151
|
Yang H, Sasaki T, Minoshima S, Shimizu N. Identification of three novel proteins (SGSM1, 2, 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway. Genomics 2007; 90:249-60. [PMID: 17509819 DOI: 10.1016/j.ygeno.2007.03.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/20/2007] [Accepted: 03/26/2007] [Indexed: 01/12/2023]
Abstract
We report a novel protein family consisting of three members, each of which contains RUN and TBC motifs and appears to be associated with small G protein-mediated signal transduction pathway. We named these proteins as small G protein signaling modulators (SGSM1/2/3). Northern blot analysis revealed that human SGSM2/3 are expressed ubiquitously in various tissues, whereas SGSM1 is expressed mainly in brain, heart, and testis. Mouse possessed the same protein family genes, and the in situ hybridization and immunohistochemical staining of tissue sections revealed that mouse Sgsm1/2/3 are expressed in the neurons of central nervous system, indicating the strong association of Sgsm family with neuronal function. Furthermore, endogenous Sgsm1 protein was localized in the trans-Golgi network of mouse Neuro2a cells by immunofluorescence microscopy. Expression of various cDNA constructs followed by immunoprecipitation assay revealed that human SGSM1/2/3 proteins are coprecipitated with RAP and RAB subfamily members of the small G protein superfamily. Based on these results, we postulated that the SGSM family members function as modulators of the small G protein RAP and RAB-mediated neuronal signal transduction and vesicular transportation pathways.
Collapse
Affiliation(s)
- Hao Yang
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
152
|
Nakata H, Nakamura S. Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. FEBS Lett 2007; 581:2047-54. [PMID: 17482902 DOI: 10.1016/j.febslet.2007.04.041] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/25/2022]
Abstract
The change in the number of post-synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamatergic receptors (AMPARs) by neuronal activity is recognized as a molecular basis of synaptic plasticity. Here, we show that Ca(2+) transients evoked by brain-derived neurotrophic factor (BDNF) induce translocation of a subunit of AMPAR, GluR1, but not NMDAR, to the post-synaptic membrane in cultured cortical pyramidal neurons. Among BDNF-induced Ca(2+) transients, that dependent on IP3R was fully required, while store-operated calcium influx through the non-selective cation channel TRPC (transient receptor potential canonical) was partially required for the GluR1 up-regulation, suggesting that spatial and temporal calcium signaling regulate translocation of GluR1 to the polarized membrane domain.
Collapse
Affiliation(s)
- Hiroko Nakata
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
153
|
Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007; 27:2846-57. [PMID: 17360906 PMCID: PMC6672582 DOI: 10.1523/jneurosci.0116-07.2007] [Citation(s) in RCA: 615] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Well-documented experimental evidence from both in vitro and in vivo models of stroke strongly supports the critical involvement of NMDA receptor-mediated excitotoxicity in neuronal damage after stroke. Despite this, the results of clinical trials testing NMDA receptor antagonists as neuroprotectants after stroke and brain trauma have been discouraging. Here, we report that in mature cortical cultures, activation of either synaptic or extrasynaptic NR2B-containing NMDA receptors results in excitotoxicity, increasing neuronal apoptosis. In contrast, activation of either synaptic or extrasynaptic NR2A-containing NMDA receptors promotes neuronal survival and exerts a neuroprotective action against both NMDA receptor-mediated and non-NMDA receptor-mediated neuronal damage. A similar opposing action of NR2B and NR2A in mediating cell death and cell survival was also observed in an in vivo rat model of focal ischemic stroke. Moreover, we found that blocking NR2B-mediated cell death was effective in reducing infarct volume only when the receptor antagonist was given before the onset of stroke and not 4.5 h after stroke. In great contrast, activation of NR2A-mediated cell survival signaling with administration of either glycine alone or in the presence of NR2B antagonist significantly attenuated ischemic brain damage even when delivered 4.5 h after stroke onset. Together, the present work provides a molecular basis for the dual roles of NMDA receptors in promoting neuronal survival and mediating neuronal damage and suggests that selective enhancement of NR2A-containing NMDA receptor activation with glycine may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Yitao Liu
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Tak Pan Wong
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Michelle Aarts
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
| | - Amanda Rooyakkers
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Lidong Liu
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Ted Weita Lai
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Dong Chuan Wu
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Jie Lu
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Michael Tymianski
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
| | - Ann Marie Craig
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| | - Yu Tian Wang
- Brain Research Centre, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5, and
| |
Collapse
|
154
|
Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 2007; 8:101-13. [PMID: 17237803 DOI: 10.1038/nrn2055] [Citation(s) in RCA: 555] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.
