151
|
Zhou HR, Ma XF, Lin WJ, Hao M, Yu XY, Li HX, Xu CY, Kuang HY. Neuroprotective Role of GLP-1 Analog for Retinal Ganglion Cells via PINK1/Parkin-Mediated Mitophagy in Diabetic Retinopathy. Front Pharmacol 2021; 11:589114. [PMID: 33679385 PMCID: PMC7928389 DOI: 10.3389/fphar.2020.589114] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
GLP-1 analogs have been widely used to treat patients with type 2 diabetes in recent years and studies have found that GLP-1 analogs have multiple organ benefits. However, the role of GLP-1 analogs in diabetic retinopathy (DR), a common complication of diabetes mellitus (DM), remains controversial. Retinal ganglion cells (RGCs) are the only afferent neurons responsible for transmitting visual information to the visual center and are vulnerable in the early stage of DR. Protection of RGC is vital for visual function. The incretin glucagon-like peptide-1 (GLP-1), which is secreted by L-cells after food ingestion, could lower blood glucose level through stimulating the release of insulin. In the present study, we evaluated the effects of GLP-1 analog on RGCs both in vitro and in vivo. We established diabetic rat models in vivo and applied an RGC-5 cell line in vitro. The results showed that in high glucose conditions, GLP-1 analog alleviated the damage of RGCs. In addition, GLP-1 analog prevented mitophagy through the PINK1/Parkin pathway. Here we demonstrated the neuroprotective effect of GLP-1 analog, which may be beneficial for retinal function, and we further elucidated a novel mechanism in GLP-1 analog-regulated protection of the retina. These findings may expand the multi-organ benefits of GLP-1 analogs and provide new insights for the prevention of DR.
Collapse
Affiliation(s)
- Huan-Ran Zhou
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue-Fei Ma
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Jian Lin
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Yang Yu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Xue Li
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cheng-Ye Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong-Yu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
152
|
Gilhooley MJ, Owen N, Moosajee M, Yu Wai Man P. From Transcriptomics to Treatment in Inherited Optic Neuropathies. Genes (Basel) 2021; 12:147. [PMID: 33499292 PMCID: PMC7912133 DOI: 10.3390/genes12020147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Inherited optic neuropathies, including Leber Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), are monogenetic diseases with a final common pathway of mitochondrial dysfunction leading to retinal ganglion cell (RGC) death and ultimately loss of vision. They are, therefore, excellent models with which to investigate this ubiquitous disease process-implicated in both common polygenetic ocular diseases (e.g., Glaucoma) and late-onset central nervous system neurodegenerative diseases (e.g., Parkinson disease). In recent years, cellular and animal models of LHON and DOA have matured in parallel with techniques (such as RNA-seq) to determine and analyze the transcriptomes of affected cells. This confluence leaves us at a particularly exciting time with the potential for the identification of novel pathogenic players and therapeutic targets. Here, we present a discussion of the importance of inherited optic neuropathies and how transcriptomic techniques can be exploited in the development of novel mutation-independent, neuroprotective therapies.
Collapse
Affiliation(s)
- Michael James Gilhooley
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
- The Francis Crick Institute, 1 Midland Road, Somers Town, London NW1 1AT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Patrick Yu Wai Man
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK; (N.O.); (M.M.); (P.Y.W.M.)
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
- Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
153
|
Hereditary Optic Neuropathies: Induced Pluripotent Stem Cell-Based 2D/3D Approaches. Genes (Basel) 2021; 12:genes12010112. [PMID: 33477675 PMCID: PMC7831942 DOI: 10.3390/genes12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited optic neuropathies share visual impairment due to the degeneration of retinal ganglion cells (RGCs) as the hallmark of the disease. This group of genetic disorders are caused by mutations in nuclear genes or in the mitochondrial DNA (mtDNA). An impaired mitochondrial function is the underlying mechanism of these diseases. Currently, optic neuropathies lack an effective treatment, and the implementation of induced pluripotent stem cell (iPSC) technology would entail a huge step forward. The generation of iPSC-derived RGCs would allow faithfully modeling these disorders, and these RGCs would represent an appealing platform for drug screening as well, paving the way for a proper therapy. Here, we review the ongoing two-dimensional (2D) and three-dimensional (3D) approaches based on iPSCs and their applications, taking into account the more innovative technologies, which include tissue engineering or microfluidics.
Collapse
|
154
|
Pemp B, Mitsch C, Kircher K, Reitner A. Changes in Visual Function and Correlations with Inner Retinal Structure in Acute and Chronic Leber's Hereditary Optic Neuropathy Patients after Treatment with Idebenone. J Clin Med 2021; 10:jcm10010151. [PMID: 33406801 PMCID: PMC7795141 DOI: 10.3390/jcm10010151] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 11/29/2022] Open
Abstract
Progressive impairment and degeneration of retinal ganglion cells (RGC) and nerve fibers in Leber’s hereditary optic neuropathy (LHON) usually cause permanent visual loss. Idebenone is currently the only approved treatment. However, its therapeutic potential in different stages of LHON has not been definitely clarified. We aimed to investigate the changes in visual function and correlations with retinal structure in acute and in chronic LHON patients after treatment with idebenone. Twenty-three genetically confirmed LHON patients were followed during treatment using logMAR charts, automated perimetry and optical coherence tomography (OCT). Mean visual acuity improved significantly in acute patients treated within 1 year from onset (−0.52 ± 0.46 logMAR from nadir), in early chronic patients who started after 1–5 years (−0.39 ± 0.27 logMAR from baseline), and in late chronic patients with treatment initiation after >5 years (−0.33 ± 0.28 logMAR from baseline, p < 0.001 all groups). In acute and in chronic patients, strong correlations between OCT and visual function parameters were present only after treatment. This and the sustained visual recovery after treatment may indicate a reactivated signal transduction in dysfunctional RGC that survive the acute phase. Our results support previous evidence that idebenone has therapeutic potential in promoting visual recovery in LHON.
