151
|
Karakousis ND, Papatheodoridi A, Chatzigeorgiou A, Papatheodoridis G. Cellular senescence and hepatitis B-related hepatocellular carcinoma: An intriguing link. Liver Int 2020; 40:2917-2927. [PMID: 32890439 DOI: 10.1111/liv.14659] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B is mainly responsible for the morbidity and mortality from hepatitis B virus (HBV)-related complications, including hepatocellular carcinoma (HCC) and decompensated cirrhosis. Hepatocellular carcinoma remains the main challenge in the management of not only undiagnosed and/or untreated but also diagnosed and treated patients with chronic HBV infection, as its incidence decreases but is not eliminated even after many years of effective anti-HBV therapy. The exact mechanisms used by HBV to cause malignant transformation remain uncertain, although much of the available data are in favour of a pathogenetic role of HBx protein. Senescence is a cellular state, in which cells lose their ability to proliferate. This biological mechanism may function in a dual mode, namely being both cancer-protective as a result of reduced cellular proliferation, but also cancer-enhancing as a result of modulation of the tissular microenvironment by immune cells during persistent accumulation of senescent cells. Protein X of HBV protein exhibits many similarities in terms of the implemented mechanisms of action and pathways related to the biological process of cellular senescence. Concurrently, insufficient clearance of both senescent and precancerous hepatocytes combined with inadequate immune surveillance as a result of immunosenescence caused by chronic HBV infection may lead to hepatocarcinogenesis. Thus, the effect of HBV seems to be critical as a connecting link between cellular senescence and development of HCC. An ongoing research is underway towards identifying and validating markers of hepatocyte senescence, which could improve the landscape for evaluation of chronic liver disease, thereby providing valuable information in terms of HBV-related carcinogenesis.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece.,Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Alkistis Papatheodoridi
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece.,Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece.,Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
152
|
Haldrup J, Strand SH, Cieza-Borrella C, Jakobsson ME, Riedel M, Norgaard M, Hedensted S, Dagnaes-Hansen F, Ulhoi BP, Eeles R, Borre M, Olsen JV, Thomsen M, Kote-Jarai Z, Sorensen KD. FRMD6 has tumor suppressor functions in prostate cancer. Oncogene 2020; 40:763-776. [PMID: 33249427 DOI: 10.1038/s41388-020-01548-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Available tools for prostate cancer (PC) prognosis are suboptimal but may be improved by better knowledge about genes driving tumor aggressiveness. Here, we identified FRMD6 (FERM domain-containing protein 6) as an aberrantly hypermethylated and significantly downregulated gene in PC. Low FRMD6 expression was associated with postoperative biochemical recurrence in two large PC patient cohorts. In overexpression and CRISPR/Cas9 knockout experiments in PC cell lines, FRMD6 inhibited viability, proliferation, cell cycle progression, colony formation, 3D spheroid growth, and tumor xenograft growth in mice. Transcriptomic, proteomic, and phospho-proteomic profiling revealed enrichment of Hippo/YAP and c-MYC signaling upon FRMD6 knockout. Connectivity Map analysis and drug repurposing experiments identified pyroxamide as a new potential therapy for FRMD6 deficient PC cells. Finally, we established orthotropic Frmd6 and Pten, or Pten only (control) knockout in the ROSA26 mouse prostate. After 12 weeks, Frmd6/Pten double knockouts presented high-grade prostatic intraepithelial neoplasia (HG-PIN) and hyperproliferation, while Pten single-knockouts developed only regular PIN lesions and displayed lower proliferation. In conclusion, FRMD6 was identified as a novel tumor suppressor gene and prognostic biomarker candidate in PC.
Collapse
Affiliation(s)
- Jakob Haldrup
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Siri H Strand
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Clara Cieza-Borrella
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Magnus E Jakobsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.,Department of Immunotechnology, Lund University, Medicon Village, 22100, Lund, Sweden
| | - Maria Riedel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maibritt Norgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stine Hedensted
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Rosalind Eeles
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.,The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Michael Borre
- Dept. of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zsofia Kote-Jarai
- Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Karina D Sorensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
153
|
Kryczka J, Sochacka E, Papiewska-Pająk I, Boncela J. Implications of ABCC4-Mediated cAMP Eflux for CRC Migration. Cancers (Basel) 2020; 12:cancers12123547. [PMID: 33261018 PMCID: PMC7760996 DOI: 10.3390/cancers12123547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) presents significant molecular heterogeneity. The cellular plasticity of epithelial to mesenchymal transition (EMT) is one of the key factors responsible for the heterogeneous nature of metastatic CRC. EMT is an important regulator of ATP binding cassette (ABC) protein expression; these proteins are the active transporters of a broad range of endogenous compounds and anticancer drugs. In our previous studies, we performed a transcriptomic and functional analysis of CRC in the early stages of metastasis induced by the overexpression of Snail, the transcription factor involved in EMT initiation. Interestingly, we found a correlation between the Snail expression and ABCC4 (MRP4) protein upregulation. The relationship between epithelial transition and ABCC4 expression and function in CRC has not been previously defined. In the current study, we propose that the ABCC4 expression changes during EMT and may be differentially regulated in various subpopulations of CRC. We confirmed that ABCC4 upregulation is correlated with the phenotype conversion process in CRC. The analysis of Gene Expression Omnibus (GEO) sets showed that the ABCC4 expression was elevated in CRC patients. The results of a functional study demonstrated that, in CRC, ABCC4 can regulate cell migration in a cyclic nucleotide-dependent manner.
Collapse
Affiliation(s)
- Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
| | - Ewelina Sochacka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
- Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Izabela Papiewska-Pająk
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.K.); (E.S.); (I.P.-P.)
- Correspondence:
| |
Collapse
|
154
|
Sakakitani S, Podyma-Inoue KA, Takayama R, Takahashi K, Ishigami-Yuasa M, Kagechika H, Harada H, Watabe T. Activation of β2-adrenergic receptor signals suppresses mesenchymal phenotypes of oral squamous cell carcinoma cells. Cancer Sci 2020; 112:155-167. [PMID: 33007125 PMCID: PMC7780019 DOI: 10.1111/cas.14670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Metastasis is a primary reason related to the mortality of oral squamous cell carcinoma (OSCC) patients. A program called epithelial-mesenchymal transition (EMT) has been shown to play a critical role in promoting metastasis in epithelium-derived carcinoma. During EMT, epithelial cancer cells acquire motile mesenchymal phenotypes and detach from primary tumors. Recent lines of evidence have suggested that EMT confers cancer cells with tumor-initiating ability. Therefore, selective targeting of EMT would lead to the development of effective therapeutic agents. In this study, using a chemical biology approach, we identified isoxsuprine, a β2-adrenergic receptor (β2-AR) agonist as a low-molecular-weight compound that interferes with the acquisition of mesenchymal phenotypes of oral cancer cells. Treatment of multiple types of oral cancer cells with isoxsuprine led to the downregulation of mesenchymal cell markers that was accompanied by reduced cell motility. Similar inhibitory effects were also observed for isoprenaline, a non-selective β-adrenergic receptor (β-AR) agonist. In addition, inhibition of cell migration upon treatment with isoxsuprine was reverted by a non-selective β-AR antagonist, propranolol, and the CRISPR/Cas9 system-mediated deletion of the β2-AR gene, suggesting that the effects exerted by isoxsuprine involved signals mediated by β2-AR. In addition, in a subcutaneous xenograft model of oral cancer cells, the administration of isoxsuprine effectively suppressed primary tumor growth, suggesting β2-AR signals to be a promising cancer therapeutic target for treatment of OSCC.
Collapse
Affiliation(s)
- Shintaro Sakakitani
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Rina Takayama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Department of Organic and Medicinal Chemistry, Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Kagechika
- Department of Organic and Medicinal Chemistry, Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
155
|
Sinha D, Saha P, Samanta A, Bishayee A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020; 10:E1561. [PMID: 33207810 PMCID: PMC7697085 DOI: 10.3390/biom10111561] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.
