151
|
Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior. J Neurosci 2007; 27:10982-92. [PMID: 17928439 DOI: 10.1523/jneurosci.0793-07.2007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The RhoA (Rho) GTPase is a master regulator of dendrite morphogenesis. Rho activation in developing neurons slows dendrite branch dynamics, yielding smaller, less branched dendrite arbors. Constitutive activation of Rho in mature neurons causes dendritic spine loss and dendritic regression, indicating that Rho can affect dendritic structure and function even after dendrites have developed. However, it is unclear whether and how endogenous Rho modulates dendrite and synapse morphology after dendrite arbor development has occurred. We demonstrate that a Rho inhibitory pathway involving the Arg tyrosine kinase and p190RhoGAP is essential for synapse and dendrite stability during late postnatal development. Hippocampal CA1 pyramidal dendrites develop normally in arg-/- mice, reaching their mature size by postnatal day 21 (P21). However, dendritic spines do not undergo the normal morphological maturation in these mice, leading to a loss of hippocampal synapses and dendritic branches by P42. Coincident with this synapse and dendrite loss, arg-/- mice exhibit progressive deficits in a hippocampus-dependent object recognition behavioral task. p190RhoGAP localizes to dendritic spines, and its activity is reduced in arg-/- hippocampus, leading to increased Rho activity. Although mutations in p190rhogap enhance dendritic regression resulting from decreased Arg levels, reducing gene dosage of the Rho effector ROCKII can suppress the dendritic regression observed in arg-/- mice. Together, these data indicate that signaling through Arg and p190RhoGAP acts late during synaptic refinement to promote dendritic spine maturation and synapse/dendrite stability by attenuating synaptic Rho activity.
Collapse
|
152
|
Kwiatkowski AV, Weis WI, Nelson WJ. Catenins: playing both sides of the synapse. Curr Opin Cell Biol 2007; 19:551-6. [PMID: 17936606 PMCID: PMC2674286 DOI: 10.1016/j.ceb.2007.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/14/2007] [Indexed: 12/11/2022]
Abstract
Synapses of the central nervous system (CNS) are specialized cell-cell junctions that mediate intercellular signal transmission from one neuron to another. The directional nature of signal relay requires synaptic contacts to be morphologically asymmetric with distinct protein components, while changes in synaptic communication during neural network formation require synapses to be plastic. Synapse morphology and plasticity require a dynamic actin cytoskeleton. Classical cadherins, which are junctional proteins associated with the actin cytoskeleton, localize to synapses and regulate synaptic adhesion, stability and remodeling. The major intracellular components of cadherin junctions are the catenin proteins, and increasing evidence suggests that cadherin-catenin complexes modulate an array of synaptic processes. Here we review the role of catenins in regulating the development of pre- and postsynaptic compartments and function in synaptic plasticity, with particular focus on their role in regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Adam V Kwiatkowski
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, United States.
| | | | | |
Collapse
|
153
|
Choe EA, Liao L, Zhou JY, Cheng D, Duong DM, Jin P, Tsai LH, Peng J. Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1. J Neurosci 2007; 27:9503-12. [PMID: 17728463 PMCID: PMC6673137 DOI: 10.1523/jneurosci.1408-07.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuronal communication requires the coordinated assembly of polarized structures including axons, dendrites, and synapses. Here, we report the identification of a ubiquitin ligase mind bomb 1 (Mib1) in the postsynaptic density and the characterization of its role in neuronal morphogenesis. Expression of Mib1 inhibits neurite outgrowth in cell culture and its gene deletion enhances synaptic growth at the neuromuscular junction in Drosophila. The analysis of Mib1 interactome by mass spectrometry revealed that Mib1 primarily interacts with membrane trafficking proteins [e.g., EEA1 (early endosomal antigen 1), Rab11-interacting proteins, and SNAP25 (synaptosomal-associated protein of 25 kDa)-like protein] and cell adhesion components (e.g., catenin, coronin, dystrobrevin, and syndecan), consistent with its previously reported function in protein sorting. More interestingly, Mib1 is associated with deubiquitinating enzymes, BRCC36 and the mammalian ortholog of fat facets, and a number of kinases, such as casein kinase II, MARK (microtubule affinity regulating kinase)/PAR1, and cyclin-dependent kinase 5 (CDK5). Further characterization of the Mib1-CDK5 interaction indicated that the N-terminal domain of Mib1 directly binds to the regulatory subunit p35 of the CDK5 complex. In cell culture, Mib1 induces the relocalization of p35/CDK5 without affecting its degradation. Surprisingly, p35/CDK5 downregulates the protein level of Mib1 by its kinase activity, and completely rescues the Mib1-induced inhibitory effect on neurite morphology. p35/CDK5 also genetically interacts with Mib1 in the fly according to the rough-eye phenotype. The data strongly support that the negative interplay between Mib1 and p35/CDK5 may integrate the activities of multiple pathways during neuronal development.