Collapse
|
155
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
156
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
157
|
Visual Evoked Potentials in Joubert Syndrome: A Suggested Useful Method for Evaluating Future Approaches Targeted to Improve Visual Pathways' Function. Adv Ther 2021; 38:278-289. [PMID: 33098555 PMCID: PMC7854410 DOI: 10.1007/s12325-020-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
Introduction Joubert syndrome (JS) is a recessive disorder characterized by a congenital malformation of the mid-hindbrain and a large spectrum of clinical features including optic nerve morphologic abnormalities. The function of the visual pathways, including the optic nerve, can be objectively evaluated by visual evoked potential (VEP) recordings. Our work aims to employ VEP to evaluate the neural conduction along the visual pathways in JS patients with or without optic nerve morphologic abnormalities (ONMA). Methods In this observational and prospective study, 18 children with genetic diagnosis of JS (mean age 8.78 ± 5.87 years) and 17 healthy age-similar control subjects (control group, 9.05 ± 6.02 years) were enrolled. Based on presence/absence of ONMA at fundus examination, JS patients were divided into two groups: the JS-A group (eight patients with ONMA) and JS-N group (ten patients without ONMA). Following the ISCEV standards, pattern VEPs were recorded in patients and controls in response to 60’ and 15’ checks to obtain a prevalent activation of large or small axons, respectively. Results Compared to controls, both the JS-A and JS-N groups showed significant abnormalities in 60’ and 15’ VEP implicit time and amplitude. Only in the JS-N group were values of 15’ VEP implicit significantly correlated with the corresponding values of visual acuity. Conclusions Our results suggest that a visual pathways dysfunction (of both large and small axons) detectable by VEP may occur in JS patients regardless of the presence of ONMA. Since clinical trials are envisaged in the near future to address JS-related ocular problems, our results might provide information about the potential usefulness of VEP recordings to assess the efficacy of treatments targeted to improve the visual pathways’ function.
Collapse
|
158
|
Kleerekooper I, Petzold A, Trip SA. Anterior visual system imaging to investigate energy failure in multiple sclerosis. Brain 2020; 143:1999-2008. [PMID: 32163545 DOI: 10.1093/brain/awaa049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial failure and hypoxia are key contributors to multiple sclerosis pathophysiology. Importantly, improving mitochondrial function holds promise as a new therapeutic strategy in multiple sclerosis. Currently, studying mitochondrial changes in multiple sclerosis is hampered by a paucity of non-invasive techniques to investigate mitochondrial function of the CNS in vivo. It is against this backdrop that the anterior visual system provides new avenues for monitoring of mitochondrial changes. The retina and optic nerve are among the metabolically most active structures in the human body and are almost always affected to some degree in multiple sclerosis. Here, we provide an update on emerging technologies that have the potential to indirectly monitor changes of metabolism and mitochondrial function. We report on the promising work with optical coherence tomography, showing structural changes in outer retinal mitochondrial signal bands, and with optical coherence angiography, quantifying retinal perfusion at the microcapillary level. We show that adaptive optics scanning laser ophthalmoscopy can visualize live perfusion through microcapillaries and structural changes at the level of single photoreceptors and neurons. Advantages and limitations of these techniques are summarized with regard to future research into the pathology of the disease and as trial outcome measures.
Collapse
Affiliation(s)
- Iris Kleerekooper
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Moorfields Eye Hospital, City Road, London, UK
| | - Axel Petzold
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.,Moorfields Eye Hospital, City Road, London, UK.,Dutch Expertise Centre Neuro-ophthalmology and MS Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - S Anand Trip
- Department of Neuroinflammation, UCL Institute of Neurology, Queen Square, London, UK.,The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
159
|
Jonak K, Krukow P, Karakuła-Juchnowicz H, Rahnama-Hezavah M, Jonak KE, Stępniewski A, Niedziałek A, Toborek M, Podkowiński A, Symms M, Grochowski C. Aberrant Structural Network Architecture in Leber's Hereditary Optic Neuropathy. Minimum Spanning Tree Graph Analysis Application into Diffusion 7T MRI. Neuroscience 2020; 455:128-140. [PMID: 33359657 DOI: 10.1016/j.neuroscience.2020.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/15/2022]
Abstract
Examining individuals with Leber's hereditary optic neuropathy (LHON) provides a rare opportunity to understand how changes in mitochondrial DNA and loss of vision can be related to changes in organization of the whole-brain structural network architecture. In comparison with the previous neuroimaging studies with LHON participants, which were focused mainly on analyzing changes which occur in different areas of the patient's brain, network analysis not only makes it possible to observe single white matter fibers' aberrations but also the whole-brain nature of these changes. The purpose of our study was to better understand whole-brain neural network changes in LHON participants and see the correlation between the clinical data and the changes. To achieve this, we examined fifteen LHON patients and seventeen age-matched healthy subjects with the usage of ultra-high filed 7T magnetic resonance imaging (MRI). Basing on the analysis on MRI diffusion tensor imaging (DTI) data, whole-brain structural neural networks were reconstructed with the use of the minimum spanning tree algorithm (MST) for every participant. Our results revealed that the structural network in LHON participants was altered at both the local and the global level. The global network structures of LHON subjects were less centralized with path-like organization and there was an imbalance in the main hub centrality. Moreover, the inspection of nodes and hubs in terms of their anatomical placement revealed that in the LHON participants the prominent hubs were located within the basal ganglia (i.e. bilateral caudate, left pallidum), which differed them from healthy controls. An analysis of the relationships between the global MST metrics and LHON participants' clinical characteristics revealed significant correlations between the global network metrics and the duration of illness. Furthermore, the nodal parameters of the optic chiasm were significantly correlated with the duration of illness and the averaged thickness of the right retinal nerve fiber layer (RNFL). These findings clearly showed that the progression of the disease is accompanied by alterations within the brain network structure and its efficiency.
