151
|
Guo P, Zhou J, Su Y, Wang W, Hua H, Zhao P, Wang Y, Kang S, Liu M. Altered functional connectivity of the default mode network in non-arteritic anterior ischaemic optic neuropathy. Brain Commun 2024; 6:fcae186. [PMID: 38873004 PMCID: PMC11170661 DOI: 10.1093/braincomms/fcae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
The functional connectivity of the default mode network is important in understanding the neuro-pathophysiological abnormalities in patients with non-arteritic anterior ischaemic optic neuropathy. Independent component analysis can effectively determine within and between network connectivity of different brain components. Therefore, in order to explore the association between the default mode network and other brain regions, we utilized independent component analysis to investigate the alteration of functional connectivity of the default mode network. Thirty-one patients with non-arteritic anterior ischaemic optic neuropathy and 31 healthy controls, matched for age, sex and years of education, were recruited. For patients and healthy controls, functional connectivity within and between the default mode network and other brain regions were evaluated by independent component analysis. Compared with healthy controls, patients with non-arteritic anterior ischaemic optic neuropathy showed reduced functional connectivity within the default mode network in the right cerebellar tonsil and left cerebellum posterior lobe and increased functional connectivity in the left inferior temporal and right middle frontal gyri. Furthermore, patients with non-arteritic anterior ischaemic optic neuropathy showed reduced functional connectivity between the default mode network and other brain regions in the left cerebellar tonsil and increased functional connectivity in the right putamen, left thalamus, right middle temporal and left middle frontal gyri. In conclusion, negative correlations between several clinical parameters and functional connectivity of the default mode network were observed. The study contributes to understanding the mechanism of functional reorganization in non-arteritic anterior ischaemic optic neuropathy.
Collapse
Affiliation(s)
- Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Jian Zhou
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Yan Su
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Weixin Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Haiqin Hua
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Pengbo Zhao
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Yan Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Shaohong Kang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| | - Ming Liu
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, PR China
| |
Collapse
|
152
|
Van Overwalle F, Ma Q, Haihambo N, Bylemans T, Catoira B, Firouzi M, Li M, Pu M, Heleven E, Baeken C, Baetens K, Deroost N. A Functional Atlas of the Cerebellum Based on NeuroSynth Task Coordinates. CEREBELLUM (LONDON, ENGLAND) 2024; 23:993-1012. [PMID: 37608227 PMCID: PMC11102394 DOI: 10.1007/s12311-023-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Although the human cerebellum has a surface that is about 80% of that of the cerebral cortex and has about four times as many neurons, its functional organization is still very much uncharted. Despite recent attempts to provide resting-state and task-based parcellations of the cerebellum, these two approaches lead to large discrepancies. This article describes a comprehensive task-based functional parcellation of the human cerebellum based on a large-scale functional database, NeuroSynth, involving an unprecedented diversity of tasks, which were reliably associated with ontological key terms referring to psychological functions. Involving over 44,500 participants from this database, we present a parcellation that exhibits replicability with earlier resting-state parcellations across cerebellar and neocortical structures. The functional parcellation of the cerebellum confirms the major networks revealed in prior work, including sensorimotor, directed (dorsal) attention, divided (ventral) attention, executive control, mentalizing (default mode) networks, tiny patches of a limbic network, and also a unilateral language network (but not the visual network), and the association of these networks with underlying ontological key terms confirms their major functionality. The networks are revealed at locations that are roughly similar to prior resting-state cerebellar parcellations, although they are less symmetric and more fragmented across the two hemispheres. This functional parcellation of the human cerebellum and associated key terms can provide a useful guide in designing studies to test specific functional hypotheses and provide a reference for interpreting the results.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Qianying Ma
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Tom Bylemans
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Beatriz Catoira
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mahyar Firouzi
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Min Pu
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Psychiatry, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Psychiatry, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
153
|
Du J, DiNicola LM, Angeli PA, Saadon-Grosman N, Sun W, Kaiser S, Ladopoulou J, Xue A, Yeo BTT, Eldaief MC, Buckner RL. Organization of the human cerebral cortex estimated within individuals: networks, global topography, and function. J Neurophysiol 2024; 131:1014-1082. [PMID: 38489238 PMCID: PMC11383390 DOI: 10.1152/jn.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The cerebral cortex is populated by specialized regions that are organized into networks. Here we estimated networks from functional MRI (fMRI) data in intensively sampled participants. The procedure was developed in two participants (scanned 31 times) and then prospectively applied to 15 participants (scanned 8-11 times). Analysis of the networks revealed a global organization. Locally organized first-order sensory and motor networks were surrounded by spatially adjacent second-order networks that linked to distant regions. Third-order networks possessed regions distributed widely throughout association cortex. Regions of distinct third-order networks displayed side-by-side juxtapositions with a pattern that repeated across multiple cortical zones. We refer to these as supra-areal association megaclusters (SAAMs). Within each SAAM, two candidate control regions were adjacent to three separate domain-specialized regions. Response properties were explored with task data. The somatomotor and visual networks responded to body movements and visual stimulation, respectively. Second-order networks responded to transients in an oddball detection task, consistent with a role in orienting to salient events. The third-order networks, including distinct regions within each SAAM, showed two levels of functional specialization. Regions linked to candidate control networks responded to working memory load across multiple stimulus domains. The remaining regions dissociated across language, social, and spatial/episodic processing domains. These results suggest that progressively higher-order networks nest outward from primary sensory and motor cortices. Within the apex zones of association cortex, there is specialization that repeatedly divides domain-flexible from domain-specialized regions. We discuss implications of these findings, including how repeating organizational motifs may emerge during development.NEW & NOTEWORTHY The organization of cerebral networks was estimated within individuals with intensive, repeat sampling of fMRI data. A hierarchical organization emerged in each individual that delineated first-, second-, and third-order cortical networks. Regions of distinct third-order association networks consistently exhibited side-by-side juxtapositions that repeated across multiple cortical zones, with clear and robust functional specialization among the embedded regions.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Wendy Sun
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Stephanie Kaiser
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Joanna Ladopoulou
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Aihuiping Xue
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep & Cognition and Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
154
|
Lasch A, Schweikert T, Dora E, Kolb T, Schurig HL, Walther A. [Psilocybin-Assisted Treatment of Depression, Anxiety and Substance use Disorders: Neurobiological Basis and Clinical Application]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:230-245. [PMID: 37207669 DOI: 10.1055/a-2046-5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Successful therapy of mental disorders is very important in view of the high level of suffering of those affected. Since established pharmaceutical and psychotherapeutic approaches do not lead to the desired improvement in all cases, complementary or alternative treatment methods are intensively researched. Psilocybin-assisted psychotherapy seems particularly promising, and has been approved in the USA for larger clinical trials. Psilocybin belongs to the group of psychedelics and influences psychological experiences. In assisted therapy, psilocybin is administered in controlled doses under medical supervision to patients with different mental disorders. In the studies conducted so far, longer-term positive effects could be shown after just one or a few doses. In order to provide a better understanding of the potential therapeutic mechanisms, this article will first describe neurobiological and psychological effects of psilocybin. To better assess the potential of psilocybin-assisted psychotherapy for various disorders, clinical studies conducted so far with patients administered psilocybin are reviewed.
Collapse
Affiliation(s)
- Anna Lasch
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Timo Schweikert
- Psychotherapie und Systemneurowissenschaften, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Eva Dora
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Theresa Kolb
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Hanne Lilian Schurig
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Andreas Walther
- Klinische Psychologie und Psychotherapie, Universität Zürich Psychologisches Institut, Zurich, Switzerland
| |
Collapse
|
155
|
Gurguryan L, Fenerci C, Ngo N, Sheldon S. The Neural Corelates of Constructing Conceptual and Perceptual Representations of Autobiographical Memories. J Cogn Neurosci 2024; 36:1350-1373. [PMID: 38683700 DOI: 10.1162/jocn_a_02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Contemporary neurocognitive frameworks propose that conceptual and perceptual content of autobiographical memories-personal past experiences-are processed by dissociable neural systems. Other work has proposed a central role of the anterior hippocampus in initially constructing autobiographical memories, regardless of the content. Here, we report on an fMRI study that utilized a repeated retrieval paradigm to test these ideas. In an MRI scanner, participants retrieved autobiographical memories at three timepoints. During the third retrieval, participants either shifted their focus to the conceptual content of the memory, the perceptual content of the memory, or retrieved the memory as they had done so on previous trials. We observed stronger anterior hippocampal activity for the first retrieval compared with later retrievals, regardless of whether there was a shift in content in those later trials. We also found evidence for separate cortical systems when constructing autobiographical memories with a focus on conceptual or perceptual content. Finally, we found that there was common engagement between later retrievals that required a shift toward conceptual content and the initial retrieval of a memory. This final finding was explored further with a behavioral experiment that provided evidence that focusing on conceptual content of a memory guides memory construction, whereas perceptual content adds precision to a memory. Together, these findings suggest there are distinct content-oriented cortical systems that work with the anterior hippocampus to construct representations of autobiographical memories.
Collapse
Affiliation(s)
| | | | - Nguyet Ngo
- McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
156
|
Ma ZZ, Wu JJ, Cao Z, Hua XY, Zheng MX, Xing XX, Ma J, Xu JG. Motor imagery-based brain-computer interface rehabilitation programs enhance upper extremity performance and cortical activation in stroke patients. J Neuroeng Rehabil 2024; 21:91. [PMID: 38812014 PMCID: PMC11134735 DOI: 10.1186/s12984-024-01387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zhi Cao
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jian-Guang Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China.
| |
Collapse
|
157
|
Christian P, Kaiser J, Taylor PC, George M, Schütz-Bosbach S, Soutschek A. Belief Updating during Social Interactions: Neural Dynamics and Causal Role of Dorsomedial Prefrontal Cortex. J Neurosci 2024; 44:e1669232024. [PMID: 38649270 PMCID: PMC11140663 DOI: 10.1523/jneurosci.1669-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/11/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
In competitive interactions, humans have to flexibly update their beliefs about another person's intentions in order to adjust their own choice strategy, such as when believing that the other may exploit their cooperativeness. Here we investigate both the neural dynamics and the causal neural substrate of belief updating processes in humans. We used an adapted prisoner's dilemma game in which participants explicitly predicted the coplayer's actions, which allowed us to quantify the prediction error between expected and actual behavior. First, in an EEG experiment, we found a stronger medial frontal negativity (MFN) for negative than positive prediction errors, suggesting that this medial frontal ERP component may encode unexpected defection of the coplayer. The MFN also predicted subsequent belief updating after negative prediction errors. In a second experiment, we used transcranial magnetic stimulation (TMS) to investigate whether the dorsomedial prefrontal cortex (dmPFC) causally implements belief updating after unexpected outcomes. Our results show that dmPFC TMS impaired belief updating and strategic behavioral adjustments after negative prediction errors. Taken together, our findings reveal the time course of the use of prediction errors in social decisions and suggest that the dmPFC plays a crucial role in updating mental representations of others' intentions.