Collapse
Affiliation(s)
- Eun-Ah Choe
- Department of Human Genetics, Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, Georgia 30322, and
| | - Lujian Liao
- Department of Human Genetics, Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, Georgia 30322, and
| | - Jian-Ying Zhou
- Department of Human Genetics, Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, Georgia 30322, and
| | - Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, Georgia 30322, and
| | - Duc M. Duong
- Department of Human Genetics, Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, Georgia 30322, and
| | - Peng Jin
- Department of Human Genetics, Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, Georgia 30322, and
| | - Li-Huei Tsai
- The Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Junmin Peng
- Department of Human Genetics, Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, Georgia 30322, and
| |
Collapse
|
154
|
Boguslavsky S, Grosheva I, Landau E, Shtutman M, Cohen M, Arnold K, Feinstein E, Geiger B, Bershadsky A. p120 catenin regulates lamellipodial dynamics and cell adhesion in cooperation with cortactin. Proc Natl Acad Sci U S A 2007; 104:10882-7. [PMID: 17576929 PMCID: PMC1904144 DOI: 10.1073/pnas.0702731104] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The armadillo-family protein, p120 catenin (p120), binds to the juxtamembrane domain of classical cadherins and increases cell-cell junction stability. Overexpression of p120 modulates the activity of Rho family GTPases and augments cell migratory ability. Here we show that down-regulation of p120 in epithelial MCF-7 cells by siRNA leads to a striking decrease in lamellipodial persistence and focal adhesion formation. Similar alterations in lamellipodial activity were observed in MCF-7 cells treated with siRNA to cortactin, an activator of Arp2/3-dependent actin polymerization. We found that, in many cell types, p120 is colocalized with cortactin-containing actin structures not only at cell-cell junctions, but also at extrajunctional sites including membrane ruffles and actin-rich halos around endocytotic vesicles. p120 depletion led to dramatic loss of cortactin and its partner, Arp3, from the cell leading edges. Cortactin and p120 are shown to directly interact with each other via the cortactin N-terminal region. We propose that the mechanism underlying p120 functions at the leading edge involves its cooperation with cortactin.
Collapse
Affiliation(s)
- Shlomit Boguslavsky
- *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inna Grosheva
- *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Landau
- *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Shtutman
- Cancer Center, Ordway Research Institute, Inc., Albany, NY 12208; and
| | - Miriam Cohen
- *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Katya Arnold
- *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Benjamin Geiger
- *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Bershadsky
- *Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
155
|
Tao Q, Nandadasa S, McCrea PD, Heasman J, Wylie C. G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo. Development 2007; 134:2651-61. [PMID: 17567666 DOI: 10.1242/dev.002824] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During embryonic development, each cell of a multicellular organ rudiment polymerizes its cytoskeletal elements in an amount and pattern that gives the whole cellular population its characteristic shape and mechanical properties. How does each cell know how to do this? We have used the Xenopus blastula as a model system to study this problem. Previous work has shown that the cortical actin network is required to maintain shape and rigidity of the whole embryo, and its assembly is coordinated throughout the embryo by signaling through G-protein-coupled receptors. In this paper, we show that the cortical actin network colocalizes with foci of cadherin expressed on the cell surface. We then show that cell-surface cadherin expression is both necessary and sufficient for cortical actin assembly and requires the associated catenin p120 for this function. Finally, we show that the previously identified G-protein-coupled receptors control cortical actin assembly by controlling the amount of cadherin expressed on the cell surface. This identifies a novel mechanism for control of cortical actin assembly during development that might be shared by many multicellular arrays.
Collapse
Affiliation(s)
- Qinghua Tao
- Children's Hospital Research Foundation, Division of Developmental Biology, and Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, OH 45219, USA
| | | | | | | | | |
Collapse
|
156
|
Hosking CR, Ulloa F, Hogan C, Ferber EC, Figueroa A, Gevaert K, Birchmeier W, Briscoe J, Fujita Y. The transcriptional repressor Glis2 is a novel binding partner for p120 catenin. Mol Biol Cell 2007; 18:1918-27. [PMID: 17344476 PMCID: PMC1855037 DOI: 10.1091/mbc.e06-10-0941] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/06/2007] [Accepted: 02/27/2007] [Indexed: 11/11/2022] Open
Abstract
In epithelial cells, p120 catenin (p120) localizes at cell-cell contacts and regulates adhesive function of the cadherin complex. In addition, p120 has been reported to localize in the nucleus, although the nuclear function of p120 is not fully understood. Here, we report the identification of Gli-similar 2 (Glis2) as a novel binding protein for p120. Glis2 is a Krüppel-like transcriptional repressor with homology to the Gli family, but its physiological function has not been well characterized. In this study, we show that coexpression of Glis2 and Src induces nuclear translocation of p120. Furthermore, p120 induces the C-terminal cleavage of Glis2, and this cleavage is further enhanced by Src. The cleaved form of Glis2 loses one of its five zinc finger domains, but it is still able to bind DNA. Functional studies in chick neural tube indicate that full-length Glis2 can affect neuronal differentiation, whereas the cleaved form requires coexpression of p120 to have a similar effect. These data indicate that p120 has additional novel functions in the nucleus together with Glis2.
