151
|
Kassai H, Sugaya Y, Noda S, Nakao K, Maeda T, Kano M, Aiba A. Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep 2014; 7:1626-1639. [PMID: 24857653 DOI: 10.1016/j.celrep.2014.04.048] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/18/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) has been implicated in human neurological diseases such as tuberous sclerosis complex (TSC), neurodegeneration, and autism. However, little is known about when and how mTOR is involved in the pathogenesis of these diseases, due to a lack of animal models that directly increase mTOR activity. Here, we generated transgenic mice expressing a gain-of-function mutant of mTOR in the forebrain in a temporally controlled manner. Selective activation of mTORC1 in embryonic stages induced cortical atrophy caused by prominent apoptosis of neuronal progenitors, associated with upregulation of HIF-1α. In striking contrast, activation of the mTORC1 pathway in adulthood resulted in cortical hypertrophy with fatal epileptic seizures, recapitulating human TSC. Activated mTORC1 in the adult cortex also promoted rapid accumulation of cytoplasmic inclusions and activation of microglial cells, indicative of progressive neurodegeneration. Our findings demonstrate that mTORC1 plays different roles in developmental and adult stages and contributes to human neurological diseases.
Collapse
Affiliation(s)
- Hidetoshi Kassai
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shoko Noda
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Tatsuya Maeda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
152
|
Single rapamycin administration induces prolonged downward shift in defended body weight in rats. PLoS One 2014; 9:e93691. [PMID: 24787262 PMCID: PMC4008417 DOI: 10.1371/journal.pone.0093691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/08/2014] [Indexed: 11/19/2022] Open
Abstract
Manipulation of body weight set point may be an effective weight loss and maintenance strategy as the homeostatic mechanism governing energy balance remains intact even in obese conditions and counters the effort to lose weight. However, how the set point is determined is not well understood. We show that a single injection of rapamycin (RAP), an mTOR inhibitor, is sufficient to shift the set point in rats. Intraperitoneal RAP decreased food intake and daily weight gain for several days, but surprisingly, there was also a long-term reduction in body weight which lasted at least 10 weeks without additional RAP injection. These effects were not due to malaise or glucose intolerance. Two RAP administrations with a two-week interval had additive effects on body weight without desensitization and significantly reduced the white adipose tissue weight. When challenged with food deprivation, vehicle and RAP-treated rats responded with rebound hyperphagia, suggesting that RAP was not inhibiting compensatory responses to weight loss. Instead, RAP animals defended a lower body weight achieved after RAP treatment. Decreased food intake and body weight were also seen with intracerebroventricular injection of RAP, indicating that the RAP effect is at least partially mediated by the brain. In summary, we found a novel effect of RAP that maintains lower body weight by shifting the set point long-term. Thus, RAP and related compounds may be unique tools to investigate the mechanisms by which the defended level of body weight is determined; such compounds may also be used to complement weight loss strategy.
Collapse
|
153
|
Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014; 269:152-72. [PMID: 24699227 DOI: 10.1016/j.neuroscience.2014.03.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms, which coordinate the critical stages of brain development to reach a normal structural organization with appropriate networks, are progressively being elucidated. Experimental and clinical studies provide evidence of the occurrence of developmental alterations induced by genetic or environmental factors leading to the formation of aberrant networks associated with learning disabilities. Moreover, evidence is accumulating that suggests that also late-onset neurological disorders, even Alzheimer's disease, might be considered disorders of aberrant neural development with pathological changes that are set up at early stages of development before the appearance of the symptoms. Thus, evaluating proteins and pathways that are important in age-related neurodegeneration in the developing brain together with the characterization of mechanisms important during brain development with relevance to brain aging are of crucial importance. In the present review we focus on (1) aspects of neurogenesis with relevance to aging; (2) neurodegenerative disease (NDD)-associated proteins/pathways in the developing brain; and (3) further pathways of the developing or neurodegenerating brains that show commonalities. Elucidation of complex pathogenetic routes characterizing the earliest stage of the detrimental processes that result in pathological aging represents an essential first step toward a therapeutic intervention which is able to reverse these pathological processes and prevent the onset of the disease. Based on the shared features between pathways, we conclude that prevention of NDDs of the elderly might begin during the fetal and childhood life by providing the mothers and their children a healthy environment for the fetal and childhood development.