Collapse
Affiliation(s)
- Kamil Jonak
- Department of Clinical Neuropsychiatry, Medical University of Lublin, 20-439 Lublin, Poland; Department of Biomedical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Paweł Krukow
- Department of Clinical Neuropsychiatry, Medical University of Lublin, 20-439 Lublin, Poland
| | - Hanna Karakuła-Juchnowicz
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-439 Lublin, Poland
| | | | - Katarzyna E Jonak
- Department of Foreign Languages, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | | | - Anna Niedziałek
- Department of Radiography, Medical University of Lublin, 20-081 Lublin, Poland
| | - Michał Toborek
- Department of Radiography, Medical University of Lublin, 20-081 Lublin, Poland
| | | | - Mark Symms
- GE Healthcare, Amersham Place, Amersham HP7 9NA, UK
| | - Cezary Grochowski
- Laboratory of Virtual Man, Chair of Anatomy, Medical University of Lublin, Poland.
| |
Collapse
|
160
|
Holody C, Anfray A, Mast H, Lessard M, Han WH, Carpenter R, Bourque S, Sauvé Y, Lemieux H. Differences in relative capacities of oxidative phosphorylation pathways may explain sex- and tissue-specific susceptibility to vision defects due to mitochondrial dysfunction. Mitochondrion 2020; 56:102-110. [PMID: 33271347 DOI: 10.1016/j.mito.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023]
Abstract
Mitochondrial dysfunction is a major cause and/or contributor to the development and progression of vision defects in many ophthalmologic and mitochondrial diseases. Despite their mechanistic commonality, these diseases exhibit an impressive variety in sex- and tissue-specific penetrance, incidence, and severity. Currently, there is no functional explanation for these differences. We measured the function, relative capacities, and patterns of control of various oxidative phosphorylation pathways in the retina, the eyecup, the extraocular muscles, the optic nerve, and the sciatic nerve of adult male and female rats. We show that the control of mitochondrial respiratory pathways in the visual system is sex- and tissue-specific and that this may be an important factor in determining susceptibility to mitochondrial dysfunction between these groups. The optic nerve showed a low relative capacity of the NADH pathway, depending on complex I, compared to other tissues relying mainly on mitochondria for energy production. Furthermore, NADH pathway capacity is higher in females compared to males, and this sexual dimorphism occurs only in the optic nerve. Our results propose an explanation for Leber's hereditary optic neuropathy, a mitochondrial disease more prevalent in males where the principal tissue affected is the optic nerve. To our knowledge, this is the first study to identify and provide functional explanations for differences in the occurrence and severity of visual defects between tissues and between sexes. Our results highlight the importance of considering sex- and tissue-specific mitochondrial function in elucidating pathophysiological mechanisms of visual defects.
Collapse
Affiliation(s)
- Claudia Holody
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada; Dept. of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Anaïs Anfray
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Heather Mast
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Lessard
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Rowan Carpenter
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane Bourque
- Dept. of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Dept. of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
161
|
Lee WS, Parsons S, Cugley D, Rogers S, Lim LL, Hall A. Increased incidence of glaucoma medication usage in middle-aged Australian males taking antiretroviral medication - a population-based study. J Ophthalmic Inflamm Infect 2020; 10:30. [PMID: 33141357 PMCID: PMC7609505 DOI: 10.1186/s12348-020-00218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To investigate a possible association between glaucoma and the use of anti-retroviral therapy (ART) for HIV in the Australian population. METHODS A retrospective review of Australian Pharmaceutical Benefits Scheme data was undertaken from July 2012 to December 2016, inclusive. Three patient groups were compared: those on both topical intraocular pressure (IOP) -lowering medication and ART, those on ART only, and those on IOP-lowering medication only, using the 2016 Australian resident population to estimate prevalence. Odds ratios (95% confidence intervals, [CI]) with Fishers exact test for p values were calculated stratified by age and gender. RESULTS The number of prescriptions for topical glaucoma medications in the general Australian population increased progressively by age with a peak prevalence in those aged 80 years and above. Prevalence of ART was highest in males aged 40-49 and 50-59 years (0.41% [CI 0.40, 0.42] and 0.44% [CI 0.43, 0.45], respectively). Our analysis identified an increase in the prescription of IOP-lowering medication in males on ART aged 30-39 (OR 2.23 [CI 1.32, 3.75], p = 0.007) and 40-49 (OR 1.86 [CI 1.42, 2.43], p < 0.001), compared to those not on ART. There were no statistically significant increased odds for females or males aged 50 years or more. CONCLUSION Compared with the known increase in glaucoma prevalence with age in the general Australian population, a statistically significant increased prevalence in use of IOP-lowering medications was found in males on ART aged 30-49 years. The mechanism for this is yet to be determined, but possible causes include sequelae of HIV infection, a drug-induced side effect, or increased medical surveillance.