Collapse
Affiliation(s)
- Dona Sinha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Priyanka Saha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anurima Samanta
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
156
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
157
|
Guinn MT, Wan Y, Levovitz S, Yang D, Rosner MR, Balázsi G. Observation and Control of Gene Expression Noise: Barrier Crossing Analogies Between Drug Resistance and Metastasis. Front Genet 2020; 11:586726. [PMID: 33193723 PMCID: PMC7662081 DOI: 10.3389/fgene.2020.586726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States.,Stony Brook Medical Scientist Training Program, Stony Brook, NY, United States
| | - Yiming Wan
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Sarah Levovitz
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Dongbo Yang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Marsha R Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
158
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
159
|
Amarogentin Inhibits Liver Cancer Cell Angiogenesis after Insufficient Radiofrequency Ablation via Affecting Stemness and the p53-Dependent VEGFA/Dll4/Notch1 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5391058. [PMID: 33145353 PMCID: PMC7596460 DOI: 10.1155/2020/5391058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 01/14/2023]
Abstract
Background Whether and how amarogentin suppresses the angiogenesis effect in liver cancer cells after insufficient radiofrequency ablation (iRFA) are still poorly studied. Methods The number of liver cancer stem cells (LCSCs) and the level of vascular endothelial growth factor A (VEGFA) were assessed in liver cancer tissue after iRFA. Then, CD133-positive cells were detected in iRFA models of HepG2 and Huh7 cell lines treated with amarogentin. Tube formation assays were applied to observe the antiangiogenesis effects of amarogentin. In addition, the angiogenesis-related molecules p53, delta-like ligand 4 (Dll4), and Notch1 were detected in the iRFA cells and mouse models treated with amarogentin. Results The mRNA and protein expression levels of CD133 and VEGFA were significantly higher in the residual liver cancer tissue than in the liver cancer tissues treated by hepatectomy. Amarogentin then markedly decreased the percentage of CD133-positive cells in the iRFA model in both HepG2 and Huh7 cell lines. The number of tubules formed by human umbilical vein endothelial cells (HUVECs) was significantly decreased by amarogentin. Inversely, the antiangiogenesis effect of amarogentin was counteracted after p53 silencing in the iRFA cell models. Conclusion Amarogentin prevents the malignant transformation of liver cancer after iRFA via affecting stemness and the p53-dependent VEGFA/Dll4/Notch1 pathway to inhibit cancer cell angiogenesis.
Collapse
|
160
|
Zhang S, Chen H, Liu W, Fang L, Qian Z, Kong R, Zhang Q, Li J, Cao X. miR-766-3p Targeting BCL9L Suppressed Tumorigenesis, Epithelial-Mesenchymal Transition, and Metastasis Through the β-Catenin Signaling Pathway in Osteosarcoma Cells. Front Cell Dev Biol 2020; 8:594135. [PMID: 33117820 PMCID: PMC7575756 DOI: 10.3389/fcell.2020.594135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has indicated that abnormal microRNAs (miRNAs) serve critical roles in carcinogenesis and development of osteosarcoma (OS). The purpose of the present study was to elucidate the relationship between miR-766-3p and development of osteosarcoma and explore the potential mechanism. In this study, we found that miR-766-3p was the most downregulated miRNA by analyzing GSE65071 from the GEO database. miR-766-3p was lowly expressed in OS tissue samples and cells, and high miR-766-3p expression repressed the malignant level of OS, including cell proliferation, EMT, migration, and invasion in vitro and in vivo. B-Cell Lymphoma 9-Like Protein (BCL9L) was negatively associated with miR-766-3p expression in OS cells and tissue samples and was validated as the downstream target by luciferase reporter assay and western blotting. Rescue experiment indicated that BCL9L could restore the influence of miR-766-3p on OS cells. In addition, the β-Catenin/TCF-4 signal pathway was demonstrated to be related to the miR-766-3p/BCL9L axis. In summary, miR-766-3p, a negative regulator of BCL9L, plays the role of tumor metastasis suppressor via the β-catenin signaling pathway in the progression of OS.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongtao Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanshun Liu
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Fang
- Department of Critical Care Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanyang Qian
- Department of Orthopedics, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Department of Painology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Juming Li
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojian Cao
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
161
|
Silveira DA, Gupta S, Mombach JCM. Systems biology approach suggests new miRNAs as phenotypic stability factors in the epithelial-mesenchymal transition. J R Soc Interface 2020; 17:20200693. [PMID: 33050781 PMCID: PMC7653381 DOI: 10.1098/rsif.2020.0693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular programme on which epithelial cells undergo a phenotypic transition to mesenchymal ones acquiring metastatic properties such as mobility and invasion. TGF-β signalling can promote the EMT process. However, the dynamics of the concentration response of TGF-β-induced EMT is not well explained. In this work, we propose a logical model of TGF-β dose dependence of EMT in MCF10A breast cells. The model outcomes agree with experimentally observed phenotypes for the wild-type and perturbed/mutated cases. As important findings of the model, it predicts the coexistence of more than one hybrid state and that the circuit between TWIST1 and miR-129 is involved in their stabilization. Thus, miR-129 should be considered as a phenotypic stability factor. The circuit TWIST1/miR-129 associates with ZEB1-mediated circuits involving miRNAs 200, 1199, 340, and the protein GRHL2 to stabilize the hybrid state. Additionally, we found a possible new autocrine mechanism composed of the circuit involving TGF-β, miR-200, and SNAIL1 that contributes to the stabilization of the mesenchymal state. Therefore, our work can extend our comprehension of TGF-β-induced EMT in MCF10A cells to potentially improve the strategies for breast cancer treatment.
Collapse
|
162
|
Hirokawa YS, Kanayama K, Kagaya M, Shimojo N, Uchida K, Imai H, Ishii K, Watanabe M. SOX11-induced decrease in vimentin and an increase in prostate cancer cell migration attributed to cofilin activity. Exp Mol Pathol 2020; 117:104542. [PMID: 32971115 DOI: 10.1016/j.yexmp.2020.104542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
Abstract
SOX11 is a transcription factor in the SOX family of genes that regulate multiple cellular events by influencing the expression of key genes in developmental, physiological, and tumorigenic cells. To elucidate the role of SOX11 in prostate cancer cells, PC-3 prostate cancer cells were cloned (S6 and S9 cells) to highly express SOX11. We demonstrated that both S6 and S9 lose vimentin expression, acquiring epithelial marker proteins, which indicates the Epithelial state phenotype. S6 and S9 cells have cancer-promoting characteristics that include higher migratory properties compared with control cells. The mechanisms that are responsible for the enhanced migration are cofilin activity and keratin 18 expression. TCGA (The Cancer Genome Atlas) dataset analysis revealed that metastatic prostate cancer tumors tend to have more SOX11 gene amplification compared with primary tumors. These results suggest the tumor promotive role and epithelial protein induction of SOX11 in prostate cancer cell.
Collapse
Affiliation(s)
- Yoshifumi S Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| | - Kazuki Kanayama
- Department of Clinical Nutrition, Suzuka University of Medical Science, Suzuka, Mie 510-0293, Japan
| | - Michiko Kagaya
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Naoshi Shimojo
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Katsunori Uchida
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroshi Imai
- Pathology Division, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
163
|
Hao F, Fei X, Ren X, Xi Xiao J, Chen Y, Wang J. Pseudogene AKR1B10P1 enhances tumorigenicity and regulates epithelial-mesenchymal transition in hepatocellular carcinoma via stabilizing SOX4. J Cell Mol Med 2020; 24:11779-11790. [PMID: 32924268 PMCID: PMC7579691 DOI: 10.1111/jcmm.15790] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Pseudogenes exert potential functions in tumorigenicity and tumour process in human beings. In our previous research on oncogene AKR1B10 in hepatocellular carcinoma (HCC), its pseudogene, AKR1B10P1, was preliminarily noticed being anomalistic transcribed, whereas whether AKR1B10P1 plays any specific function in HCC is poorly understood. By using shRNA transfection and lentiviral infection, we regulated the expression of ARK1B10P1 transcript and the relative targets in two ways. As we discovered, pathological transcription of AKR1B10P1 in HCC cells significantly promotes cell growth and motility either in vitro or in vivo. AKR1B10P1 was correlated with relatively dismal features of HCC. The epithelial‐mesenchymal transition (EMT) was enhanced by up‐regulating AKR1B10P1. And, a potential sequence of AKR1B10P1 transcript was discovered directly interacting with miR‐138. SOX4, a pivotal promotor of EMT, was validated as the down‐streaming target of miR‐138. Mechanistically, degradation of SOX4 mRNA induced by miR‐138 was effectively abrogated by AKR1B10P1. In conclusion, pseudogene AKR1B10P1 exerts stabilizing effect on SOX4 in HCC, associated EMT process, by directly sponging miR‐138, which post‐transcriptionally modulates SOX4’s regulating gene.
