151
|
Jorgenson LA, Newsome WT, Anderson DJ, Bargmann CI, Brown EN, Deisseroth K, Donoghue JP, Hudson KL, Ling GSF, MacLeish PR, Marder E, Normann RA, Sanes JR, Schnitzer MJ, Sejnowski TJ, Tank DW, Tsien RY, Ugurbil K, Wingfield JC. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0164. [PMID: 25823863 PMCID: PMC4387507 DOI: 10.1098/rstb.2014.0164] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions.
Collapse
Affiliation(s)
- Lyric A Jorgenson
- Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - William T Newsome
- Howard Hughes Medical Institute and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute and Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Emery N Brown
- Institute for Medical Engineering and Science and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute and Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - John P Donoghue
- Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Kathy L Hudson
- Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geoffrey S F Ling
- Biological Technologies Office, Defense Advanced Research Projects Agency, Arlington, VA 22203, USA
| | - Peter R MacLeish
- Department of Neurobiology, Neuroscience Institute, Morehouse, School of Medicine, Atlanta, GA 30310, USA
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA
| | - Richard A Normann
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark J Schnitzer
- Howard Hughes Medical Institute and James H. Clark Center for Biomedical Engineering & Sciences, CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute and Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David W Tank
- Princeton Neuroscience Institute, Bezos Center for Neural Circuit Dynamics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Roger Y Tsien
- Howard Hughes Medical Institute and Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, MN 55454, USA
| | - John C Wingfield
- Directorate for Biological Sciences, National Science Foundation, Arlington, VA 22230, USA
| |
Collapse
|
152
|
Sarkar A, Marchetto MC, Gage FH. Synaptic activity: An emerging player in schizophrenia. Brain Res 2015; 1656:68-75. [PMID: 26723567 DOI: 10.1016/j.brainres.2015.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Schizophrenia is a polygenic disorder with a complex etiology. While the genetic and molecular underpinnings of the disease are poorly understood, variations in genes encoding synaptic pathways are consistently implicated. Although its impact is still an open question, a deficit in synaptic activity provides an attractive model to explain the cognitive etiology of schizophrenia. Recent advances in high-throughput imaging and functional studies bring new hope for the application of in vitro disease modeling with patient-derived neurons to empirically ascertain the extent to which these synaptic pathways are involved in the disease. In addition, the emergent avenue of research targeted to probe neuronal connections is revealing critical insight into circuitry and may influence how we think about psychiatric disorders in the near future. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Anindita Sarkar
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria C Marchetto
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
153
|
Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, Schnitzer MJ. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 2015; 350:1361-6. [PMID: 26586188 DOI: 10.1126/science.aab0810] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022]
Abstract
Genetically encoded voltage indicators (GEVIs) are a promising technology for fluorescence readout of millisecond-scale neuronal dynamics. Previous GEVIs had insufficient signaling speed and dynamic range to resolve action potentials in live animals. We coupled fast voltage-sensing domains from a rhodopsin protein to bright fluorophores through resonance energy transfer. The resulting GEVIs are sufficiently bright and fast to report neuronal action potentials and membrane voltage dynamics in awake mice and flies, resolving fast spike trains with 0.2-millisecond timing precision at spike detection error rates orders of magnitude better than previous GEVIs. In vivo imaging revealed sensory-evoked responses, including somatic spiking, dendritic dynamics, and intracellular voltage propagation. These results empower in vivo optical studies of neuronal electrophysiology and coding and motivate further advancements in high-speed microscopy.
Collapse
Affiliation(s)
- Yiyang Gong
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA. Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Jin Zhong Li
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin F Grewe
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Yanping Zhang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Stephan Eismann
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
154
|
Bechara A, Laumonnerie C, Vilain N, Kratochwil CF, Cankovic V, Maiorano NA, Kirschmann MA, Ducret S, Rijli FM. Hoxa2 Selects Barrelette Neuron Identity and Connectivity in the Mouse Somatosensory Brainstem. Cell Rep 2015; 13:783-797. [PMID: 26489473 DOI: 10.1016/j.celrep.2015.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/19/2015] [Accepted: 09/09/2015] [Indexed: 10/22/2022] Open
Abstract
Mouse whiskers are somatotopically mapped in brainstem trigeminal nuclei as neuronal modules known as barrelettes. Whisker-related afferents form barrelettes in ventral principal sensory (vPrV) nucleus, whereas mandibular input targets dorsal PrV (dPrV). How barrelette neuron identity and circuitry is established is poorly understood. We found that ectopic Hoxa2 expression in dPrV neurons is sufficient to attract whisker-related afferents, induce asymmetrical dendrite arbors, and allow ectopic barrelette map formation. Moreover, the thalamic area forming whisker-related barreloids is prenatally targeted by both vPrV and dPrV axons followed by perinatal large-scale pruning of dPrV axons and refinement of vPrV barrelette input. Ectopic Hoxa2 expression allows topographically directed targeting and refinement of dPrV axons with vPrV axons into a single whisker-related barreloid map. Thus, a single HOX transcription factor is sufficient to switch dPrV into a vPrV barrelette neuron program and coordinate input-output topographic connectivity of a dermatome-specific circuit module.
Collapse
Affiliation(s)
- Ahmad Bechara
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Christophe Laumonnerie
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Claudius F Kratochwil
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vanja Cankovic
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicola A Maiorano
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Moritz A Kirschmann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
155
|
|
156
|
DeFelipe J. The anatomical problem posed by brain complexity and size: a potential solution. Front Neuroanat 2015; 9:104. [PMID: 26347617 PMCID: PMC4542575 DOI: 10.3389/fnana.2015.00104] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023] Open
Abstract
Over the years the field of neuroanatomy has evolved considerably but unraveling the extraordinary structural and functional complexity of the brain seems to be an unattainable goal, partly due to the fact that it is only possible to obtain an imprecise connection matrix of the brain. The reasons why reaching such a goal appears almost impossible to date is discussed here, together with suggestions of how we could overcome this anatomical problem by establishing new methodologies to study the brain and by promoting interdisciplinary collaboration. Generating a realistic computational model seems to be the solution rather than attempting to fully reconstruct the whole brain or a particular brain region.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (Centro de Tecnología Biomédica: UPM), Instituto Cajal (CSIC) and CIBERNED Madrid, Spain
| |
Collapse
|
157
|
Osakada F. [From the connectome to brain function: rabies virus tools for elucidating structure and function of neural circuits]. Nihon Yakurigaku Zasshi 2015; 146:98-105. [PMID: 26256748 DOI: 10.1254/fpj.146.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
158
|
Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral! Front Neuroanat 2015; 9:80. [PMID: 26190977 PMCID: PMC4486834 DOI: 10.3389/fnana.2015.00080] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/25/2015] [Indexed: 02/03/2023] Open
Abstract
The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School Boston, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Kevin T Beier
- Department of Psychiatry and Behavioral Sciences and Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
159
|
Abstract
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.