Collapse
Affiliation(s)
- G G Kovacs
- Institute of Neurology, Medical University of Vienna, Austria.
| | - H Adle-Biassette
- Inserm U1141, F-75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, F-75019 Paris, France; Department of Pathology, Lariboisière Hospital, APHP, Paris, France
| | - I Milenkovic
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - J van Scheppingen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
154
|
Garcia-Junco-Clemente P, Golshani P. PTEN: A master regulator of neuronal structure, function, and plasticity. Commun Integr Biol 2014; 7:e28358. [PMID: 24778766 PMCID: PMC3995733 DOI: 10.4161/cib.28358] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
PTEN (phosphatase and tensin homolog on chromosome ten) is a dual protein/lipid phosphatase that dephosphorylates PIP3, thereby inhibiting the AKT/mTOR pathway. This inhibition ultimately decreases protein translation, cell proliferation and cell growth. In the central nervous system, inhibition of PTEN leads to increased stem cell proliferation, somatic, dendritic and axonal growth, accelerated spine maturation, diminished synaptic plasticity, and altered intrinsic excitability. In agreement with these findings, patients carrying single-copy inactivating mutations of PTEN suffer from autism, macrocephaly, mental retardation, and epilepsy.(1) (-) (9) Understanding the mechanisms through which PTEN modulates the structure, function, and plasticity of cortical networks is a major focus of study. Preventing and reversing the changes induced by loss of Pten in model animals will pave the way for treatments in humans.
Collapse
Affiliation(s)
| | - Peyman Golshani
- Department of Neurology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA ; West Los Angeles VA Medical Center; Los Angeles, CA USA
| |
Collapse
|
155
|
Sousa-Ferreira L, de Almeida LP, Cavadas C. Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab 2014; 25:80-8. [PMID: 24231724 DOI: 10.1016/j.tem.2013.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 01/10/2023]
Abstract
The recently described generation of new neurons in the adult hypothalamus, the center for energy regulation, suggests that hypothalamic neurogenesis is a crucial part of the mechanisms that regulate food intake. Accordingly, neurogenesis in both the adult and embryonic hypothalamus is affected by nutritional cues and metabolic disorders such as obesity, with consequent effects on energy-balance. This review critically discusses recent findings on the contribution of adult hypothalamic neurogenesis to feeding regulation, the impact of energy-balance disorders on adult hypothalamic neurogenesis, and the influence of embryonic hypothalamic neurogenesis upon feeding regulation in the adult. Understanding how hypothalamic neurogenesis contributes to food intake control will change the paradigm on how we perceive energy-balance regulation.
Collapse
Affiliation(s)
- Lígia Sousa-Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
156
|
Downregulation of RelA (p65) by Rapamycin Inhibits Murine Adipocyte Differentiation and Reduces Fat Mass of C57BL/6J Mice despite High Fat Diet. ISRN OBESITY 2014; 2014:540582. [PMID: 24587943 PMCID: PMC3920817 DOI: 10.1155/2014/540582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022]
Abstract
Rapamycin (RAPA) is a clinical immunosuppressive agent first reported in the literature in 1975 after its discovery in a soil sample from the island of Rapa Nui. Aside from the well-documented effects of RAPA on cell division and immunologic response, the literature reveals it to have negative effects on adipocyte and osteocyte differentiation as well. Understanding of the molecular effects of RAPA on cell differentiation is fragmentary in regard to these cell lineages. In this paper, we examined a potential mechanism for RAPA's effects on adipocyte differentiation in vitro and in vivo. The data point to a unique role of Rel A (p65)—a component of the NF-κB system—in mediating this event. In murine adipose derived stem cell cultures (muADSCs) from C57BL/6J mice, RAPA was found to selectively downregulate RelA/p65, mammalian target of rapamycin (mTOR), and do so in a dose-dependent manner. This implies a novel role for RelA in adipocyte biology. Intracellular lipid accumulation—as subjectively observed—was also decreased in muADSCs treated with RAPA. Mice treated with RAPA had reduced overall body weight and reduced size of both intraabdominal and subcutaneous fat pads. When treated with RAPA, mice fed a high fat diet did not develop obesity and were not different from their regular diet controls in terms of body weight. These results suggested that RAPA inhibits adipogenesis and lipogenesis of muADSCs resulting in a prevention of obesity in C57BL/6J mice. This inhibition is strong enough to negate the effects of a high fat diet and seems to act by downregulating the RelA/p65 mTOR signaling pathway—a key component of the NF-κB family.