Collapse
Affiliation(s)
- Fengjie Hao
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinping Ren
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Joanna Xi Xiao
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
164
|
Butyrate-containing structured lipids inhibit RAC1 and epithelial-to-mesenchymal transition markers: a chemopreventive mechanism against hepatocarcinogenesis. J Nutr Biochem 2020; 86:108496. [PMID: 32920087 DOI: 10.1016/j.jnutbio.2020.108496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers. The rising incidence of HCC worldwide and its resistance to pharmacotherapy indicate that the prevention of HCC development may be the most impactful strategy to improve HCC-related morbidity and mortality. Among the broad range of chemopreventive agents, the use of dietary and nutritional agents is an attractive and promising approach; however, a better understanding of the mechanisms of their potential cancer suppressive action is needed to justify their use. In the present study, we investigated the underlying molecular pathways associated with the previously observed suppressive effect of butyrate-containing structured lipids (STLs) against liver carcinogenesis using a rat "resistant hepatocyte" model of hepatocarcinogenesis that resembles the development of HCC in humans. Using whole transcriptome analysis, we demonstrate that the HCC suppressive effect of butyrate-containing STLs is associated with the inhibition of the cell migration, cytoskeleton organization, and epithelial-to-mesenchymal transition (EMT), mediated by the reduced levels of RACGAP1 and RAC1 proteins. Mechanistically, the inhibition of the Racgap1 and Rac1 oncogenes is associated with cytosine DNA and histone H3K27 promoter methylation. Inhibition of the RACGAP1/RAC1 oncogenic signaling pathways and EMT may be a valuable approach for liver cancer prevention.
Collapse
|
165
|
Subbalakshmi AR, Kundnani D, Biswas K, Ghosh A, Hanash SM, Tripathi SC, Jolly MK. NFATc Acts as a Non-Canonical Phenotypic Stability Factor for a Hybrid Epithelial/Mesenchymal Phenotype. Front Oncol 2020; 10:553342. [PMID: 33014880 PMCID: PMC7506140 DOI: 10.3389/fonc.2020.553342] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Metastasis remains the cause of over 90% of cancer-related deaths. Cells undergoing metastasis use phenotypic plasticity to adapt to their changing environmental conditions and avoid therapy and immune response. Reversible transitions between epithelial and mesenchymal phenotypes – epithelial–mesenchymal transition (EMT) and its reverse mesenchymal–epithelial transition (MET) – form a key axis of phenotypic plasticity during metastasis and therapy resistance. Recent studies have shown that the cells undergoing EMT/MET can attain one or more hybrid epithelial/mesenchymal (E/M) phenotypes, the process of which is termed as partial EMT/MET. Cells in hybrid E/M phenotype(s) can be more aggressive than those in either epithelial or mesenchymal state. Thus, it is crucial to identify the factors and regulatory networks enabling such hybrid E/M phenotypes. Here, employing an integrated computational-experimental approach, we show that the transcription factor nuclear factor of activated T-cell (NFATc) can inhibit the process of complete EMT, thus stabilizing the hybrid E/M phenotype. It increases the range of parameters enabling the existence of a hybrid E/M phenotype, thus behaving as a phenotypic stability factor (PSF). However, unlike previously identified PSFs, it does not increase the mean residence time of the cells in hybrid E/M phenotypes, as shown by stochastic simulations; rather it enables the co-existence of epithelial, mesenchymal and hybrid E/M phenotypes and transitions among them. Clinical data suggests the effect of NFATc on patient survival in a tissue-specific or context-dependent manner. Together, our results indicate that NFATc behaves as a non-canonical PSF for a hybrid E/M phenotype.
Collapse
Affiliation(s)
| | - Deepali Kundnani
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Anandamohan Ghosh
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, United States.,Department of Biochemistry, All India Institute of Medical Sciences, Nagpur, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
166
|
Plygawko AT, Kan S, Campbell K. Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200087. [PMID: 32829692 PMCID: PMC7482222 DOI: 10.1098/rstb.2020.0087] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many cells possess epithelial–mesenchymal plasticity (EMP), which allows them to shift reversibly between adherent, static and more detached, migratory states. These changes in cell behaviour are driven by the programmes of epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET), both of which play vital roles during normal development and tissue homeostasis. However, the aberrant activation of these processes can also drive distinct stages of cancer progression, including tumour invasiveness, cell dissemination and metastatic colonization and outgrowth. This review examines emerging common themes underlying EMP during tissue morphogenesis and malignant progression, such as the context dependence of EMT transcription factors, a central role for partial EMTs and the nonlinear relationship between EMT and MET. This article is part of a discussion meeting issue ‘Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Andrew T Plygawko
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Shohei Kan
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
167
|
Sundararajan V, Pang QY, Choolani M, Huang RYJ. Spotlight on the Granules (Grainyhead-Like Proteins) - From an Evolutionary Conserved Controller of Epithelial Trait to Pioneering the Chromatin Landscape. Front Mol Biosci 2020; 7:213. [PMID: 32974388 PMCID: PMC7471608 DOI: 10.3389/fmolb.2020.00213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qing You Pang
- Center for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
168
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
169
|
The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel) 2020; 12:cancers12082047. [PMID: 32722292 PMCID: PMC7466024 DOI: 10.3390/cancers12082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers.
Collapse
|
170
|
Topel H, Bagirsakci E, Comez D, Bagci G, Cakan-Akdogan G, Atabey N. lncRNA HOTAIR overexpression induced downregulation of c-Met signaling promotes hybrid epithelial/mesenchymal phenotype in hepatocellular carcinoma cells. Cell Commun Signal 2020; 18:110. [PMID: 32650779 PMCID: PMC7353702 DOI: 10.1186/s12964-020-00602-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) are both reversible processes, and regulation of phenotypical transition is very important for progression of several cancers including hepatocellular carcinoma (HCC). Recently, it is defined that cancer cells can attain a hybrid epithelial/mesenchymal (hybrid E/M) phenotype. Cells with hybrid E/M phenotype comprise mixed epithelial and mesenchymal properties, they can be more resistant to therapeutics and also more capable of initiating metastatic lesions. However, the mechanisms regulating hybrid E/M in HCC are not well described yet. In this study, we investigated the role of the potential crosstalk between lncRNA HOTAIR and c-Met receptor tyrosine kinase, which are two essential regulators of EMT and MET, in acquiring of hybrid E/M phenotype in HCC. Methods Expression of c-Met and lncRNA HOTAIR were defined in HCC cell lines and patient tissues through HCC progression. lncRNA HOTAIR was overexpressed in SNU-449 cells and its effects on c-Met signaling were analyzed. c-Met was overexpressed in SNU-398 cells and its effect on HOTAIR expression was analyzed. Biological significance of HOTAIR/c-Met interplay was defined in means of adhesion, proliferation, motility behavior, invasion, spheroid formation and metastatic ability. Effect of ectopic lncRNA HOTAIR expression on phenotype was defined with investigation of molecular epithelial and mesenchymal traits. Results In vitro and in vivo experiments verified the pivotal role of lncRNA HOTAIR in acquisition of hybrid E/M phenotype through modulating expression and activation of c-Met and its membrane co-localizing partner Caveolin-1, and membrane organization to cope with the rate limiting steps of metastasis such as survival in adhesion independent microenvironment, escaping from anoikis and resisting to fluidic shear stress (FSS) in HCC. Conclusions Our work provides the first evidence suggesting a role for lncRNA HOTAIR in the modulation of c-Met to promote hybrid E/M phenotype. The balance between lncRNA HOTAIR and c-Met might be critical for cell fate decision and metastatic potential of HCC cells. Video Abstract
Collapse
Affiliation(s)
- Hande Topel
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Dehan Comez
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Gulsun Bagci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
171
|
Celià-Terrassa T, Jolly MK. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036905. [PMID: 31570380 DOI: 10.1101/cshperspect.a036905] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer stem cell (CSC) concept stands for undifferentiated tumor cells with the ability to initiate heterogeneous tumors. It is also relevant in metastasis and can explain how metastatic tumors mirror the heterogeneity of primary tumors. Cellular plasticity, including the epithelial-to-mesenchymal transition (EMT), enables the generation of CSCs at different steps of the metastatic process including metastatic colonization. In this review, we update the concept of CSCs and provide evidence of the existence of metastatic stem cells (MetSCs). In addition, we highlight the nuanced understanding of EMT that has been gained recently and the association of mesenchymal-to-epithelial transition (MET) with the acquisition of CSCs properties during metastasis. We also comment on the computational approaches that have profoundly influenced our understanding of CSCs and EMT; and how these studies and new experimental technologies can yield a deeper understanding of the biological aspects of metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
172
|
Steinbichler TB, Dudas J, Ingruber J, Glueckert R, Sprung S, Fleischer F, Cidlinsky N, Dejaco D, Kofler B, Giotakis AI, Skvortsova II, Riechelmann H. Slug Is A Surrogate Marker of Epithelial to Mesenchymal Transition (EMT) in Head and Neck Cancer. J Clin Med 2020; 9:jcm9072061. [PMID: 32630033 PMCID: PMC7408865 DOI: 10.3390/jcm9072061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Epithelial to mesenchymal transition (EMT) promotes therapy resistance in head and neck cancer (HNC) cells. In this study, EMT was quantified in HNC tumor samples by the cellular co-localization of cytokeratin/vimentin, E-cadherin/β-catenin and by Slug expression. Methods: Tissue samples from HNC patients were stained with antibody pairs against cytokeratin/vimentin and E-cadherin/β-catenin. Epithelial–mesenchymal co-localization was quantified using immunofluorescence multichannel image cytometry. Double positivity was confirmed using confocal microscopy. Slug was semi-quantified by 2 specialists and quantified by bright field image cytometry. Results: Tumor samples of 102 patients were investigated. A loss of E-cadherin positive cells (56.9 ± 2.6% vs. 97.9 ± 1.0%; p < 0.0001) and E-cadherin/β-catenin double positive cells (15.4 ± 5.7% vs. 85.4 ± 1.2%; p < 0.0001) was observed in tumor samples. The percentage of Slug positive cells was increased in tumor samples (12.1 ± 3.6% vs. 3.2 ± 2.6%; p = 0.001). Ordinal Slug scores judged by two specialists closely correlated with percentage of Slug-positive cells (Spearman’s rho = 0.81; p < 0.001). Slug score correlated negatively with the percentage of E-cadherin positive cells (r = 0.4; p = 0.006), the percentage of E-cadherin/β-catenin positive cells (r = 0.5; p = 0.001) and positively with cytokeratin/vimentin positive cells (r = 0.4, p = 0.003). Conclusion: EMT can be assessed in HNC tumor probes by cytokeratin/vimentin co-expression and loss of E-cadherin/β-catenin co-expression. Slug score provides a convenient surrogate marker for EMT.