Collapse
Affiliation(s)
- Wen-Shen Lee
- Ophthalmology, The Alfred Hospital, Alfred Health, Melbourne, Australia
| | - Shaun Parsons
- Ophthalmology, The Alfred Hospital, Alfred Health, Melbourne, Australia.,Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Dean Cugley
- Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Sophie Rogers
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Lyndell L Lim
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Anthony Hall
- Ophthalmology, The Alfred Hospital, Alfred Health, Melbourne, Australia.
| |
Collapse
|
162
|
Zhao Y, Shen Y. Light-Induced Retinal Ganglion Cell Damage and the Relevant Mechanisms. Cell Mol Neurobiol 2020; 40:1243-1252. [PMID: 32107750 PMCID: PMC11448955 DOI: 10.1007/s10571-020-00819-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
While light is the basic element for inducing vision and modulating circadian rhythms, excessive light has been reported to have a negative effect on the survival of various types of retinal cells. Among them photoreceptors and retinal pigment epithelial (RPE) cells degeneration after light exposure is widely observed, but light-induced retinal ganglion cell (RGC) damage achieves relatively little attention. The purpose of this article is to summarize the experimental evidence for the possible negative effects of excessive light on RGCs. By searching the database, twenty-six related articles have been included. Taken together, excessive light may insult RGCs through the three main ways: (i) directly action on RGC mitochondria, as well as DNA, resulting in an upregulation of reactive oxygen species (ROS) and subsequently caspase-dependent or -independent cell death; (ii) mediation in gliotransmitters or relevant receptors of retinal glial cells; and (iii) a secondary event to photoreceptors and RPE cells degeneration and subsequent retinal remodeling. So RGCs can certainly be injured by excessive light, especially when they are already energetically compromised in some diseases. And more attentions should be paid to this topic to take timely measures to protect these frail RGCs from being damaged by excessive light.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
163
|
Bingöl Kızıltunç P, Tüntaş Bilen F, Atilla H. Optical Coherence Tomography Angiography Findings in Long-Term Follow-up of Leber's Hereditary Optic Neuropathy: Report of Two Cases. Turk J Ophthalmol 2020; 50:313-316. [PMID: 33342202 PMCID: PMC7610057 DOI: 10.4274/tjo.galenos.2020.86300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is thought to be a neurovascular disease due to presence of vascular changes in asymptomatic patients. Here we present 2 patients in whom optical coherence tomography angiography (OCTA) imaging demonstrated capillary drop-out areas and decreased radial peripapillary capillary (RPC) density in the quadrants that had thinner retinal nerve fiber layer (RNFL) in OCT images. Progressive decrease in RNFL and RPC density were shown in each patient at month 12 and 30 of follow-up. Following up patients with OCTA imaging in the future will provide insight into the pathogenesis and prognosis of LHON.
Collapse
Affiliation(s)
| | | | - Huban Atilla
- Ankara University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| |
Collapse
|
164
|
Carrella S, Indrieri A, Franco B, Banfi S. Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches. Front Neurosci 2020; 14:588234. [PMID: 33071752 PMCID: PMC7541846 DOI: 10.3389/fnins.2020.588234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Gene therapy is proving to be an effective approach to treat or prevent ocular diseases ensuring a targeted, stable, and regulated introduction of exogenous genetic material with therapeutic action. Retinal diseases can be broadly categorized into two groups, namely monogenic and complex (multifactorial) forms. The high genetic heterogeneity of monogenic forms represents a significant limitation to the application of gene-specific therapeutic strategies for a significant fraction of patients. Therefore, mutation-independent therapeutic strategies, acting on common pathways that underly retinal damage, are gaining interest as complementary/alternative approaches for retinal diseases. This review will provide an overview of mutation-independent strategies that rely on the modulation in the retina of key genes regulating such crucial degenerative pathways. In particular, we will describe how gene-based approaches explore the use of neurotrophic factors, microRNAs (miRNAs), genome editing and optogenetics in order to restore/prolong visual function in both outer and inner retinal diseases. We predict that the exploitation of gene delivery procedures applied to mutation/gene independent approaches may provide the answer to the unmet therapeutic need of a large fraction of patients with genetically heterogeneous and complex retinal diseases.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
165
|
Asanad S, Mohammed I, Sadun AA, Saeedi OJ. OCTA in neurodegenerative optic neuropathies: emerging biomarkers at the eye-brain interface. Ther Adv Ophthalmol 2020; 12:2515841420950508. [PMID: 32923939 PMCID: PMC7457690 DOI: 10.1177/2515841420950508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
OCTA imaging in optic neuropathies.
Collapse
Affiliation(s)
- Samuel Asanad
- Department of Ophthalmology and Visual Sciences, University of Maryland Eye Associates, University of Maryland Medical Center and University of Maryland School of Medicine, 419 W. Redwood St., Baltimore, MD 21201, USA
| | - Isa Mohammed
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alfredo A Sadun
- Doheny Eye Center, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Osamah J Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
166
|
Abstract
This review focuses on recent progress in understanding the role of mitochondrial markers in the context of mitochondrial dysfunction in glaucoma and discussing new therapeutic approaches to modulate mitochondrial function and potentially lead to improved outcomes in glaucoma.