Collapse
Affiliation(s)
- Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Neurosciences Program, Stanford University, Stanford, CA 94305 USA
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305 USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA.
| |
Collapse
|
160
|
Sato S, Ohara S, Tsutsui KI, Iijima T. Effects of G-gene Deletion and Replacement on Rabies Virus Vector Gene Expression. PLoS One 2015; 10:e0128020. [PMID: 26023771 PMCID: PMC4449044 DOI: 10.1371/journal.pone.0128020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/21/2015] [Indexed: 12/26/2022] Open
Abstract
The glycoprotein-gene (G gene) -deleted rabies virus (RV) vector is a powerful tool to examine the function and structure of neural circuits. We previously reported that the deletion of the G gene enhances the transgene expression level of the RV vector. However, the mechanism of this enhancement remains to be clarified. We presume that there are two possible factors for this enhancement. The first factor is the glycoprotein of RV, which shows cytotoxicity; thus, may cause a dysfunction in the translation process of infected cells. The second possible factor is the enhanced expression of the L gene, which encodes viral RNA polymerase. In the RV, it is known that the gene expression level is altered depending on the position of the gene. Since G-gene deletion displaces the L gene in the genome, the expression of the L gene and viral transcription may be enhanced. In this study, we compared the transgene expression level and viral transcription of three recombinant RV vectors. The effect of glycoprotein was examined by comparing the viral gene expression of G-gene-intact RV and G-gene-replaced RV. Despite the fact that the L-gene transcription level of these two RV vectors was similar, the G-gene-replaced RV vector showed higher viral transcription and transgene expression level than the G-gene-intact RV vector. To examine the effect of the position of the L gene, we compared the viral gene expression of the G-gene-deleted RV and G-gene-replaced RV. The G-gene-deleted RV vector showed higher L-gene transcription, viral transcription, and transgene expression level than the G-gene-replaced RV vector. These results indicate that G-gene deletion enhances the transgene expression level through at least two factors, the absence of glycoprotein and enhancement of L-gene expression. These findings enable investigators to design a useful viral vector that shows a controlled desirable transgene expression level in applications.
Collapse
Affiliation(s)
- Sho Sato
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- * E-mail:
| |
Collapse
|
161
|
Dugué GP, Tricoire L. [Principles and applications of optogenetics in neuroscience]. Med Sci (Paris) 2015; 31:291-303. [PMID: 25855283 DOI: 10.1051/medsci/20153103015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerous achievements in biology have resulted from the evolution of biophotonics, a general term describing the use of light in the study of living systems. Over the last fifteen years, biophotonics has progressively blended with molecular genetics to give rise to optogenetics, a set of techniques enabling the functional study of genetically-defined cellular populations, compartments or processes with optical methods. In neuroscience, optogenetics allows real-time monitoring and control of the activity of specific neuronal populations in a wide range of animal models. This technical breakthrough provides a new level of sophistication in experimental approaches in the field of fundamental neuroscience, significantly enhancing our ability to understand the complexity of neuronal circuits.
Collapse
Affiliation(s)
- Guillaume P Dugué
- CNRS UMR 8197, Inserm U1024, IBENS S4.9, 46, rue d'Ulm, 75005 Paris, France
| | - Ludovic Tricoire
- CNRS UMR 8246, Inserm U1130, université Pierre et Marie Curie UM CR119, 9, quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
162
|
Guo Q, Wang D, He X, Feng Q, Lin R, Xu F, Fu L, Luo M. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One 2015; 10:e0123381. [PMID: 25830919 PMCID: PMC4382118 DOI: 10.1371/journal.pone.0123381] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.
Collapse
Affiliation(s)
- Qingchun Guo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Daqing Wang
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaobin He
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
163
|
Lillis KP, Dulla C, Maheshwari A, Coulter D, Mody I, Heinemann U, Armbruster M, Žiburkus J. WONOEP appraisal: molecular and cellular imaging in epilepsy. Epilepsia 2015; 56:505-13. [PMID: 25779014 PMCID: PMC4397142 DOI: 10.1111/epi.12939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Great advancements have been made in understanding the basic mechanisms of ictogenesis using single-cell electrophysiology (e.g., patch clamp, sharp electrode), large-scale electrophysiology (e.g., electroencephalography [EEG], field potential recording), and large-scale imaging (magnetic resonance imaging [MRI], positron emission tomography [PET], calcium imaging of acetoxymethyl ester [AM] dye-loaded tissue). Until recently, it has been challenging to study experimentally how population rhythms emerge from cellular activity. Newly developed optical imaging technologies hold promise for bridging this gap by making it possible to simultaneously record the many cellular elements that comprise a neural circuit. Furthermore, easily accessible genetic technologies for targeting expression of fluorescent protein-based indicators make it possible to study, in animal models of epilepsy, epileptogenic changes to neural circuits over long periods. In this review, we summarize some of the latest imaging tools (fluorescent probes, gene delivery methods, and microscopy techniques) that can lead to the advancement of cell- and circuit-level understanding of epilepsy, which in turn may inform and improve development of next generation antiepileptic and antiepileptogenic drugs.
Collapse
Affiliation(s)
- Kyle P Lillis
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A; Harvard Medical School, Boston, Massachusetts, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Wang D, He X, Zhao Z, Feng Q, Lin R, Sun Y, Ding T, Xu F, Luo M, Zhan C. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat 2015; 9:40. [PMID: 25870542 PMCID: PMC4375998 DOI: 10.3389/fnana.2015.00040] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023] Open
Abstract
Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus and nucleus tractus solitarius (NTS) of the brainstem play important roles in suppressing food intake and maintaining energy homeostasis. Previous tract-tracing studies have revealed the axonal connection patterns of these two brain areas, but the intermingling of POMC neurons with other neuron types has made it challenging to precisely identify the inputs and outputs of POMC neurons. In this study, we used the modified rabies virus to map the brain areas that provide direct inputs to the POMC neurons in the ARC and NTS as well as the inputs to the ARC AgRP neurons for comparison. ARC POMC neurons receive inputs from dozens of discrete structures throughout the forebrain and brainstem. The brain areas containing the presynaptic partners of ARC POMC neurons largely overlap with those of ARC AgRP neurons, although POMC neurons receive relatively broader, denser inputs. Furthermore, POMC neurons in the NTS receive direct inputs predominantly from the brainstem and show very different innervation patterns for POMC neurons in the ARC. By selectively expressing fluorescent markers in the ARC and NTS POMC neurons, we found that almost all of their major presynaptic partners are innervated by POMC neurons in the two areas, suggesting that there are strong reciprocal projections among the major POMC neural pathways. By comprehensively chartering the whole-brain connections of the central melanocortin system in a cell-type-specific manner, this study lays the foundation for dissecting the roles and underlying circuit mechanisms of specific neural pathways in regulating energy homeostasis.
