151
|
Chu Z, Zhang X, Li Q, Hu G, Lian CG, Geng S. CDC20 contributes to the development of human cutaneous squamous cell carcinoma through the Wnt/β‑catenin signaling pathway. Int J Oncol 2019; 54:1534-1544. [PMID: 30816486 PMCID: PMC6438437 DOI: 10.3892/ijo.2019.4727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Cell division cycle 20 (CDC20) is a regulatory molecule and serves critical roles at multiple points of the cell cycle. Recent evidence indicates that CDC20 may serve an oncogenic role in a number of human cancer types. However, the role of CDC20 in primary cutaneous squamous cell carcinoma (cSCC) has not been studied, to the best of our knowledge. The aim of the present study was to investigate whether and how CDC20 is involved in the tumorigenesis of cSCC. The results revealed that CDC20 expression was significantly increased in cSCC tissues and cell lines, and its expression was associated with pathological differentiation. Downregulation of CDC20 inhibited cell proliferation, induced cell cycle arrest, promoted apoptosis and reduced migratory ability through inhibition of the Wnt/β-catenin signaling pathway. Furthermore, all-trans-retinoic acid treatment significantly downregulated CDC20 expression in cSCC. The present results revealed that CDC20 may serve a crucial role in human cSCC, and suggested that CDC20 may be a novel biomarker for the prevention, diagnosis and treatment of cSCC.
Collapse
Affiliation(s)
- Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qingyan Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Christine Guo Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
152
|
Long C, Chen J, Zhou H, Jiang T, Fang X, Hou D, Liu P, Duan H. Diosgenin exerts its tumor suppressive function via inhibition of Cdc20 in osteosarcoma cells. Cell Cycle 2019; 18:346-358. [PMID: 30640578 DOI: 10.1080/15384101.2019.1568748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is one of the aggressive malignancies for young adults. Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in OS, suggesting that inhibition of Cdc20 could be a novel strategy for the treatment of OS. Since Cdc20 inhibitors have side effects, it is important to discover the new CDC20 inhibitors with non-toxic nature. In the present study, we determine whether natural agent diosgenin is an inhibitor of Cdc20 in OS cells. We performed MTT, FACS, Wound healing assay, Transwell, Western blotting, transfection assays in our study. We found diosgenin inhibited cell growth and induced apoptosis. Moreover, diosgenin exposure led to inhibition of cell migration and invasion. Notably, diosgenin inhibited the expression of Cdc20 in OS cells. Overexpression of Cdc20 abrogated the inhibition of cell growth and invasion induced by diosgenin. Our data reveal that inhibition of Cdc20 by diosgenin could be helpful for the treatment of patients with OS.
Collapse
Affiliation(s)
- Cheng Long
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Juan Chen
- b Department of Ultrasound, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Hua Zhou
- c Department of Orthopedics, Peking University Third Hospital , Beijing , China
| | - Tao Jiang
- d Department of Orthopedics, Sichuan Modern Hospital , Chengdu, Sichuan Province , China
| | - Xiang Fang
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| | - Dong Hou
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Ping Liu
- e West China Medical College, Sichuan University, Chengdu , Sichuan Province , China
| | - Hong Duan
- a Department of Orthopedics, West China Hospital, Sichuan University , Chengdu, Sichuan Province , China
| |
Collapse
|
153
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
154
|
Rahman MF, Rahman MR, Islam T, Zaman T, Shuvo MAH, Hossain MT, Islam MR, Karim MR, Moni MA. A bioinformatics approach to decode core genes and molecular pathways shared by breast cancer and endometrial cancer. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
155
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
156
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
157
|
Parmar MB, K C RB, Löbenberg R, Uludağ H. Additive Polyplexes to Undertake siRNA Therapy against CDC20 and Survivin in Breast Cancer Cells. Biomacromolecules 2018; 19:4193-4206. [PMID: 30222931 DOI: 10.1021/acs.biomac.8b00918] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Small interfering RNA (siRNA) delivered to silence overexpressed genes associated with malignancies is a promising targeted therapy to decrease the uncontrolled growth of malignant cells. To create potent delivery agents for siRNA, here we formulated additive polyplexes of siRNA using linoleic acid-substituted polyethylenimine and additive polymers (hyaluronic acid, poly(acrylic acid), dextran sulfate, and methyl cellulose) and characterized their physicochemical properties and effectiveness. Incorporating polyanionic polymer along with anionic siRNA in polyplexes was found to decrease the ζ-potential of polyplexes but enhance the cellular delivery of siRNA. The CDC20 and survivin siRNAs delivered by additive polyplexes showed promising efficacy in breast cancer MDA-MB-231, SUM149PT, MDA-MB-436, and MCF7 cells. However, the side effects of the siRNA delivery were observed in nonmalignant cells, and a careful formulation of siRNA/polymer polyplexes was needed to minimize side effects on normal cells. Because the efficacy of siRNA delivery by additive polyplexes was independent of breast cancer phenotypes used in this study, these polyplexes could be further developed to treat a wide range of breast cancers.