Collapse
|
167
|
Sheremet NL, Shmelkova MS, Andreeva NA, Zhorzholadze NV, Fomin AV, Krylova TD, Tsygankova PG. [Characteristics of changes in retinal and optic nerve microvascularisature in Leber hereditary optic neuropathy patients seen with optical coherence tomography angiography]. Vestn Oftalmol 2020; 136:171-182. [PMID: 32880137 DOI: 10.17116/oftalma2020136042171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the features of various parameters of the density of retinal blood vessels, optic nerve head (ONH) and peripapillary region in hereditary optic neuropathy (HON) patients revealed with optical coherence tomography angiography (OCTA). MATERIAL AND METHODS The study included 29 HON patients divided into three groups based on symptoms duration (less than 1 year; 1-5 years, more than 5 years) and visual acuity (0.5-1.0; 0.04-0.4; 0.03 and lower). Relative macular, optic disc and peripapillary vessel density (VD, %) was assessed by OCTA (xR Avanti, Optovue Inc., USA). RESULTS Significant progressive VD reduction in superficial capillary plexus (SCP) was detected in all parafovea sectors and in the temporal sector of perifovea over the course of disease progression. No significant differences of these parameters were found in correlation with visual acuity. Patients with VA of 0.5-1.0 turned out to have greater VD in deep capillary plexus (DCP), whereas no differences were found in relation to the duration of HON. A strong significant correlation between the SCP and DCP VD only in central foveal area was revealed in all groups depending on the VA and symptoms duration. Over the course of HON progression, VD in the temporal sector and in temporal segments of superior and inferior sectors has gradually reduced. In patients with VA of 0.5-1.0, the retinal nerve fibers layer (RNFL) thickness in the temporal sector and optic nerve VD was notably greater compared to patients with lower VA. The most significant correlation was established between VA and structural changes (K=0.75, p<0.001) and VD in the temporal sector (K=0.57-0.61, p<0.001). CONCLUSION The obtained data suggest that derivative microvascular changes play an active role in the clinical progression of the disease.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, Moscow, Russia
| | | | - N A Andreeva
- Research Institute of Eye Diseases, Moscow, Russia
| | | | | | - T D Krylova
- Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
168
|
Roda M, di Geronimo N, Pellegrini M, Schiavi C. Nutritional Optic Neuropathies: State of the Art and Emerging Evidences. Nutrients 2020; 12:E2653. [PMID: 32878163 PMCID: PMC7551088 DOI: 10.3390/nu12092653] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional optic neuropathy is a cause of bilateral, symmetrical, and progressive visual impairment with loss of central visual acuity and contrast sensitivity, dyschromatopsia, and a central or centrocecal scotoma. The clinical features are not pathognomonic, since hereditary and toxic forms share similar signs and symptoms. It is becoming increasingly common due to the widespread of bariatric surgery and strict vegetarian or vegan diets, so even the scientific interest has recently increased. In particular, recent studies have focused on possible pathogenetic mechanisms, and on novel diagnostic and therapeutic strategies in order to prevent the onset, make a prompt diagnosis and an accurate nutritional supplementation, and to avoid irreversible optic nerve atrophy. Nowadays, there is clear evidence of the role of cobalamin, folic acid, thiamine, and copper, whereas further studies are needed to define the role of niacin, riboflavin, and pyridoxine. This review aims to summarize the etiology, diagnosis, and treatment of nutritional optic neuropathy, and it is addressed not only to ophthalmologists, but to all physicians who could come in contact with a patient with a possible nutritional optic neuropathy, being a fundamental multidisciplinary approach.
Collapse
Affiliation(s)
- Matilde Roda
- Ophthalmology Unit, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (N.d.G.); (M.P.); (C.S.)
| | | | | | | |
Collapse
|
169
|
Wang D, Liu HL, Du YY, Yuan J, Li X, Tian Z, Zhou H, Wang S, Song L, Sun J, Xiao X, Wang ZT, Li B. Characterisation of thickness changes in the peripapillary retinal nerve fibre layer in patients with Leber's hereditary optic neuropathy. Br J Ophthalmol 2020; 105:1166-1171. [PMID: 32862131 PMCID: PMC8311077 DOI: 10.1136/bjophthalmol-2020-316573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 11/11/2022]
Abstract
Background Limited studies have identified the changes in peripapillary retinal nerve fibre layer (pRNFL) thickness in patients with chronic Leber’s hereditary optic neuropathy (LHON) at different stages of the disease. We aimed to characterise the pRNFL thickness changes in patients with LHON having m.11778G>A (MT-ND4) mutation. Methods This retrospective cross-sectional study included 221 eyes from patients with LHON (n=145)—classified into seven groups according to disease duration—and 52 eyes from healthy controls (n=26). All subjects underwent pRNFL examinations. pRNFL thickness of the superior, nasal and inferior, and temporal quadrants, and the 360° average were measured. Results Within 3 months of onset, the temporal pRNFL thickness decreased significantly, whereas the remaining quadrants and the average pRNFL thickness initially increased. The temporal quadrant (p<0.01) and average pRNFL thickness (p=0.02) significantly decreased at 3–6 months. Excluding that in the nasal quadrant (p=0.93), pRNFL thickness significantly decreased in all other quadrants at 6–9 months. At 9–12 months, the average and individual quadrant pRNFL thicknesses continued to decrease. Compared with 12–24 months, the pRNFL thickness was thinner at 24–60 months and >60 months. Conclusions The papillomacular bundle was affected first and preferentially in LHON. pRNFL thickness initially increased and then decreased, corresponding to the retinal ganglion cell swelling and apoptosis. pRNFL thinning first occurred in the temporal quadrant, followed by the inferior and superior quadrants, and finally, the nasal quadrant. pRNFL continued to thin slowly in some quadrants even after 60 months.
