agonist baclofen was greater for EPSCs mediated by N-type channels than for those mediated by P/Q-type channels. These results suggest that the developmental switch of presynaptic Ca2+ channels from N- to P/Q-type may serve to increase synaptic efficacy at high frequencies of activity, securing high-fidelity synaptic transmission.
Collapse
Affiliation(s)
- Taro Ishikawa
- Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|