Collapse
Affiliation(s)
- Patricia Christian
- Department of Psychology, Ludwig Maximilians University Munich, Munich 80802, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich 82152, Germany
| | - Jakob Kaiser
- Department of Psychology, Ludwig Maximilians University Munich, Munich 80802, Germany
| | - Paul Christopher Taylor
- Department of Psychology, Ludwig Maximilians University Munich, Munich 80802, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich 82152, Germany
| | - Michelle George
- Department of Psychology, Ludwig Maximilians University Munich, Munich 80802, Germany
| | - Simone Schütz-Bosbach
- Department of Psychology, Ludwig Maximilians University Munich, Munich 80802, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich 82152, Germany
| | - Alexander Soutschek
- Department of Psychology, Ludwig Maximilians University Munich, Munich 80802, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich 82152, Germany
| |
Collapse
|
158
|
Chiou R, Branzi FM, Krieger-Redwood K, Jefferies E. Dissecting the neuroanatomy of creativity and curiosity: The subdivisions within networks matter. Behav Brain Sci 2024; 47:e96. [PMID: 38770872 DOI: 10.1017/s0140525x23003473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ivancovsky et al. argue that the neurocognitive mechanisms of creativity and curiosity both rely on the interplay among brain networks. Research to date demonstrates that such inter-network dynamics are further complicated by functional fractionation within networks. Investigating how networks subdivide and reconfigure in service of a task offers insights about the precise anatomy that underpins creative and curious behaviour.
Collapse
Affiliation(s)
- Rocco Chiou
- School of Psychology, University of Surrey, Guildford, UK https://roccochiou.weebly.com/
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
159
|
Heinbockel H, Wagner AD, Schwabe L. Post-retrieval stress impairs subsequent memory depending on hippocampal memory trace reinstatement during reactivation. SCIENCE ADVANCES 2024; 10:eadm7504. [PMID: 38691596 PMCID: PMC11062581 DOI: 10.1126/sciadv.adm7504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Upon retrieval, memories can become susceptible to meaningful events, such as stress. Post-retrieval memory changes may be attributed to an alteration of the original memory trace during reactivation-dependent reconsolidation or, alternatively, to the modification of retrieval-related memory traces that impact future remembering. Hence, how post-retrieval memory changes emerge in the human brain is unknown. In a 3-day functional magnetic resonance imaging study, we show that post-retrieval stress impairs subsequent memory depending on the strength of neural reinstatement of the original memory trace during reactivation, driven by the hippocampus and its cross-talk with neocortical representation areas. Comparison of neural patterns during immediate and final memory testing further revealed that successful retrieval was linked to pattern-dissimilarity in controls, suggesting the use of a different trace, whereas stressed participants relied on the original memory representation. These representation changes were again dependent on neocortical reinstatement during reactivation. Our findings show disruptive stress effects on the consolidation of retrieval-related memory traces that support future remembering.
Collapse
Affiliation(s)
- Hendrik Heinbockel
- Department of Cognitive Psychology, Universität Hamburg, 20146 Hamburg, Germany
| | - Anthony D. Wagner
- Department of Psychology, Wu Tsai Neurosciences Institute, Building 420, Stanford, CA 94305, USA
| | - Lars Schwabe
- Department of Cognitive Psychology, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
160
|
Setton R, Wynn JS, Schacter DL. Peering into the future: Eye movements predict neural repetition effects during episodic simulation. Neuropsychologia 2024; 197:108852. [PMID: 38508374 PMCID: PMC11140475 DOI: 10.1016/j.neuropsychologia.2024.108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Imagining future scenarios involves recombining different elements of past experiences into a coherent event, a process broadly supported by the brain's default network. Prior work suggests that distinct brain regions may contribute to the inclusion of different simulation features. Here we examine how activity in these brain regions relates to the vividness of future simulations. Thirty-four healthy young adults imagined future events with familiar people and locations in a two-part study involving a repetition suppression paradigm. First, participants imagined events while their eyes were tracked during a behavioral session. Immediately after, participants imagined events during MRI scanning. The events to be imagined were manipulated such that some were identical to those imagined in the behavioral session while others involved new locations, new people, or both. In this way, we could examine how self-report ratings and eye movements predict brain activity during simulation along with specific simulation features. Vividness ratings were negatively correlated with eye movements, in contrast to an often-observed positive relationship with past recollection. Moreover, fewer eye movements predicted greater involvement of the hippocampus during simulation, an effect specific to location features. Our findings suggest that eye movements may facilitate scene construction for future thinking, lending support to frameworks that spatial information forms the foundation of episodic simulation.
Collapse
Affiliation(s)
- Roni Setton
- Harvard University, Department of Psychology, Cambridge, MA, USA.
| | - Jordana S Wynn
- University of Victoria, Victoria, British Columbia, Canada
| | | |
Collapse
|
161
|
Xie K, Royer J, Larivière S, Rodriguez-Cruces R, Frässle S, Cabalo DG, Ngo A, DeKraker J, Auer H, Tavakol S, Weng Y, Abdallah C, Arafat T, Horwood L, Frauscher B, Caciagli L, Bernasconi A, Bernasconi N, Zhang Z, Concha L, Bernhardt BC. Atypical connectome topography and signal flow in temporal lobe epilepsy. Prog Neurobiol 2024; 236:102604. [PMID: 38604584 DOI: 10.1016/j.pneurobio.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/18/2023] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.
Collapse
Affiliation(s)
- Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Thaera Arafat
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Linda Horwood
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology, Duke University School of Medicine and Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27705, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3 BG, United Kingdom
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de Mexico (UNAM), Queretaro, Mexico
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
162
|
Edlow BL, Olchanyi M, Freeman HJ, Li J, Maffei C, Snider SB, Zöllei L, Iglesias JE, Augustinack J, Bodien YG, Haynes RL, Greve DN, Diamond BR, Stevens A, Giacino JT, Destrieux C, van der Kouwe A, Brown EN, Folkerth RD, Fischl B, Kinney HC. Multimodal MRI reveals brainstem connections that sustain wakefulness in human consciousness. Sci Transl Med 2024; 16:eadj4303. [PMID: 38691619 PMCID: PMC11870092 DOI: 10.1126/scitranslmed.adj4303] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Consciousness is composed of arousal (i.e., wakefulness) and awareness. Substantial progress has been made in mapping the cortical networks that underlie awareness in the human brain, but knowledge about the subcortical networks that sustain arousal in humans is incomplete. Here, we aimed to map the connectivity of a proposed subcortical arousal network that sustains wakefulness in the human brain, analogous to the cortical default mode network (DMN) that has been shown to contribute to awareness. We integrated data from ex vivo diffusion magnetic resonance imaging (MRI) of three human brains, obtained at autopsy from neurologically normal individuals, with immunohistochemical staining of subcortical brain sections. We identified nodes of the proposed default ascending arousal network (dAAN) in the brainstem, hypothalamus, thalamus, and basal forebrain. Deterministic and probabilistic tractography analyses of the ex vivo diffusion MRI data revealed projection, association, and commissural pathways linking dAAN nodes with one another and with DMN nodes. Complementary analyses of in vivo 7-tesla resting-state functional MRI data from the Human Connectome Project identified the dopaminergic ventral tegmental area in the midbrain as a widely connected hub node at the nexus of the subcortical arousal and cortical awareness networks. Our network-based autopsy methods and connectivity data provide a putative neuroanatomic architecture for the integration of arousal and awareness in human consciousness.
Collapse
Affiliation(s)
- Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Mark Olchanyi
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Holly J. Freeman
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Chiara Maffei
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Samuel B. Snider
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - J. Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Yelena G. Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Robin L. Haynes
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Douglas N. Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Bram R. Diamond
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Joseph T. Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Christophe Destrieux
- UMR 1253, iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032, Tours, France
- CHRU de Tours, 2 Boulevard Tonnellé, Tours, France
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Emery N. Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114 USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02142 USA
| | | | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02142 USA
| | - Hannah C. Kinney
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
163
|
Fernandino L, Binder JR. How does the "default mode" network contribute to semantic cognition? BRAIN AND LANGUAGE 2024; 252:105405. [PMID: 38579461 PMCID: PMC11135161 DOI: 10.1016/j.bandl.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/26/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
This review examines whether and how the "default mode" network (DMN) contributes to semantic processing. We review evidence implicating the DMN in the processing of individual word meanings and in sentence- and discourse-level semantics. Next, we argue that the areas comprising the DMN contribute to semantic processing by coordinating and integrating the simultaneous activity of local neuronal ensembles across multiple unimodal and multimodal cortical regions, creating a transient, global neuronal ensemble. The resulting ensemble implements an integrated simulation of phenomenological experience - that is, an embodied situation model - constructed from various modalities of experiential memory traces. These situation models, we argue, are necessary not only for semantic processing but also for aspects of cognition that are not traditionally considered semantic. Although many aspects of this proposal remain provisional, we believe it provides new insights into the relationships between semantic and non-semantic cognition and into the functions of the DMN.
Collapse
Affiliation(s)
- Leonardo Fernandino
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biomedical Engineering, Medical College of Wisconsin, USA.
| | - Jeffrey R Binder
- Department of Neurology, Medical College of Wisconsin, USA; Department of Biophysics, Medical College of Wisconsin, USA
| |
Collapse
|
164
|
Lee Y, Chahal R, Gotlib IH. The default mode network is associated with changes in internalizing and externalizing problems differently in adolescent boys and girls. Dev Psychopathol 2024; 36:834-843. [PMID: 36847268 DOI: 10.1017/s0954579423000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Internalizing and externalizing problems that emerge during adolescence differentially increase boys' and girls' risk for developing psychiatric disorders. It is not clear, however, whether there are sex differences in the intrinsic functional architecture of the brain that underlie changes in the severity of internalizing and externalizing problems in adolescents. Using resting-state fMRI data and self-reports of behavioral problems obtained from 128 adolescents (73 females; 9-14 years old) at two timepoints, we conducted multivoxel pattern analysis to identify resting-state functional connectivity markers at baseline that predict changes in the severity of internalizing and externalizing problems in boys and girls 2 years later. We found sex-differentiated involvement of the default mode network in changes in internalizing and externalizing problems. Whereas changes in internalizing problems were associated with the dorsal medial subsystem in boys and with the medial temporal subsystem in girls, changes in externalizing problems were predicted by hyperconnectivity between core nodes of the DMN and frontoparietal network in boys and hypoconnectivity between the DMN and affective networks in girls. Our results suggest that different neural mechanisms predict changes in internalizing and externalizing problems in adolescent boys and girls and offer insights concerning mechanisms that underlie sex differences in the expression of psychopathology in adolescence.