Collapse
Affiliation(s)
- Daqing Wang
- School of Life Sciences, Tsinghua University Beijing China ; National Institute of Biological Sciences Beijing, China
| | - Xiaobing He
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China ; University of Chinese Academy of Sciences Beijing, China
| | - Zhe Zhao
- National Institute of Biological Sciences Beijing, China
| | - Qiru Feng
- National Institute of Biological Sciences Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences Beijing, China
| | - Yue Sun
- National Institute of Biological Sciences Beijing, China
| | - Ting Ding
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences Wuhan, China ; University of Chinese Academy of Sciences Beijing, China ; Wuhan National Laboratory for Optoelectronics Wuhan, China
| | - Minmin Luo
- School of Life Sciences, Tsinghua University Beijing China ; National Institute of Biological Sciences Beijing, China
| | - Cheng Zhan
- National Institute of Biological Sciences Beijing, China
| |
Collapse
|
165
|
Yamawaki N, Shepherd GMG. Synaptic circuit organization of motor corticothalamic neurons. J Neurosci 2015; 35:2293-307. [PMID: 25653383 PMCID: PMC4315846 DOI: 10.1523/jneurosci.4023-14.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/24/2014] [Accepted: 12/27/2014] [Indexed: 01/07/2023] Open
Abstract
Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus.
Collapse
Affiliation(s)
- Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
166
|
Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord. Gene Ther 2015; 22:357-64. [PMID: 25630949 DOI: 10.1038/gt.2015.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/08/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022]
Abstract
Lentiviral vectors have proved an effective method to deliver transgenes into the brain; however, they are often hampered by a lack of spread from the site of injection. Modifying the viral envelope with a portion of a rabies envelope glycoprotein can enhance spread in the brain by using long-range axon projections to facilitate retrograde transport. In this study, we generated two chimeric envelopes containing the extra-virion and transmembrane domain of rabies SADB19 or CVS-N2c with the intra-virion domain of vesicular stomatitis virus. Viral particles were packaged containing a green fluorescent protein reporter construct under the control of the phosphoglycerokinase promoter. Both vectors produced high-titer particles with successful integration of the glycoproteins into the particle envelope and significant transduction of neurons in vitro. Injection of the SADB19 chimeric viral vector into the lumbar spinal cord of adult mice mediated a strong preference for gene transfer to local neurons and axonal terminals, with retrograde transport to neurons in the brainstem, hypothalamus and cerebral cortex. Development of this vector provides a useful means to reliably target select populations of neurons by retrograde targeting.
Collapse
|
167
|
Osakada F, Takahashi M. Challenges in retinal circuit regeneration: linking neuronal connectivity to circuit function. Biol Pharm Bull 2015; 38:341-57. [PMID: 25757915 DOI: 10.1248/bpb.b14-00771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tremendous progress has been made in retinal regeneration, as exemplified by successful transplantation of retinal pigment epithelia and photoreceptor cells in the adult retina, as well as by generation of retinal tissue from embryonic stem cells and induced pluripotent cells. However, it remains unknown how new photoreceptors integrate within retinal circuits and contribute to vision restoration. There is a large gap in our understanding, at both the cellular and behavioral levels, of the functional roles of new neurons in the adult retina. This gap largely arises from the lack of appropriate methods for analyzing the organization and function of new neurons at the circuit level. To bridge this gap and understand the functional roles of new neurons in living animals, it will be necessary to identify newly formed connections, correlate them with function, manipulate their activity, and assess the behavioral outcome of these manipulations. Recombinant viral vectors are powerful tools not only for controlling gene expression and reprogramming cells, but also for tracing cell fates and neuronal connectivity, monitoring biological functions, and manipulating the physiological state of a specific cell population. These virus-based approaches, combined with electrophysiology and optical imaging, will provide circuit-level insight into neural regeneration and facilitate new strategies for achieving vision restoration in the adult retina. Herein, we discuss challenges and future directions in retinal regeneration research.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University; Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, California 92037, USA; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | | |
Collapse
|
168
|
Crowe SE, Ellis-Davies GCR. Longitudinal in vivo two-photon fluorescence imaging. J Comp Neurol 2014; 522:1708-27. [PMID: 24214350 DOI: 10.1002/cne.23502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022]
Abstract
Fluorescence microscopy is an essential technique for the basic sciences, especially biomedical research. Since the invention of laser scanning confocal microscopy in the 1980s, which enabled imaging both fixed and living biological tissue with 3D precision, high-resolution fluorescence imaging has revolutionized biological research. Confocal microscopy, by its very nature, has one fundamental limitation. Due to the confocal pinhole, deep tissue fluorescence imaging is not practical. In contrast (no pun intended), two-photon fluorescence microscopy allows, in principle, the collection of all emitted photons from fluorophores in the imaged voxel, dramatically extending our ability to see deep into living tissue. Since the development of transgenic mice with genetically encoded fluorescent protein in neocortical cells in 2000, two-photon imaging has enabled the dynamics of individual synapses to be followed for up to 2 years. Since the initial landmark contributions to this field in 2002, the technique has been used to understand how neuronal structure are changed by experience, learning, and memory and various diseases. Here we provide a basic summary of the crucial elements that are required for such studies, and discuss many applications of longitudinal two-photon fluorescence microscopy that have appeared since 2002.
Collapse
Affiliation(s)
- Sarah E Crowe
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, 10029
| | | |
Collapse
|
169
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
170
|
Murphey DK, Herman AM, Arenkiel BR. Dissecting inhibitory brain circuits with genetically-targeted technologies. Front Neural Circuits 2014; 8:124. [PMID: 25368555 PMCID: PMC4201106 DOI: 10.3389/fncir.2014.00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022] Open
Abstract
The evolution of genetically targeted tools has begun to allow us to dissect anatomically and functionally heterogeneous interneurons, and to probe circuit function from synapses to behavior. Over the last decade, these tools have been used widely to visualize neurons in a cell type-specific manner, and engage them to activate and inactivate with exquisite precision. In this process, we have expanded our understanding of interneuron diversity, their functional connectivity, and how selective inhibitory circuits contribute to behavior. Here we discuss the relative assets of genetically encoded fluorescent proteins (FPs), viral tracing methods, optogenetics, chemical genetics, and biosensors in the study of inhibitory interneurons and their respective circuits.
Collapse
Affiliation(s)
- Dona K Murphey
- Department of Neurology, Baylor College of Medicine Houston, TX, USA
| | - Alexander M Herman
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital Houston, TX, USA
| |
Collapse
|
171
|
Falkner AL, Lin D. Recent advances in understanding the role of the hypothalamic circuit during aggression. Front Syst Neurosci 2014; 8:168. [PMID: 25309351 PMCID: PMC4174750 DOI: 10.3389/fnsys.2014.00168] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/29/2014] [Indexed: 12/04/2022] Open
Abstract
The hypothalamus was first implicated in the classic “fight or flight” response nearly a century ago, and since then, many important strides have been made in understanding both the circuitry and the neural dynamics underlying the generation of these behaviors. In this review, we will focus on the role of the hypothalamus in aggression, paying particular attention to recent advances in the field that have allowed for functional identification of relevant hypothalamic subnuclei. Recent progress in this field has been aided by the development of new techniques for functional manipulation including optogenetics and pharmacogenetics, as well as advances in technology used for chronic in vivo recordings during complex social behaviors. We will examine the role of the hypothalamus through the complimentary lenses of (1) loss of function studies, including pharmacology and pharmacogenetics; (2) gain of function studies, including specific comparisons between results from classic electrical stimulation studies and more recent work using optogenetics; and (3) neural activity, including both immediate early gene and awake-behaving recordings. Lastly, we will outline current approaches to identifying the precise role of the hypothalamus in promoting aggressive motivation and aggressive action.