Collapse
Affiliation(s)
- T. B. Steinbichler
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
- Correspondence: ; Tel.: +43-512-504-23142
| | - J. Dudas
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - J. Ingruber
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - R. Glueckert
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - S. Sprung
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - F. Fleischer
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - N. Cidlinsky
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - D. Dejaco
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - B. Kofler
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - A. I. Giotakis
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| | - I. I. Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck; 6020 Innsbruck, Austria;
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - H. Riechelmann
- Department for Otorhinolaryngology, Head and Neck surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.D.); (J.I.); (R.G.); (F.F.); (N.C.); (D.D.); (B.K.); (A.I.G.); (H.R.)
| |
Collapse
|
173
|
Zhu F, Bo H, Liu G, Li R, Liu Z, Fan L. SPANXN2 functions a cell migration inhibitor in testicular germ cell tumor cells. PeerJ 2020; 8:e9358. [PMID: 32612888 PMCID: PMC7319028 DOI: 10.7717/peerj.9358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background SPANX family members are thought to play an important role in cancer progression. The SPANXN2 is a gene expressed mainly in normal testis, but its role in testicular germ cell tumors (TGCTs) has yet to be investigated. TGCT is one of the most common solid tumors in young men and is associated with poor prognosis; however, effective prognostic indicators remain elusive. Therefore, we investigated the role of SPANXN2 in TGCT development. Methods SPANXN2 expression levels were validated by quantitative real-time polymerase chain reaction (qRT-PCR) analyses of 14 TGCT samples and five adjacent normal tissue samples. SPANXN2 was transiently overexpressed in TGCT cells to study the consequences for cell function. The effects of SPANXN2 on cell migration were evaluated in transwell and wound healing assays. The effects on cloning ability were evaluated in colony formation assays. MTT assays and cell cycle analysis were used to detect the effects of SPANXN2 on cell proliferation. The expression levels of EMT- and AKT-related proteins in cells overexpressing SPANXN2 were analyzed by Western blotting. Results Compared with adjacent normal tissues, the Gene Expression Profiling Interactive Analysis database showed SPANXN2 expression was downregulated in TGCTs which was consistent with the qRT-PCR analysis. SPANXN2 overexpression reduced cell migration and colony formation capability and downregulated expression of EMT- and AKT-related proteins, Vimentin, Snail, AKT, and p-AKT. Conclusion Our results suggest that SPANXN2 regulates TGCT cell migration via EMT- and AKT-related proteins although its role in the occurrence and development of TGCT remains to be fully elucidated.
Collapse
Affiliation(s)
- Fang Zhu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Hao Bo
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Guangmin Liu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Ruixue Li
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Zhizhong Liu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Hunan Cancer Hospital, Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
| | - Liqing Fan
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| |
Collapse
|
174
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
175
|
Konrad L, Dietze R, Riaz MA, Scheiner-Bobis G, Behnke J, Horné F, Hoerscher A, Reising C, Meinhold-Heerlein I. Epithelial-Mesenchymal Transition in Endometriosis-When Does It Happen? J Clin Med 2020; 9:E1915. [PMID: 32570986 PMCID: PMC7357060 DOI: 10.3390/jcm9061915] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important process of cell remodeling characterized by the gradual loss of the epithelial phenotype and progressive gain of a mesenchymal phenotype. EMT is not an all-or-nothing process, but instead a transition of epithelial to mesenchymal cells with intermediate cell states. Recently, EMT was described in endometriosis, and many EMT-specific pathways like Twist, Snail, Slug, Zinc finger E-box-binding homeobox 1/2 (ZEB1/2), E/N-cadherin, keratins, and claudins are involved. However, as pointed out in this review, a comparison of the eutopic endometrium of women with and without endometriosis yielded only subtle changes of these EMT markers. Furthermore, only very few alterations in cell-cell contacts could be found but without changes in the epithelial phenotype. This suggests only a partial EMT which is not a prerequisite for the detachment of endometrial cells and, thus, not critical for the first step(s) in the pathogenesis of endometriosis. In contrast, the majority of changes in the EMT-related marker expression were found in the ectopic endometrium, especially in the three endometriotic entities, ovarian, peritoneal, and deep infiltrating endometriosis (DIE), compared with the eutopic endometrium. In this review, we examine the most important EMT pathways described in endometriosis and propose that partial EMT might result from the interaction of endometrial implants with their surrounding microenvironment.
Collapse
Affiliation(s)
- Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Raimund Dietze
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35037 Marburg, Germany;
| | - Muhammad A. Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Georgios Scheiner-Bobis
- Institute for Veterinary-Physiology and -Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, 35390 Gießen, Germany;
| | - Judith Behnke
- Department of General Pediatrics and Neonatalogy, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany;
| | - Fabian Horné
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Alena Hoerscher
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Christoph Reising
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.H.); (A.H.); (C.R.); (I.M.-H.)
| |
Collapse
|
176
|
Liu H, Ding J, Wu Y, Wu D, Qi J. Prospective Study of the Clinical Impact of Epithelial and Mesenchymal Circulating Tumor Cells in Localized Prostate Cancer. Cancer Manag Res 2020; 12:4549-4560. [PMID: 32606948 PMCID: PMC7304675 DOI: 10.2147/cmar.s253997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Although circulating tumor cells (CTCs) are considered as a surrogate marker in monitoring disease progression and treatment response in late stage prostate cancer (PCa), its clinical impact in localized PCa remains unclear, indicating the limitation that is simply based on cell count. This perspective observational study aimed to detect the epithelial-to-mesenchymal transition (EMT) subtypes of CTCs in localized PCa and analyze their clinical relevance and application in predicting PCa stages before surgery compared with the Partin table. Patients and Methods Between August 2017 and April 2019, 80 newly diagnosed localized PCa patients were enrolled in the study. Peripheral blood samples (5 mL) were collected prior to surgery. The CanPatrolTM CTC enrichment technique, a size-based isolation method, was used to detect the EMT CTCs. Clinical relevance of the CTCs was analyzed with Spearman’s rank correlation test. Models to predict pathological were built with multivariate logistic regression. Receiver operating characteristic (ROC) curve and area under the curve (AUC) analysis were performed to evaluate the accuracy of the prediction model. Results CTCs were detected in 55% of all patients. The biophenotypic CTCs were most valuable and closely correlated with PSA, Gleason score, D’Amico risk classification, and pathological stage in localized PCa. The mesenchymal subtype was rare in this population but associated with seminal vesicle invasion, while the epithelial subtype had limited clinical significance. In addition, the biophenotypic CTCs combined with traditional clinical variables were analyzed by multivariate logistic regression to predict organ-confined disease before surgery, of which the AUC reached 0.818 and was superior to the Partin table 2017 in our cohort. Conclusion This study highlights the clinical impact of the biophenotypic CTCs in localized PCa, which was most closely related to clinical variables and could help to predict pathology outcomes before surgery.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jie Ding
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yanyuan Wu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Di Wu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
177
|
Ranganathan S, Kumar S, Mohanty SS, Jolly MK, Rangarajan A. Cellular Plasticity in Matrix-attached and -Detached Cells: Implications in Metastasis. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00179-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
178
|
Identifying inhibitors of epithelial-mesenchymal plasticity using a network topology-based approach. NPJ Syst Biol Appl 2020; 6:15. [PMID: 32424264 PMCID: PMC7235229 DOI: 10.1038/s41540-020-0132-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the cause of over 90% of cancer-related deaths. Cancer cells undergoing metastasis can switch dynamically between different phenotypes, enabling them to adapt to harsh challenges, such as overcoming anoikis and evading immune response. This ability, known as phenotypic plasticity, is crucial for the survival of cancer cells during metastasis, as well as acquiring therapy resistance. Various biochemical networks have been identified to contribute to phenotypic plasticity, but how plasticity emerges from the dynamics of these networks remains elusive. Here, we investigated the dynamics of various regulatory networks implicated in Epithelial–mesenchymal plasticity (EMP)—an important arm of phenotypic plasticity—through two different mathematical modelling frameworks: a discrete, parameter-independent framework (Boolean) and a continuous, parameter-agnostic modelling framework (RACIPE). Results from either framework in terms of phenotypic distributions obtained from a given EMP network are qualitatively similar and suggest that these networks are multi-stable and can give rise to phenotypic plasticity. Neither method requires specific kinetic parameters, thus our results emphasize that EMP can emerge through these networks over a wide range of parameter sets, elucidating the importance of network topology in enabling phenotypic plasticity. Furthermore, we show that the ability to exhibit phenotypic plasticity correlates positively with the number of positive feedback loops in a given network. These results pave a way toward an unorthodox network topology-based approach to identify crucial links in a given EMP network that can reduce phenotypic plasticity and possibly inhibit metastasis—by reducing the number of positive feedback loops.