Collapse
Affiliation(s)
- Yoonji Lee
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
165
|
Wang M, Deng Y, Liu Y, Suo T, Guo B, Eickhoff SB, Xu J, Rao H. The common and distinct brain basis associated with adult and adolescent risk-taking behavior: Evidence from the neuroimaging meta-analysis. Neurosci Biobehav Rev 2024; 160:105607. [PMID: 38428473 DOI: 10.1016/j.neubiorev.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Risk-taking is a common, complex, and multidimensional behavior construct that has significant implications for human health and well-being. Previous research has identified the neural mechanisms underlying risk-taking behavior in both adolescents and adults, yet the differences between adolescents' and adults' risk-taking in the brain remain elusive. This study firstly employs a comprehensive meta-analysis approach that includes 73 adult and 20 adolescent whole-brain experiments, incorporating observations from 1986 adults and 789 adolescents obtained from online databases, including Web of Science, PubMed, ScienceDirect, Google Scholar and Neurosynth. It then combines functional decoding methods to identify common and distinct brain regions and corresponding psychological processes associated with risk-taking behavior in these two cohorts. The results indicated that the neural bases underlying risk-taking behavior in both age groups are situated within the cognitive control, reward, and sensory networks. Subsequent contrast analysis revealed that adolescents and adults risk-taking engaged frontal pole within the fronto-parietal control network (FPN), but the former recruited more ventrolateral area and the latter recruited more dorsolateral area. Moreover, adolescents' risk-taking evoked brain area activity within the ventral attention network (VAN) and the default mode network (DMN) compared with adults, consistent with the functional decoding analyses. These findings provide new insights into the similarities and disparities of risk-taking neural substrates underlying different age cohorts, supporting future neuroimaging research on the dynamic changes of risk-taking.
Collapse
Affiliation(s)
- Mengmeng Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Business School, NingboTech University, Ningbo, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yingying Liu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | | | - Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jing Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China.
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
166
|
Yassin W, de Moura FB, Withey SL, Cao L, Kangas BD, Bergman J, Kohut SJ. Resting state networks of awake adolescent and adult squirrel monkeys using ultra-high field (9.4T) functional magnetic resonance imaging. eNeuro 2024; 11:ENEURO.0173-23.2024. [PMID: 38627065 DOI: 10.1523/eneuro.0173-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/30/2024] Open
Abstract
Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys (n=12 adolescents [6 male/6 female] ∼2.5 years and n=15 adults [7 male/8 female] ∼9.5 years) were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Group level independent component (ICA) analysis (30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared to adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.Significance Statement Functional magnetic resonance imaging procedures have revealed important information about how the brain is modified by experimental manipulations, disease states, and aging throughout the lifespan. Preclinical neuroimaging, especially in nonhuman primates, has become a frequently used means to answer targeted questions related to brain resting-state functional connectivity. The present study characterized resting state networks (RSNs) in adult and adolescent squirrel monkeys; twenty RSNs corresponding to networks representing a range of neural functions were identified. The RSNs identified here can be utilized in future studies examining the effects of experimental manipulations on brain connectivity in squirrel monkeys. These data also may be useful for comparative analysis with other primate species to provide an evolutionary perspective for understanding brain function and organization.
Collapse
Affiliation(s)
- Walin Yassin
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Fernando B de Moura
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Sarah L Withey
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Lei Cao
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
| | - Brian D Kangas
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| | - Stephen J Kohut
- Behavioral Neuroimaging Laboratory, McLean Hospital, Belmont, MA 02478
- Behavioral Biology Program, McLean Hospital, Belmont, MA 02478
- McLean Imaging Center, McLean Hospital, Belmont, MA 02478
- Department of Psychiatry, Harvard Medical School, Boston, MA 02478
| |
Collapse
|
167
|
Grot S, Smine S, Potvin S, Darcey M, Pavlov V, Genon S, Nguyen H, Orban P. Label-based meta-analysis of functional brain dysconnectivity across mood and psychotic disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110950. [PMID: 38266867 DOI: 10.1016/j.pnpbp.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (rsfMRI) studies have revealed patterns of functional brain dysconnectivity in psychiatric disorders such as major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). Although these disorders have been mostly studied in isolation, there is mounting evidence of shared neurobiological alterations across them. METHODS To uncover the nature of the relatedness between these psychiatric disorders, we conducted an innovative meta-analysis of dysconnectivity findings reported separately in MDD, BD and SZ. Rather than relying on a classical voxel level coordinate-based approach, our procedure extracted relevant neuroanatomical labels from text data and examined findings at the whole brain network level. Data were drawn from 428 rsfMRI studies investigating MDD (158 studies, 7429 patients/7414 controls), BD (81 studies, 3330 patients/4096 patients) and/or SZ (223 studies, 11,168 patients/11,754 controls). Permutation testing revealed commonalities and differences in hypoconnectivity and hyperconnectivity patterns across disorders. RESULTS Hypoconnectivity and hyperconnectivity patterns of higher-order cognitive (default-mode, fronto-parietal, cingulo-opercular) networks were similarly observed across the three disorders. By contrast, dysconnectivity of lower-order (somatomotor, visual, auditory) networks in some cases differed between disorders, notably dissociating SZ from BD and MDD. CONCLUSIONS Findings suggest that functional brain dysconnectivity of higher-order cognitive networks is largely transdiagnostic in nature while that of lower-order networks may best discriminate between mood and psychotic disorders, thus emphasizing the relevance of motor and sensory networks to psychiatric neuroscience.
Collapse
Affiliation(s)
- Stéphanie Grot
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada
| | - Salima Smine
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Stéphane Potvin
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada
| | - Maëliss Darcey
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Vilena Pavlov
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hien Nguyen
- School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland, Australia; Department of Mathematics and Statistics, Latrobe University, Melbourne, Victoria, Australia
| | - Pierre Orban
- Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada.
| |
Collapse
|
168
|
Sorooshyari SK. Beyond network connectivity: A classification approach to brain age prediction with resting-state fMRI. Neuroimage 2024; 290:120570. [PMID: 38467344 DOI: 10.1016/j.neuroimage.2024.120570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
The brain is a complex, dynamic organ that shows differences in the same subject at various periods. Understanding how brain activity changes across age as a function of the brain networks has been greatly abetted by fMRI. Canonical analysis consists of determining how alterations in connectivity patterns (CPs) of certain regions are affected. An alternative approach is taken here by not considering connectivity but rather features computed from recordings at the regions of interest (ROIs). Using machine learning (ML) we assess how neural signals are altered by and prospectively predictive of age and sex via a methodology that is novel in drawing upon pairwise classification across six decades of subjects' chronological ages. ML is used to answer the equally important questions of what properties of the computed features are most predictive as well as which brain networks are most affected by aging. It was found that there is decreased differentiation among the neural signals of older subjects that are separated in age by the same number of years as younger subjects. Furthermore, the burstiness of the signals change at different rates between males and females. The findings provide insight into brain aging via an ROI-based analysis, the consideration of several feature groups, and a novel classification-based ML pipeline. There is also a contribution to understanding the effects of data aggregated from different recording centers on the conclusions of fMRI studies.
Collapse
|
169
|
Seoane S, van den Heuvel M, Acebes Á, Janssen N. The subcortical default mode network and Alzheimer's disease: a systematic review and meta-analysis. Brain Commun 2024; 6:fcae128. [PMID: 38665961 PMCID: PMC11043657 DOI: 10.1093/braincomms/fcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The default mode network is a central cortical brain network suggested to play a major role in several disorders and to be particularly vulnerable to the neuropathological hallmarks of Alzheimer's disease. Subcortical involvement in the default mode network and its alteration in Alzheimer's disease remains largely unknown. We performed a systematic review, meta-analysis and empirical validation of the subcortical default mode network in healthy adults, combined with a systematic review, meta-analysis and network analysis of the involvement of subcortical default mode areas in Alzheimer's disease. Our results show that, besides the well-known cortical default mode network brain regions, the default mode network consistently includes subcortical regions, namely the thalamus, lobule and vermis IX and right Crus I/II of the cerebellum and the amygdala. Network analysis also suggests the involvement of the caudate nucleus. In Alzheimer's disease, we observed a left-lateralized cluster of decrease in functional connectivity which covered the medial temporal lobe and amygdala and showed overlap with the default mode network in a portion covering parts of the left anterior hippocampus and left amygdala. We also found an increase in functional connectivity in the right anterior insula. These results confirm the consistency of subcortical contributions to the default mode network in healthy adults and highlight the relevance of the subcortical default mode network alteration in Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Seoane
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
| | - Martijn van den Heuvel
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Ángel Acebes
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Department of Basic Medical Sciences, University of La Laguna, Tenerife 38200, Spain
| | - Niels Janssen
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
- Department of Cognitive, Social and Organizational Psychology, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
170
|
Bueichekú E, Diez I, Gagliardi G, Kim CM, Mimmack K, Sepulcre J, Vannini P. Multi-modal Neuroimaging Phenotyping of Mnemonic Anosognosia in the Aging Brain. COMMUNICATIONS MEDICINE 2024; 4:65. [PMID: 38580832 PMCID: PMC10997795 DOI: 10.1038/s43856-024-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Unawareness is a behavioral condition characterized by a lack of self-awareness of objective memory decline. In the context of Alzheimer's Disease (AD), unawareness may develop in predementia stages and contributes to disease severity and progression. Here, we use in-vivo multi-modal neuroimaging to profile the brain phenotype of individuals presenting altered self-awareness of memory during aging. METHODS Amyloid- and tau-PET (N = 335) and resting-state functional MRI (N = 713) imaging data of individuals from the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4)/Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) Study were used in this research. We applied whole-brain voxel-wise and region-of-interest analyses to characterize the cortical intersections of tau, amyloid, and functional connectivity networks underlying unawareness in the aging brain compared to aware, complainer and control groups. RESULTS Individuals with unawareness present elevated amyloid and tau burden in midline core regions of the default mode network compared to aware, complainer or control individuals. Unawareness is characterized by an altered network connectivity pattern featuring hyperconnectivity in the medial anterior prefrontal cortex and posterior occipito-parietal regions co-locating with amyloid and tau deposition. CONCLUSIONS Unawareness is an early behavioral biomarker of AD pathology. Failure of the self-referential system in unawareness of memory decline can be linked to amyloid and tau burden, along with functional network connectivity disruptions, in several medial frontal and parieto-occipital areas of the human brain.