Collapse
Affiliation(s)
- Annegret L Falkner
- Neuroscience Institute, New York University School of Medicine New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine New York, NY, USA ; Department of Psychiatry, New York University School of Medicine New York, NY, USA
| |
Collapse
|
172
|
Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 2014; 7:76. [PMID: 25285067 PMCID: PMC4168676 DOI: 10.3389/fnmol.2014.00076] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/04/2014] [Indexed: 01/11/2023] Open
Abstract
Gene therapy is a promising approach for treating a spectrum of neurological and neurodegenerative disorders by delivering corrective genes to the central nervous system (CNS). In particular, adeno-associated viruses (AAVs) have emerged as promising tools for clinical gene transfer in a broad range of genetic disorders with neurological manifestations. In the current review, we have attempted to bridge our understanding of the biology of different AAV strains with their transduction profiles, cellular tropisms, and transport mechanisms within the CNS. Continued efforts to dissect AAV-host interactions within the brain are likely to aid in the development of improved vectors for CNS-directed gene transfer applications in the clinic.
Collapse
Affiliation(s)
- Giridhar Murlidharan
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Richard J Samulski
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
| | - Aravind Asokan
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Genetics and Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
173
|
Abstract
A major stumbling block to understanding neural circuits is the extreme anatomical and functional diversity of interneurons. Subsets of interneurons can be targeted for manipulation using Cre mouse lines, but Cre expression is rarely confined to a single interneuron type. It is essential to have a strategy that further restricts labeling in Cre driver lines. We now describe an approach that combines Cre driver mice, recombinant adeno-associated virus, and rabies virus to produce sparse but binary labeling of select interneurons--frequently only a single cell in a large region. We used this approach to characterize the retinal amacrine and ganglion cell types in five GABAergic Cre mouse (Mus musculus) lines, and identified two new amacrine cell types: an asymmetric medium-field type and a wide-field type. We also labeled several wide-field amacrine cell types that have been previously identified based on morphology but whose connectivity and function had not been systematically studied due to lack of genetic markers. All Cre-expressing amacrine cells labeled with an antibody to GABA. Cre-expressing RGCs lacked GABA labeling and included classically defined as well as recently identified types. In addition to the retina, our technique leads to sparse labeling of neurons in the cortex, lateral geniculate nucleus, and superior colliculus, and can be used to express optogenetic tools such as channelrhodopsin and protein sensors such as GCaMP. The Cre drivers identified in this study provide genetic access to otherwise hard to access cell types for systematic analysis including anatomical characterization, physiological recording, optogenetic and/or chemical manipulation, and circuit mapping.
Collapse
|
174
|
Affiliation(s)
- Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| |
Collapse
|
175
|
Suter BA, Yamawaki N, Borges K, Li X, Kiritani T, Hooks BM, Shepherd GMG. Neurophotonics applications to motor cortex research. NEUROPHOTONICS 2014; 1:011008. [PMID: 25553337 PMCID: PMC4278379 DOI: 10.1117/1.nph.1.1.011008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 06/04/2023]
Abstract
Neurophotonics methods offer powerful ways to access neuronal signals and circuits. We highlight recent advances and current themes in this area, emphasizing tools for mapping, monitoring, and manipulating excitatory projection neurons and their synaptic circuits in mouse motor cortex.
Collapse
Affiliation(s)
- Benjamin A. Suter
- Northwestern University, Feinberg School of Medicine, Department of Physiology, Chicago, Illinois 60611
| | - Naoki Yamawaki
- Northwestern University, Feinberg School of Medicine, Department of Physiology, Chicago, Illinois 60611
| | - Katharine Borges
- Northwestern University, Feinberg School of Medicine, Department of Physiology, Chicago, Illinois 60611
| | - Xiaojian Li
- Northwestern University, Feinberg School of Medicine, Department of Physiology, Chicago, Illinois 60611
| | - Taro Kiritani
- Northwestern University, Feinberg School of Medicine, Department of Physiology, Chicago, Illinois 60611
| | - Bryan M. Hooks
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Gordon M. G. Shepherd
- Northwestern University, Feinberg School of Medicine, Department of Physiology, Chicago, Illinois 60611
| |
Collapse
|
176
|
Abstract
A genetic approach has been used to map the neural circuits that control and coordinate the tongue and jaw muscles.
Collapse
Affiliation(s)
- Philippe Morquette
- Philippe Morquette is in the Groupe de Recherche sur le système Nerveux Central and the Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Arlette Kolta
- Arlette Kolta is in the Groupe de Recherche sur le système Nerveux Central, the Faculté de Médecine Dentaire and the Département de Neurosciences, Université de Montréal, Montréal, Canada
| |
Collapse
|
177
|
Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong HW. Neural networks of the mouse neocortex. Cell 2014; 156:1096-111. [PMID: 24581503 DOI: 10.1016/j.cell.2014.02.023] [Citation(s) in RCA: 546] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions.
Collapse
Affiliation(s)
- Brian Zingg
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Houri Hintiryan
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Lin Gou
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Monica Y Song
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Maxwell Bay
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Michael S Bienkowski
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Nicholas N Foster
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Seita Yamashita
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Ian Bowman
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Arthur W Toga
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA
| | - Hong-Wei Dong
- Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90032, USA.
| |
Collapse
|
178
|
Optoactivation of locus ceruleus neurons evokes bidirectional changes in thermal nociception in rats. J Neurosci 2014; 34:4148-60. [PMID: 24647936 DOI: 10.1523/jneurosci.4835-13.2014] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pontospinal noradrenergic neurons are thought to form part of a descending endogenous analgesic system that exerts inhibitory influences on spinal nociception. Using optogenetic targeting, we tested the hypothesis that excitation of the locus ceruleus (LC) is antinociceptive. We transduced rat LC neurons by direct injection of a lentiviral vector expressing channelrhodopsin2 under the control of the PRS promoter. Subsequent optoactivation of the LC evoked repeatable, robust, antinociceptive (+4.7°C ± 1.0, p < 0.0001) or pronociceptive (-4.4°C ± 0.7, p < 0.0001) changes in hindpaw thermal withdrawal thresholds. Post hoc anatomical characterization of the distribution of transduced somata referenced against the position of the optical fiber and subsequent further functional analysis showed that antinociceptive actions were evoked from a distinct, ventral subpopulation of LC neurons. Therefore, the LC is capable of exerting potent, discrete, bidirectional influences on thermal nociception that are produced by specific subpopulations of noradrenergic neurons. This reflects an underlying functional heterogeneity of the influence of the LC on the processing of nociceptive information.