Collapse
|
158
|
Zhuang L, Yang Z, Meng Z. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in Tumor Tissues Predicted Worse Overall Survival and Disease-Free Survival in Hepatocellular Carcinoma Patients. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7897346. [PMID: 30363964 PMCID: PMC6186344 DOI: 10.1155/2018/7897346] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To evaluate the association between upregulated differentially expressed genes (DEGs) and the outcomes of patients with hepatocellular carcinoma (HCC). METHODS Using Gene Expression Omnibus (GEO) datasets including GSE45436, GSE55092, GSE60502, GSE84402, and GSE17548, we detected upregulated DEGs in tumors. KEGG, GO, and Reactome enrichment analysis of the DEGs was conducted to clarify their function. The impact of the upregulated DEGs on patients' survival was analyzed based on TCGA profile. RESULTS 161 shared upregulated DEGs were identified among GSE45436, GSE55092, GSE60502, and GSE84402 profiles. Cell cycle was the shared pathway/biological process in the gene sets investigation among databases of KEGG, GO, and Reactome. After being validated in GSE17548, 13 genes including BUB1B, CCNA2, CCNB1, CCNE2, CDC20, CDC6, CDC7, CDK1, CDK4, CDKN2A, CHEK1, MAD2L1, and MCM3 in cell cycle pathway were shared in the three databases for enrichment. The expression of BUB1B, CCNB1, CDC7, CDC20, and MCM3 was upregulated in HCC tissues when compared with adjacent normal tissues in 6.67%, 7.5%, 8.06%, 5.56%, and 9.72% of HCC patients, respectively. Overexpression of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in HCC tissues accounted for poorer overall survival (OS) and disease-free survival (DFS) in HCC patients (all log rank P < 0.05). BUB1B, CCNB1, CDC7, CDC20, and MCM3 were all overexpressed in HCC patients with neoplasm histologic grade G3-4 compared to those with G1-2 (all P < 0.05). BUB1B, CCNB1, and CDC20 were significantly upregulated in HCC patients with vascular invasion (all P < 0.05). Additionally, levels of BUB1B, CCNB1, CDC7, and CDC20 were significantly higher in HCC patients deceased, recurred, or progressed (all P < 0.05). CONCLUSION Correlated with advanced histologic grade and/or vascular invasion, upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in HCC tissues predicted worse OS and DFS in HCC patients. These genes could be novel therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
159
|
Harkness TAA. Activating the Anaphase Promoting Complex to Enhance Genomic Stability and Prolong Lifespan. Int J Mol Sci 2018; 19:ijms19071888. [PMID: 29954095 PMCID: PMC6073722 DOI: 10.3390/ijms19071888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
In aging cells, genomic instability is now recognized as a hallmark event. Throughout life, cells encounter multiple endogenous and exogenous DNA damaging events that are mostly repaired, but inevitably DNA mutations, chromosome rearrangements, and epigenetic deregulation begins to mount. Now that people are living longer, more and more late life time is spent suffering from age-related disease, in which genomic instability plays a critical role. However, several major questions remain heavily debated, such as the following: When does aging start? How long can we live? In order to minimize the impact of genomic instability on longevity, it is important to understand when aging starts, and to ensure repair mechanisms remain optimal from the very start to the very end. In this review, the interplay between the stress and nutrient response networks, and the regulation of homeostasis and genomic stability, is discussed. Mechanisms that link these two networks are predicted to be key lifespan determinants. The Anaphase Promoting Complex (APC), a large evolutionarily conserved ubiquitin ligase, can potentially serve this need. Recent work demonstrates that the APC maintains genomic stability, mounts a stress response, and increases longevity in yeast. Furthermore, inhibition of APC activity by glucose and nutrient response factors indicates a tight link between the APC and the stress/nutrient response networks.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
160
|
Wen P, Chidanguro T, Shi Z, Gu H, Wang N, Wang T, Li Y, Gao J. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Mol Med Rep 2018; 18:1538-1550. [PMID: 29845250 PMCID: PMC6072191 DOI: 10.3892/mmr.2018.9095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Small cell lung cancer (SCLC) is one of the highly malignant tumors and a serious threat to human health. The aim of the present study was to explore the underlying molecular mechanisms of SCLC. mRNA microarray datasets GSE6044 and GSE11969 were downloaded from Gene Expression Omnibus database, and the differentially expressed genes (DEGs) between normal lung and SCLC samples were screened using GEO2R tool. Functional and pathway enrichment analyses were performed for common DEGs using the DAVID database, and the protein-protein interaction (PPI) network of common DEGs was constructed by the STRING database and visualized with Cytoscape software. In addition, the hub genes in the network and module analysis of the PPI network were performed using CentiScaPe and plugin Molecular Complex Detection. Finally, the mRNA expression levels of hub genes were validated in the Oncomine database. A total of 150 common DEGs with absolute fold-change >0.5, including 66 significantly downregulated DEGs and 84 upregulated DEGs were obtained. The Gene Ontology term enrichment analysis suggested that common upregulated DEGs were primarily enriched in biological processes (BPs), including ‘cell cycle’, ‘cell cycle phase’, ‘M phase’, ‘cell cycle process’ and ‘DNA metabolic process’. The common downregulated genes were significantly enriched in BPs, including ‘response to wounding’, ‘positive regulation of immune system process’, ‘immune response’, ‘acute inflammatory response’ and ‘inflammatory response’. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that the common downregulated DEGs were primarily enriched in the ‘complement and coagulation cascades’ signaling pathway; the common upregulated DEGs were mainly enriched in ‘cell cycle’, ‘DNA replication’, ‘oocyte meiosis’ and the ‘mismatch repair’ signaling pathways. From the PPI network, the top 10 hub genes in SCLC were selected, including topoisomerase IIα, proliferating cell nuclear antigen, replication factor C subunit 4, checkpoint kinase 1, thymidylate synthase, minichromosome maintenance protein (MCM) 2, cell division cycle (CDC) 20, cyclin dependent kinase inhibitor 3, MCM3 and CDC6, the mRNA levels of which are upregulated in Oncomine SCLC datasets with the exception of MCM2. Furthermore, the genes in the significant module were enriched in ‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis’ signaling pathways. Therefore, the present study can shed new light on the understanding of molecular mechanisms of SCLC and may provide molecular targets and diagnostic biomarkers for the treatment and early diagnosis of SCLC.