Collapse
Affiliation(s)
- Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Geoffroy Gagliardi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kayden Mimmack
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Radiology, Yale PET Center, Yale Medical School, Yale University, New Haven, CT, USA.
| | - Patrizia Vannini
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
171
|
Guo Z, Tang X, Xiao S, Yan H, Sun S, Yang Z, Huang L, Chen Z, Wang Y. Systematic review and meta-analysis: multimodal functional and anatomical neural alterations in autism spectrum disorder. Mol Autism 2024; 15:16. [PMID: 38576034 PMCID: PMC10996269 DOI: 10.1186/s13229-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This meta-analysis aimed to explore the most robust findings across numerous existing resting-state functional imaging and voxel-based morphometry (VBM) studies on the functional and structural brain alterations in individuals with autism spectrum disorder (ASD). METHODS A whole-brain voxel-wise meta-analysis was conducted to compare the differences in the intrinsic functional activity and gray matter volume (GMV) between individuals with ASD and typically developing individuals (TDs) using Seed-based d Mapping software. RESULTS A total of 23 functional imaging studies (786 ASD, 710 TDs) and 52 VBM studies (1728 ASD, 1747 TDs) were included. Compared with TDs, individuals with ASD displayed resting-state functional decreases in the left insula (extending to left superior temporal gyrus [STG]), bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), left angular gyrus and right inferior temporal gyrus, as well as increases in the right supplementary motor area and precuneus. For VBM meta-analysis, individuals with ASD displayed decreased GMV in the ACC/mPFC and left cerebellum, and increased GMV in the left middle temporal gyrus (extending to the left insula and STG), bilateral olfactory cortex, and right precentral gyrus. Further, individuals with ASD displayed decreased resting-state functional activity and increased GMV in the left insula after overlapping the functional and structural differences. CONCLUSIONS The present multimodal meta-analysis demonstrated that ASD exhibited similar alterations in both function and structure of the insula and ACC/mPFC, and functional or structural alterations in the default mode network (DMN), primary motor and sensory regions. These findings contribute to further understanding of the pathophysiology of ASD.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyue Tang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Yan
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shilin Sun
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
172
|
Lohaus M, Maurer A, Upadhyay N, Daamen M, Bodensohn L, Werkhausen J, Manunzio C, Manunzio U, Radbruch A, Attenberger U, Boecker H. Differential modulation of resting-state functional connectivity between amygdala and precuneus after acute physical exertion of varying intensity: indications for a role in affective regulation. Front Hum Neurosci 2024; 18:1349477. [PMID: 38646163 PMCID: PMC11027744 DOI: 10.3389/fnhum.2024.1349477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Physical activity influences psychological well-being. This study aimed to determine the impact of exercise intensity on psychological well-being and alterations in emotion-related brain functional connectivity (FC). Methods Twenty young, healthy, trained athletes performed a low- and high-intensity interval exercise (LIIE and HIIE) as well as a control condition in a within-subject crossover design. Before and after each condition, Positive And Negative Affect Scale (PANAS) was assessed as well as resting-state functional MRI (rs-fMRI). Voxel-wise FC was examined for bilateral amygdala seed region to whole-brain and emotion-related anatomical regions (e.g., insula, temporal pole, precuneus). Data analyses were performed using linear mixed-effect models with fixed factors condition and time. Results The PANAS Positive Affect scale showed a significant increase after LIIE and HIIE and a significant reduction in Negative Affect after the control condition. In rs-fMRI, no significant condition-by-time interactions were observed between the amygdala and whole brain. Amygdala-precuneus FC analysis showed an interaction effect, suggesting reduced post-exercise anticorrelation after the control condition, but stable, or even slightly enhanced anticorrelation for the exercise conditions, especially HIIE. Discussion In conclusion, both LIIE and HIIE had positive effects on mood and concomitant effects on amygdala-precuneus FC, particularly after HIIE. Although no significant correlations were found between amygdala-precuneus FC and PANAS, results should be discussed in the context of affective disorders in whom abnormal amygdala-precuneus FC has been observed.
Collapse
Affiliation(s)
- Marvin Lohaus
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Deutsche Zentrum für Neurodegenerative Erkrankungen Bonn, Bonn, Germany
| | - Luisa Bodensohn
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Judith Werkhausen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Christian Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Ursula Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | | | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
173
|
Kim HJ, Lux BK, Lee E, Finn ES, Woo CW. Brain decoding of spontaneous thought: Predictive modeling of self-relevance and valence using personal narratives. Proc Natl Acad Sci U S A 2024; 121:e2401959121. [PMID: 38547065 PMCID: PMC10998624 DOI: 10.1073/pnas.2401959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
The contents and dynamics of spontaneous thought are important factors for personality traits and mental health. However, assessing spontaneous thoughts is challenging due to their unconstrained nature, and directing participants' attention to report their thoughts may fundamentally alter them. Here, we aimed to decode two key content dimensions of spontaneous thought-self-relevance and valence-directly from brain activity. To train functional MRI-based predictive models, we used individually generated personal stories as stimuli in a story-reading task to mimic narrative-like spontaneous thoughts (n = 49). We then tested these models on multiple test datasets (total n = 199). The default mode, ventral attention, and frontoparietal networks played key roles in the predictions, with the anterior insula and midcingulate cortex contributing to self-relevance prediction and the left temporoparietal junction and dorsomedial prefrontal cortex contributing to valence prediction. Overall, this study presents brain models of internal thoughts and emotions, highlighting the potential for the brain decoding of spontaneous thought.
Collapse
Affiliation(s)
- Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
| | - Byeol Kim Lux
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Psychological and Brain Sciences, Dartmouth College, NH03755
| | - Eunjin Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
| | - Emily S. Finn
- Department of Psychological and Brain Sciences, Dartmouth College, NH03755
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon16419, South Korea
| |
Collapse
|
174
|
Ren W, Wang M, Wang Q, Huang Q, Feng S, Tao J, Wen C, Xu M, He J, Yang C, Zhao K, Yu X. Altered functional connectivity in patients with post-stroke fatigue: A resting-state fMRI study. J Affect Disord 2024; 350:468-475. [PMID: 38224743 DOI: 10.1016/j.jad.2024.01.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Post-stroke fatigue (PSF) was a common complication after stroke. This study aimed to explore the neuroimaging mechanism of PSF, which was rarely studied. METHODS Patients with the first episode of ischemic stroke were recruited from the First Affiliated Hospital of Wenzhou Medical University between March 2021 and December 2022. The fatigue severity scale (FSS) was used to assess fatigue symptoms. PSF was diagnosed by a neurologist based on the FSS score and PSF diagnostic criteria. All the patients were scanned by resting-state functional MRI (rs-fMRI). Precuneus, the posterior node of default-mode network (pDMN), was related to fatigue. Therefore, imaging data were further analyzed by the seed-based resting-state functional connectivity (FC) approach, with the left (PCUN.L) and right precuneus (PCUN.R) being the seeds. RESULTS A total of 70 patients with acute ischemic stroke were finally recruited, comprising 40 patients with PSF and 30 patients without PSF. Both the PCUN.L and PCUN.R seeds (pDMN) exhibited decreased FC with the prefrontal lobes located at the anterior part of DMN (aDMN), and the FC values were negatively correlated with FSS scores (both p < 0.001). These two seeds also exhibited increased FC with the right insula, and the FC values were positively correlated with FSS scores (both p < 0.05). CONCLUSION The abnormal FC between the aDMN and pDMN was associated with PSF. Besides, the insula, related to interoception, might also play an important role in PSF.
Collapse
Affiliation(s)
- Wenwei Ren
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Mengpu Wang
- School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China; School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Qiongzhang Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Qiqi Huang
- Pediatric nursing unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengchuang Feng
- Centre for Lifelong Learning and Individualised Cognition, Nanyang Technological University, Singapore
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minjie Xu
- Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Zhao
- School of Mental Health, Wenzhou Medical University, Wenzhou, China; Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui, China; The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xin Yu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China; Peking University Institute of Mental Health (Sixth Hospital), Beijing, China; National Clinical Research Center for Mental Disorders and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.
| |
Collapse
|
175
|
Pelletier-Baldelli A, Sheridan MA, Rudolph MD, Eisenlohr-Moul T, Martin S, Srabani EM, Giletta M, Hastings PD, Nock MK, Slavich GM, Rudolph KD, Prinstein MJ, Miller AB. Brain network connectivity during peer evaluation in adolescent females: Associations with age, pubertal hormones, timing, and status. Dev Cogn Neurosci 2024; 66:101357. [PMID: 38359577 PMCID: PMC10878848 DOI: 10.1016/j.dcn.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Despite copious data linking brain function with changes to social behavior and mental health, little is known about how puberty relates to brain functioning. We investigated the specificity of brain network connectivity associations with pubertal indices and age to inform neurodevelopmental models of adolescence. We examined how brain network connectivity during a peer evaluation fMRI task related to pubertal hormones (dehydroepiandrosterone and testosterone), pubertal timing and status, and age. Participants were 99 adolescents assigned female at birth aged 9-15 (M = 12.38, SD = 1.81) enriched for the presence of internalizing symptoms. Multivariate analysis revealed that within Salience, between Frontoparietal - Reward and Cinguloopercular - Reward network connectivity were associated with all measures of pubertal development and age. Specifically, Salience connectivity linked with age, pubertal hormones, and status, but not timing. In contrast, Frontoparietal - Reward connectivity was only associated with hormones. Finally, Cinguloopercular - Reward connectivity related to age and pubertal status, but not hormones or timing. These results provide evidence that the salience processing underlying peer evaluation is jointly influenced by various indices of puberty and age, while coordination between cognitive control and reward circuitry is related to pubertal hormones, pubertal status, and age in unique ways.