Collapse
|
179
|
An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology. Brain Struct Funct 2014; 220:1369-79. [PMID: 24723034 PMCID: PMC4409643 DOI: 10.1007/s00429-014-0730-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/07/2014] [Indexed: 12/19/2022]
Abstract
Glycoprotein-deleted rabies virus (RABV ∆G) is a powerful tool for the analysis of neural circuits. Here, we demonstrate the utility of an anterograde RABV ∆G variant for novel neuroanatomical approaches involving either bulk or sparse neuronal populations. This technology exploits the unique features of RABV ∆G vectors, namely autonomous, rapid high-level expression of transgenes, and limited cytotoxicity. Our vector permits the unambiguous long-range and fine-scale tracing of the entire axonal arbor of individual neurons throughout the brain. Notably, this level of labeling can be achieved following infection with a single viral particle. The vector is effective over a range of ages (>14 months) aiding the studies of neurodegenerative disorders or aging, and infects numerous cell types in all brain regions tested. Lastly, it can also be readily combined with retrograde RABV ∆G variants. Together with other modern technologies, this tool provides new possibilities for the investigation of the anatomy and physiology of neural circuits.
Collapse
|
180
|
Wickersham IR, Sullivan HA, Seung HS. Axonal and subcellular labelling using modified rabies viral vectors. Nat Commun 2014; 4:2332. [PMID: 23945836 PMCID: PMC5939574 DOI: 10.1038/ncomms3332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/19/2013] [Indexed: 01/03/2023] Open
Abstract
An important aspect of any neural circuit is the placement of its output synapses, at levels ranging from macroscopic to subcellular. The many new molecular tools for locating and manipulating synapses are limited by the viral vectors available for delivering them. Adeno-associated viruses are the best current means of labeling and manipulating axons and synapses, but they have never expressed more than one transgene highly enough to label fine axonal structure while also labeling or perturbing synapses. Their slow expression also makes them incompatible with retrograde and transsynaptic vectors, preventing powerful combinatorial experiments. Here we show that deletion-mutant rabies virus can be specifically targeted to cells local to an injection site, brightly labeling axons even when coexpressing two other transgenes. We demonstrate several novel capabilities: simultaneously labeling axons and presynaptic terminals, labeling both dendrites and postsynaptic densities, and simultaneously labeling a region’s inputs and outputs using coinjected vectors.
Collapse
Affiliation(s)
- Ian R Wickersham
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
181
|
Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL. Identification of a cellular node for motor control pathways. Nat Neurosci 2014; 17:586-93. [PMID: 24609464 PMCID: PMC4569558 DOI: 10.1038/nn.3675] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 12/28/2022]
Abstract
The rich behavioral repertoire of animals is encoded in the CNS as a set of motorneuron activation patterns, also called 'motor synergies'. However, the neurons that orchestrate these motor programs as well as their cellular properties and connectivity are poorly understood. Here we identify a population of molecularly defined motor synergy encoder (MSE) neurons in the mouse spinal cord that may represent a central node in neural pathways for voluntary and reflexive movement. This population receives direct inputs from the motor cortex and sensory pathways and, in turn, has monosynaptic outputs to spinal motorneurons. Optical stimulation of MSE neurons drove reliable patterns of activity in multiple motor groups, and we found that the evoked motor patterns varied on the basis of the rostrocaudal location of the stimulated MSE. We speculate that these neurons comprise a cellular network for encoding coordinated motor output programs.
Collapse
Affiliation(s)
- Ariel J Levine
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA. [3]
| | - Christopher A Hinckley
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA. [3]
| | - Kathryn L Hilde
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shawn P Driscoll
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tiffany H Poon
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jessica M Montgomery
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Samuel L Pfaff
- 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA. [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
182
|
Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS, Nguyen PL, Callaway EM, Ghosh A, Huberman AD. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 2014; 507:358-61. [PMID: 24572358 PMCID: PMC4143386 DOI: 10.1038/nature12989] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 12/31/2013] [Indexed: 12/27/2022]
Abstract
How specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction-selective ganglion cells (DSGCs), are specialized for detecting motion along specific axes of the visual field. Despite extensive study of the retinal circuitry that endows DSGCs with their unique tuning properties, their downstream circuitry in the brain and thus their contribution to visual processing has remained unclear. In mice, several different types of DSGCs connect to the dorsal lateral geniculate nucleus (dLGN), the visual thalamic structure that harbours cortical relay neurons. Whether direction-selective information computed at the level of the retina is routed to cortical circuits and integrated with other visual channels, however, is unknown. Here we show that there is a di-synaptic circuit linking DSGCs with the superficial layers of the primary visual cortex (V1) by using viral trans-synaptic circuit mapping and functional imaging of visually driven calcium signals in thalamocortical axons. This circuit pools information from several types of DSGCs, converges in a specialized subdivision of the dLGN, and delivers direction-tuned and orientation-tuned signals to superficial V1. Notably, this circuit is anatomically segregated from the retino-geniculo-cortical pathway carrying non-direction-tuned visual information to deeper layers of V1, such as layer 4. Thus, the mouse harbours several functionally specialized, parallel retino-geniculo-cortical pathways, one of which originates with retinal DSGCs and delivers direction- and orientation-tuned information specifically to the superficial layers of the primary visual cortex. These data provide evidence that direction and orientation selectivity of some V1 neurons may be influenced by the activation of DSGCs.
Collapse
Affiliation(s)
- Alberto Cruz-Martín
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Rana N El-Danaf
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Fumitaka Osakada
- Salk Institute for Biological Studies, La Jolla, California 92097, USA
| | - Balaji Sriram
- Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Onkar S Dhande
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Phong L Nguyen
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA
| | - Edward M Callaway
- Salk Institute for Biological Studies, La Jolla, California 92097, USA
| | - Anirvan Ghosh
- Neuroscience Discovery, F. Hoffman La Roche, 4070 Basel, Switzerland
| | - Andrew D Huberman
- 1] Department of Neurosciences, University of California, San Diego, California 92093, USA [2] Neurobiology Section in the Division of Biological Sciences, University of California, San Diego, California 92093, USA [3] Salk Institute for Biological Studies, La Jolla, California 92097, USA [4] Department of Ophthalmology, University of California, San Diego, California 92093, USA
| |
Collapse
|
183
|
Abstract
It is now widely accepted that the brain makes important contributions to the dysregulated glucose metabolism, altered feeding behaviors, and the obesity often seen in type 2 diabetes (T2D). Although studies focusing on genetic, cellular, and molecular regulatory elements in pancreas, liver, adipose tissue etc provide a good understanding of how these processes relate to T2D, our knowledge of how brain wiring patterns are organized is much less developed. This article discusses animal studies that illustrate the importance of understanding the network organization of those brain regions most closely implicated in T2D. It will describe the brain networks, as well as the methodologies used to explore them. To illustrate some of the gaps in our knowledge, we will discuss the connectional network of the ventromedial nucleus and its adjacent cell groups in the hypothalamus; structures that are widely recognized as key elements in the brain's ability to control glycemia, feeding, and body weight.