Collapse
|
157
|
Genetic deletion of Rheb1 in the brain reduces food intake and causes hypoglycemia with altered peripheral metabolism. Int J Mol Sci 2014; 15:1499-510. [PMID: 24451134 PMCID: PMC3907882 DOI: 10.3390/ijms15011499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/12/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023] Open
Abstract
Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral metabolism need to be better understood for developing pharmacological interventions to manage eating behavior and obesity. Mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a master regulator of cellular metabolism in different cell types. Pharmacological manipulations of mTOR complex 1 (mTORC1) activity in hypothalamic neurons alter food intake and body weight. Our previous study identified Rheb1 (Ras homolog enriched in brain 1) as an essential activator of mTORC1 activity in the brain. Here we examine whether central Rheb1 regulates food intake and peripheral metabolism through mTORC1 signaling. We find that genetic deletion of Rheb1 in the brain causes a reduction in mTORC1 activity and impairs normal food intake. As a result, Rheb1 knockout mice exhibit hypoglycemia and increased lipid mobilization in adipose tissue and ketogenesis in the liver. Our work highlights the importance of central Rheb1 signaling in euglycemia and energy homeostasis in animals.
Collapse
|
158
|
Jiang Y, Zsombok A. Regulation of neurons in the dorsal motor nucleus of the vagus by SIRT1. Front Neurosci 2014; 7:270. [PMID: 24454277 PMCID: PMC3887315 DOI: 10.3389/fnins.2013.00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/20/2013] [Indexed: 12/29/2022] Open
Abstract
Neurons in the dorsal motor nucleus of the vagus (DMV) play a critical role in the regulation of autonomic functions. Previous studies indicated that central activation of sirtuin 1 (SIRT1) has beneficial effects on homeostasis, most likely via modulation of the autonomic output. Sirtuins are NAD+-dependent deacetylases and have been associated with longevity. SIRT1 is one of the best-characterized sirtuins expressed in mammals, and may be involved in the regulation of metabolism. Resveratrol, a SIRT1 activator reduced hyperglycemia likely through activation of vagal output; however, the cellular mechanisms of action have not been determined. In this study, whole-cell patch-clamp electrophysiology on acute brainstem slices was used to test the hypothesis that activation of SIRT1 with resveratrol enhances neurotransmission in DMV neurons. Application of resveratrol increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC). This effect was KATP channel-dependent and was prevented with pre-application of SIRT1 inhibitor, EX527. Resveratrol also increased miniature EPSC (mEPSC) frequency without change in amplitude. Furthermore, our data demonstrated that resveratrol regulates excitatory neurotransmission in a PI3 kinase-dependent manner, since wortmannin, a PI3K inhibitor prevented the increase of mEPSC frequency caused by resveratrol. In conclusion, our data demonstrate that resveratrol via SIRT1 increases excitatory neurotransmission to DMV neurons. These observations suggest that activation of SIRT1 may regulate the function of subdiaphragmatic organs through controlling the activity of parasympathetic DMV neurons.