Collapse
|
179
|
Vernot JP. Senescence-Associated Pro-inflammatory Cytokines and Tumor Cell Plasticity. Front Mol Biosci 2020; 7:63. [PMID: 32478091 PMCID: PMC7237636 DOI: 10.3389/fmolb.2020.00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
The well-recognized cell phenotypic heterogeneity in tumors is a great challenge for cancer treatment. Dynamic interconversion and movement within a spectrum of different cell phenotypes (cellular plasticity) with the acquisition of specific cell functions is a fascinating biological puzzle, that represent an additional difficulty for cancer treatment and novel therapies development. The understanding of the molecular mechanisms responsible for moving or stabilizing tumor cells within this spectrum of variable states constitutes a valuable tool to overcome these challenges. In particular, cell transitions between epithelial and mesenchymal phenotypes (EMT-MET) and de-and trans-differentiation processes are relevant, since it has been shown that they confer invasiveness, drug resistance, and metastatic ability, due to the simultaneous acquisition of stem-like cell properties. Multiple drivers participate in these cell conversions events. In particular, cellular senescence and senescence-associated soluble factors have been shown to unveil stem-like cell properties and cell plasticity. By modulating gradually the composition of their secretome and the time of exposure, senescent cells may have differential effect not only on tumor cells but also on surrounding cells. Intriguingly, tumor cells that scape from senescence acquire stem-like cell properties and aggressiveness. The reinforcement of senescence and inflammation by soluble factors and the participation of immune cells may provide a dynamic milieu having varied effects on cell transitions, reprogramming, plasticity, stemness and therefore heterogeneity. This will confer different epithelial/mesenchymal traits (hybrid phenotype) and stem-like cell properties, combinations of which, in a particular cell context, could be responsible for different cellular functions during cancer progression (survival, migration, invasion, colonization or proliferation). Additionally, cooperative behavior between cell subpopulations with different phenotypes/stemness functions could also modulate their cellular plasticity. Here, we will discuss the role of senescence and senescence-associated pro-inflammatory cytokines on the induction of cellular plasticity, their effect role in establishing particular states within this spectrum of cell phenotypes and how this is accompanied by stem-like cell properties that, as the epithelial transitions, may also have a continuum of characteristics providing tumor cells with functional adaptability specifically useful in the different stages of carcinogenesis.
Collapse
Affiliation(s)
- Jean Paul Vernot
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
180
|
Thong T, Wang Y, Brooks MD, Lee CT, Scott C, Balzano L, Wicha MS, Colacino JA. Hybrid Stem Cell States: Insights Into the Relationship Between Mammary Development and Breast Cancer Using Single-Cell Transcriptomics. Front Cell Dev Biol 2020; 8:288. [PMID: 32457901 PMCID: PMC7227401 DOI: 10.3389/fcell.2020.00288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Similarities between stem cells and cancer cells have implicated mammary stem cells in breast carcinogenesis. Recent evidence suggests that normal breast stem cells exist in multiple phenotypic states: epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M). Hybrid E/M cells in particular have been implicated in breast cancer metastasis and poor prognosis. Mounting evidence also suggests that stem cell phenotypes change throughout the life course, for example, through embryonic development and pregnancy. The goal of this study was to use single cell RNA-sequencing to quantify cell state distributions of the normal mammary (NM) gland throughout developmental stages and when perturbed into a stem-like state in vitro using conditional reprogramming (CR). Using machine learning based dataset alignment, we integrate multiple mammary gland single cell RNA-seq datasets from human and mouse, along with bulk RNA-seq data from breast tumors in the Cancer Genome Atlas (TCGA), to interrogate hybrid stem cell states in the normal mammary gland and cancer. CR of human mammary cells induces an expanded stem cell state, characterized by increased expression of embryonic stem cell associated genes. Alignment to a mouse single-cell transcriptome atlas spanning mammary gland development from in utero to adulthood revealed that NM cells align to adult mouse cells and CR cells align across the pseudotime trajectory with a stem-like population aligning to the embryonic mouse cells. Three hybrid populations emerge after CR that are rare in NM: KRT18+/KRT14+ (hybrid luminal/basal), EPCAM+/VIM+ (hybrid E/M), and a quadruple positive population, expressing all four markers. Pseudotime analysis and alignment to the mouse developmental trajectory revealed that E/M hybrids are the most developmentally immature. Analyses of single cell mouse mammary RNA-seq throughout pregnancy show that during gestation, there is an enrichment of hybrid E/M cells, suggesting that these cells play an important role in mammary morphogenesis during lactation. Finally, pseudotime analysis and alignment of TCGA breast cancer expression data revealed that breast cancer subtypes express distinct developmental signatures, with basal tumors representing the most “developmentally immature” phenotype. These results highlight phenotypic plasticity of normal mammary stem cells and provide insight into the relationship between hybrid cell populations, stemness, and cancer.
Collapse
Affiliation(s)
- Tasha Thong
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Yutong Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Michael D Brooks
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Christopher T Lee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Clayton Scott
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Laura Balzano
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Justin A Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
181
|
Thankamony AP, Saxena K, Murali R, Jolly MK, Nair R. Cancer Stem Cell Plasticity - A Deadly Deal. Front Mol Biosci 2020; 7:79. [PMID: 32426371 PMCID: PMC7203492 DOI: 10.3389/fmolb.2020.00079] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intratumoral heterogeneity is a major ongoing challenge in the effective therapeutic targeting of cancer. Accumulating evidence suggests that a fraction of cells within a tumor termed Cancer Stem Cells (CSCs) are primarily responsible for this diversity resulting in therapeutic resistance and metastasis. Adding to this complexity, recent studies have shown that there can be different subpopulations of CSCs with varying biochemical and biophysical traits resulting in varied dissemination and drug-resistance potential. Moreover, cancer cells can exhibit a high level of plasticity or the ability to dynamically switch between CSC and non-CSC states or among different subsets of CSCs. In addition, CSCs also display extensive metabolic plasticity. The molecular mechanisms underlying these different interconnected axes of plasticity has been under extensive investigation and the trans-differentiation process of Epithelial to Mesenchymal transition (EMT) has been identified as a major contributing factor. Besides genetic and epigenetic factors, CSC plasticity is also shaped by non-cell-autonomous effects such as the tumor microenvironment (TME). In this review, we discuss the latest developments in decoding mechanisms and implications of CSC plasticity in tumor progression at biochemical and biophysical levels, and the latest in silico approaches being taken for characterizing cancer cell plasticity. These efforts can help improve existing therapeutic approaches by taking into consideration the contribution of cellular plasticity/heterogeneity in enabling drug resistance.