Collapse
Affiliation(s)
- Pushuai Wen
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tungamirai Chidanguro
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhuo Shi
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Huanyu Gu
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Nan Wang
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Tongmei Wang
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuhong Li
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jing Gao
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
161
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
162
|
Wu F, Lin Y, Cui P, Li H, Zhang L, Sun Z, Huang S, Li S, Huang S, Zhao Q, Liu Q. Cdc20/p55 mediates the resistance to docetaxel in castration-resistant prostate cancer in a Bim-dependent manner. Cancer Chemother Pharmacol 2018; 81:999-1006. [DOI: 10.1007/s00280-018-3578-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
|
163
|
Guo W, Zhong K, Wei H, Nie C, Yuan Z. Long non-coding RNA SPRY4-IT1 promotes cell proliferation and invasion by regulation of Cdc20 in pancreatic cancer cells. PLoS One 2018; 13:e0193483. [PMID: 29489909 PMCID: PMC5831108 DOI: 10.1371/journal.pone.0193483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/12/2018] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) play a critical role in the development of human cancers including pancreatic cancer. Long non-coding RNA SPRY4-IT1 (sprouty4-intron transcript 1) has been reported to play an oncogenic role in various types of human carcinomas. However, the role of SPRY4-IT1 in pancreatic cancer is unclear. The objective of this study was to determine the function of SPRY4-IT1 on proliferation and invasion in pancreatic cancer. In the current study, we dissected the function and mechanism of SPRY4-IT1 by multiple approaches including Real-time RT-PCR, Western blotting analysis, MTT assay, Wound healing assay, Transwell assay, and transfection. We found that down-regulation of SPRY4-IT1 inhibited cell growth and induced cell apoptosis in pancreatic cancer cells. Moreover, SPRY4-IT1 knockdown induced cell cycle arrest at G0/G1 phase. Furthermore, inhibition of SPRY4-IT1 retarded cell migration and invasion in pancreatic cancer cells. Overexpression of SPRY4-IT1 enhanced cell growth and invasion, and inhibited cell apoptosis in pancreatic cancer cells. Mechanistically, suppression of SPRY4-IT1 inhibited the expression of Cdc20 in pancreatic cancer cells. Our findings demonstrated that inhibition of SPRY4-IT1 could be a potential therapeutic approach for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenhao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Kunhong Zhong
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Heng Wei
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Chunlai Nie
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhu Yuan
- Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
164
|
Crawford LJ, Anderson G, Johnston CK, Irvine AE. Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma. Oncotarget 2018; 7:70481-70493. [PMID: 27655696 PMCID: PMC5342567 DOI: 10.18632/oncotarget.12026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/02/2016] [Indexed: 01/02/2023] Open
Abstract
Multiple Myeloma (MM) is a haematological neoplasm characterised by the clonal proliferation of malignant plasma cells in the bone marrow. The success of proteasome inhibitors in the treatment of MM has highlighted the importance of the ubiquitin proteasome system (UPS) in the pathogenesis of this disease. In this study, we analysed gene expression of UPS components to identify novel therapeutic targets within this pathway in MM. Here we demonstrate how this approach identified previously validated and novel therapeutic targets. In addition we show that FZR1 (Fzr), a cofactor of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C), represents a novel therapeutic target in myeloma. The APC/C associates independently with two cofactors, Fzr and Cdc20, to control cell cycle progression. We found high levels of FZR1 in MM primary cells and cell lines and demonstrate that expression is further increased on adhesion to bone marrow stromal cells (BMSCs). Specific knockdown of either FZR1 or CDC20 reduced viability and induced growth arrest of MM cell lines, and resulted in accumulation of APC/CFzr substrate Topoisomerase IIα (TOPIIα) or APC/CCdc20 substrate Cyclin B. Similar effects were observed following treatment with proTAME, an inhibitor of both APC/CFzr and APC/CCdc20. Combinations of proTAME with topoisomerase inhibitors, etoposide and doxorubicin, significantly increased cell death in MM cell lines and primary cells, particularly if TOPIIα levels were first increased through pre-treatment with proTAME. Similarly, combinations of proTAME with the microtubule inhibitor vincristine resulted in enhanced cell death. This study demonstrates the potential of targeting the APC/C and its cofactors as a therapeutic approach in MM.