Collapse
Affiliation(s)
- Yanyan Jiang
- Neuroscience Program, School of Science and Engineering, Tulane University New Orleans, LA, USA ; Department of Physiology, School of Medicine, Tulane University New Orleans, LA, USA
| | - Andrea Zsombok
- Neuroscience Program, School of Science and Engineering, Tulane University New Orleans, LA, USA ; Department of Physiology, School of Medicine, Tulane University New Orleans, LA, USA
| |
Collapse
|
159
|
Abstract
Autophagy is a catabolic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to lysosomes, where the sequestered material is degraded and recycled. Autophagy is important for maintenance of intracellular energy homeostasis and the quality control of organelles such as the endoplasmic reticulum (ER) and mitochondria, which suggests that dysregulated autophagy might play a role in the pathogenesis of metabolic disorders and diabetes. In an attempt to elucidate the role of autophagy in metabolic disorders, diverse in vivo and in vitro models have been employed. Site-specific autophagy knockout models that are autophagy-deficient specifically in pancreatic β-cells, skeletal muscle, adipose tissues or liver have been produced. These models have generated valuable information regarding the role of autophagy in body metabolism. The role of autophagy in the hypothalamus, which controls whole body energy balance, appetite and energy expenditure, has also been investigated. Thus, mice with autophagy deficiency in the hypothalamus have shown diverse phenotypes (lean vs. obese) depending on the site of autophagy deficiency or the method of autophagy abrogation.
Collapse
Affiliation(s)
- Min-Seon Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | | | |
Collapse
|
160
|
Abstract
Body weight is determined by a balance between food intake and energy expenditure. Multiple neural circuits in the brain have evolved to process information about food, food-related cues and food consumption to control feeding behavior. Numerous gastrointestinal endocrine cells produce and secrete satiety hormones in response to food consumption and digestion. These hormones suppress hunger and promote satiation and satiety mainly through hindbrain circuits, thus governing meal-by-meal eating behavior. In contrast, the hypothalamus integrates adiposity signals to regulate long-term energy balance and body weight. Distinct hypothalamic areas and various orexigenic and anorexigenic neurons have been identified to homeostatically regulate food intake. The hypothalamic circuits regulate food intake in part by modulating the sensitivity of the hindbrain to short-term satiety hormones. The hedonic and incentive properties of foods and food-related cues are processed by the corticolimbic reward circuits. The mesolimbic dopamine system encodes subjective "liking" and "wanting" of palatable foods, which is subjected to modulation by the hindbrain and the hypothalamic homeostatic circuits and by satiety and adiposity hormones. Satiety and adiposity hormones also promote energy expenditure by stimulating brown adipose tissue (BAT) activity. They stimulate BAT thermogenesis mainly by increasing the sympathetic outflow to BAT. Many defects in satiety and/or adiposity hormone signaling and in the hindbrain and the hypothalamic circuits have been described and are believed to contribute to the pathogenesis of energy imbalance and obesity.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109-0622, USA,
| |
Collapse
|
161
|
Martín-Cano FE, Camello-Almaraz C, Hernandez D, Pozo MJ, Camello PJ. mTOR pathway and Ca²⁺ stores mobilization in aged smooth muscle cells. Aging (Albany NY) 2013; 5:339-46. [PMID: 23661091 PMCID: PMC3701109 DOI: 10.18632/aging.100555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aging is considered to be driven by the so called senescence pathways, especially the mTOR route, although there is almost no information on its activity in aged tissues. Aging also induces Ca2+ signal alterations, but information regarding the mechanisms for these changes is almost inexistent. We investigated the possible involvement of the mTOR pathway in the age-dependent changes on Ca2+ stores mobilization in colonic smooth muscle cells of young (4 month old) and aged (24 month old) guinea pigs. mTORC1 activity was enhanced in aged smooth muscle, as revealed by phosphorylation of mTOR and its direct substrates S6K1 and 4E-BP1. Mobilization of intracellular Ca2+ stores through IP3R or RyR channels was impaired in aged cells, and it was facilitated by mTOR and by FKBP12, as indicated by the inhibitory effects of KU0063794 (a direct mTOR inhibitor), rapamycin (a FKBP12-mediated mTOR inhibitor) and FK506 (an FKBP12 binding immunosuppressant). Aging suppressed the facilitation of the Ca2+ mobilization by FKBP12 but not by mTOR, without changing the total expression of FKBP12 protein. In conclusion, or study shows that in smooth muscle aging enhances the constitutive activity of mTORC1 pathway and impairs Ca2+ stores mobilization by suppression of the FKBP12-induced facilitation of Ca2+ release.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Department of Physiology, Faculty of Nursing and Faculty of Veterinary Sciences, University of Extremadura, 10003 Cáceres, Spain