Collapse
Affiliation(s)
- Andrea Pelletier-Baldelli
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc D Rudolph
- Sticht Center on Aging, Wake Forest School of Medicine, Wake Forest, NC, USA
| | - Tory Eisenlohr-Moul
- Department of Psychiatry, University of Illinois Chicago College of Medicine, Chicago, IL, USA
| | - Sophia Martin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ellora M Srabani
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matteo Giletta
- Department of Developmental, Personality and Social Psychology, Ghent University, Ghent, Belgium
| | - Paul D Hastings
- Department of Psychology, University of California Davis, Davis, CA, USA
| | - Matthew K Nock
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen D Rudolph
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam Bryant Miller
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
176
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
177
|
Du Y, Nie J, Zhang J, Fang Y, Wei W, Wang J, Zhang S, Wang J, Li X. Disrupted topological organization of the default mode network in mild cognitive impairment with subsyndromal depression: A graph theoretical analysis. CNS Neurosci Ther 2024; 30:e14547. [PMID: 38105496 PMCID: PMC11017411 DOI: 10.1111/cns.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
AIMS Subsyndromal depression (SSD) is common in mild cognitive impairment (MCI). However, the neural mechanisms underlying MCI with SSD (MCID) are unclear. The default mode network (DMN) is associated with cognitive processes and depressive symptoms. Therefore, we aimed to explore the topological organization of the DMN in patients with MCID. METHODS Forty-two MCID patients, 34 MCI patients without SSD (MCIND), and 36 matched healthy controls (HCs) were enrolled. The resting-state functional connectivity of the DMN of the participants was analyzed using a graph theoretical approach. Correlation analyses of network topological metrics, depressive symptoms, and cognitive function were conducted. Moreover, support vector machine (SVM) models were constructed based on topological metrics to distinguish MCID from MCIND. Finally, we used 10 repeats of 5-fold cross-validation for performance verification. RESULTS We found that the global efficiency and nodal efficiency of the left anterior medial prefrontal cortex (aMPFC) of the MCID group were significantly lower than the MCIND group. Moreover, small-worldness and global efficiency were negatively correlated with depressive symptoms in MCID, and the nodal efficiency of the left lateral temporal cortex and left aMPFC was positively correlated with cognitive function in MCID. In cross-validation, the SVM model had an accuracy of 0.83 [95% CI 0.79-0.87], a sensitivity of 0.88 [95% CI 0.86-0.90], a specificity of 0.75 [95% CI 0.72-0.78] and an area under the curve of 0.88 [95% CI 0.85-0.91]. CONCLUSIONS The coexistence of MCI and SSD was associated with the greatest disrupted topological organization of the DMN. The network topological metrics could identify MCID and serve as biomarkers of different clinical phenotypic presentations of MCI.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Alzheimer's Disease and Related Disorders CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Jing Nie
- Department of Geriatric Psychiatry, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Alzheimer's Disease and Related Disorders CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Jian‐Ye Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Alzheimer's Disease and Related Disorders CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Wen‐Jing Wei
- Department of Geriatric Psychiatry, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Alzheimer's Disease and Related Disorders CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Jing‐Hua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Alzheimer's Disease and Related Disorders CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Shao‐Wei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Alzheimer's Disease and Related Disorders CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Jin‐Hong Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Alzheimer's Disease and Related Disorders CenterShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
178
|
Beckmann FE, Gruber H, Seidenbecher S, Schirmer ST, Metzger CD, Tozzi L, Frodl T. Specific alterations of resting-state functional connectivity in the triple network related to comorbid anxiety in major depressive disorder. Eur J Neurosci 2024; 59:1819-1832. [PMID: 38217400 DOI: 10.1111/ejn.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
The brain's default mode network (DMN) and the executive control network (ECN) switch engagement are influenced by the ventral attention network (VAN). Alterations in resting-state functional connectivity (RSFC) within this so-called triple network have been demonstrated in patients with major depressive disorder (MDD) or anxiety disorders (ADs). This study investigated alterations in the RSFC in patients with comorbid MDD and ADs to better understand the pathophysiology of this prevalent group of patients. Sixty-eight participants (52.9% male, mean age 35.3 years), consisting of 25 patients with comorbid MDD and ADs (MDD + AD), 20 patients with MDD only (MDD) and 23 healthy controls (HCs) were investigated clinically and with 3T resting-state fMRI. RSFC utilizing a seed-based approach within the three networks belonging to the triple network was compared between the groups. Compared with HC, MDD + AD showed significantly reduced RSFC between the ECN and the VAN, the DMN and the VAN and within the ECN. No differences could be found for the MDD group compared with both other groups. Furthermore, symptom severity and medication status did not affect RSFC values. The results of this study show a distinct set of alterations of RSFC for patients with comorbid MDD and AD compared with HCs. This set of dysfunctions might be related to less adequate switching between the DMN and the ECN as well as poorer functioning of the ECN. This might contribute to additional difficulties in engaging and utilizing consciously controlled emotional regulation strategies.
Collapse
Affiliation(s)
- Fienne-Elisa Beckmann
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hanna Gruber
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Thérèse Schirmer
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
179
|
Lloyd KM, Morris TP, Anteraper S, Voss M, Nieto-Castanon A, Whitfield-Gabrieli S, Fanning J, Gothe N, Salerno EA, Erickson KI, Hillman CH, McAuley E, Kramer AF. Data-driven MRI analysis reveals fitness-related functional change in default mode network and cognition following an exercise intervention. Psychophysiology 2024; 61:e14469. [PMID: 37905673 PMCID: PMC10939950 DOI: 10.1111/psyp.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
Previous research has indicated that cardiorespiratory fitness (CRF) is structurally and functionally neuroprotective in older adults. However, questions remain regarding the mechanistic role of CRF on cognitive and brain health. The purposes of this study were to investigate if higher pre-intervention CRF was associated with greater change in functional brain connectivity during an exercise intervention and to determine if the magnitude of change in connectivity was related to better post-intervention cognitive performance. The sample included low-active older adults (n = 139) who completed a 6-month exercise intervention and underwent neuropsychological testing, functional neuroimaging, and CRF testing before and after the intervention. A data-driven multi-voxel pattern analysis was performed on resting-state MRI scans to determine changes in whole-brain patterns of connectivity from pre- to post-intervention as a function of pre-intervention CRF. Results revealed a positive correlation between pre-intervention CRF and changes in functional connectivity in the precentral gyrus. Using the precentral gyrus as a seed, analyses indicated that CRF-related connectivity changes within the precentral gyrus were derived from increased correlation strength within clusters located in the Dorsal Attention Network (DAN) and increased anti-correlation strength within clusters located in the Default Mode Network (DMN). Exploratory analysis demonstrated that connectivity change between the precentral gyrus seed and DMN clusters were associated with improved post-intervention performance on perceptual speed tasks. These findings suggest that in a sample of low-active and mostly lower-fit older adults, even subtle individual differences in CRF may influence the relationship between functional connectivity and aspects of cognition following a 6-month exercise intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jason Fanning
- Wake Forest University, Winston-Salem, North Carolina, USA
| | - Neha Gothe
- University of Illinois, Urbana, Illinois, USA
| | | | - Kirk I Erickson
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, University of Granada, Granada, Spain
- AdventHealth Research Institute, Neuroscience Institute, Orlando, Florida, USA
| | - Charles H Hillman
- Northeastern University, Boston, Massachusetts, USA
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
| | | | - Arthur F Kramer
- Northeastern University, Boston, Massachusetts, USA
- University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
180
|
Li M, Haihambo N, Bylemans T, Ma Q, Heleven E, Baeken C, Baetens K, Deroost N, Van Overwalle F. Create your own path: social cerebellum in sequence-based self-guided navigation. Soc Cogn Affect Neurosci 2024; 19:nsae015. [PMID: 38554289 PMCID: PMC10981473 DOI: 10.1093/scan/nsae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/19/2023] [Accepted: 02/14/2024] [Indexed: 04/01/2024] Open
Abstract
Spatial trajectory planning and execution in a social context play a vital role in our daily lives. To study this process, participants completed a goal-directed task involving either observing a sequence of preferred goals and self-planning a trajectory (Self Sequencing) or observing and reproducing the entire trajectory taken by others (Other Sequencing). The results indicated that in the observation phase, witnessing entire trajectories created by others (Other Sequencing) recruited cerebellar mentalizing areas (Crus 2 and 1) and cortical mentalizing areas in the precuneus, ventral and dorsal medial prefrontal cortex and temporo-parietal junction more than merely observing several goals (Self Sequencing). In the production phase, generating a trajectory by oneself (Self Sequencing) activated Crus 1 more than merely reproducing the observed trajectories from others (Other Sequencing). Additionally, self-guided observation and planning (Self Sequencing) activated the cerebellar lobules IV and VIII more than Other Sequencing. Control conditions involving non-social objects and non-sequential conditions where the trajectory did not have to be (re)produced revealed no differences with the main Self and Other Sequencing conditions, suggesting limited social and sequential specificity. These findings provide insights into the neural mechanisms underlying trajectory observation and production by the self or others during social navigation.
Collapse
Affiliation(s)
- Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Tom Bylemans
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Qianying Ma
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing 100083, China
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, the Netherlands
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
181
|
Testa G, Sotgiu I, Rusconi ML, Cauda F, Costa T. The Functional Neuroimaging of Autobiographical Memory for Happy Events: A Coordinate-Based Meta-Analysis. Healthcare (Basel) 2024; 12:711. [PMID: 38610134 PMCID: PMC11011908 DOI: 10.3390/healthcare12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Neuroimaging studies using autobiographical recall methods investigated the neural correlates of happy autobiographical memories (AMs). The scope of the present activation likelihood estimation (ALE) meta-analysis was to quantitatively analyze neuroimaging studies of happy AMs conducted with autobiographical recall paradigms. A total of 17 studies (12 fMRI; 5 PET) on healthy individuals were included in this meta-analysis. During recall of happy life events, consistent activation foci were found in the frontal gyrus, the cingulate cortex, the basal ganglia, the parahippocampus/hippocampus, the hypothalamus, and the thalamus. The result of this quantitative coordinate-based ALE meta-analysis provides an objective view of brain responses associated with AM recollection of happy events, thus identifying brain areas consistently activated across studies. This extended brain network included frontal and limbic regions involved in remembering emotionally relevant positive events. The frontal gyrus and the cingulate cortex may be responsible for cognitive appraisal processes during recollection of happy AMs, while the subthalamic nucleus and globus pallidus may be involved in pleasure reactions associated with recollection of happy life events. These findings shed light on the neural network involved in recalling positive AMs in healthy individuals, opening further avenues for future research in clinical populations with mood disorders.
Collapse
Affiliation(s)
- Giulia Testa
- Instituto de Transferencia e Investigación, Universidad Internacional de La Rioja, 26004 La Rioja, Spain
| | - Igor Sotgiu
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (I.S.); (M.L.R.)
| | - Maria Luisa Rusconi
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (I.S.); (M.L.R.)
| | - Franco Cauda
- Department of Psychology, University of Turin, 10124 Turin, Italy; (F.C.); (T.C.)
- GCS-fMRI Research Group, Koelliker Hospital, 10134 Turin, Italy
| | - Tommaso Costa
- Department of Psychology, University of Turin, 10124 Turin, Italy; (F.C.); (T.C.)