Collapse
Affiliation(s)
- Catherine Rose Hosking
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Fausto Ulloa
- Division of Developmental Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Catherine Hogan
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Emma C. Ferber
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Angélica Figueroa
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Kris Gevaert
- Department of Medical Protein Research, Proteome Analysis and Bioinformatics Unit, Flanders Interuniversity Institute for Biotechnology, Faculty of Medicine and Health Sciences, Ghent University, B9000 Gent, Belgium; and
| | | | - James Briscoe
- Division of Developmental Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Yasuyuki Fujita
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
157
|
Abstract
The catenin p120 is involved in many processes, including cell-cell adhesion and cancer. Recent work explores whether p120 independently regulates two key binding partners, RhoGTPase and cadherin.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
158
|
Abstract
Many cell adhesion molecules are localized at synaptic sites in neuronal axons and dendrites. These molecules bridge pre- and postsynaptic specializations but do far more than simply provide a mechanical link between cells. In this review, we will discuss the roles these proteins have during development and at mature synapses. Synaptic adhesion proteins participate in the formation, maturation, function and plasticity of synaptic connections. Together with conventional synaptic transmission mechanisms, these molecules are an important element in the trans-cellular communication mediated by synapses.
Collapse
Affiliation(s)
- Matthew B Dalva
- University of Pennsylvania Medical Center, Department of Neuroscience, BRB II/III, Room 1114, 421 Curie Blvd., Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
159
|
Abstract
Integrins are of interest to neuroscientists because they and many of their ligands are widely expressed in the nervous system and have been shown to have diverse roles in neural development and function (Clegg et al., 2003; Li and Pleasure, 2005; Pinkstaff et al., 1998, 1999; Reichardt and Tomaselli, 1991; Schmid et al., 2005). Integrins have also been implicated in control of pathogenesis in several neurodegenerative diseases, brain tumor pathogenesis, and the aftermath of brain and peripheral nervous system injury (Condic, 2001; Ekstrom et al., 2003; Kloss et al., 1999; Verdier and Penke, 2004; Wallquist et al., 2004). Using integrin antagonists as therapeutic agents in a variety of neurological diseases is of great interest at present (Blackmore and Letourneau, 2006; Mattern et al., 2005; Polman et al., 2006; Wang et al., 2006). In this chapter, we describe methods used in our laboratory to characterize neuronal responses to extracellular matrix proteins, and procedures for assessing integrin roles in neuronal cell attachment and differentiation.
Collapse
Affiliation(s)
- Sumiko Denda
- Shiseido Research Center 2, Kanazawa-ku, Yokohama, Japan
| | | |
Collapse
|
160
|
Reynolds AB. p120-catenin: Past and present. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:2-7. [PMID: 17175391 PMCID: PMC2892545 DOI: 10.1016/j.bbamcr.2006.09.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 11/19/2022]
Abstract
p120-catenin was first described in 1989 as a Src substrate whose phosphorylation correlated with transformation. It was identified by cDNA cloning in 1992, and shown to interact with cadherins in 1994. Though enigmatic for some time, p120 has emerged as a master regulator of cadherin stability, and an important modulator of RhoGTPase activities. With the discovery of p120 family members and evidence for fundamental roles in cell biology and cancer, the field has expanded dramatically in recent years. As an introduction to this collection of reviews on p120 and its relatives, the editors have requested a personal commentary and historical perspective on the discovery of p120. The anecdotal parts have no particular purpose, but are mostly unpublished and perhaps of interest to some.
Collapse
Affiliation(s)
- Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, 438 Preston Building Nashville, TN 37232-684, USA.
| |
Collapse
|
161
|
Abstract
The mammalian central nervous system (CNS) requires the proper formation of exquisitely precise circuits to function correctly. These neuronal circuits are assembled during development by the formation of synaptic connections between thousands of differentiating neurons. Proper synapse formation during childhood provides the substrate for cognition, whereas improper formation or function of these synapses leads to neurodevelopmental disorders, including mental retardation and autism. Recent work has begun to identify some of the early cellular events in synapse formation as well as the molecular signals that initiate this process. However, despite the wealth of information published on this topic in the past few years, some of the most fundamental questions about how, whether, and where glutamatergic synapses form in the mammalian CNS remain unanswered. This review focuses on the dynamic aspects of the early cellular and molecular events in the initial assembly of glutamatergic synapses in the mammalian CNS.