Collapse
Affiliation(s)
- Lisa J Crawford
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Gordon Anderson
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Cliona K Johnston
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Alexandra E Irvine
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| |
Collapse
|
165
|
Wang L, Hou Y, Yin X, Su J, Zhao Z, Ye X, Zhou X, Zhou L, Wang Z. Rottlerin inhibits cell growth and invasion via down-regulation of Cdc20 in glioma cells. Oncotarget 2018; 7:69770-69782. [PMID: 27626499 PMCID: PMC5342514 DOI: 10.18632/oncotarget.11974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Rottlerin, isolated from a medicinal plant Mallotus phillippinensis, has been demonstrated to inhibit cellular growth and induce cytoxicity in glioblastoma cell lines through inhibition of calmodulin-dependent protein kinase III. Emerging evidence suggests that rottlerin exerts its antitumor activity as a protein kinase C inhibitor. Although further studies revealed that rottlerin regulated multiple signaling pathways to suppress tumor cell growth, the exact molecular insight on rottlerin-mediated tumor inhibition is not fully elucidated. In the current study, we determine the function of rottlerin on glioma cell growth, apoptosis, cell cycle, migration and invasion. We found that rottlerin inhibited cell growth, migration, invasion, but induced apoptosis and cell cycle arrest. Mechanistically, the expression of Cdc20 oncoprotein was measured by the RT-PCR and Western blot analysis in glioma cells treated with rottlerin. We observed that rottlerin significantly inhibited the expression of Cdc20 in glioma cells, implying that Cdc20 could be a novel target of rottlerin. In line with this, over-expression of Cdc20 decreased rottlerin-induced cell growth inhibition and apoptosis, whereas down-regulation of Cdc20 by its shRNA promotes rottlerin-induced anti-tumor activity. Our findings indicted that rottlerin could exert its tumor suppressive function by inhibiting Cdc20 pathway which is constitutively active in glioma cells. Therefore, down-regulation of Cdc20 by rottlerin could be a promising therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Lixia Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yingying Hou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xuyuan Yin
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingna Su
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Zhe Zhao
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiantao Ye
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiuxia Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Li Zhou
- Department of Gynecologic Oncosurgery, Jilin province Cancer Hospital, Changchun, Jilin, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
166
|
Ji P, Zhou X, Liu Q, Fuller GN, Phillips LM, Zhang W. Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis. Oncotarget 2018; 7:23521-9. [PMID: 26993778 PMCID: PMC5029644 DOI: 10.18632/oncotarget.8080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. Results Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. Materials and Methods We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. Conclusions These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy.
Collapse
Affiliation(s)
- Ping Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Current affiliation: Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinhui Zhou
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qun Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Neurosurgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
167
|
Shang G, Ma X, Lv G. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells. Cell Cycle 2017; 17:43-52. [PMID: 28980876 DOI: 10.1080/15384101.2017.1387700] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.
Collapse
Affiliation(s)
- Guanning Shang
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Xu Ma
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| | - Gang Lv
- a Department of Orthopaedics , The First Affiliated Hospital , China Medical University , Shenyang , Liaoning Province , PR China
| |
Collapse
|
168
|
Wang J, Zhou F, Li Y, Li Q, Wu Z, Yu L, Yuan F, Liu J, Tian Y, Cao Y, Zhao Y, Zheng Y. Cdc20 overexpression is involved in temozolomide-resistant glioma cells with epithelial-mesenchymal transition. Cell Cycle 2017; 16:2355-2365. [PMID: 29108461 DOI: 10.1080/15384101.2017.1388972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glioma remains one of the most aggressive and lethal cancers in central nervous system. Temozolomide (TMZ) is the most commonly used chemotherapeutic agent in gliomas. However, therapeutic benefits of TMZ could be very limited and all patients would finally suffer from tumor progression as the tumors develop resistance to TMZ. In this study, we aim to investigate the underlying mechanism of chemoresistance in glioma cell line and to identify whether there is still a close link between epithelial-mesenchymal transition (EMT) and TMZ resistance in gliomas. The real-time RT-PCR and Western blotting were used to measure the expression of EMT markers in TMZ-resistant cells. The migration and invasion assays were conducted to detect the cell motility activity in TMZ-resistant cells. The transfection was used to down-regulate the Cdc20 expression. The student t-test was applied for data analysis. We established stable TMZ-resistant glioma cells and designated as TR. Our results revealed that TR cells exhibited a significantly increased resistance to TMZ compared with their parental cells. Moreover, TMZ-resistant cells had acquired EMT-like changes. For the mechanism study, we measured a significant increased expression of CDC20 and decreased expression of Bim in TR cells. Moreover, upon suppression of CDC20 by shRNA transfection, TR cells underwent a reverse of EMT features. Importantly, knockdown of CDC20 enhanced the drug sensitivity of TR cells to TMZ. Our results suggested that inactivation of CDC20 could contribute to the future therapy that possibly overcomes drug resistance in human cancers.