Collapse
Affiliation(s)
- Victor A Derkach
- Vollum Institute, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
155
|
Li S, Tian X, Hartley DM, Feig LA. The environment versus genetics in controlling the contribution of MAP kinases to synaptic plasticity. Curr Biol 2007; 16:2303-13. [PMID: 17141611 DOI: 10.1016/j.cub.2006.10.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/15/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND A challenge in biomedical research is to design experimental paradigms that reflect a natural setting. Even when freshly isolated tissues are used, they are almost always derived from animals housed in cages that poorly reflect the animal's native environment. This issue is highlighted by studies on brain function, where mice housed in a more natural "enriched environment" display enhanced learning and memory and delayed onset of symptoms of neurodegenerative diseases compared to mice housed conventionally. How the environment mediates its effects on brain function is poorly understood. RESULTS We show that after exposure of adolescent mice to an "enriched environment," the induction of long-term potentiation (LTP), a form of synaptic plasticity that is thought to contribute to learning and memory, involves a novel signal transduction pathway that is nonfunctional in comparable mice housed conventionally. This environmentally gated signaling pathway, which rescues defective LTP induction in adolescent Ras-GRF knockout mice, consists of NMDA glutamate receptor activation of p38, a MAP kinase that does not contribute to LTP in mice housed conventionally. Interestingly, the same exposure to environmental enrichment does not have this effect in adult mice. CONCLUSIONS This study reveals a new level of cell signaling control whereby environmental factors gate the efficacy of a specific signaling cascade to control how LTP is induced in adolescent animals. The suppression of this gating mechanism in mature animals represents a new form of age-dependent decline in brain plasticity.
Collapse
Affiliation(s)
- Shaomin Li
- Department of Biochemistry, Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
156
|
Fu Z, Lee SH, Simonetta A, Hansen J, Sheng M, Pak DTS. Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. J Neurochem 2007; 100:118-31. [PMID: 17227435 PMCID: PMC12125706 DOI: 10.1111/j.1471-4159.2006.04195.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rap family of small GTPases is implicated in the mechanisms of synaptic plasticity, particularly synaptic depression. Here we studied the role of Rap in neuronal morphogenesis and synaptic transmission in cultured neurons. Constitutively active Rap2 expressed in hippocampal pyramidal neurons caused decreased length and complexity of both axonal and dendritic branches. In addition, Rap2 caused loss of dendritic spines and spiny synapses, and an increase in filopodia-like protrusions and shaft synapses. These Rap2 morphological effects were absent in aspiny interneurons. In contrast, constitutively active Rap1 had no significant effect on axon or dendrite morphology. Dominant-negative Rap mutants increased dendrite length, indicating that endogenous Rap restrains dendritic outgrowth. The amplitude and frequency of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-mediated miniature excitatory postsynaptic currents (mEPSCs) decreased in hippocampal neurons transfected with active Rap1 or Rap2, associated with reduced surface and total levels of AMPA receptor subunit GluR2. Finally, increasing synaptic activity with GABA(A) receptor antagonists counteracted Rap2's inhibitory effect on dendrite growth, and masked the effects of Rap1 and Rap2 on AMPA-mediated mEPSCs. Rap1 and Rap2 thus have overlapping but distinct actions that potentially link the inhibition of synaptic transmission with the retraction of axons and dendrites.