Collapse
|
162
|
Anastasiadis PZ. p120-ctn: A nexus for contextual signaling via Rho GTPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:34-46. [PMID: 17028013 DOI: 10.1016/j.bbamcr.2006.08.040] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120) is the prototypic member of a subfamily of armadillo repeat domain proteins involved in intercellular adhesion. Recent evidence indicates that p120 associates with classical cadherins and regulates their stability. Ectopic p120 expression results in a variety of morphological effects, and promotes cell migration. There is now strong evidence that p120 acts, at least in part, through regulation of Rho GTPases. The data suggest that p120 may act as a signaling nexus, conveying messages from the cellular micro- and macro-environment to the cell's interior. By regulating Rho GTPases in a context-dependent manner p120 can exert profound effects on cellular responses from synaptic plasticity to vesicle trafficking, as well as regulate the motile vs. sessile, and possibly the proliferative vs. quiescent phenotype of epithelial cells. Here, we review the new evidence on the relationship of p120 to Rho GTPases, and discuss potential roles for the p120-Rho connection in normal and malignant cells.
Collapse
Affiliation(s)
- Panos Z Anastasiadis
- Department Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Rm. 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
163
|
Park JI, Ji H, Jun S, Gu D, Hikasa H, Li L, Sokol SY, McCrea PD. Frodo Links Dishevelled to the p120-Catenin/Kaiso Pathway: Distinct Catenin Subfamilies Promote Wnt Signals. Dev Cell 2006; 11:683-95. [PMID: 17084360 DOI: 10.1016/j.devcel.2006.09.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/14/2006] [Accepted: 09/26/2006] [Indexed: 12/13/2022]
Abstract
p120-catenin is an Arm repeat protein that interacts with varied components such as cadherin, small G proteins, kinases, and the Kaiso transcriptional repressor. Despite recent advances in understanding the roles that p120-catenin and Kaiso play in downstream modulation of Wnt/beta-catenin signaling, the identity of the upstream regulators of the p120-catenin/Kaiso pathway have remained unclear. Here, we find that p120-catenin binds Frodo, which itself interacts with the Wnt pathway protein Dishevelled (Dsh). In Xenopus laevis, we demonstrate that Wnt signals result in Frodo-mediated stabilization of p120-catenin, which, in turn, promotes Kaiso sequestration or removal from the nucleus. Our results point to Dsh and Frodo as upstream regulators of the p120-catenin/Kaiso signaling pathway. Importantly, this suggests that Wnt signals acting through Dsh regulate the stability of p120-catenin in addition to that of beta-catenin, and that each catenin promotes its respective signal in parallel to regulate distinct, as well as shared, direct downstream gene targets.
Collapse
Affiliation(s)
- Jae-il Park
- Department of Biochemistry and Molecular Biology and Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Adherens junctions have been traditionally viewed as building blocks of tissue architecture. The foundations for this view began to change with the discovery that a central component of AJs, beta-catenin, can also function as a transcriptional cofactor in Wnt signaling. In recent years, conventional views have similarly been shaken about the other two major AJ catenins, alpha-catenin and p120-catenin. Catenins have emerged as molecular sensors that integrate cell-cell junctions and cytoskeletal dynamics with signaling pathways that govern morphogenesis, tissue homeostasis, and even intercellular communication between different cell types within a tissue. These findings reveal novel aspects of AJ function in normal tissues and offer insights into how changes in AJs and their associated proteins and cytoskeletal dynamics impact wound-repair and cancer.
Collapse
Affiliation(s)
- Mirna Perez-Moreno
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
165
|
McCrea PD, Park JI. Developmental functions of the P120-catenin sub-family. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:17-33. [PMID: 16942809 DOI: 10.1016/j.bbamcr.2006.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/21/2006] [Accepted: 06/26/2006] [Indexed: 01/11/2023]
Abstract
For more than a decade, cell, developmental and cancer investigators have brought about a wide interest in the biology of catenin proteins, an attraction being their varied functions within differing cellular compartments. While the diversity of catenin localizations and roles has been intriguing, it has also posed a challenge to the clear interpretation of loss- or gain-of-function developmental phenotypes. The most deeply studied member of the larger catenin family is beta-catenin, whose contributions span areas including cell adhesion and intracellular signaling/ transcriptional control. More recently, attention has been directed towards p120-catenin, which in conjunction with the p120-catenin sub-family members ARVCF- and delta-catenins, are the subjects of this review. Although the requirement for vertebrate versus invertebrate p120-catenin are at variance, vertebrate p120-catenin sub-family members may each inter-link cadherin, cytoskeletal and gene regulatory functions in embryogenesis and disease.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston TX 77030, USA.
| | | |
Collapse
|