| | | | | | | | | |
Collapse
|
162
|
Abstract
A recent ground-breaking publication described hypothalamus-driven programmatic aging. As a Russian proverb goes "everything new is well-forgotten old". In 1958, Dilman proposed that aging and its related diseases are programmed by the hypothalamus. This theory, supported by beautiful experiments, remained unnoticed just to be re-discovered recently. Yet, it does not explain all manifestations of aging. And would organism age without hypothalamus? Do sensing pathways such as MTOR (mechanistic Target of Rapamycin) and IKK-beta play a role of a "molecular hypothalamus" in every cell? Are hypothalamus-driven alterations simply a part of quasi-programmed aging manifested by hyperfunction and secondary signal-resistance? Here are some answers.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
163
|
Chen PC, Kryukova YN, Shyng SL. Leptin regulates KATP channel trafficking in pancreatic β-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J Biol Chem 2013; 288:34098-34109. [PMID: 24100028 DOI: 10.1074/jbc.m113.516880] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pancreatic β-cells secrete insulin in response to metabolic and hormonal signals to maintain glucose homeostasis. Insulin secretion is under the control of ATP-sensitive potassium (KATP) channels that play key roles in setting β-cell membrane potential. Leptin, a hormone secreted by adipocytes, inhibits insulin secretion by increasing KATP channel conductance in β-cells. We investigated the mechanism by which leptin increases KATP channel conductance. We show that leptin causes a transient increase in surface expression of KATP channels without affecting channel gating properties. This increase results primarily from increased channel trafficking to the plasma membrane rather than reduced endocytosis of surface channels. The effect of leptin on KATP channels is dependent on the protein kinases AMP-activated protein kinase (AMPK) and PKA. Activation of AMPK or PKA mimics and inhibition of AMPK or PKA abrogates the effect of leptin. Leptin activates AMPK directly by increasing AMPK phosphorylation at threonine 172. Activation of PKA leads to increased channel surface expression even in the presence of AMPK inhibitors, suggesting AMPK lies upstream of PKA in the leptin signaling pathway. Leptin signaling also leads to F-actin depolymerization. Stabilization of F-actin pharmacologically occludes, whereas destabilization of F-actin simulates, the effect of leptin on KATP channel trafficking, indicating that leptin-induced actin reorganization underlies enhanced channel trafficking to the plasma membrane. Our study uncovers the signaling and cellular mechanism by which leptin regulates KATP channel trafficking to modulate β-cell function and insulin secretion.
Collapse
Affiliation(s)
- Pei-Chun Chen
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Yelena N Kryukova
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
164
|
Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 2013; 78:510-22. [PMID: 23664616 DOI: 10.1016/j.neuron.2013.03.017] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Neural circuits are regulated by activity-dependent feedback systems that tightly control network excitability and which are thought to be crucial for proper brain development. Defects in the ability to establish and maintain network homeostasis may be central to the pathogenesis of neurodevelopmental disorders. Here, we examine the function of the tuberous sclerosis complex (TSC)-mTOR signaling pathway, a common target of mutations associated with epilepsy and autism spectrum disorder, in regulating activity-dependent processes in the mouse hippocampus. We find that the TSC-mTOR pathway is a central component of a positive feedback loop that promotes network activity by repressing inhibitory synapses onto excitatory neurons. In Tsc1 KO neurons, weakened inhibition caused by deregulated mTOR alters the balance of excitatory and inhibitory synaptic transmission, leading to hippocampal hyperexcitability. These findings identify the TSC-mTOR pathway as a regulator of neural network activity and have implications for the neurological dysfunction in disorders exhibiting deregulated mTOR signaling.