Collapse
Affiliation(s)
- Zhanyan Fu
- Georgetown University Medical School, Department of Physiology and Biophysics, Washington, DC, USA
| | - Sang Hyoung Lee
- Medical College of Wisconsin, Department of Pharmacology, Milwaukee, Wisconsin, USA
| | - Alyson Simonetta
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan Hansen
- Medical College of Wisconsin, Department of Pharmacology, Milwaukee, Wisconsin, USA
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel T. S. Pak
- Georgetown University Medical School, Department of Pharmacology, Washington, DC, USA
| |
Collapse
|
157
|
Kaphzan H, O'Riordan KJ, Mangan KP, Levenson JM, Rosenblum K. NMDA and dopamine converge on the NMDA-receptor to induce ERK activation and synaptic depression in mature hippocampus. PLoS One 2006; 1:e138. [PMID: 17205142 PMCID: PMC1762427 DOI: 10.1371/journal.pone.0000138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 12/07/2006] [Indexed: 01/19/2023] Open
Abstract
The formation of enduring internal representation of sensory information demands, in many cases, convergence in time and space of two different stimuli. The first conveys the sensory input, mediated via fast neurotransmission. The second conveys the meaning of the input, hypothesized to be mediated via slow neurotransmission. We tested the biochemical conditions and feasibility for fast (NMDA) and slow (dopamine) neurotransmission to converge on the Mitogen Activated Protein Kinase signaling pathways, crucial in several forms of synaptic plasticity, and recorded its effects upon synaptic transmission. We detected differing kinetics of ERK2 activation and synaptic strength changes in the CA1 for low and high doses of neurotransmitters in hippocampal slices. Moreover, when weak fast and slow inputs are given together, they converge on ERK2, but not on p38 or JNK, and induce strong short-term synaptic depression. Surprisingly, pharmacological analysis revealed that a probable site of such convergence is the NMDA receptor itself, suggesting it serves as a detector and integrator of fast and slow neurotransmission in the mature mammalian brain, as revealed by ERK2 activation and synaptic function.
Collapse
Affiliation(s)
- Hanoch Kaphzan
- Center for Brain and Behavior, Department of Neurobiology and Ethology, Haifa University, Haifa, Israel
| | - Kenneth J. O'Riordan
- Department of Pharmacology and the Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kile P. Mangan
- Department of Pharmacology and the Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jonathan M. Levenson
- Department of Pharmacology and the Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kobi Rosenblum
- Center for Brain and Behavior, Department of Neurobiology and Ethology, Haifa University, Haifa, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
158
|
Kim E, Ko J. Molecular organization and assembly of the postsynaptic density of excitatory brain synapses. Results Probl Cell Differ 2006; 43:1-23. [PMID: 17068965 DOI: 10.1007/400_011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The postsynaptic density (PSD) is a postsynaptic membrane specialization at excitatory synapses. The PSD is made of macromolecular multiprotein complexes, which contain a variety of synaptic proteins including membrane, scaffolding, and signaling proteins. By coaggregating with postsynaptic cell adhesion molecules, PSD proteins promote the formation and maturation of excitatory synapses. PSD proteins organize signaling pathways to coordinate structural and functional changes in synapses, and they regulate trafficking and recycling of glutamate receptors, which determines synaptic strength and plasticity. Synaptic activity dynamically regulates the assembly of the PSD through mechanisms including protein phosphorylation, palmitoylation, and protein degradation. PSD proteins associate with diverse motor proteins, suggesting that they function as adaptors linking motors to their specific cargoes.
Collapse
Affiliation(s)
- Eunjoon Kim
- National Creative Research Initiative Center for Synaptogenesis and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon.
| | | |
Collapse
|
159
|
Boehm J, Ehrlich I, Hsieh H, Malinow R. Two mutations preventing PDZ-protein interactions of GluR1 have opposite effects on synaptic plasticity. Learn Mem 2006; 13:562-5. [PMID: 16980545 DOI: 10.1101/lm.253506] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regulated trafficking of GluR1 contributes significantly to synaptic plasticity, but studies addressing the function of the GluR1 C-terminal PDZ-ligand domain in this process have produced conflicting results. Here, we resolve this conflict by showing that apparently similar C-terminal mutations of the GluR1 PDZ-ligand domain result in opposite physiological phenotypes during activity- and CamKII-induced synaptic plasticity.