- GCS-fMRI Research Group, Koelliker Hospital, 10134 Turin, Italy
| |
Collapse
|
182
|
Johansson E, Xiong HY, Polli A, Coppieters I, Nijs J. Towards a Real-Life Understanding of the Altered Functional Behaviour of the Default Mode and Salience Network in Chronic Pain: Are People with Chronic Pain Overthinking the Meaning of Their Pain? J Clin Med 2024; 13:1645. [PMID: 38541870 PMCID: PMC10971341 DOI: 10.3390/jcm13061645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Chronic pain is a source of substantial physical and psychological suffering, yet a clear understanding of the pathogenesis of chronic pain is lacking. Repeated studies have reported an altered behaviour of the salience network (SN) and default mode network (DMN) in people with chronic pain, and a majority of these studies report an altered behaviour of the dorsal ventromedial prefrontal cortex (vmPFC) within the anterior DMN. In this topical review, we therefore focus specifically on the role of the dorsal vmPFC in chronic pain to provide an updated perspective on the cortical mechanisms of chronic pain. We suggest that increased activity in the dorsal vmPFC may reflect maladaptive overthinking about the meaning of pain for oneself and one's actions. We also suggest that such overthinking, if negative, may increase the personal "threat" of a given context, as possibly reflected by increased activity in, and functional connectivity to, the anterior insular cortex within the SN.
Collapse
Affiliation(s)
- Elin Johansson
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Flanders Research Foundation-FWO, 1000 Brussels, Belgium
| | - Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Flanders Research Foundation-FWO, 1000 Brussels, Belgium
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Iris Coppieters
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- The Experimental Health Psychology Research Group, Faculty of Psychology and Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (E.J.); (H.-Y.X.); (A.P.); (I.C.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussel, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
183
|
Yetter MA, Fitzgerald TR, Philippi CL, Bruce SE. Pro-inflammatory markers are related to cortical network connectivity in women exposed to interpersonal trauma with PTSD. Behav Brain Res 2024:114942. [PMID: 38447761 DOI: 10.1016/j.bbr.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Exposure to interpersonal violence affects a significant number of individuals each year and further increases the risk for developing Posttraumatic Stress Disorder (PTSD). A growing body of research suggests that immune system dysfunction, in particular elevated inflammation, may contribute to the pathophysiology of PTSD. However, few studies have examined the neurobiological correlates of inflammation in women with PTSD using resting-state fMRI. The present study explored the relationship between pro-inflammatory cytokine levels, C-reactive protein (CRP), tumor necrosis factor alpha TNF-alpha), and interleukin-6 (IL-6), and resting-state functional connectivity patterns in three major cortical networks (default mode network (DMN), central executive network (CEN), and salience network (SN)) in a sample of women (N=18) exposed to interpersonal violence with PTSD. Results indicated that higher CRP levels were associated with stronger functional connectivity between the SN and visual areas, but weaker functional connectivity between the CEN and visual areas. These findings suggest that pro-inflammatory markers are related to connectivity of task-positive networks in women with PTSD. Further, our results provide evidence for potential neurobiological markers of inflammation in PTSD.
Collapse
Affiliation(s)
- Marissa A Yetter
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, 63121, USA; University of Missouri - St. Louis
| | - Taryn R Fitzgerald
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, 63121, USA; University of Missouri - St. Louis
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, 63121, USA; University of Missouri - St. Louis
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, 63121, USA; University of Missouri - St. Louis
| |
Collapse
|
184
|
Kurkela K, Ritchey M. Intrinsic functional connectivity among memory networks does not predict individual differences in narrative recall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555768. [PMID: 38464053 PMCID: PMC10925185 DOI: 10.1101/2023.08.31.555768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Individuals differ greatly in their ability to remember the details of past events, yet little is known about the brain processes that explain such individual differences in a healthy young population. Previous research suggests that episodic memory relies on functional communication among ventral regions of the default mode network ("DMN-C") that are strongly interconnected with the medial temporal lobes. In this study, we investigated whether the intrinsic functional connectivity of the DMN-C subnetwork is related to individual differences in memory ability, examining this relationship across 243 individuals (ages 18-50 years) from the openly available Cambridge Center for Aging and Neuroscience (Cam-CAN) dataset. We first estimated each participant's whole-brain intrinsic functional brain connectivity by combining data from resting-state, movie-watching, and sensorimotor task scans to increase statistical power. We then examined whether intrinsic functional connectivity predicted performance on a narrative recall task. We found no evidence that functional connectivity of the DMN-C, with itself, with other related DMN subnetworks, or with the rest of the brain, was related to narrative recall. Exploratory connectome-based predictive modeling (CBPM) analyses of the entire connectome revealed a whole-brain multivariate pattern that predicted performance, although these changes were largely outside of known memory networks. These results add to emerging evidence suggesting that individual differences in memory cannot be easily explained by brain differences in areas typically associated with episodic memory function.
Collapse
Affiliation(s)
- Kyle Kurkela
- Department of Psychology and Neuroscience, Boston College
| | | |
Collapse
|
185
|
Ramasubbu R, Brown EC, Mouches P, Moore JA, Clark DL, Molnar CP, Kiss ZHT, Forkert ND. Multimodal imaging measures in the prediction of clinical response to deep brain stimulation for refractory depression: A machine learning approach. World J Biol Psychiatry 2024; 25:175-187. [PMID: 38185882 DOI: 10.1080/15622975.2023.2300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES This study compared machine learning models using unimodal imaging measures and combined multi-modal imaging measures for deep brain stimulation (DBS) outcome prediction in treatment resistant depression (TRD). METHODS Regional brain glucose metabolism (CMRGlu), cerebral blood flow (CBF), and grey matter volume (GMV) were measured at baseline using 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), arterial spin labelling (ASL) magnetic resonance imaging (MRI), and T1-weighted MRI, respectively, in 19 patients with TRD receiving subcallosal cingulate (SCC)-DBS. Responders (n = 9) were defined by a 50% reduction in HAMD-17 at 6 months from the baseline. Using an atlas-based approach, values of each measure were determined for pre-selected brain regions. OneR feature selection algorithm and the naïve Bayes model was used for classification. Leave-out-one cross validation was used for classifier evaluation. RESULTS The performance accuracy of the CMRGlu classification model (84%) was greater than CBF (74%) or GMV (74%) models. The classification model using the three image modalities together led to a similar accuracy (84%0 compared to the CMRGlu classification model. CONCLUSIONS CMRGlu imaging measures may be useful for the development of multivariate prediction models for SCC-DBS studies for TRD. The future of multivariate methods for multimodal imaging may rest on the selection of complementing features and the developing better models.Clinical Trial Registration: ClinicalTrials.gov (#NCT01983904).
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elliot C Brown
- School of Health and Care Management, Arden University, Berlin, Germany
| | - Pauline Mouches
- Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jasmine A Moore
- Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darren L Clark
- Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christine P Molnar
- Department of Radiology, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zelma H T Kiss
- Department of Psychiatry, Clinical Neurosciences, Mathison Centre for Mental Health Research & Education, Calgary, Alberta, Canada
- Hotchkiss Brain Institute Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nils D Forkert
- Department of Radiology, Clinical Neurosciences, Hotchkiss Brain Institute, Cumming school of medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
186
|
Peters‐Founshtein G, Gazit L, Naveh T, Domachevsky L, Korczyn AD, Bernstine H, Shaharabani‐Gargir L, Groshar D, Marshall GA, Arzy S. Lost in space(s): Multimodal neuroimaging of disorientation along the Alzheimer's disease continuum. Hum Brain Mapp 2024; 45:e26623. [PMID: 38488454 PMCID: PMC10941506 DOI: 10.1002/hbm.26623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 03/18/2024] Open
Abstract
Orientation is a fundamental cognitive faculty and the bedrock of the neurologic examination. Orientation is defined as the alignment between an individual's internal representation and the external world in the spatial, temporal, and social domains. While spatial disorientation is a recognized hallmark of Alzheimer's disease (AD), little is known about disorientation beyond space in AD. This study aimed to explore disorientation in spatial, temporal, and social domains along the AD continuum. Fifty-one participants along the AD continuum performed an ecological orientation task in the spatial, temporal, and social domains while undergoing functional MRI. Disorientation in AD followed a three-way association between orientation domain, brain region, and disease stage. Specifically, patients with early amnestic mild cognitive impairment exhibited spatio-temporal disorientation and reduced brain activity in temporoparietal regions, while patients with AD dementia showed additional social disorientation and reduced brain activity in frontoparietal regions. Furthermore, patterns of hypoactivation overlapped different subnetworks of the default mode network, patterns of fluorodeoxyglucose hypometabolism, and cortical atrophy characteristic of AD. Our results suggest that AD may encompass a disorder of orientation, characterized by a biphasic process manifesting as early spatio-temporal and late social disorientation. As such, disorientation may offer a unique window into the clinicopathological progression of AD. SIGNIFICANCE STATEMENT: Despite extensive research into Alzheimer's disease (AD), its core cognitive deficit remains a matter of debate. In this study, we investigated whether orientation, defined as the ability to align internal representations with the external world in spatial, temporal, and social domains, constitutes a core cognitive deficit in AD. To do so, we used PET-fMRI imaging to collect behavioral, functional, and metabolic data from 51 participants along the AD continuum. Our findings suggest that AD may constitute a disorder of orientation, characterized by an early spatio-temporal disorientation and followed by late social disorientation, manifesting in task-evoked and neurodegenerative changes. We propose that a profile of disorientation across multiple domains offers a unique window into the progression of AD and as such could greatly benefit disease diagnosis, monitoring, and evaluation of treatment response.
Collapse
Affiliation(s)
- Gregory Peters‐Founshtein
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of Nuclear MedicineSheba Medical CenterRamat‐GanIsrael
| | - Lidor Gazit
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of NeurologyHadassah Hebrew University Medical SchoolJerusalemIsrael
| | - Tahel Naveh
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of NeurologyHadassah Hebrew University Medical SchoolJerusalemIsrael
| | - Liran Domachevsky
- Department of Nuclear MedicineSheba Medical CenterRamat‐GanIsrael
- Department of Nuclear MedicineAssuta Medical CenterTel‐AvivIsrael
| | | | - Hanna Bernstine
- Department of Nuclear MedicineAssuta Medical CenterTel‐AvivIsrael
- Department of ImagingTel‐Aviv UniversityTel‐AvivIsrael
- Department of Nuclear MedicineRabin Medical CenterPetah TikvaIsrael
| | | | - David Groshar
- Department of Nuclear MedicineAssuta Medical CenterTel‐AvivIsrael
- Department of ImagingTel‐Aviv UniversityTel‐AvivIsrael
| | - Gad A. Marshall
- Department of Neurology, Center for Alzheimer Research and Treatment, Harvard Medical School, Brigham and Women's HospitalMassachusetts General HospitalBostonMassachusettsUSA
| | - Shahar Arzy
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Department of NeurologyHadassah Hebrew University Medical SchoolJerusalemIsrael
| |
Collapse
|
187
|
Phipps CJ, Whitney D, Shou J, Torres-Russotto D, Warren DE. Measurement of Functional Brain Network Connectivity in People with Orthostatic Tremor. Brain Sci 2024; 14:219. [PMID: 38539608 PMCID: PMC10968606 DOI: 10.3390/brainsci14030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 02/02/2025] Open
Abstract
Orthostatic tremor is a rare movement disorder characterized by a sensation of unsteadiness and leg tremor while standing. It has been hypothesized that the disorder is attributable to dysregulation of a central oscillatory network in the brain. This putative network includes primary motor cortex, supplementary motor area, cerebellum, thalamus, and pontine tegmentum. We studied this brain network by recording resting-state functional MRI data from individuals with orthostatic tremor. For each participant, we measured resting-state functional connectivity using a seed-based approach. Regions of interest included were components of the putative central oscillatory network and a primary motor thumb region (identified via transcranial magnetic stimulation). A non-central oscillatory network region of interest-posterior cingulate cortex-was included for comparative analysis of a well-characterized intrinsic network, the default mode network. Demographic information, medical history, and tremor characteristics were collected to test associations with functional connectivity. For normative context, data from the 1000 Functional Connectomes Project were analyzed using an identical approach. We observed that tremor and demographic variables were correlated with functional connectivity of central oscillatory network components. Furthermore, relative to healthy comparison participants, patients with orthostatic tremor exhibited qualitatively different patterns of cerebellar resting state functional connectivity. Our study enhances the current understanding of brain network differences related to orthostatic tremor and is consistent with a hypothesized selective decoupling of cerebellum. Additionally, associations observed between functional connectivity and factors including medical history and tremor features may suggest targets for treatment of orthostatic tremor.