Collapse
Affiliation(s)
- Alan G Watts
- The Center for NeuroMetabolic Interactions and The Department of Biological Sciences, USC Dornsife College of Letters, Arts, and Sciences, University of Southern California, Hedco Neuroscience Building, MC 2520, Los Angeles, CA, 90089-2520, USA,
| |
Collapse
|
184
|
Cetin A, Callaway EM. Optical control of retrogradely infected neurons using drug-regulated "TLoop" lentiviral vectors. J Neurophysiol 2014; 111:2150-9. [PMID: 24572099 DOI: 10.1152/jn.00495.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many approaches that use viral vectors to deliver transgenes have limited transduction efficiency yet require high levels of transgene expression. In particular, infection via axon terminals is relatively inefficient but is a powerful means of achieving infection of specific neuron types. Combining this with optogenetic approaches requires high gene expression levels that are not typically achieved with nontoxic retrogradely infecting vectors. We generated rabies glycoprotein-pseudotyped lentiviral vectors that use a positive feedback loop composed of a Tet promoter driving both its own tetracycline-dependent transcription activator (tTA) ("TLoop") and channelrhodopsin-2-YFP (ChR2YFP). We show that TLoop vectors strongly express proteins in a drug-controllable manner in neurons that project to injection sites within the mouse brain. After initial infection, the virus travels retrogradely, stably integrates into the host genome, and expresses gene products. The expression is robust and allows optogenetic studies of neurons projecting to the location of virus injection, as demonstrated by fluorescence-targeted intracellular recordings. ChR2YFP expression did not cause observable signs of toxicity and continued for up to 6 mo after infection. Expression can be reversibly blocked by administration of doxycycline, if necessary, for expression of gene products that might be more toxic. Overall, we present a system that will allow researchers to achieve high levels of gene expression even in the face of inefficient viral transduction. The particular vectors that we demonstrate may enhance efforts to gain a precise understanding of the contributions of specific types of projection neurons to brain function.
Collapse
Affiliation(s)
- Ali Cetin
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California; and
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California; and Neurosciences Graduate Program, University of California at San Diego, La Jolla, California
| |
Collapse
|
185
|
Circuit dynamics of adaptive and maladaptive behaviour. Nature 2014; 505:309-17. [PMID: 24429629 DOI: 10.1038/nature12982] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/08/2013] [Indexed: 02/08/2023]
Abstract
The recent development of technologies for investigating specific components of intact biological systems has allowed elucidation of the neural circuitry underlying adaptive and maladaptive behaviours. Investigators are now able to observe and control, with high spatio-temporal resolution, structurally defined intact pathways along which electrical activity flows during and after the performance of complex behaviours. These investigations have revealed that control of projection-specific dynamics is well suited to modulating behavioural patterns that are relevant to a broad range of psychiatric diseases. Structural dynamics principles have emerged to provide diverse, unexpected and causal insights into the operation of intact and diseased nervous systems, linking form and function in the brain.
Collapse
|
186
|
Zampieri N, Jessell TM, Murray AJ. Mapping sensory circuits by anterograde transsynaptic transfer of recombinant rabies virus. Neuron 2014; 81:766-78. [PMID: 24486087 DOI: 10.1016/j.neuron.2013.12.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2013] [Indexed: 01/14/2023]
Abstract
Primary sensory neurons convey information from the external world to relay circuits within the CNS, but the identity and organization of the neurons that process incoming sensory information remains sketchy. Within the CNS, viral tracing techniques that rely on retrograde transsynaptic transfer provide a powerful tool for delineating circuit organization. Viral tracing of the circuits engaged by primary sensory neurons has, however, been hampered by the absence of a genetically tractable anterograde transfer system. In this study, we demonstrate that rabies virus can infect sensory neurons in the somatosensory system, is subject to anterograde transsynaptic transfer from primary sensory to spinal target neurons, and can delineate output connectivity with third-order neurons. Anterograde transsynaptic transfer is a feature shared by other classes of primary sensory neurons, permitting the identification and potentially the manipulation of neural circuits processing sensory feedback within the mammalian CNS.
Collapse
Affiliation(s)
- Niccolò Zampieri
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA.
| | - Andrew J Murray
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032 USA
| |
Collapse
|
187
|
Jennings JH, Stuber GD. Tools for resolving functional activity and connectivity within intact neural circuits. Curr Biol 2014; 24:R41-R50. [PMID: 24405680 PMCID: PMC4075962 DOI: 10.1016/j.cub.2013.11.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances designed to precisely monitor and manipulate neural circuit activity. We propose a holistic, multifaceted approach for unraveling how behavioral states are manifested through the cooperative interactions between discrete neurocircuit elements.
Collapse
Affiliation(s)
- Joshua H Jennings
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
188
|
Mori T, Morimoto K. Rabies virus glycoprotein variants display different patterns in rabies monosynaptic tracing. Front Neuroanat 2014; 7:47. [PMID: 24427117 PMCID: PMC3877770 DOI: 10.3389/fnana.2013.00047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 11/13/2022] Open
Abstract
Rabies virus (RV) has been widely used to trace multi-synaptic neuronal circuits. The recent development of glycoprotein-deficient rabies virus (RV-ΔG) expressing various proteins has enabled analyzes of both the structure and function of neuronal circuits. The main advantage of RV-ΔG is its ability to trace monosynaptic circuits by the complementation of rabies virus glycoprotein (RVG), but it has the disadvantage of cytotoxicity. Several strain variants of RV have different biological characteristics, such as synaptic spreading and cytotoxicity, mainly due to amino acid mutations in RVG. We developed an improved protocol for the production of a highly attenuated strain of RV-ΔG and assessed whether RVG variants affect rabies monosynaptic tracing and the health of infected neurons. We demonstrated that (1) rabies monosynaptic tracing with RVG variants traced different subsets of presynaptic partners, (2) RVG of the attenuated strain also labeled astrocytes, and (3) the cytotoxicity of RV-ΔG did not depend on RVG but on RV-ΔG. These findings indicate that RVG variants are an important determinant of rabies monosynaptic tracing.