Collapse
Affiliation(s)
- Dan Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Li Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang-Yang Du
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajia Yuan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhen Tian
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haiqiang Zhou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Song
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Xiao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Tao Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China .,Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Wuhan Neurophth Biological Technology Limited Company, Wuhan, China
| |
Collapse
|
170
|
Yazdankhah M, Shang P, Ghosh S, Hose S, Liu H, Weiss J, Fitting CS, Bhutto IA, Zigler JS, Qian J, Sahel JA, Sinha D, Stepicheva NA. Role of glia in optic nerve. Prog Retin Eye Res 2020; 81:100886. [PMID: 32771538 DOI: 10.1016/j.preteyeres.2020.100886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Glial cells are critically important for maintenance of neuronal activity in the central nervous system (CNS), including the optic nerve (ON). However, the ON has several unique characteristics, such as an extremely high myelination level of retinal ganglion cell (RGC) axons throughout the length of the nerve (with virtually all fibers myelinated by 7 months of age in humans), lack of synapses and very narrow geometry. Moreover, the optic nerve head (ONH) - a region where the RGC axons exit the eye - represents an interesting area that is morphologically distinct in different species. In many cases of multiple sclerosis (demyelinating disease of the CNS) vision problems are the first manifestation of the disease, suggesting that RGCs and/or glia in the ON are more sensitive to pathological conditions than cells in other parts of the CNS. Here, we summarize current knowledge on glial organization and function in the ON, focusing on glial support of RGCs. We cover both well-established concepts on the important role of glial cells in ON health and new findings, including novel insights into mechanisms of remyelination, microglia/NG2 cell-cell interaction, astrocyte reactivity and the regulation of reactive astrogliosis by mitochondrial fragmentation in microglia.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012, Paris, France
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
171
|
Hanyuda A, Rosner BA, Wiggs JL, Willett WC, Tsubota K, Pasquale LR, Kang JH. Low-carbohydrate-diet scores and the risk of primary open-angle glaucoma: data from three US cohorts. Eye (Lond) 2020; 34:1465-1475. [PMID: 32123310 PMCID: PMC7470850 DOI: 10.1038/s41433-020-0820-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND/OBJECTIVES To assess the long-term association between low-carbohydrate dietary patterns and incident primary open-angle glaucoma (POAG), and POAG subtypes defined by highest untreated intraocular pressure (IOP) and by pattern of visual field (VF) loss at diagnosis. SUBJECTS/METHODS We followed 185,638 participants of three large US prospective cohorts biennially (1976-2016, 1986-2016 and 1991-2017). Deciles of three low-carbohydrate-diet scores were calculated to represent adherence to diets lower in carbohydrate and higher in protein and fat from any source, animal sources or plant sources. We confirmed POAG cases (n = 2112) by medical record review and used Cox proportional hazards models to estimate multivariable-adjusted relative risks (MVRRs) and 95% confidence intervals (CIs). RESULTS There was no association between the three types of low-carbohydrate-diet scores and POAG: the MVRR for POAG in the highest vs. lowest deciles was 1.13 (95% CI, 0.91-1.39; Ptrend = 0.40) for the overall score; 1.10 (95% CI, 0.89-1.35; Ptrend = 0.38) for the animal score and 0.96 (95% CI, 0.79-1.18; Ptrend = 0.88) for the vegetable score. No differential associations by IOP level was found (Pheterogeneity ≥ 0.06). However, the vegetable score showed a suggestive inverse association with early paracentral VF loss (highest vs. lowest decile MVRR = 0.78 [95% CI, 0.55-1.10]; Ptrend = 0.12) but not with peripheral VF loss only (MVRR = 1.09 [95% CI, 0.83-1.44]; Ptrend = 0.14; Pheterogeneity = 0.03). CONCLUSIONS Low-carbohydrate diets were not associated with risk of POAG. Our data suggested that higher consumption of fat and protein from vegetable sources substituting for carbohydrates was associated with lower risk of the POAG subtype with initial paracentral VF loss.