Collapse
Affiliation(s)
| | | | | | | | - David E. Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.J.P.); (D.W.); (J.S.); (D.T.-R.)
| |
Collapse
|
188
|
Frautschi PC, Singh AP, Stowe NA, Yu JPJ. Multimodal Neuroimaging of the Effect of Serotonergic Psychedelics on the Brain. AJNR Am J Neuroradiol 2024; 45:ajnr.A8118. [PMID: 38360790 DOI: 10.3174/ajnr.a8118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 02/17/2024]
Abstract
The neurobiological mechanisms underpinning psychiatric disorders such as treatment-resistant major depression, post-traumatic stress disorder, and substance use disorders, remain unknown. Psychedelic compounds, such as psilocybin, lysergic acid diethylamide, and N,N-dimethyltryptamine, have emerged as potential therapies for these disorders because of their hypothesized ability to induce neuroplastic effects and alter functional networks in the brain. Yet, the mechanisms underpinning the neurobiological treatment response remain obscure. Quantitative neuroimaging is uniquely positioned to provide insight into the neurobiological mechanisms of these emerging therapies and quantify the patient treatment response. This review aims to synthesize our current state-of-the-art understanding of the functional changes occurring in the brain following psilocybin, lysergic acid diethylamide, or N,N-dimethyltryptamine administration in human participants with fMRI and PET. We further aim to disseminate our understanding of psychedelic compounds as they relate to neuroimaging with the goal of improved diagnostics and treatment of neuropsychiatric illness.
Collapse
Affiliation(s)
- Paloma C Frautschi
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ajay P Singh
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Graduate Program in Cellular and Molecular Biology (A.P.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas A Stowe
- Neuroscience Training Program, Wisconsin Institutes for Medical Research (N.A.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
| | - John-Paul J Yu
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Neuroscience Training Program, Wisconsin Institutes for Medical Research (N.A.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Graduate Program in Cellular and Molecular Biology (A.P.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering (J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Department of Psychiatry (J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
189
|
Tang QY, Huang BL, Huang X. Altered functional connectivity between the default mode network in primary angle-closure glaucoma patients. Neuroreport 2024; 35:129-135. [PMID: 38251458 DOI: 10.1097/wnr.0000000000001995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Previous studies have recognized glaucoma as a neurodegenerative disease that causes extensive brain damage and is closely associated with cognitive function. In this study, we employed functional MRI to examine the intrinsic functional connectivity patterns of the default mode network (DMN) in patients diagnosed with primary angle-closure glaucoma (PACG), exploring its association with cognitive dysfunction. A total of 34 patients diagnosed with PACG and 34 healthy controls (HC), who were matched in terms of sex, age, and education, were included in the control group. The posterior cingulate cortex (PCC) was selected as the region of interest to examine functional connectivity alterations. Compared with the HC group, functional connectivity was attenuated in left anterior cingulum cortex and left paracentral lobule between with PCC in the PACG group, the results are statistically significant. Our study revealed that patients with PACG exhibit weakened functional connectivity within the DMN. This finding suggests the presence of a neurological mechanism that is associated with both visual dysfunction and cognitive impairments in PACG patients. Furthermore, our study provides neuroimaging evidence that can aid in the exploration of spontaneous neurological alterations and facilitate a deeper investigation of alterations in the visual conduction pathways of PACG patients.
Collapse
Affiliation(s)
- Qiu-Yu Tang
- College of Clinical Medicine, Jiangxi University of Chinese Medicine
| | - Bing-Lin Huang
- College of Clinical Medicine, Jiangxi University of Chinese Medicine
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
190
|
Teghil A, Boccia M. Brain connectivity patterns associated with individual differences in the access to experience-near personal semantics: a resting-state fMRI study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:87-99. [PMID: 38200283 PMCID: PMC10827898 DOI: 10.3758/s13415-023-01149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
It has been proposed that a continuum of specificity exists between episodic and semantic autobiographical memory. Personal semantics have been theorized to situate intermediately on this continuum, with more "experience-near" personal semantics (enPS) closer to the episodic end. We used individual differences in behavior as a model to investigate brain networks associated with the access to episodic autobiographical (EAM) and enPS information, assessing the relation between performance in the EAM and enPS conditions of the Autobiographical Fluency Task (AFT) and intrinsic brain connectivity. Results of an intrinsic connectivity contrast analysis showed that the global connectivity of two clusters in the left and right posterior cingulate cortex (PCC) was predicted by performance in the enPS conditions. Moreover, enPS scores predicted the connectivity strength of the right PCC with the bilateral anterior hippocampus (aHC), anterior middle temporal gyrus (aMTG) and medial orbitofrontal cortex, and the left aMTG and PCC. enPS scores also predicted the connectivity strength of the left PCC with the bilateral HC and MTG. The network highlighted involves parts of the core and of the dorsal medial subsystems of the Default Mode Network, in line with the proposal that enPS represents an intermediate entity between episodic and semantic memory.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
191
|
Agron AM, Martin A, Gilmore AW. Scene construction and autobiographical memory retrieval in autism spectrum disorder. Autism Res 2024; 17:204-214. [PMID: 38037250 PMCID: PMC10922094 DOI: 10.1002/aur.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Individuals with autism spectrum disorder (ASD) frequently exhibit difficulties in retrieving autobiographical memories (AMs) of specific events from their life. Such memory deficits are frequently attributed to underlying disruptions in self-referential or social cognition processes. This makes intuitive sense as these are hallmarks of ASD. However, an emerging literature suggests that parallel deficits also exist in ASD individuals' ability to reconstruct the rich spatial contexts in which events occur. This is a capacity known as scene construction, and in typically developing individuals is considered a core process in retrieving AMs. In this review, we discuss evidence of difficulties with scene construction in ASD, drawing upon experiments that involve AM retrieval, other forms of mental time travel, and spatial navigation. We also highlight aspects of extant data that cannot be accounted for using purely social explanations of memory deficits in ASD. We conclude by identifying key questions raised by our framework and suggest how they might be addressed in future research.
Collapse
Affiliation(s)
- Anna M. Agron
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Adrian W. Gilmore
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| |
Collapse
|
192
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
193
|
Blickle M, Klüpfel C, Homola GA, Gamer M, Herrmann MJ, Störk S, Gelbrich G, Heuschmann PU, Deckert J, Pham M, Menke A. Heart rate variability, interoceptive accuracy and functional connectivity in middle-aged and older patients with depression. J Psychiatr Res 2024; 170:122-129. [PMID: 38134721 DOI: 10.1016/j.jpsychires.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Major depressive disorder (MDD) is associated with increased cardiac morbidity. Reduced heart rate variability (HRV) as well as lower interoceptive accuracy (IAc) have been observed in MDD as possible sympathomimetic mechanisms related to insula activity. The salience network (SN) anchored by the insula has been posited as a crucial functional network for cardiac sensations and the default mode network (DMN) for MDD. This study aimed to investigate the relation between insula-centered and depression-related brain networks, IAc and HRV in patients with depression as a possible mechanism by which MDD increases cardiac morbidity. METHODS 30 depressed inpatients and 30 healthy subjects (derived from the population-based "Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression" cohort study, STAAB) all over 50 years were examined. HRV and IAc were assessed via electrocardiogram and a heartbeat perception task prior to a 3 T resting-state functional magnetic resonance imaging. Seed-to-voxel resting-state functional connectivity (FC) analysis was conducted with six seeds in the insula and two seeds in the DMN. RESULTS Depressed patients on the one hand showed decreased FC between insula cortex and frontal as well occipital cortical brain regions compared to controls. Depressed patients on the other hand exhibited higher FC between the medial prefrontal cortex and the insula cortex compared to controls. However, depressed patients did not differ in HRV nor in IAc compared to controls. CONCLUSION Thus, differences in insula-related brain networks in depression in our study were not mirrored by differences in HRV and IAc. Future research is needed to define the mechanism by which depression increases cardiac morbidity.
Collapse
Affiliation(s)
- Manuel Blickle
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Catherina Klüpfel
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - György A Homola
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Matthias Gamer
- Department of Psychology, University of Würzburg, Marcusstr. 9-11, 97070, Würzburg, Germany
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany; Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Götz Gelbrich
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany; Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany
| | - Peter U Heuschmann
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany; Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Andreas Menke
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Rasthausstr. 25, 83233, Bernau am Chiemsee, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
194
|
Salmon E, Meyer F, Genon S, Collette F, Bastin C. Neural correlates of impaired cognitive processes underlying self-unawareness in Alzheimer's disease. Cortex 2024; 171:1-12. [PMID: 37977109 DOI: 10.1016/j.cortex.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/05/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Self-unawareness concerning current symptoms remains a clinical challenge in Alzheimer's disease. Reduced self-awareness likely depends on complex biopsychosocial mechanisms that comprise multiple cognitive processes, regulated by personal goals and values. We specifically reviewed the cognitive processes impaired in unaware participants with AD by emphasizing the related impaired brain activity observed during task-based fMRI. Unawareness can be explained by a failure in functioning of or in connection between brain regions that intervene in access, retrieval and updating of (present or extended) self-information (posterior midline, medial temporal, inferior parietal cortices), or in its monitoring, evaluation, or control (medial and lateral prefrontal cortices). Although one must be cautious when relating function to brain regions, impaired processes were tentatively related to the Cognitive Awareness Model. Although brain function depends on neural networks, impaired brain activity during cognitive processes was discussed according to previous studies reporting correlations between brain regions and scores of anosognosia. The review provides a framework to help clinicians considering processes that can explain unawareness in dementia. In patients at early stages of AD, different levels of awareness of cognitive or social clinical changes might be described as impairment in the interaction between specific cognitive processes and contents.