Collapse
Affiliation(s)
- Takuma Mori
- Department of Informative Physiology, National Institute for Physiological Sciences Okazaki, Aichi, Japan
| | - Kinjiro Morimoto
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University Hiroshima, Japan
| |
Collapse
|
189
|
Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J Neurosci 2013; 33:17797-813. [PMID: 24198370 DOI: 10.1523/jneurosci.2778-13.2013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When the head rotates, the image of the visual world slips across the retina. A dedicated set of retinal ganglion cells (RGCs) and brainstem visual nuclei termed the "accessory optic system" (AOS) generate slip-compensating eye movements that stabilize visual images on the retina and improve visual performance. Which types of RGCs project to each of the various AOS nuclei remain unresolved. Here we report a new transgenic mouse line, Hoxd10-GFP, in which the RGCs projecting to all the AOS nuclei are fluorescently labeled. Electrophysiological recordings of Hoxd10-GFP RGCs revealed that they include all three subtypes of On direction-selective RGCs (On-DSGCs), responding to upward, downward, or forward motion. Hoxd10-GFP RGCs also include one subtype of On-Off DSGCs tuned for forward motion. Retrograde circuit mapping with modified rabies viruses revealed that the On-DSGCs project to the brainstem centers involved in both horizontal and vertical retinal slip compensation. In contrast, the On-Off DSGCs labeled in Hoxd10-GFP mice projected to AOS nuclei controlling horizontal but not vertical image stabilization. Moreover, the forward tuned On-Off DSGCs appear physiologically and molecularly distinct from all previously genetically identified On-Off DSGCs. These data begin to clarify the cell types and circuits underlying image stabilization during self-motion, and they support an unexpected diversity of DSGC subtypes.
Collapse
|
190
|
Yook C, Druckmann S, Kim J. Mapping mammalian synaptic connectivity. Cell Mol Life Sci 2013; 70:4747-57. [PMID: 23864031 PMCID: PMC3830202 DOI: 10.1007/s00018-013-1417-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 02/05/2023]
Abstract
Mapping mammalian synaptic connectivity has long been an important goal of neuroscientists since it is considered crucial for explaining human perception and behavior. Yet, despite enormous efforts, the overwhelming complexity of the neural circuitry and the lack of appropriate techniques to unravel it have limited the success of efforts to map connectivity. However, recent technological advances designed to overcome the limitations of conventional methods for connectivity mapping may bring about a turning point. Here, we address the promises and pitfalls of these new mapping technologies.
Collapse
Affiliation(s)
- Chaehyun Yook
- Center for Functional Connectomics (CFC), L7-7205, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791 Korea
- Department of Biological Science, KAIST, Daejeon, Korea
| | - Shaul Druckmann
- Howard Hugh Medical Institute, Janelia Farm Research Campus, Ashburn, USA
| | - Jinhyun Kim
- Center for Functional Connectomics (CFC), L7-7205, Korea Institute of Science and Technology (KIST), 39-1 Hawolgokdong, Seongbukgu, Seoul, 136-791 Korea
| |
Collapse
|
191
|
McCall JG, Kim TI, Shin G, Huang X, Jung YH, Al-Hasani R, Omenetto FG, Bruchas MR, Rogers JA. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nat Protoc 2013; 8:2413-2428. [PMID: 24202555 PMCID: PMC4005292 DOI: 10.1038/nprot.2013.158] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rise of optogenetics provides unique opportunities to advance materials and biomedical engineering, as well as fundamental understanding in neuroscience. This protocol describes the fabrication of optoelectronic devices for studying intact neural systems. Unlike optogenetic approaches that rely on rigid fiber optics tethered to external light sources, these novel devices carry wirelessly powered microscale, inorganic light-emitting diodes (μ-ILEDs) and multimodal sensors inside the brain. We describe the technical procedures for construction of these devices, their corresponding radiofrequency power scavengers and their implementation in vivo for experimental application. In total, the timeline of the procedure, including device fabrication, implantation and preparation to begin in vivo experimentation, can be completed in ~3-8 weeks. Implementation of these devices allows for chronic (tested for up to 6 months) wireless optogenetic manipulation of neural circuitry in animals navigating complex natural or home-cage environments, interacting socially, and experiencing other freely moving behaviors.
Collapse
Affiliation(s)
- Jordan G. McCall
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tae-il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Korea
- IBS Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
| | - Gunchul Shin
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xian Huang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yei Hwan Jung
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ream Al-Hasani
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fiorenzo G. Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, MA 02115, USA
- Department of Physics, Tufts University, Medford, MA 02115, USA
| | - Michael R. Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
192
|
Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 2013; 33:15195-206. [PMID: 24048849 DOI: 10.1523/jneurosci.1618-13.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.
Collapse
|
193
|
Vasquez JC, Houweling AR, Tiesinga P. Simultaneous stability and sensitivity in model cortical networks is achieved through anti-correlations between the in- and out-degree of connectivity. Front Comput Neurosci 2013; 7:156. [PMID: 24223550 PMCID: PMC3819735 DOI: 10.3389/fncom.2013.00156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/17/2013] [Indexed: 12/03/2022] Open
Abstract
Neuronal networks in rodent barrel cortex are characterized by stable low baseline firing rates. However, they are sensitive to the action potentials of single neurons as suggested by recent single-cell stimulation experiments that reported quantifiable behavioral responses in response to short spike trains elicited in single neurons. Hence, these networks are stable against internally generated fluctuations in firing rate but at the same time remain sensitive to similarly-sized externally induced perturbations. We investigated stability and sensitivity in a simple recurrent network of stochastic binary neurons and determined numerically the effects of correlation between the number of afferent (“in-degree”) and efferent (“out-degree”) connections in neurons. The key advance reported in this work is that anti-correlation between in-/out-degree distributions increased the stability of the network in comparison to networks with no correlation or positive correlations, while being able to achieve the same level of sensitivity. The experimental characterization of degree distributions is difficult because all pre-synaptic and post-synaptic neurons have to be identified and counted. We explored whether the statistics of network motifs, which requires the characterization of connections between small subsets of neurons, could be used to detect evidence for degree anti-correlations. We find that the sample frequency of the 3-neuron “ring” motif (1→2→3→1), can be used to detect degree anti-correlation for sub-networks of size 30 using about 50 samples, which is of significance because the necessary measurements are achievable experimentally in the near future. Taken together, we hypothesize that barrel cortex networks exhibit degree anti-correlations and specific network motif statistics.