Collapse
Affiliation(s)
- Helen S Bateup
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
165
|
Blagosklonny MV. MTOR-driven quasi-programmed aging as a disposable soma theory: blind watchmaker vs. intelligent designer. Cell Cycle 2013; 12:1842-7. [PMID: 23708516 PMCID: PMC3735698 DOI: 10.4161/cc.25062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
If life were created by intelligent design, we would indeed age from accumulation of molecular damage. Repair is costly and limited by energetic resources, and we would allocate resources rationally. But, albeit elegant, this design is fictional. Instead, nature blindly selects for short-term benefits of robust developmental growth. "Quasi-programmed" by the blind watchmaker, aging is a wasteful and aimless continuation of developmental growth, driven by nutrient-sensing, growth-promoting signaling pathways such as MTOR (mechanistic target of rapamycin). A continuous post-developmental activity of such gerogenic pathways leads to hyperfunctions (aging), loss of homeostasis, age-related diseases, non-random organ damage and death. This model is consistent with a view that (1) soma is disposable, (2) aging and menopause are not programmed and (3) accumulation of random molecular damage is not a cause of aging as we know it.
Collapse
|
166
|
Abstract
Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
167
|
Yoon MS, Zhang C, Sun Y, Schoenherr CJ, Chen J. Mechanistic target of rapamycin controls homeostasis of adipogenesis. J Lipid Res 2013; 54:2166-2173. [PMID: 23740969 DOI: 10.1194/jlr.m037705] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Signaling mediated by the mechanistic target of rapamycin (mTOR) is believed to play a critical and positive role in adipogenesis, based on pharmacological evidence and genetic manipulation of mTOR regulators and targets. However, there is no direct genetic evidence for an autonomous role of mTOR itself in preadipocyte differentiation. To seek such evidence, we employed a conditional knockdown approach to deplete mTOR in preadipocytes. Surprisingly, while knockdown of S6K1, a target of mTOR, impairs 3T3-L1 preadipocyte differentiation, reduction of mTOR levels leads to increased differentiation. This enhanced adipogenesis requires the remaining mTOR activity, as mTOR inhibitors abolish differentiation in the mTOR knockdown cells. We also found that mTOR knockdown elevates the levels of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). Furthermore, partial reduction of mTOR levels alleviates inhibition of Akt by mTORC1 via IRS1, while at the same time maintaining its positive input through mTORC1 into the adipogenic program. The greater sensitivity of the IRS1-Akt pathway to mTOR levels provides a mechanism that explains the net outcome of enhanced adipogenesis through PPARγ upon mTOR knockdown. Our observations reveal an unexpected role of mTOR in suppressing adipogenesis and suggest that mTOR governs the homeostasis of the adipogenic process by modulating multiple signaling pathways.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chongben Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yuting Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Christopher J Schoenherr
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
168
|
Deepa SS, Walsh ME, Hamilton RT, Pulliam D, Shi Y, Hill S, Li Y, Van Remmen H. Rapamycin Modulates Markers of Mitochondrial Biogenesis and Fatty Acid Oxidation in the Adipose Tissue of db/db Mice. JOURNAL OF BIOCHEMICAL AND PHARMACOLOGICAL RESEARCH 2013; 1:114-123. [PMID: 24010023 PMCID: PMC3760510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Excess nutrient uptake leads to obesity, insulin resistance, and type 2 diabetes. Mammalian target of the rapamycin (mTOR), a major component of the nutrient-sensing pathway also regulates mitochondrial oxidative function. Rapamycin, a pharmacological inhibitor of mTOR, causes glucose intolerance and inhibits mitochondrial oxidative function. While a number of studies have focused on the effect of rapamycin on control wild-type mice, ours is the first to study the effect of rapamycin on mitochondrial gene expression and insulin sensitivity in the db/db mouse, a model of diabetic dyslipidemia. Female db/+ and db/db mice were fed ad libitum a rapamycin-containing diet or a control diet for 6 months, starting at two months of age. Body weight, fat mass, lean mass and food intake were measured monthly. Effect of rapamycin or control diet on markers of adipogenesis, fatty acid oxidation and mitochondrial biogenesis in the gonadal white adipose tissue (WAT) as well as different serum parameters were assessed. Whole body insulin sensitivity was measured by insulin tolerance test. Rapamycin feeding to db/db mice decreased body weight (58%) and fat mass (33%), elevated markers of fatty acid oxidation and mitochondrial biogenesis in WAT, reduced circulating non-esterified free fatty acids (NEFA), elevated circulating adiponectin and improved insulin sensitivity, compared to control diet fed db/db mice. These data demonstrate that rapamycin exhibits an anti-obesity effect and improves whole body insulin sensitivity in db/db mice and suggest an unexpected effect of simultaneous inhibition mTOR and leptin signaling in mice.