Collapse
Affiliation(s)
- Jannic Boehm
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
160
|
Ito-Ishida A, Kakegawa W, Yuzaki M. ERK1/2 but not p38 MAP kinase is essential for the long-term depression in mouse cerebellar slices. Eur J Neurosci 2006; 24:1617-22. [PMID: 17004925 DOI: 10.1111/j.1460-9568.2006.05055.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinase (MAPK) cascade is essential for synaptic plasticity and learning. In the hippocampus, three different MAPK subfamilies, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK and c-Jun NH2-terminal protein kinase (JNK), selectively regulate activity-dependent glutamate receptor trafficking during long-term potentiation (LTP), long-term depression (LTD), and depotentiation after LTP, respectively. Although LTP and LTD at cerebellar parallel fibre (PF)-Purkinje cell synapses are thought to be controlled by glutamate receptor trafficking, the involvement of MAPK subfamilies has not been systemically studied in cerebellar slice preparations. To clarify the role of the MAPK cascade in cerebellar LTD, we performed biochemical and electrophysiological analyses using ICR mouse cerebellar slices. Immunoblot analyses using phosphorylation-specific antibodies for MAPKs revealed that among the three MAPKs, ERK1/2 was specifically activated by phorbol ester, which could induce LTD in cerebellar slices. In addition, U0126, a specific inhibitor of the MAPK kinase-ERK1/2 pathway, abrogated the induction of LTD in cerebellar slices, whereas SB203580 and SP600125, specific inhibitors of p38 MAPK and JNK, respectively, had no effect. Although metabotropic glutamate receptor 1 (mGluR1) has been suggested as a possible downstream target of ERK1/2 in cell-culture preparations, mGluR1-activated slow excitatory postsynaptic currents (EPSCs) were not affected by U0126 treatment in slices. These findings indicate that unlike hippocampal LTD mediated by p38 MAPK, glutamate receptor trafficking during cerebellar LTD was regulated by a distinct mechanism involving ERK1/2 in slice preparations.
Collapse
Affiliation(s)
- Aya Ito-Ishida
- Department of Physiology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
161
|
Tatsukawa T, Chimura T, Miyakawa H, Yamaguchi K. Involvement of basal protein kinase C and extracellular signal-regulated kinase 1/2 activities in constitutive internalization of AMPA receptors in cerebellar Purkinje cells. J Neurosci 2006; 26:4820-5. [PMID: 16672655 PMCID: PMC6674172 DOI: 10.1523/jneurosci.0535-06.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA receptor (AMPAR) internalization provides a mechanism for long-term depression (LTD) in both hippocampal pyramidal neurons and cerebellar Purkinje cells (PCs). Cerebellar LTD at the parallel fiber (PF)-PC synapse is the underlying basis of motor learning and requires AMPAR activation, a large Ca2+ influx, and protein kinase C (PKC) activation. However, whether these requirements affect the constitutive AMPAR internalization in PF-PC synapses remains unclarified. Tetanus toxin (TeTx) infusion into PCs decreased PF-EPSC amplitude to 60% within 20-30 min (TeTx rundown), without change in paired-pulse facilitation ratio or receptor kinetics. Immunocytochemically measured glutamate receptor 2 (GluR2) internalization ratio decreased at the steady state of TeTx rundown. TeTx rundown did not require AMPAR activity nor an increase in intracellular Ca2+ concentration. TeTx rundown was suppressed partially by the inhibition of either conventional PKC or mitogen-activated protein kinase kinase (MEK) and completely by the inhibition of both kinases. The background PKC activity was shown to be sufficient, because a PKC activator did not facilitate TeTx rundown. The inhibition of protein phosphatase 1/2A (PP1/2A) enhanced TeTx rundown slightly, and both inhibition of PP1/2A and activation of PKC maximized it, but one-half of AMPARs at PF-PC synapses remained in the TeTx-resistant pool. The inhibition of actin depolymerization suppressed TeTx rundown and decreased the GluR2 internalization ratio. In contrast, the inhibition of actin polymerization enhanced TeTx rundown and increased the GluR2 internalization ratio. We suggest that the regulation of actin polymerization is involved in the surface expression of AMPARs and the surface expressing AMPARs are constitutively internalized through both basal PKC and MEK-ERK1/2 (extracellular signal-regulated kinase 1/2) activities at PF-PC synapses.
Collapse
|
162
|
McCormack SG, Stornetta RL, Zhu JJ. Synaptic AMPA receptor exchange maintains bidirectional plasticity. Neuron 2006; 50:75-88. [PMID: 16600857 DOI: 10.1016/j.neuron.2006.02.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 12/31/2005] [Accepted: 02/22/2006] [Indexed: 11/20/2022]
Abstract
Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized "slot" proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.