Collapse
Affiliation(s)
- Jianjiao Wang
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Fenggang Zhou
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Yang Li
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Qingsong Li
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Zhichao Wu
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Lili Yu
- b Department of Neurosurgery , Acheng People hospital , Harbin 150086 , China
| | - Fei Yuan
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Jie Liu
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Yu Tian
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Yu Cao
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Yan Zhao
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| | - Yongri Zheng
- a Department of Neurosurgery , the 2nd Affiliated Hospital, Harbin Medical University , Harbin 150086 , China
| |
Collapse
|
169
|
Taming the Beast: Control of APC/C Cdc20-Dependent Destruction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:111-121. [PMID: 29133301 DOI: 10.1101/sqb.2017.82.033712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit ubiquitin ligase that triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates cyclin B and securin for destruction. APC/C activity toward these two key substrates requires the coactivator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with high accuracy, APC/CCdc20 activity must be tightly controlled. Here, we discuss the mechanisms that regulate APC/CCdc20 activity both before and during mitosis. We focus our discussion primarily on the chromosomal pathways that both accelerate and delay APC/C activation by targeting Cdc20 to opposing fates. The findings discussed provide an overview of how cells control the activation of this major cell cycle regulator to ensure both accurate and timely cell division.
Collapse
|
170
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
171
|
The therapeutic potential of cell cycle targeting in multiple myeloma. Oncotarget 2017; 8:90501-90520. [PMID: 29163849 PMCID: PMC5685770 DOI: 10.18632/oncotarget.18765] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022] Open
Abstract
Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.
Collapse
|
172
|
Morra F, Merolla F, Napolitano V, Ilardi G, Miro C, Paladino S, Staibano S, Cerrato A, Celetti A. The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells. Oncotarget 2017; 8:31815-31829. [PMID: 28415632 PMCID: PMC5458250 DOI: 10.18632/oncotarget.16463] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/15/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE OF THE STUDY Reduced levels of the tumor suppressor protein CCDC6 sensitize cancer cells to the treatment with PARP-inhibitors. The turnover of CCDC6 protein is regulated by the de-ubiquitinase USP7, which also controls the androgen receptor (AR) stability. Here, we correlated the expression levels of CCDC6 and USP7 proteins in primary prostate cancers (PC). Moreover, we tested the efficacy of the USP7 inhibitors, in combination with PARP-inhibitors as a novel therapeutic option in advanced prostate cancer.Experimental techniques: PC cells were exposed to USP7 inhibitor, P5091, together with cycloheximide, to investigate the turnover of the USP7 substrates, AR and CCDC6. As outcome of the AR downregulation, transcription targets of AR and its variant V7 were examined by qPCR. As a result of CCDC6 degradation, the induction of PARP inhibitors sensitivity was evaluated by analyzing PC cells viability and foci formation. We scored and correlated CCDC6 and USP7 expression levels in a prostate cancer tissue microarray (TMA). RESULTS P5091 accelerated the degradation of AR and V7 isoform affecting PSA, UBE2C, CDC20 transcription and PC cells proliferation. Moreover, P5091 accelerated the degradation of CCDC6 sensitizing the cells to PARP-inhibitors, that acted sinergistically with genotoxic agents. The immunohistochemical analysis of both CCDC6 and USP7 proteins exhibited significant correlation for the intensity of staining (p ≤ 0.05).Data interpretation: Thus, CCDC6 and USP7 represent predictive markers for the combined treatment of the USP7-inhibitors and PARP-inhibitors in advanced prostate cancer.
Collapse
Affiliation(s)
- Francesco Morra
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Francesco Merolla
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Virginia Napolitano
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| | - Caterina Miro
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University “Federico II”, Naples, Italy
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy
| | - Aniello Cerrato
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Angela Celetti
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| |
Collapse
|
173
|
Abstract
For the past several decades, cancer patients in the U.S. have chosen the use of natural products as an alternative or complimentary medicine approach to treat or improve their quality of life via reduction or prevention of the side effects during or after cancer treatment. The genus Ganoderma includes about 80 species of mushrooms, of which several have been used for centuries in traditional Asian medicine for their medicinal properties, including anticancer and immunoregulatory effects. Numerous bioactive compounds seem to be responsible for their healing effects. Among the approximately 400 compounds produced by Ganoderma spp., triterpenes, peptidoglycans and polysaccharides are the major physiologically-active constituents. Ganoderma anticancer effects are attributed to its efficacy in reducing cancer cell survival and growth, as well as by its chemosensitizing role. In vitro and in vivo studies have been conducted in various cancer cells and animal models; however, in this review, we focus on Ganoderma’s efficacy on breast cancers. Evidence shows that some species of Ganoderma have great potential as a natural therapeutic for breast cancer. Nevertheless, further studies are needed to investigate their potential in the clinical setting and to translate our basic scientific findings into therapeutic interventions for cancer patients.
Collapse
|
174
|
Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells. Nutrients 2017; 9:nu9020109. [PMID: 28165402 PMCID: PMC5331540 DOI: 10.3390/nu9020109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 01/25/2017] [Indexed: 01/23/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.