Collapse
Affiliation(s)
- Archana P. Thankamony
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
182
|
Savelieva OE, Tashireva LA, Kaigorodova EV, Buzenkova AV, Mukhamedzhanov RK, Grigoryeva ES, Zavyalova MV, Tarabanovskaya NA, Cherdyntseva NV, Perelmuter VM. Heterogeneity of Stemlike Circulating Tumor Cells in Invasive Breast Cancer. Int J Mol Sci 2020; 21:ijms21082780. [PMID: 32316333 PMCID: PMC7216207 DOI: 10.3390/ijms21082780] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
The presence of stem and epithelial–mesenchymal-transition (EMT) features in circulating tumor cells (CTCs) determines their invasiveness, adaptability to the microenvironment, and resistance to proapoptotic signals and chemotherapy. It also allows them to fulfil the role of metastatic “seeds”. We evaluated the heterogeneity of stem CTCs by their CD44, ALDH1, and CD133 expression depending on N-cadherin expression in breast-cancer patients. A total of 38 female patients were selected for this study. CTC phenotypes were determined by flow cytometry before any type of treatment. Multiplex immunofluorescence was used for the evaluation of tumor-cell heterogeneity in primary lesions. In patients who had CD44-CD24- CTCs, a subset of cells with the expression of other stem-cell markers (CD133 and ALDH1) were detected. Expression of CD133 and/or ALDH1 may be associated with expression of N-cadherin: all populations of N-cadherin+ CTCs demonstrate stem features; in the absence of N-cadherin expression, true nonstem (CD44-CD24-CD133-ALDH1-) cells are found. The heterogeneity of stem marker expression in CTCs was observed regardless of N-cadherin expression. In our study, stromal cell-derived factor-1 (SDF-1) receptor expression in CTCs did not depend on stemlike traits, but was instead associated with N-cadherin expression. Subpopulations of tumor cells, detected both in tumors and blood, were identified. Breast cancer was characterized by pronounced interpersonal and intrapersonal heterogeneity of CTCs by the presence and combination of various stem features and N-cadherin expression. To complete the characterization of stemlike features of CTCs, we suggest the simultaneous use of the three stem markers.
Collapse
Affiliation(s)
- Olga E. Savelieva
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
- Correspondence: ; Tel.: +7-(3822)-28-26-86
| | - Liubov A. Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
| | - Evgeniya V. Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
- Siberian State Medical University, 634050 Tomsk, Russia;
| | - Angelina V. Buzenkova
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
- Siberian State Medical University, 634050 Tomsk, Russia;
| | | | - Evgeniya S. Grigoryeva
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
| | - Marina V. Zavyalova
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
- Siberian State Medical University, 634050 Tomsk, Russia;
| | - Natalia A. Tarabanovskaya
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
| | - Vladimir M. Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (L.A.T.); (E.V.K.); (A.V.B.); (E.S.G.); (M.V.Z.); (N.A.T.); (N.V.C.); (V.M.P.)
| |
Collapse
|
183
|
Martin-Hijano L, Sainz B. The Interactions Between Cancer Stem Cells and the Innate Interferon Signaling Pathway. Front Immunol 2020; 11:526. [PMID: 32296435 PMCID: PMC7136464 DOI: 10.3389/fimmu.2020.00526] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) form a family of cytokines with pleiotropic effects that modulate the immune response against multiple challenges like viral infections, autoimmune diseases, and cancer. While numerous anti-tumor activities have been described for IFNs, IFNs have also been associated with tumor growth and progression. The effect of IFNs on apoptosis, angiogenesis, tumor cell immunogenicity, and modulation of immune cells have been largely studied; however, less is known about their specific effects on cancer stem cells (CSCs). CSCs constitute a subpopulation of tumor cells endowed with stem-like properties including self-renewal, chemoresistance, tumorigenic capacity, and quiescence. This rare and unique subpopulation of cells is believed to be responsible for tumor maintenance, metastatic spread, and relapse. Thus, this review aims to summarize and discuss the current knowledge of the anti- and pro-CSCs effects of IFNs and also to highlight the need for further research on the interplay between IFNs and CSCs. Importantly, understanding this interplay will surely help to exploit the anti-tumor effects of IFNs, specifically those that target CSCs.
Collapse
Affiliation(s)
- Laura Martin-Hijano
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Bruno Sainz
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
184
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 PMCID: PMC7100584 DOI: 10.3389/fbioe.2020.00220] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
185
|
Chakraborty P, George JT, Tripathi S, Levine H, Jolly MK. Comparative Study of Transcriptomics-Based Scoring Metrics for the Epithelial-Hybrid-Mesenchymal Spectrum. Front Bioeng Biotechnol 2020; 8:220. [PMID: 32266244 DOI: 10.3389/fbioe.2020.00220/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023] Open
Abstract
The Epithelial-mesenchymal transition (EMT) is a cellular process implicated in embryonic development, wound healing, and pathological conditions such as cancer metastasis and fibrosis. Cancer cells undergoing EMT exhibit enhanced aggressive behavior characterized by drug resistance, tumor-initiation potential, and the ability to evade the immune system. Recent in silico, in vitro, and in vivo evidence indicates that EMT is not an all-or-none process; instead, cells can stably acquire one or more hybrid epithelial/mesenchymal (E/M) phenotypes which often can be more aggressive than purely E or M cell populations. Thus, the EMT status of cancer cells can prove to be a critical estimate of patient prognosis. Recent attempts have employed different transcriptomics signatures to quantify EMT status in cell lines and patient tumors. However, a comprehensive comparison of these methods, including their accuracy in identifying cells in the hybrid E/M phenotype(s), is lacking. Here, we compare three distinct metrics that score EMT on a continuum, based on the transcriptomics signature of individual samples. Our results demonstrate that these methods exhibit good concordance among themselves in quantifying the extent of EMT in a given sample. Moreover, scoring EMT using any of the three methods discerned that cells can undergo varying extents of EMT across tumor types. Separately, our analysis also identified tumor types with maximum variability in terms of EMT and associated an enrichment of hybrid E/M signatures in these samples. Moreover, we also found that the multinomial logistic regression (MLR)-based metric was capable of distinguishing between "pure" individual hybrid E/M vs. mixtures of E and M cells. Our results, thus, suggest that while any of the three methods can indicate a generic trend in the EMT status of a given cell, the MLR method has two additional advantages: (a) it uses a small number of predictors to calculate the EMT score and (b) it can predict from the transcriptomic signature of a population whether it is comprised of "pure" hybrid E/M cells at the single-cell level or is instead an ensemble of E and M cell subpopulations.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Ph.D. Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics, College of Science, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
186
|
Sadeghi M, Ordway B, Rafiei I, Borad P, Fang B, Koomen JL, Zhang C, Yoder S, Johnson J, Damaghi M. Integrative Analysis of Breast Cancer Cells Reveals an Epithelial-Mesenchymal Transition Role in Adaptation to Acidic Microenvironment. Front Oncol 2020; 10:304. [PMID: 32211331 PMCID: PMC7076123 DOI: 10.3389/fonc.2020.00304] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Early ducts of breast tumors are unequivocally acidic. High rates of glycolysis combined with poor perfusion lead to a congestion of acidic metabolites in the tumor microenvironment, and pre-malignant cells must adapt to this acidosis to thrive. Adaptation to acidosis selects cancer cells that can thrive in harsh conditions and are capable of outgrowing the normal or non-adapted neighbors. This selection is usually accompanied by phenotypic change. Epithelial mesenchymal transition (EMT) is one of the most important switches correlated to malignant tumor cell phenotype and has been shown to be induced by tumor acidosis. New evidence shows that the EMT switch is not a binary system and occurs on a spectrum of transition states. During confirmation of the EMT phenotype, our results demonstrated a partial EMT phenotype in our acid-adapted cell population. Using RNA sequencing and network analysis we found 10 dysregulated network motifs in acid-adapted breast cancer cells playing a role in EMT. Our further integrative analysis of RNA sequencing and SILAC proteomics resulted in recognition of S100B and S100A6 proteins at both the RNA and protein level. Higher expression of S100B and S100A6 was validated in vitro by Immunocytochemistry. We further validated our finding both in vitro and in patients' samples by IHC analysis of Tissue Microarray (TMA). Correlation analysis of S100A6 and LAMP2b as marker of acidosis in each patient from Moffitt TMA approved the acid related role of S100A6 in breast cancer patients. Also, DCIS patients with higher expression of S100A6 showed lower survival compared to lower expression. We propose essential roles of acid adaptation in cancer cells EMT process through S100 proteins such as S100A6 that can be used as therapeutic strategy targeting both acid-adapted and malignant phenotypes.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Cell and Molecular Biology, Faculty of Science, Semnan University, Semnan, Iran
| | - Bryce Ordway
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ilyia Rafiei
- Department of Cell and Molecular Biology, Faculty of Science, Semnan University, Semnan, Iran
| | - Punit Borad
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Bin Fang
- Proteomics Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - John L Koomen
- Proteomics Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Biology Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Sean Yoder
- Molecular Biology Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Joseph Johnson
- Microscopy Core, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mehdi Damaghi
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
187
|
Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene 2020; 39:3680-3692. [PMID: 32152404 PMCID: PMC7190572 DOI: 10.1038/s41388-020-1244-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023]
Abstract
Epithelial-mesenchymal transitions (EMTs) are high-profile in the field of circulating tumor cells (CTCs). EMT-shifted CTCs are considered to encompass pre-metastatic subpopulations though underlying molecular mechanisms remain elusive. Our previous work identified tissue factor (TF) as an EMT-induced gene providing tumor cells with coagulant properties and supporting metastatic colonization by CTCs. We here report that vimentin, the type III intermediate filament considered a canonical EMT marker, contributes to TF regulation and positively supports coagulant properties and early metastasis. Different evidence further pointed to a new post-transcriptional regulatory mechanism of TF mRNA by vimentin: (1) vimentin silencing accelerated TF mRNA decay after actinomycin D treatment, reflecting TF mRNA stabilization, (2) RNA immunoprecipitation revealed enriched levels of TF mRNA in vimentin immunoprecipitate, (3) TF 3'-UTR-luciferase reporter vector assays implicated the 3'-UTR of TF mRNA in vimentin-dependent TF regulation, and (4) using different TF 3'UTR-luciferase reporter vectors mutated for potential miR binding sites and specific Target Site Blockers identified a key miR binding site in vimentin-dependent TF mRNA regulation. All together, these data support a novel mechanism by which vimentin interferes with a miR-dependent negative regulation of TF mRNA, thereby promoting coagulant activity and early metastasis of vimentin-expressing CTCs.