Collapse
Affiliation(s)
- Juan C Vasquez
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | |
Collapse
|
194
|
Ohara S, Sato S, Oyama K, Tsutsui KI, Iijima T. Rabies virus vector transgene expression level and cytotoxicity improvement induced by deletion of glycoprotein gene. PLoS One 2013; 8:e80245. [PMID: 24244660 PMCID: PMC3820615 DOI: 10.1371/journal.pone.0080245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023] Open
Abstract
The glycoprotein (G) of rabies virus (RV) is required for binding to neuronal receptors and for viral entry. G-deleted RV vector is a powerful tool for investigating the organization and function of the neural circuits. It gives the investigator the ability to genetically target initial infection to particular neurons and to control trans-synaptic propagation. In this study we have quantitatively evaluated the effect of G gene deletion on the cytotoxicity and transgene expression level of the RV vector. We compared the characteristics of the propagation-competent RV vector (rHEP5.0-CVSG-mRFP) and the G-deleted RV vector (rHEP5.0-ΔG-mRFP), both of which are based on the attenuated HEP-Flury strain and express monomeric red fluorescent protein (mRFP) as a transgene. rHEP5.0-ΔG-mRFP showed lower cytotoxicity than rHEP5.0-CVSG-mRFP, and within 16 days of infection we found no change in the basic electrophysiological properties of neurons infected with the rHEP5.0-ΔG-mRFP. The mRFP expression level of rHEP5.0-ΔG-mRFP was much higher than that of rHEP5.0-CVSG-mRFP, and 3 days after infection the retrogradely infected neurons were clearly visualized by the expressed fluorescent protein without any staining. This may be due to the low cytotoxicity and/or the presumed change in the polymerase gene (L) expression level of the G-deleted RV vector. Although the mechanisms remains to be clarified, the results of this study indicate that deletion of the G gene greatly improves the usability of the RV vector for studying the organization and function of the neural circuits by decreasing the cytotoxicity and increasing the transgene expression level.
Collapse
Affiliation(s)
- Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Sho Sato
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Kei Oyama
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| |
Collapse
|
195
|
Chen JL, Andermann ML, Keck T, Xu NL, Ziv Y. Imaging neuronal populations in behaving rodents: paradigms for studying neural circuits underlying behavior in the mammalian cortex. J Neurosci 2013; 33:17631-40. [PMID: 24198355 PMCID: PMC3818544 DOI: 10.1523/jneurosci.3255-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/21/2022] Open
Abstract
Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents.
Collapse
Affiliation(s)
- Jerry L. Chen
- Brain Research Institute, University of Zurich, Zurich, Switzerland CH-8057
| | - Mark L. Andermann
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Tara Keck
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Ning-Long Xu
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, and
| | - Yaniv Ziv
- Clark Center for Biomedical Engineering and Sciences, Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
196
|
Soden ME, Gore BB, Zweifel LS. Defining functional gene-circuit interfaces in the mouse nervous system. GENES BRAIN AND BEHAVIOR 2013; 13:2-12. [PMID: 24007626 DOI: 10.1111/gbb.12082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 08/30/2013] [Indexed: 12/21/2022]
Abstract
Complexity in the nervous system is established by developmental genetic programs, maintained by differential genetic profiles and sculpted by experiential and environmental influence over gene expression. Determining how specific genes define neuronal phenotypes, shape circuit connectivity and regulate circuit function is essential for understanding how the brain processes information, directs behavior and adapts to changing environments. Mouse genetics has contributed greatly to current percepts of gene-circuit interfaces in behavior, but considerable work remains. Large-scale initiatives to map gene expression and connectivity in the brain, together with advanced techniques in molecular genetics, now allow detailed exploration of the genetic basis of nervous system function at the level of specific circuit connections. In this review, we highlight several key advances for defining the function of specific genes within a neural network.
Collapse
Affiliation(s)
- M E Soden
- Department of Pharmacology; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
197
|
Matsui T, Ohki K. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1. Front Neural Circuits 2013; 7:143. [PMID: 24068987 PMCID: PMC3779894 DOI: 10.3389/fncir.2013.00143] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/25/2013] [Indexed: 12/01/2022] Open
Abstract
Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network.
Collapse
Affiliation(s)
- Teppei Matsui
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Kenichi Ohki
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu UniversityFukuoka, Japan
- CREST, Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
198
|
Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 2013; 16:1499-508. [PMID: 23995068 PMCID: PMC3793847 DOI: 10.1038/nn.3502] [Citation(s) in RCA: 568] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022]
Abstract
Channelrhodopsins (ChRs) are used to optogenetically depolarize neurons. We engineered a variant of ChR, denoted red-activatable ChR (ReaChR), that is optimally excited with orange to red light (λ ∼590-630 nm) and offers improved membrane trafficking, higher photocurrents and faster kinetics compared to existing red-shifted ChRs. Red light is less scattered by tissue and is absorbed less by blood than the blue to green wavelengths that are required by other ChR variants. We used ReaChR expressed in the vibrissa motor cortex to drive spiking and vibrissa motion in awake mice when excited with red light through intact skull. Precise vibrissa movements were evoked by expressing ReaChR in the facial motor nucleus in the brainstem and illumination with red light through the external auditory canal. Thus, ReaChR enables transcranial optical activation of neurons in deep brain structures without the need to surgically thin the skull, form a transcranial window or implant optical fibers.
Collapse
Affiliation(s)
- John Y Lin
- 1] Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. [2]
| | | | | | | | | |
Collapse
|
199
|
Tracing inputs to inhibitory or excitatory neurons of mouse and cat visual cortex with a targeted rabies virus. Curr Biol 2013; 23:1746-55. [PMID: 23993841 DOI: 10.1016/j.cub.2013.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cortical inhibition plays a critical role in controlling and modulating cortical excitation, and a more detailed understanding of the neuronal circuits contributing to each will provide more insight into their roles in complex cortical computations. Traditional neuronal tracers lack a means for easily distinguishing between circuits of inhibitory and excitatory neurons. To overcome this limitation, we have developed a technique for retrogradely labeling inputs to local clusters of inhibitory or excitatory neurons, but not both, using neurotropic adenoassociated and lentiviral vectors, cell-type-specific promoters, and a modified rabies virus. RESULTS Applied to primary visual cortex (V1) in mouse, the cell-type-specific tracing technique labeled thousands of presynaptically connected neurons and revealed that the dominant source of input to inhibitory and excitatory neurons is local in origin. Neurons in other visual areas are also labeled; the percentage of these intercortical inputs to excitatory neurons is somewhat higher (~20%) than to inhibitory neurons (<10%), suggesting that intercortical connections have less direct control over inhibition. The inputs to inhibitory neurons were also traced in cat V1, and when aligned with the orientation preference map revealed for the first time that long-range inputs to inhibitory neurons are well tuned to orientation. CONCLUSIONS These novel findings for inhibitory and excitatory circuits in the visual cortex demonstrate the efficacy of our new technique and its ability to work across species, including larger-brained mammals such as the cat. This paves the way for a better understanding of the roles of specific cell types in higher-order perceptual and cognitive processes.
Collapse
|
200
|
Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, Boyd JD, Wang YT, Reimers M, Murphy TH. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci 2013; 16:1426-35. [PMID: 23974708 DOI: 10.1038/nn.3499] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
Using millisecond-timescale voltage-sensitive dye imaging in lightly anesthetized or awake adult mice, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing, including vision, audition and touch. We found similar cortical networks with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality-specific sources, such as primary sensory areas, a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area and a secondary anterior medial sink within the cingulate and secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range monosynaptic connections between cortical regions. Maps of intracortical monosynaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity.
Collapse
Affiliation(s)
- Majid H Mohajerani
- 1] Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada. [2] Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada. [3] [4]
| | | | | | | | | | | | | | | | | | | |
Collapse
|