Collapse
Affiliation(s)
- Stefanie G McCormack
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
163
|
Tigaret CM, Thalhammer A, Rast GF, Specht CG, Auberson YP, Stewart MG, Schoepfer R. Subunit dependencies of N-methyl-D-aspartate (NMDA) receptor-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. Mol Pharmacol 2006; 69:1251-9. [PMID: 16436589 DOI: 10.1124/mol.105.018580] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptor (NMDAR) activity regulates the net number of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) at the cell surface by modulating the balance between AMPAR membrane insertion and endocytosis. In this study, we addressed the role of NMDAR subtypes and of NMDAR-mediated Ca2+ influx in the NMDAR-induced endocytosis of GluR2-containing AMPARs in primary murine hippocampal neurons. We found that NMDAR activation enhanced the endocytosis of AMPARs containing the GluR2 splice variants with short, but not long, cytoplasmic tails. NMDA-induced GluR2 endocytosis was completely inhibited by pharmacological block of NR2B-containing NMDARs. In turn, preferential block of NR2A-containing NMDARs did not affect NMDA-induced AMPAR endocytosis, indicating that AMPAR internalization is controlled by a restricted set of NMDARs. The NMDA-induced GluR2 internalization was also observed in the absence of extracellular Na+ ions, suggesting that membrane depolarization is not a prerequisite for this effect. Furthermore, the activation of Ca2+-impermeable NMDARs containing the mutant NR1(N598R) subunit failed to enhance AMPAR endocytosis, indicating a requirement of Ca2+ influx directly through the NMDAR channels. In summary, our findings suggest that the NMDAR-induced selective internalization of short C-terminal GluR2-containing AMPARs requires a Ca2+ signal that originates from NMDAR channels and is processed in an NMDAR subtype-restricted manner.
Collapse
Affiliation(s)
- C M Tigaret
- Laboratory for Molecular Pharmacology, Department of Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
164
|
Shemer I, Holmgren C, Min R, Fülöp L, Zilberter M, Sousa KM, Farkas T, Härtig W, Penke B, Burnashev N, Tanila H, Zilberter Y, Harkany T. Non-fibrillar β-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. Eur J Neurosci 2006; 23:2035-47. [PMID: 16630051 DOI: 10.1111/j.1460-9568.2006.04733.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cognitive decline in Alzheimer's disease (AD) stems from the progressive dysfunction of synaptic connections within cortical neuronal microcircuits. Recently, soluble amyloid beta protein oligomers (Abeta(ol)s) have been identified as critical triggers for early synaptic disorganization. However, it remains unknown whether a deficit of Hebbian-related synaptic plasticity occurs during the early phase of AD. Therefore, we studied whether age-dependent Abeta accumulation affects the induction of spike-timing-dependent synaptic potentiation at excitatory synapses on neocortical layer 2/3 (L2/3) pyramidal cells in the APPswe/PS1dE9 transgenic mouse model of AD. Synaptic potentiation at excitatory synapses onto L2/3 pyramidal cells was significantly reduced at the onset of Abeta pathology and was virtually absent in mice with advanced Abeta burden. A decreased alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/N-methyl-D-aspartate (NMDA) receptor-mediated current ratio implicated postsynaptic mechanisms underlying Abeta synaptotoxicity. The integral role of Abeta(ol)s in these processes was verified by showing that pretreatment of cortical slices with Abeta((25-35)ol)s disrupted spike-timing-dependent synaptic potentiation at unitary connections between L2/3 pyramidal cells, and reduced the amplitude of miniature excitatory postsynaptic currents therein. A robust decrement of AMPA, but not NMDA, receptor-mediated currents in nucleated patches from L2/3 pyramidal cells confirmed that Abeta(ol)s perturb basal glutamatergic synaptic transmission by affecting postsynaptic AMPA receptors. Inhibition of AMPA receptor desensitization by cyclothiazide significantly increased the amplitude of excitatory postsynaptic potentials evoked by afferent stimulation, and rescued synaptic plasticity even in mice with pronounced Abeta pathology. We propose that soluble Abeta(ol)s trigger the diminution of synaptic plasticity in neocortical pyramidal cell networks during early stages of AD pathogenesis by preferentially targeting postsynaptic AMPA receptors.