Collapse
|
188
|
Hybrid Epithelial/Mesenchymal State in Cancer Metastasis: Clinical Significance and Regulatory Mechanisms. Cells 2020; 9:cells9030623. [PMID: 32143517 PMCID: PMC7140395 DOI: 10.3390/cells9030623] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been well recognized for its essential role in cancer progression as well as normal tissue development. In cancer cells, activation of EMT permits the cells to acquire migratory and invasive abilities and stem-like properties. However, simple categorization of cancer cells into epithelial and mesenchymal phenotypes misleads the understanding of the complicated metastatic process, and contradictory results from different studies also indicate the limitation of application of EMT theory in cancer metastasis. Nowadays, growing evidence suggests the existence of an intermediate status between epithelial and mesenchymal phenotypes, i.e., the "hybrid epithelial-mesenchymal (hybrid E/M)" state, provides a possible explanation for those conflicting results. Appearance of hybrid E/M phenotype offers a more plastic status for cancer cells to adapt the stressful environment for proceeding metastasis. In this article, we review the biological importance of the dynamic changes between the epithelial and the mesenchymal states. The regulatory mechanisms encompassing the translational, post-translational, and epigenetic control for this complex and plastic status are also discussed.
Collapse
|
189
|
Heterogeneity of Circulating Tumor Cells in Breast Cancer: Identifying Metastatic Seeds. Int J Mol Sci 2020; 21:ijms21051696. [PMID: 32121639 PMCID: PMC7084665 DOI: 10.3390/ijms21051696] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis being the main cause of breast cancer (BC) mortality represents the complex and multistage process. The entrance of tumor cells into the blood vessels and the appearance of circulating tumor cells (CTCs) seeding and colonizing distant tissues and organs are one of the key stages in the metastatic cascade. Like the primary tumor, CTCs are extremely heterogeneous and presented by clusters and individual cells which consist of phenotypically and genetically distinct subpopulations. However, among this diversity, only a small number of CTCs is able to survive in the bloodstream and to form metastases. The identification of the metastasis-initiating CTCs is believed to be a critical issue in developing therapeutic strategies against metastatic disease. In this review, we summarize the available literature addressing morphological, phenotypic and genetic heterogeneity of CTCs and the molecular makeup of specific subpopulations associated with BC metastasis. Special attention is paid to the need for in vitro and in vivo studies to confirm the tumorigenic and metastatic potential of metastasis-associating CTCs. Finally, we consider treatment approaches that could be effective to eradicate metastatic CTCs and to prevent metastasis.
Collapse
|
190
|
SMURF2 prevents detrimental changes to chromatin, protecting human dermal fibroblasts from chromosomal instability and tumorigenesis. Oncogene 2020; 39:3396-3410. [PMID: 32103168 DOI: 10.1038/s41388-020-1226-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/17/2023]
Abstract
E3 ubiquitin ligases (E3s) play essential roles in the maintenance of tissue homeostasis under normal and stress conditions, as well as in disease states, particularly in cancer. However, the role of E3s in the initiation of human tumors is poorly understood. Previously, we reported that genetic ablation of the HECT-type E3 ubiquitin ligase Smurf2 induces carcinogenesis in mice; but whether and how these findings are pertinent to the inception of human cancer remain unknown. Here we show that SMURF2 is essential to protect human dermal fibroblasts (HDFs) from malignant transformation, and its depletion converts HDFs into tumorigenic entity. This phenomenon was associated with the radical changes in chromatin structural and epigenetic landscape, dysregulated gene expression and cell-cycle control, mesenchymal-to-epithelial transition and impaired DNA damage response. Furthermore, we show that SMURF2-mediated tumor suppression is interlinked with SMURF2's ability to regulate the expression of two central chromatin modifiers-an E3 ubiquitin ligase RNF20 and histone methyltransferase EZH2. Silencing these factors significantly reduced the growth and transformation capabilities of SMURF2-depleted cells. Finally, we demonstrate that SMURF2-compromised HDFs are highly tumorigenic in nude mice. These findings suggest the critical role that SMURF2 plays in preventing malignant alterations, chromosomal instability and cancer.
Collapse
|
191
|
D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol 2020; 60:351-361. [DOI: 10.1016/j.semcancer.2019.08.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
|
192
|
Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells. J Proteomics 2020; 212:103594. [DOI: 10.1016/j.jprot.2019.103594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
193
|
Wang H, Ji X. SMAD6, positively regulated by the DNM3OS-miR-134-5p axis, confers promoting effects to cell proliferation, migration and EMT process in retinoblastoma. Cancer Cell Int 2020; 20:23. [PMID: 31992960 PMCID: PMC6977187 DOI: 10.1186/s12935-020-1103-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Retinoblastoma (RB) is acknowledged to be the commonest intraocular malignancy in infants and children and the outcome of RB patients is unfavorable due to limited early diagnosis and effective therapy. SMAD family member 6 (SMAD6) has been reported in the initiation and progression of human cancers by acting as a biological participant. However, the role of SMAD6 in RB has not been illustrated yet. Methods The expression of SMAD6 mRNA, miR-134-5p and DNM3OS was measured by RT-qPCR. SMAD6 protein levels were measured by western blot. The effects of SMAD6 depletion on RB cells were analyzed using CCK-8 and transwell assays. The key proteins related to epithelial-mesenchymal transition (EMT) was determined by western blot. The localization of DNM3OS was detected by nuclear/cytoplasmic assay. In addition, the direct interaction between miR-134-5p and SMAD6 or DNM3OS was confirmed with the application of dual-luciferase reporter assay. Results SMAD6 was upregulated in RB tissue samples and cell lines, and silencing SMAD6 suppressed cell proliferation, migration and EMT in RB. Mechanically, SMAD6 was positively regulated by lncRNA DNM3OS through competitively interacting with miR-134-5p. DNM3OS contributed to RB progression by SMAD6-mediated manner. Conclusions This research unmasked a novel DNM3OS/miR-134-5p/SMAD6 pathway in RB, which might make contribution to treatment of RB.![]()
Collapse
Affiliation(s)
- Hui Wang
- Ophthalmology, The People's Hospital of Jiaozuo City, 267 Jiefang Middle Road, Jiaozuo City, 454150 Henan Province China
| | - Xiang Ji
- Ophthalmology, The People's Hospital of Jiaozuo City, 267 Jiefang Middle Road, Jiaozuo City, 454150 Henan Province China
| |
Collapse
|
194
|
Panchy N, Azeredo-Tseng C, Luo M, Randall N, Hong T. Integrative Transcriptomic Analysis Reveals a Multiphasic Epithelial-Mesenchymal Spectrum in Cancer and Non-tumorigenic Cells. Front Oncol 2020; 9:1479. [PMID: 32038999 PMCID: PMC6987415 DOI: 10.3389/fonc.2019.01479] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), the conversion between rigid epithelial cells and motile mesenchymal cells, is a reversible cellular process involved in tumorigenesis, metastasis, and chemoresistance. Numerous studies have found that several types of tumor cells show a high degree of cell-to-cell heterogeneity in terms of their gene expression signatures and cellular phenotypes related to EMT. Recently, the prevalence and importance of partial or intermediate EMT states have been reported. It is unclear, however, whether there is a general pattern of cancer cell distribution in terms of the overall expression of epithelial-related genes and mesenchymal-related genes, and how this distribution is related to EMT process in normal cells. In this study, we performed integrative transcriptomic analysis that combines cancer cell transcriptomes, time course data of EMT in non-tumorigenic epithelial cells, and epithelial cells with perturbations of key EMT factors. Our statistical analysis shows that cancer cells are widely distributed in the EMT spectrum, and the majority of these cells can be described by an EMT path that connects the epithelial and the mesenchymal states via a hybrid expression region in which both epithelial genes and mesenchymal genes are highly expressed overall. We found that key patterns of this EMT path are observed in EMT progression in non-tumorigenic cells and that transcription factor ZEB1 plays a key role in defining this EMT path via diverse gene regulatory circuits connecting to epithelial genes. We performed Gene Set Variation Analysis to show that the cancer cells at hybrid EMT states also possess hybrid cellular phenotypes with both high migratory and high proliferative potentials. Our results reveal critical patterns of cancer cells in the EMT spectrum and their relationship to the EMT process in normal cells, and provide insights into the mechanistic basis of cancer cell heterogeneity and plasticity.