Collapse
|
175
|
Bhunia S, Radha V, Chaudhuri A. CDC20siRNA and paclitaxel co-loaded nanometric liposomes of a nipecotic acid-derived cationic amphiphile inhibit xenografted neuroblastoma. NANOSCALE 2017; 9:1201-1212. [PMID: 28045167 DOI: 10.1039/c6nr07532k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite significant recent progress in the area of translational genomics of neuroblastoma, the overall survival rates for children with high-risk NB continue to be not more than 5 years due to tumor relapse and/or drug-resistant tumors. Herein we report on the development of a neuroblastoma targeting nanometric (130-150 nm) circulation stable liposomal system prepared from a novel nipecotic acid-derived cationic amphiphile (NACA). The size ranges of liposomes (130-150 nm) were confirmed by both dynamic light scattering and transmission electron microscopy. The findings in the gel electrophoresis assay revealed that siRNAs encapsulated within the liposomes of NACA (with 90% entrapment efficiency) are protected from attack by RNase. Cellular uptake experiments using FAM-siRNA loaded liposomes of NACA showed the liposomal entry in human neuroblastoma cells (IMR-32) to be mediated via the GABAA receptor. CDC20siRNA-loaded liposomes of NACA caused significantly higher CDC20 gene silencing efficiency in IMR-32 cells compared to CDC20 gene knockdown efficiency mediated by CDC20siRNA-loaded control non-targeting liposomes (NTL). The findings in the annexin-V binding based flow cytometric apoptosis assay and MTT-based cellular cytotoxicity assay support the notion that pronounced (80%) neuroblastoma cell death upon treatment with CDC20siRNA & PTX co-loaded liposomes of NACA presumably originates from enhanced apoptosis of cells. Importantly, intravenously administered CDC20siRNA & PTX co-loaded liposomes of NACA significantly inhibited growth of xenografted human neuroblastoma in athymic nude mice. The presently disclosed strategy of co-delivering potent anticancer siRNA and small molecule chemotherapeutics using liposomes of NACA opens a new door for combating the dreaded disease of neuroblastoma.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India. and Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| | - Vegesna Radha
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad-500007, India
| | - Arabinda Chaudhuri
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India. and Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, India
| |
Collapse
|
176
|
Zhou D, Hlady RA, Schafer MJ, White TA, Liu C, Choi JH, Miller JD, Roberts LR, LeBrasseur NK, Robertson KD. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver. Epigenetics 2016; 12:55-69. [PMID: 27858497 DOI: 10.1080/15592294.2016.1261239] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.
Collapse
Affiliation(s)
- Dan Zhou
- a Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Ryan A Hlady
- a Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Marissa J Schafer
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA.,c Department of Physical Medicine & Rehabilitation , Mayo Clinic , Rochester , MN , USA
| | - Thomas A White
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA
| | - Chen Liu
- d Department of Pathology and Laboratory Medicine , Rutgers University , NJ , USA
| | - Jeong-Hyeon Choi
- e Department of Applied Research , Marine Biodiversity Institute of Korea , Korea
| | - Jordan D Miller
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA.,f Department of Surgery , Mayo Clinic , Rochester , MN , USA
| | - Lewis R Roberts
- g Mayo Clinic Cancer Center , Mayo Clinic , Rochester , MN , USA.,h Division of Gastroenterology and Hepatology, Mayo Clinic , Rochester , MN , USA
| | - Nathan K LeBrasseur
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA.,c Department of Physical Medicine & Rehabilitation , Mayo Clinic , Rochester , MN , USA
| | - Keith D Robertson
- a Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA.,g Mayo Clinic Cancer Center , Mayo Clinic , Rochester , MN , USA.,i Center for Individualized Medicine, Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
177
|
Wu F, Dai X, Gan W, Wan L, Li M, Mitsiades N, Wei W, Ding Q, Zhang J. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Cancer Lett 2016; 385:207-214. [PMID: 27780719 DOI: 10.1016/j.canlet.2016.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
Abstract
Recent studies revealed that mutations in SPOP (Speckle-type POZ protein) occur in up to 15% of patients with prostate cancer. However, the physiological role of SPOP in regulating prostate tumorigenesis remains elusive. Here, we identified the Cdc20 oncoprotein as a novel ubiquitin substrate of SPOP. As such, pharmacological inhibition of Cullin-based E3 ligases by MLN4924 could stabilize endogenous Cdc20 in cells. Furthermore, we found that Cullin 3, and, to a less extent, Cullin 1, specifically interacted with Cdc20. Depletion of Cullin 3, but not Cullin 1, could upregulate the abudance of Cdc20 largely via prolonging Cdc20 half-life. Moreover, SPOP, the adaptor protein of Cullin 3 family E3 ligase, specifically interacted with Cdc20, and promoted the poly-ubiquitination and subsequent degradation of Cdc20 in a degron-dependent manner. Importantly, prostate cancer-derived SPOP mutants failed to interact with Cdc20 to promote its degradation. As a result, SPOP-deficient prostate cancer cells with elevated Cdc20 expression became resistant to a pharmacological Cdc20 inhibitor. Therefore, our results revealed a novel role of SPOP in tumorigenesis in part by promoting the degradation of the Cdc20 oncoprotein.