Collapse
Affiliation(s)
- Sathyaseelan S. Deepa
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Michael E. Walsh
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Ryan T. Hamilton
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Daniel Pulliam
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yun Shi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Shauna Hill
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Yan Li
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| |
Collapse
|
169
|
Sohn JW. Ion channels in the central regulation of energy and glucose homeostasis. Front Neurosci 2013; 7:85. [PMID: 23734095 PMCID: PMC3661948 DOI: 10.3389/fnins.2013.00085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 05/08/2013] [Indexed: 11/23/2022] Open
Abstract
Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
170
|
Harlan SM, Guo DF, Morgan DA, Fernandes-Santos C, Rahmouni K. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab 2013; 17:599-606. [PMID: 23541372 PMCID: PMC3657313 DOI: 10.1016/j.cmet.2013.02.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/15/2013] [Accepted: 02/25/2013] [Indexed: 02/06/2023]
Abstract
The fundamental importance of the hypothalamus in the regulation of autonomic and cardiovascular functions is well established. However, the molecular processes involved are not well understood. Here, we show that the mammalian (or mechanistic) target of rapamycin (mTOR) signaling in the hypothalamus is tied to the activity of the sympathetic nervous system and to cardiovascular function. Modulation of mTOR complex 1 (mTORC1) signaling caused dramatic changes in sympathetic traffic, blood flow, and arterial pressure. Our data also demonstrate the importance of hypothalamic mTORC1 signaling in transducing the sympathetic and cardiovascular actions of leptin. Moreover, we show that the PI3K pathway links the leptin receptor to mTORC1 signaling and that changes in its activity impact sympathetic traffic and arterial pressure. These findings establish mTORC1 activity in the hypothalamus as a key determinant of sympathetic and cardiovascular regulation and suggest that dysregulated hypothalamic mTORC1 activity may influence the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Shannon M. Harlan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Deng-Fu Guo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Donald A. Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
171
|
mTOR is a key modulator of ageing and age-related disease. Nature 2013; 493:338-45. [PMID: 23325216 DOI: 10.1038/nature11861] [Citation(s) in RCA: 1244] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022]
Abstract
Many experts in the biology of ageing believe that pharmacological interventions to slow ageing are a matter of 'when' rather than 'if'. A leading target for such interventions is the nutrient response pathway defined by the mechanistic target of rapamycin (mTOR). Inhibition of this pathway extends lifespan in model organisms and confers protection against a growing list of age-related pathologies. Characterized inhibitors of this pathway are already clinically approved, and others are under development. Although adverse side effects currently preclude use in otherwise healthy individuals, drugs that target the mTOR pathway could one day become widely used to slow ageing and reduce age-related pathologies in humans.