Collapse
Affiliation(s)
- Nicholas Panchy
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, Knoxville, TN, United States
| | - Cassandra Azeredo-Tseng
- Department of Biochemistry, New College of Florida, Sarasota, FL, United States
- Department of Applied Mathematics, New College of Florida, Sarasota, FL, United States
| | - Michael Luo
- Department of Mathematics & Statistics, The College of New Jersey, Ewing Township, NJ, United States
| | - Natalie Randall
- Department of Mathematics and Computer Science, Austin College, Sherman, TX, United States
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, Knoxville, TN, United States
| |
Collapse
|
195
|
Serial Xenotransplantation in NSG Mice Promotes a Hybrid Epithelial/Mesenchymal Gene Expression Signature and Stemness in Rhabdomyosarcoma Cells. Cancers (Basel) 2020; 12:cancers12010196. [PMID: 31941033 PMCID: PMC7016569 DOI: 10.3390/cancers12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Serial xenotransplantation of sorted cancer cells in immunodeficient mice remains the most complex test of cancer stem cell (CSC) phenotype. However, we have demonstrated in various sarcomas that putative CSC surface markers fail to identify CSCs, thereby impeding the isolation of CSCs for subsequent analyses. Here, we utilized serial xenotransplantation of unsorted rhabdomyosarcoma cells in NOD/SCID gamma (NSG) mice as a proof-of-principle platform to investigate the molecular signature of CSCs. Indeed, serial xenotransplantation steadily enriched for rhabdomyosarcoma stem-like cells characterized by enhanced aldehyde dehydrogenase activity and increased colony and sphere formation capacity in vitro. Although the expression of core pluripotency factors (SOX2, OCT4, NANOG) and common CSC markers (CD133, ABCG2, nestin) was maintained over the passages in mice, gene expression profiling revealed gradual changes in several stemness regulators and genes linked with undifferentiated myogenic precursors, e.g., SOX4, PAX3, MIR145, and CDH15. Moreover, we identified the induction of a hybrid epithelial/mesenchymal gene expression signature that was associated with the increase in CSC number. In total, 60 genes related to epithelial or mesenchymal traits were significantly altered upon serial xenotransplantation. In silico survival analysis based on the identified potential stemness-associated genes demonstrated that serial xenotransplantation of unsorted rhabdomyosarcoma cells in NSG mice might be a useful tool for the unbiased enrichment of CSCs and the identification of novel CSC-specific targets. Using this approach, we provide evidence for a recently proposed link between the hybrid epithelial/mesenchymal phenotype and cancer stemness.
Collapse
|
196
|
Anticipating critical transitions in epithelial-hybrid-mesenchymal cell-fate determination. Proc Natl Acad Sci U S A 2019; 116:26343-26352. [PMID: 31843939 DOI: 10.1073/pnas.1913773116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the vicinity of a tipping point, critical transitions occur when small changes in an input condition cause sudden, large, and often irreversible changes in the state of a system. Many natural systems ranging from ecosystems to molecular biosystems are known to exhibit critical transitions in their response to stochastic perturbations. In diseases, an early prediction of upcoming critical transitions from a healthy to a disease state by using early-warning signals is of prime interest due to potential application in forecasting disease onset. Here, we analyze cell-fate transitions between different phenotypes (epithelial, hybrid-epithelial/mesenchymal [E/M], and mesenchymal states) that are implicated in cancer metastasis and chemoresistance. These transitions are mediated by a mutually inhibitory feedback loop-microRNA-200/ZEB-driven by the levels of transcription factor SNAIL. We find that the proximity to tipping points enabling these transitions among different phenotypes can be captured by critical slowing down-based early-warning signals, calculated from the trajectory of ZEB messenger RNA level. Further, the basin stability analysis reveals the unexpectedly large basin of attraction for a hybrid-E/M phenotype. Finally, we identified mechanisms that can potentially elude the transition to a hybrid-E/M phenotype. Overall, our results unravel the early-warning signals that can be used to anticipate upcoming epithelial-hybrid-mesenchymal transitions. With the emerging evidence about the hybrid-E/M phenotype being a key driver of metastasis, drug resistance, and tumor relapse, our results suggest ways to potentially evade these transitions, reducing the fitness of cancer cells and restricting tumor aggressiveness.
Collapse
|
197
|
NF-kappa B Signaling-Related Signatures Are Connected with the Mesenchymal Phenotype of Circulating Tumor Cells in Non-Metastatic Breast Cancer. Cancers (Basel) 2019; 11:cancers11121961. [PMID: 31817685 PMCID: PMC6966426 DOI: 10.3390/cancers11121961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
The role of circulating tumor cells (CTCs), tumor microenvironment (TME), and the immune system in the formation of metastasis is evident, yet the details of their interactions remain unknown. This study aimed at exploring the immunotranscriptome of primary tumors associated with the status of CTCs in breast cancer (BCa) patients. The expression of 730 immune-related genes in formalin-fixed paraffin-embedded samples was analyzed using the multigenomic NanoString technology and correlated with the presence and the phenotype of CTCs. Upregulation of 37 genes and downregulation of 1 gene were observed in patients characterized by a mesenchymal phenotype of CTCs when compared to patients with epithelial CTCs. The upregulated genes were involved in NF-kappa B signaling and in the production of type I interferons. The clinical significance of the differentially expressed genes was evaluated using The Cancer Genome Atlas (TCGA) data of a breast invasive carcinoma (BRCA) cohort. Five of the upregulated genes-PSMD7, C2, IFNAR1, CD84, and CYLD-were independent prognostic factors in terms of overall and disease-free survival. To conclude, our data identify a group of genes that are upregulated in BCa patients with mesenchymal CTCs and reveal their prognostic potential, thus indicating that they merit further investigation.
Collapse
|
198
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|
199
|
San Juan BP, Garcia-Leon MJ, Rangel L, Goetz JG, Chaffer CL. The Complexities of Metastasis. Cancers (Basel) 2019; 11:E1575. [PMID: 31623163 PMCID: PMC6826702 DOI: 10.3390/cancers11101575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Therapies that prevent metastatic dissemination and tumor growth in secondary organs are severely lacking. A better understanding of the mechanisms that drive metastasis will lead to improved therapies that increase patient survival. Within a tumor, cancer cells are equipped with different phenotypic and functional capacities that can impact their ability to complete the metastatic cascade. That phenotypic heterogeneity can be derived from a combination of factors, in which the genetic make-up, interaction with the environment, and ability of cells to adapt to evolving microenvironments and mechanical forces play a major role. In this review, we discuss the specific properties of those cancer cell subgroups and the mechanisms that confer or restrict their capacity to metastasize.
Collapse
Affiliation(s)
- Beatriz P San Juan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Maria J Garcia-Leon
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Laura Rangel
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000 Strasbourg, France.
| | - Christine L Chaffer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.
- St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Darlinghurst 2010, Australia.
| |
Collapse
|
200
|
Zoeller EL, Pedro B, Konen J, Dwivedi B, Rupji M, Sundararaman N, Wang L, Horton JR, Zhong C, Barwick BG, Cheng X, Martinez ED, Torres MP, Kowalski J, Marcus AI, Vertino PM. Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci 2019; 132:jcs231514. [PMID: 31515279 PMCID: PMC6803364 DOI: 10.1242/jcs.231514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Collective invasion, the coordinated movement of cohesive packs of cells, has become recognized as a major mode of metastasis for solid tumors. These packs are phenotypically heterogeneous and include specialized cells that lead the invasive pack and others that follow behind. To better understand how these unique cell types cooperate to facilitate collective invasion, we analyzed transcriptomic sequence variation between leader and follower populations isolated from the H1299 non-small cell lung cancer cell line using an image-guided selection technique. We now identify 14 expressed mutations that are selectively enriched in leader or follower cells, suggesting a novel link between genomic and phenotypic heterogeneity within a collectively invading tumor cell population. Functional characterization of two phenotype-specific candidate mutations showed that ARP3 enhances collective invasion by promoting the leader cell phenotype and that wild-type KDM5B suppresses chain-like cooperative behavior. These results demonstrate an important role for distinct genetic variants in establishing leader and follower phenotypes and highlight the necessity of maintaining a capacity for phenotypic plasticity during collective cancer invasion.
Collapse
Affiliation(s)
- Elizabeth L Zoeller
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Brian Pedro
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Jessica Konen
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Niveda Sundararaman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lei Wang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chaojie Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabeth D Martinez
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Adam I Marcus
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Paula M Vertino
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|