Collapse
Affiliation(s)
- Fei Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Min Li
- Departments of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas Mitsiades
- Departments of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
178
|
Li K, Mao Y, Lu L, Hu C, Wang D, Si-Tu J, Lu M, Peng S, Qiu J, Gao X. Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel. Int J Oncol 2016; 49:1679-85. [DOI: 10.3892/ijo.2016.3671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/26/2016] [Indexed: 11/06/2022] Open
|
179
|
Kulshrestha A, Suman S, Ranjan R. Network analysis reveals potential markers for pediatric adrenocortical carcinoma. Onco Targets Ther 2016; 9:4569-81. [PMID: 27555782 PMCID: PMC4968868 DOI: 10.2147/ott.s108485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. Accurate and timely diagnosis of the disease requires identification of new markers for pediatric ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was constructed. Hub gene detection and enrichment analysis of functional modules were performed. Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregulated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were identified as the common hubs of PPI and GGI networks. All the four common hub genes were also part of modules of the PPI network. Moreover, all the four genes were also present in the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, although experimental studies are required to authenticate our findings.
Collapse
Affiliation(s)
- Anurag Kulshrestha
- Bioinformatics Division, National Bureau of Animal Genetic Resources, Karnal
| | - Shikha Suman
- Division of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Rakesh Ranjan
- Bioinformatics Division, National Bureau of Animal Genetic Resources, Karnal
| |
Collapse
|
180
|
Sulfasalazine intensifies temozolomide cytotoxicity in human glioblastoma cells. Mol Cell Biochem 2016; 418:167-78. [PMID: 27334753 DOI: 10.1007/s11010-016-2742-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/15/2016] [Indexed: 12/23/2022]
Abstract
Temozolomide (TMZ) is an alkylating agent used to treat glioblastoma. This tumor type synthesizes the antioxidant glutathione through system X c (-) , which is inhibited by sulfasalazine (SAS). We exposed A172 and T98G human glioblastoma cells to a presumably clinically relevant concentration of TMZ (25 µM) and/or 0.5 mM SAS for 1, 3, or 5 days and assessed cell viability. For both cell lines, TMZ alone did not alter viability at any time point, while the coadministration of TMZ and SAS significantly reduced cell viability after 5 days. The drug combination exerted a synergistic effect on A172 cells after 3 and 5 days. Therefore, this particular lineage was subjected to complementary analyses on the genetic (transcriptome) and functional (glutathione and proliferating cell nuclear antigen (PCNA) protein) levels. Cellular pathways containing differentially expressed genes related to the cell cycle were modified by TMZ alone. On the other hand, SAS regulated pathways associated with glutathione metabolism and synthesis, irrespective of TMZ. Moreover, SAS, but not TMZ, depleted the total glutathione level. Compared with the vehicle-treated cells, the level of PCNA protein was lower in cells treated with TMZ alone or in combination with SAS. In conclusion, our data showed that the association of TMZ and SAS is cytotoxic to T98G and A172 cells, thus providing useful insights for improving TMZ clinical efficacy through testing this novel drug combination. Moreover, the present study not only reports original information on differential gene expression in glioblastoma cells exposed to TMZ and/or SAS but also describes an antiproliferative effect of TMZ, which has not yet been observed in A172 cells.
Collapse
|
181
|
Bing F, Zhao Y. Screening of biomarkers for prediction of response to and prognosis after chemotherapy for breast cancers. Onco Targets Ther 2016; 9:2593-600. [PMID: 27217777 PMCID: PMC4861001 DOI: 10.2147/ott.s92350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To screen the biomarkers having the ability to predict prognosis after chemotherapy for breast cancers. METHODS Three microarray data of breast cancer patients undergoing chemotherapy were collected from Gene Expression Omnibus database. After preprocessing, data in GSE41112 were analyzed using significance analysis of microarrays to screen the differentially expressed genes (DEGs). The DEGs were further analyzed by Differentially Coexpressed Genes and Links to construct a function module, the prognosis efficacy of which was verified by the other two datasets (GSE22226 and GSE58644) using Kaplan-Meier plots. The involved genes in function module were subjected to a univariate Cox regression analysis to confirm whether the expression of each prognostic gene was associated with survival. RESULTS A total of 511 DEGs between breast cancer patients who received chemotherapy or not were obtained, consisting of 421 upregulated and 90 downregulated genes. Using the Differentially Coexpressed Genes and Links package, 1,244 differentially coexpressed genes (DCGs) were identified, among which 36 DCGs were regulated by the transcription factor complex NFY (NFYA, NFYB, NFYC). These 39 genes constructed a gene module to classify the samples in GSE22226 and GSE58644 into three subtypes and these subtypes exhibited significantly different survival rates. Furthermore, several genes of the 39 DCGs were shown to be significantly associated with good (such as CDC20) and poor (such as ARID4A) prognoses following chemotherapy. CONCLUSION Our present study provided a serial of biomarkers for predicting the prognosis of chemotherapy or targets for development of alternative treatment (ie, CDC20 and ARID4A) in breast cancer patients.