Collapse
Affiliation(s)
- Akiko Hanyuda
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Bernard A Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Louis R Pasquale
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jae H Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
172
|
Li JK, Li W, Gao FJ, Qu SF, Hu FY, Zhang SH, Li LL, Wang ZW, Qiu Y, Wang LS, Huang J, Wu JH, Chen F. Mutation Screening of mtDNA Combined Targeted Exon Sequencing in a Cohort With Suspected Hereditary Optic Neuropathy. Transl Vis Sci Technol 2020; 9:11. [PMID: 32855858 PMCID: PMC7422818 DOI: 10.1167/tvst.9.8.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) are the two commonest forms of hereditary optic neuropathy. The aim of this study was to comprehensively investigate the incidence and spectrum of mutations in patients with suspected hereditary optic neuropathy by combining mitochondrial DNA (mtDNA) genome-wide and targeted exon sequencing. Methods A cohort of 1101 subjects were recruited to participate in the study, comprising 177 families (177 probands and their family members, a total of 537 subjects, including 254 patients) and 164 sporadic cases with suspected hereditary optic neuropathy, and 400 unrelated control subjects for genetic analysis: all subjects (including control subjects) underwent a comprehensive ophthalmologic examination and were subjected to sequencing analysis of mtDNA genome-wide and targeted exon. Overall, targeted exon sequencing was used to screen 792 genes associated with common hereditary eye diseases, and the mtDNA genome-wide were screened by next-generation sequencing. Results We found variants detected in 168 (40.2%, 168/418) of the 418 patients screened. Among these, 132 cases (78.6%, 132/168) were detected with known LHON disease-causing mtDNA variants; 40 cases (23.8%, 40/168) were detected with nuclear DNA (ntDNA) variants, which included 36 cases (21.4%, 36/168) with detected OPA1 mutations, 4 patients (2.4%, 4/168) with detected OPA3 mutations, and 2 patients (1.2%, 2/168) with detected TMEM126A homozygous mutation. Coexistence variation (mtDNA/mtDNA [n = 16], ntDNA/ntDNA [n = 4], mtDNA/ntDNA [n = 7]) was found in 27 patients (16.4%, 27/165), including mtDNA/ntDNA coexistence variation that was detected in seven patients. Among these ntDNA mutations, 38 distinct disease-causing variants, including autosomal recessive heterozygous mutations, were detected, which included 22 novel variants and two de novo variants. Total haplogroup distribution showed that 34.5% (29/84) and 28.6% (24/84) of the affected subjects with m.11778G>A belonged to haplogroup D and M, with a high frequency of subhaplogroups D4, D5, and M7. Conclusions The LHON-mtDNA mutations are the commonest genetic defects in this Chinese cohort, followed by the OPA1 mutations. To our knowledge, this is the first comprehensive study of LHON, ADOA, and autosomal recessive optic atrophy combined with mtDNA genome-wide and targeted exon sequencing, as well as haplogroup analysis, in a large cohort of Chinese patients with suspected hereditary optic neuropathy. Our findings provide a powerful basis for genetic counseling in patients with suspected hereditary optic neuropathy. Translational Relevance We applied mtDNA genome-wide sequencing combined with panel-based targeted exon sequencing to explore the pathogenic variation spectrum and genetic characteristics of patients with suspected hereditary optic neuropathy, providing a comprehensive research strategy for clinical assistant diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Jian-Kang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Wei Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Feng-Juan Gao
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Shou-Fang Qu
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Fang-Yuan Hu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Li-Li Li
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Zi-Wei Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Yong Qiu
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| | - Lu-Sheng Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.,BGI-Shenzhen, Shenzhen, China
| | - Jie Huang
- National Institutes for Food and Drug Control, Tiantan Xili Dongcheng District, Beijing, China
| | - Ji-Hong Wu
- Eye Institute, Eye, Ear, Nose and Throat Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, China.,MGI, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
173
|
Chou TH, Romano GL, Amato R, Porciatti V. Nicotinamide-Rich Diet in DBA/2J Mice Preserves Retinal Ganglion Cell Metabolic Function as Assessed by PERG Adaptation to Flicker. Nutrients 2020; 12:nu12071910. [PMID: 32605122 PMCID: PMC7401244 DOI: 10.3390/nu12071910] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Flickering light increases metabolic demand in the inner retina. Flicker may exacerbate defective mitochondrial function in glaucoma, which will be reflected in the pattern electroretinogram (PERG), a sensitive test of retinal ganglion cell (RGC) function. We tested whether flicker altered the PERG of DBA/2J (D2) glaucomatous mice and whether vitamin B3-rich diet contributed to the flicker effect. D2 mice fed with either standard chow (control, n = 10) or chow/water enriched with nicotinamide (NAM, 2000 mg/kg per day) (treated, n = 10) were monitored from 3 to 12 months. The PERG was recorded with superimposed flicker (F-PERG) at either 101 Hz (baseline) or 11 Hz (test), and baseline-test amplitude difference (adaptation) evaluated. At endpoint, flat-mounted retinas were immunostained (RBPMS and mito-tracker). F-PERG adaptation was 41% in 3-month-old D2 and decreased with age more in control D2 than in NAM-fed D2 (GEE, p < 0.01). At the endpoint, F-PERG adaptation was 0% in control D2 and 17.5% in NAM-fed D2, together with higher RGC density (2.4×), larger RGC soma size (2×), and greater intensity of mitochondrial staining (3.75×). F-PERG adaptation may provide a non-invasive tool to assess RGC autoregulation in response to increased metabolic demand and test the effect of dietary/pharmacological treatments on optic nerve disorders.
Collapse
Affiliation(s)
- Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (G.L.R.); (R.A.); (V.P.)
- Correspondence: ; Tel.: +1-305-482-4827
| | - Giovanni Luca Romano
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (G.L.R.); (R.A.); (V.P.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, CT 95124 Catania, Italy
| | - Rosario Amato
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (G.L.R.); (R.A.); (V.P.)