Collapse
Affiliation(s)
- Eric Salmon
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| | - François Meyer
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| | - Sarah Genon
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium; Institute of Systems Neuroscience, Heinrich Heine University Duesseldorf, Duesseldorf, Germany; Institute of Neuroscience and Medicine (INM-7), Research Centre Juelich, Juelich, Germany.
| | - Fabienne Collette
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| | - Christine Bastin
- GIGA Cyclotron Research Centre in Vivo Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
195
|
Zhang C, Zhang K, Hu X, Cai X, Chen Y, Gao F, Wang G. Regional GABA levels modulate abnormal resting-state network functional connectivity and cognitive impairment in multiple sclerosis. Cereb Cortex 2024; 34:bhad535. [PMID: 38271282 DOI: 10.1093/cercor/bhad535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
More evidence shows that changes in functional connectivity with regard to brain networks and neurometabolite levels correlated to cognitive impairment in multiple sclerosis. However, the neurological basis underlying the relationship among neurometabolite levels, functional connectivity, and cognitive impairment remains unclear. For this purpose, we used a combination of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to study gamma-aminobutyric acid and glutamate concentrations in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus, and inter-network functional connectivity in 29 relapsing-remitting multiple sclerosis patients and 34 matched healthy controls. Neuropsychological tests were used to evaluate the cognitive function. We found that relapsing-remitting multiple sclerosis patients demonstrated significantly reduced gamma-aminobutyric acid and glutamate concentrations and aberrant functional connectivity involving cognitive-related networks compared to healthy controls, and both alterations were associated with specific cognition decline. Moreover, mediation analyses indicated that decremented hippocampus gamma-aminobutyric acid levels in relapsing-remitting multiple sclerosis patients mediated the association between inter-network functional connectivity in various components of default mode network and verbal memory deficits. In summary, our findings shed new lights on the essential function of GABAergic system abnormalities in regulating network dysconnectivity and functional connectivity in relapsing-remitting multiple sclerosis patients, suggesting potential novel approach to treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xianyun Cai
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
196
|
Ou Y, Ni X, Gao X, Yu Y, Zhang Y, Wang Y, Liu J, Yin Z, Rong J, Sun M, Chen J, Tang Z, Xiao W, Zhao L. Structural and functional changes of anterior cingulate cortex subregions in migraine without aura: relationships with pain sensation and pain emotion. Cereb Cortex 2024; 34:bhae040. [PMID: 38342690 PMCID: PMC10859245 DOI: 10.1093/cercor/bhae040] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/13/2024] Open
Abstract
Migraine without aura is a multidimensional neurological disorder characterized by sensory, emotional, and cognitive symptoms linked to structural and functional abnormalities in the anterior cingulate cortex. Anterior cingulate cortex subregions play differential roles in the clinical symptoms of migraine without aura; however, the specific patterns and mechanisms remain unclear. In this study, voxel-based morphometry and seed-based functional connectivity were used to investigate structural and functional alterations in the anterior cingulate cortex subdivisions in 50 patients with migraine without aura and 50 matched healthy controls. Compared with healthy controls, patients exhibited (1) decreased gray matter volume in the subgenual anterior cingulate cortex, (2) increased functional connectivity between the bilateral subgenual anterior cingulate cortex and right middle frontal gyrus, and between the posterior part of anterior cingulate cortex and right middle frontal gyrus, orbital part, and (3) decreased functional connectivity between the anterior cingulate cortex and left anterior cingulate and paracingulate gyri. Notably, left subgenual anterior cingulate cortex was correlated with the duration of each attack, whereas the right subgenual anterior cingulate cortex was associated with migraine-specific quality-of-life questionnaire (emotion) and self-rating anxiety scale scores. Our findings provide new evidence supporting the hypothesis of abnormal anterior cingulate cortex subcircuitry, revealing structural and functional abnormalities in its subregions and emphasizing the potential involvement of the left subgenual anterior cingulate cortex-related pain sensation subcircuit and right subgenual anterior cingulate cortex -related pain emotion subcircuit in migraine.
Collapse
Affiliation(s)
- Yangxu Ou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Xixiu Ni
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Xiaoyu Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Yang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Yutong Zhang
- Department of Scientific Research and Education and Training Management, the Third People’s Hospital of Chengdu, Chengdu, Sichuan 610000, China
| | - Yanan Wang
- Department of Pain Treatment, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, China
| | - Zihan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Jing Rong
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
- Sichuan Clinical Medical Research Center for Acupuncture and Moxibustion, Chengdu, Sichuan 611137, China
| | - Jiao Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
- Sichuan Clinical Medical Research Center for Acupuncture and Moxibustion, Chengdu, Sichuan 611137, China
| | - Zili Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Wang Xiao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan 611137, China
- Sichuan Clinical Medical Research Center for Acupuncture and Moxibustion, Chengdu, Sichuan 611137, China
| |
Collapse
|
197
|
Assem M, Shashidhara S, Glasser MF, Duncan J. Basis of executive functions in fine-grained architecture of cortical and subcortical human brain networks. Cereb Cortex 2024; 34:bhad537. [PMID: 38244562 PMCID: PMC10839840 DOI: 10.1093/cercor/bhad537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.
Collapse
Affiliation(s)
- Moataz Assem
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - Sneha Shashidhara
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Psychology Department, Ashoka University, Sonipat, 131029, India
| | - Matthew F Glasser
- Department of Radiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
- Department of Neuroscience, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| |
Collapse
|
198
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576471. [PMID: 38328109 PMCID: PMC10849545 DOI: 10.1101/2024.01.20.576471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population-rather than individual-based inferences due to limited within-individual sampling. Here, three densely-sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely-sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously-unrecognized inter-individual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
|
199
|
Yang YC, Wei XY, Zhang YY, Xu CY, Cheng JM, Gong ZG, Chen H, Huang YW, Yuan J, Xu HH, Wang H, Zhan SH, Tan WL. Modulation of temporal and occipital cortex by acupuncture in non-menstrual MWoA patients: a rest BOLD fMRI study. BMC Complement Med Ther 2024; 24:43. [PMID: 38245739 PMCID: PMC10799457 DOI: 10.1186/s12906-024-04349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE To investigate the changes in amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) values before and after acupuncture in young women with non-menstrual migraine without aura (MWoA) through rest blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS Patients with non-menstrual MWoA (Group 1, n = 50) and healthy controls (Group 2, n = 50) were recruited. fMRI was performed in Group 1 at 2 time points: before acupuncture (time point 1, TP1); and after the end of all acupuncture sessions (time point 2, TP2), and performed in Group 2 as a one-time scan. Patients in Group 1 were assessed with the Migraine Disability Assessment Questionnaire (MIDAS) and the Short-Form McGill Pain Questionnaire (SF-MPQ) at TP1 and TP2 after fMRI was performed. The ALFF and DC values were compared within Group 1 at two time points and between Group 1 and Group2. The correlation between ALFF and DC values with the statistical differences and the clinical scales scores were analyzed. RESULTS Brain activities increased in the left fusiform gyrus and right angular gyrus, left middle occipital gyrus, and bilateral prefrontal cortex and decreased in left inferior parietal lobule in Group 1, which had different ALFF values compared with Group 2 at TP1. The bilateral fusiform gyrus, bilateral inferior temporal gyrus and right middle temporal gyrus increased and right angular gyrus, right superior marginal gyrus, right inferior parietal lobule, right middle occipital gyrus, right superior frontal gyrus, right middle frontal gyrus, right anterior central gyrus, and right supplementary motor area decreased in activity in Group 1 had different DC values compared with Group 2 at TP1. ALFF and DC values of right inferior temporal gyrus, right fusiform gyrus and right middle temporal gyrus were decreased in Group1 at TP1 compared with TP2. ALFF values in the left middle occipital area were positively correlated with the pain degree at TP1 in Group1 (correlation coefficient r, r = 0.827, r = 0.343; P < 0.01, P = 0.015). The DC values of the right inferior temporal area were positively correlated with the pain degree at TP1 in Group 1 (r = 0.371; P = 0.008). CONCLUSION Spontaneous brain activity and network changes in young women with non-menstrual MwoA were altered by acupuncture. The right temporal area may be an important target for acupuncture modulated brain function in young women with non-menstrual MwoA.
Collapse
Affiliation(s)
- Yu-Chan Yang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiang-Yu Wei
- Institute of Acupuncture and Anesthesia, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying-Ying Zhang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun-Yang Xu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Ming Cheng
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Gang Gong
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Chen
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Wen Huang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Yuan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui-Hui Xu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Song-Hua Zhan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wen-Li Tan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
200
|
Liu Y, Li J, Wisnowski JL, Leahy RM. Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574423. [PMID: 38260447 PMCID: PMC10802375 DOI: 10.1101/2024.01.05.574423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cortical parcellation has long been a cornerstone in the field of neuroscience, enabling the cerebral cortex to be partitioned into distinct, non-overlapping regions that facilitate the interpretation and comparison of complex neuroscientific data. In recent years, these parcellations have frequently been based on the use of resting-state fMRI (rsfMRI) data. In parallel, methods such as independent components analysis have long been used to identify large-scale functional networks with significant spatial overlap between networks. Despite the fact that both forms of decomposition make use of the same spontaneous brain activity measured with rsfMRI, a gap persists in establishing a clear relationship between disjoint cortical parcellations and brain-wide networks. To address this, we introduce a novel parcellation framework that integrates NASCAR, a three-dimensional tensor decomposition method that identifies a series of functional brain networks, with state-of-the-art graph representation learning to produce cortical parcellations that represent near-homogeneous functional regions that are consistent with these brain networks. Further, through the use of the tensor decomposition, we avoid the limitations of traditional approaches that assume statistical independence or orthogonality in defining the underlying networks. Our findings demonstrate that these parcellations are comparable or superior to established atlases in terms of homogeneity of the functional connectivity across parcels, task contrast alignment, and architectonic map alignment. Our methodological pipeline is highly automated, allowing for rapid adaptation to new datasets and the generation of custom parcellations in just minutes, a significant advancement over methods that require extensive manual input. We describe this integrated approach, which we refer to as Untamed, as a tool for use in the fields of cognitive and clinical neuroscientific research. Parcellations created from the Human Connectome Project dataset using Untamed, along with the code to generate atlases with custom parcel numbers, are publicly available at https://untamed-atlas.github.io.
Collapse
Affiliation(s)
- Yijun Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica L. Wisnowski
- Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard M. Leahy
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|