Collapse
Affiliation(s)
- Feng Bing
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
182
|
Prognostic implications of securin expression and sub-cellular localization in human breast cancer. Cell Oncol (Dordr) 2016; 39:319-31. [DOI: 10.1007/s13402-016-0277-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
|
183
|
Qiu L, Wu J, Pan C, Tan X, Lin J, Liu R, Chen S, Geng R, Huang W. Downregulation of CDC27 inhibits the proliferation of colorectal cancer cells via the accumulation of p21Cip1/Waf1. Cell Death Dis 2016; 7:e2074. [PMID: 26821069 PMCID: PMC4816181 DOI: 10.1038/cddis.2015.402] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022]
Abstract
Dysregulated cell cycle progression has a critical role in tumorigenesis. Cell division cycle 27 (CDC27) is a core subunit of the anaphase-promoting complex/cyclosome, although the specific role of CDC27 in cancer remains unknown. In our study, we explored the biological and clinical significance of CDC27 in colorectal cancer (CRC) growth and progression and investigated the underlying molecular mechanisms. Results showed that CDC27 expression is significantly correlated with tumor progression and poor patient survival. Functional assays demonstrated that overexpression of CDC27 promoted proliferation in DLD1 cells, whereas knockdown of CDC27 in HCT116 cells inhibited proliferation both in vitro and in vivo. Further mechanistic investigation showed that CDC27 downregulation resulted in G1/S phase transition arrest via the significant accumulation of p21 in HCT116 cells, and the upregulation of CDC27 promoted G1/S phase transition via the attenuation of p21 in DLD1 cells. Furthermore, we also demonstrated that CDC27 regulated inhibitor of DNA binding 1 (ID1) protein expression in DLD1 and HCT116 cells, and rescue assays revealed that CDC27 regulated p21 expression through modulating ID1 expression. Taken together, our results indicate that CDC27 contributes to CRC cell proliferation via the modulation of ID1-mediated p21 regulation, which offers a novel approach to the inhibition of tumor growth. Indeed, these findings provide new perspectives for the future study of CDC27 as a target for CRC treatment.
Collapse
Affiliation(s)
- L Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - J Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - C Pan
- Medical Oncology, Sichuan Cancer Hospital and Institute, Second People's Hospital of Sichuan Province, Chengdu, China
| | - X Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - J Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - R Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - S Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - R Geng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - W Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
184
|
Gujar AD, Yano H, Kim AH. The CDC20-APC/SOX2 signaling axis: An achilles' heel for glioblastoma. Mol Cell Oncol 2015; 3:e1075644. [PMID: 27314081 DOI: 10.1080/23723556.2015.1075644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022]
Abstract
Glioblastoma stem-like cells (GSCs) play a critical role in glioblastoma progression and recurrence. We discuss recent results on the role of the mitotic ubiquitin ligase cell division cycle 20-anaphase-promoting complex (CDC20-APC) in the governance of cardinal GSC functions through a mechanism involving the transcription factor sex-determining region Y-box 2 (SOX2). These findings expand the non-mitotic roles of CDC20-APC with implications for stem cell biology.
Collapse
Affiliation(s)
- Amit D Gujar
- Department of Neurological Surgery, Washington University School of Medicine , St. Louis, Missouri, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
185
|
Mao DD, Gujar AD, Mahlokozera T, Chen I, Pan Y, Luo J, Brost T, Thompson EA, Turski A, Leuthardt EC, Dunn GP, Chicoine MR, Rich KM, Dowling JL, Zipfel GJ, Dacey RG, Achilefu S, Tran DD, Yano H, Kim AH. A CDC20-APC/SOX2 Signaling Axis Regulates Human Glioblastoma Stem-like Cells. Cell Rep 2015; 11:1809-21. [PMID: 26074073 DOI: 10.1016/j.celrep.2015.05.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/28/2015] [Accepted: 05/12/2015] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma harbors a dynamic subpopulation of glioblastoma stem-like cells (GSCs) that can propagate tumors in vivo and is resistant to standard chemoradiation. Identification of the cell-intrinsic mechanisms governing this clinically important cell state may lead to the discovery of therapeutic strategies for this challenging malignancy. Here, we demonstrate that the mitotic E3 ubiquitin ligase CDC20-anaphase-promoting complex (CDC20-APC) drives invasiveness and self-renewal in patient tumor-derived GSCs. Moreover, CDC20 knockdown inhibited and CDC20 overexpression increased the ability of human GSCs to generate brain tumors in an orthotopic xenograft model in vivo. CDC20-APC control of GSC invasion and self-renewal operates through pluripotency-related transcription factor SOX2. Our results identify a CDC20-APC/SOX2 signaling axis that controls key biological properties of GSCs, with implications for CDC20-APC-targeted strategies in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Diane D Mao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amit D Gujar
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ishita Chen
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanchun Pan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Division of Biostatistics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor Brost
- Program in Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elizabeth A Thompson
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alice Turski
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Keith M Rich
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ralph G Dacey
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Achilefu
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Tran
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|