Collapse
Affiliation(s)
- Isaac Shemer
- Department of Neuroscience, Retzius väg 8:A3-417, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
Emotionally-salient stressors are processed by cortical and limbic circuits that provide important regulatory input to the hypothalamic-pituitary-adrenal (HPA) axis. However, exposure to chronic or severe stress may cause disregulation of the axis and a variety of physiological and psychological symptoms. The mechanisms that underlie stress-induced alterations in HPA axis function are not well characterized, but one possibility is that severe stress causes plastic changes in limbic inputs to the hypothalamus. We examined plasticity within the bed nucleus of stria terminalis (BNST) and the hypothalamic paraventricular nucleus (PVN) with a stimulating electrode in the BNST and a recording electrode in the PVN. High-frequency BNST stimulation produced long-lasting suppression of evoked field potentials recorded from the PVN, and this effect was blocked by administration of MK-801. Accordingly, rapid glutamate-mediated neuroplasticity in the BNST to PVN neurocircuitry may contribute to plasticity in limbic regulation of the HPA axis.
Collapse
Affiliation(s)
- J L Tartar
- Behavioral Neuroscience Program, Department of Psychology, University of Florida, Gainesville, FL 32611-2250, USA
| | | | | |
Collapse
|
166
|
Cullen PJ. Decoding complex Ca2+ signals through the modulation of Ras signaling. Curr Opin Cell Biol 2006; 18:157-61. [PMID: 16488591 DOI: 10.1016/j.ceb.2006.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/08/2006] [Indexed: 12/22/2022]
Abstract
Calcium (Ca(2+)) is a universal regulator of a wide variety of cellular processes. For such control to be achieved, information is encoded within spatial and temporal components of the underlying Ca(2+) signal. One pathway through which Ca(2+) signals are decoded is the Ras binary switch. Here I describe some recent advances that have shed light on how cells can decode the spatial and temporal aspects of Ca(2+) signals through the regulation of this important signalling switch.
Collapse
Affiliation(s)
- Peter J Cullen
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
167
|
Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 2006; 16:95-101. [PMID: 16361095 DOI: 10.1016/j.conb.2005.12.001] [Citation(s) in RCA: 497] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 12/02/2005] [Indexed: 11/29/2022]
Abstract
Excitatory synapses are formed on dendritic spines, postsynaptic structures that change during development and in response to synaptic activity. Once mature, however, spines can remain stable for many months. The molecular mechanisms that control the formation and elimination, motility and stability, and size and shape of dendritic spines are being revealed. Multiple signaling pathways, particularly those involving Rho and Ras family small GTPases, converge on the actin cytoskeleton to regulate spine morphology and dynamics bidirectionally. Numerous cell surface receptors, scaffold proteins and actin binding proteins are concentrated in spines and engaged in spine morphogenesis.
Collapse
Affiliation(s)
- Tomoko Tada
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
168
|
Qin Y, Zhu Y, Baumgart JP, Stornetta RL, Seidenman K, Mack V, van Aelst L, Zhu JJ. State-dependent Ras signaling and AMPA receptor trafficking. Genes Dev 2005; 19:2000-15. [PMID: 16107614 PMCID: PMC1199571 DOI: 10.1101/gad.342205] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synaptic trafficking of AMPA-Rs, controlled by small GTPase Ras signaling, plays a key role in synaptic plasticity. However, how Ras signals synaptic AMPA-R trafficking is unknown. Here we show that low levels of Ras activity stimulate extracellular signal-regulated kinase kinase (MEK)-p42/44 MAPK (extracellular signal-regulated kinase [ERK]) signaling, whereas high levels of Ras activity stimulate additional Pi3 kinase (Pi3K)-protein kinase B (PKB) signaling, each accounting for approximately 50% of the potentiation during long-term potentiation (LTP). Spontaneous neural activity stimulates the Ras-MEK-ERK pathway that drives GluR2L into synapses. In the presence of neuromodulator agonists, neural activity also stimulates the Ras-Pi3K-PKB pathway that drives GluR1 into synapses. Neuromodulator release increases with increases of vigilance. Correspondingly, Ras-MEK-ERK activity in sleeping animals is sufficient to deliver GluR2L into synapses, while additional increased Ras-Pi3K-PKB activity in awake animals delivers GluR1 into synapses. Thus, state-dependent Ras signaling, which specifies downstream MEK-ERK and Pi3K-PKB pathways, differentially control GluR2L- and GluR1-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|