Collapse
|
172
|
Sabino V, Narayan AR, Zeric T, Steardo L, Cottone P. mTOR activation is required for the anti-alcohol effect of ketamine, but not memantine, in alcohol-preferring rats. Behav Brain Res 2013; 247:9-16. [PMID: 23466691 DOI: 10.1016/j.bbr.2013.02.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 02/06/2023]
Abstract
Glutamate NMDA receptors mediate many molecular and behavioral effects of alcohol, and they play a key role in the development of excessive drinking. Uncompetitive NMDA receptor antagonists may, therefore, have therapeutic potential for alcoholism. The first aim was to compare the effects of the NMDA antagonists memantine and ketamine on ethanol and saccharin drinking in alcohol-preferring rats. The second aim was to determine whether the effects of the two NMDA receptor antagonists were mediated by the mammalian target of rapamycin (mTOR). TSRI Sardinian alcohol-preferring rats were allowed to self-administer either 10% w/v ethanol or 0.08% w/v saccharin, and water. Operant responding and motor activity were assessed following administration of either memantine (0-10mg/kg) or ketamine (0-20mg/kg). Finally, ethanol self-administration was assessed in rats administered with either memantine or ketamine but pretreated with the mTOR inhibitor rapamycin (2.5mg/kg). The uncompetitive NMDA receptor antagonists memantine and ketamine dose-dependently reduced ethanol drinking in alcohol-preferring rats; while memantine had a preferential effect on alcohol over saccharin, ketamine reduced responding for both solutions. Neither antagonist induced malaise, as shown by the lack of effect on water intake and motor activity. The mTOR inhibitor rapamycin blocked the effects of ketamine, but not those of memantine. Memantine and ketamine both reduce alcohol drinking in alcohol-preferring rats, but only memantine is selective for alcohol. The effects of ketamine, but not memantine, are mediated by mTOR. The results support the therapeutic potential of uncompetitive NMDA receptor antagonists, especially memantine, in alcohol addiction.
Collapse
Affiliation(s)
- Valentina Sabino
- Laboratory of Addictive Disorders (LAD), Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
173
|
Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis 2013; 62:339-51. [PMID: 23357108 DOI: 10.1053/j.ajkd.2012.11.051] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022]
Abstract
Premature aging is a process associated with a progressive accumulation of deleterious changes over time, an impairment of physiologic functions, and an increase in the risk of disease and death. Regardless of genetic background, aging can be accelerated by the lifestyle choices and environmental conditions to which our genes are exposed. Chronic kidney disease is a common condition that promotes cellular senescence and premature aging through toxic alterations in the internal milieu. This occurs through several mechanisms, including DNA and mitochondria damage, increased reactive oxygen species generation, persistent inflammation, stem cell exhaustion, phosphate toxicity, decreased klotho expression, and telomere attrition. Because recent evidence suggests that both increased local signaling of growth factors (through the nutrient-sensing mammalian target of rapamycin) and decreased klotho expression are important modulators of aging, interventions that target these should be tested in this prematurely aged population.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
174
|
Blagosklonny MV. Rapalogs in cancer prevention: anti-aging or anticancer? Cancer Biol Ther 2012; 13:1349-54. [PMID: 23151465 DOI: 10.4161/cbt.22859] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Common cancer is an age-related disease. Slow aging is associated with reduced and delayed carcinogenesis. Calorie restriction (CR), the most studied anti-aging intervention, prevents cancer by slowing down the aging process. Evidence is emerging that CR decelerates aging by deactivating MTOR (Target of Rapamycin). Rapamycin and other rapalogs suppress cellular senescence, slow down aging and postpone age-related diseases including cancer. At the same time, rapalogs are approved for certain cancer treatments. Can cancer prevention be explained by direct targeting of cancer cells? Or does rapamycin prevent cancer indirectly through slowing down the aging process? Increasing evidence points to the latter scenario.
Collapse
|
175
|
Abstract
Hypothalamic POMC neurons contribute to the regulation of energy homeostasis and glucose metabolism. In this issue of Neuron, Yang et al. (2012) show that the mTOR pathway has a pivotal role in deterioration of POMC neurons during age-dependent obesity.
Collapse
Affiliation(s)
- Jae Geun Kim
- Program in Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|