- Department of Biology, University of Pisa, PI 56126 Pisa, Italy
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (G.L.R.); (R.A.); (V.P.)
| |
Collapse
|
174
|
Neuroanatomical Changes in Leber's Hereditary Optic Neuropathy: Clinical Application of 7T MRI Submillimeter Morphometry. Brain Sci 2020; 10:brainsci10060359. [PMID: 32526981 PMCID: PMC7348858 DOI: 10.3390/brainsci10060359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is one of the mitochondrial diseases that causes loss of central vision, progressive impairment and subsequent degeneration of retinal ganglion cells (RGCs). In recent years, diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts, such as the optic tract, and optic radiation. However, it is still unclear if the disease alters only some parts of the white matter architecture or whether the changes also affect other subcortical areas of the brain. This study aimed to improve our understanding of morphometric changes in subcortical brain areas and their associations with the clinical picture in LHON by the application of a submillimeter surface-based analysis approach to the ultra-high-field 7T magnetic resonance imaging data. To meet these goals, fifteen LHON patients and fifteen age-matched healthy subjects were examined. For all individuals, quantitative analysis of the morphometric results was performed. Furthermore, morphometric characteristics which differentiated the groups were correlated with variables covering selected aspects of the LHON clinical picture. Compared to healthy controls (HC), LHON carriers showed significantly lower volume of both palladiums (left p = 0.023; right p = 0.018), the right accumbens area (p = 0.007) and the optic chiasm (p = 0.014). Additionally, LHON patients have significantly higher volume of both lateral ventricles (left p = 0.034; right p = 0.02), both temporal horns of the lateral ventricles (left p = 0.016; right p = 0.034), 3rd ventricle (p = 0.012) and 4th ventricle (p = 0.002). Correlation between volumetric results and clinical data showed that volume of both right and left lateral ventricles significantly and positively correlated with the duration of the illness (left R = 0.841, p = 0.002; right R = 0.755, p = 0.001) and the age of the LHON participants (left R = 0.656, p = 0.007; right R = 0.691, p = 0.004). The abnormalities in volume of the LHON patients’ subcortical structures indicate that the disease can cause changes not only in the white matter areas constituting visual tracts, but also in the other subcortical brain structures. Furthermore, the correlation between those results and the illness duration suggests that the disease might have a neurodegenerative nature; however, to fully confirm this observation, longitudinal studies should be conducted.
Collapse
|
175
|
La Morgia C, Maresca A, Caporali L, Valentino ML, Carelli V. Mitochondrial diseases in adults. J Intern Med 2020; 287:592-608. [PMID: 32463135 DOI: 10.1111/joim.13064] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype-phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy-dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.
Collapse
Affiliation(s)
- C La Morgia
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - A Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - L Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - M L Valentino
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - V Carelli
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
176
|
Leber's hereditary optic neuropathy following unilateral painful optic neuritis: a case report. BMC Ophthalmol 2020; 20:195. [PMID: 32423393 PMCID: PMC7236174 DOI: 10.1186/s12886-020-01461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disease, characterized by acute or subacute, painless, bilateral visual loss. LHON is often misdiagnosed as optic neuritis at an early stage because of the similarity of their clinical presentation. To date, there has been no reported case of actual optic neuritis and LHON in one patient. CASE PRESENTATION A 40-year-old, healthy man was referred to our clinic with acute painful visual loss in the right eye for 2 weeks. In the right eye, visual acuity decreased to 20/40, and the Ishihara colour test score was 8/14 with a relative afferent pupillary defect. Optic disc swelling was found only in the right eye, and magnetic resonance imaging revealed enhancement of the the right optic nerve, consistent with optic neuritis. After receiving 1 g of intravenous methylprednisolone daily for three days, his ocular pain resolved, and visual acuity improved to 20/20 within 2 weeks. Seven months later, the patient developed acute painless visual loss in the right eye. Visual acuity decreased to 20/200 in the right eye. There was no response to the intravenous methylprednisolone therapy at that time. Eight months later, he developed subacute painless visual loss in the left eye. Genetic testing for LHON was performed and revealed the pathologic mtDNA 11778 point mutation. CONCLUSIONS We report a case with painful unilateral optic neuritis preceding the onset of LHON. Even if a typical optic neuritis patient has completely recovered from steroid treatment once in the past, it is advisable to keep in mind the possibility of LHON if acute or subacute loss of vision subsequently or simultaneously occurs in both eyes and does not respond to steroids.
Collapse
|
177
|
Liu XT, Shen MX, Chen C, Huang SH, Zhuang XR, Ma QK, Chen Q, Lu F, Yuan YM. Foveal pit morphological changes in asymptomatic carriers of the G11778A mutation with Leber's hereditary optic neuropathy. Int J Ophthalmol 2020; 13:766-772. [PMID: 32420224 DOI: 10.18240/ijo.2020.05.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
AIM To investigate the foveal pit morphology changes in unaffected carriers and affected Leber's hereditary optic neuropathy (LHON) patients with the G11778A mutation from one family. METHODS This study was a prospective cross-sectional study. Both eyes from 16 family members (age from 9 to 47y) with the G11778A mutation were analyzed and compared with 1 eye from 20 normal control subjects. Eleven family members with the G11778A mutation but without optic neuropathy were classified as unaffected carriers (n=22 eyes). Five family members (n=10 eyes) expressed the LHON phenotype and were classified as affected patients. Retinal images of all the subjects were taken by optical coherence tomography (OCT), and an automatic algorithm was used to segment the retina to eight layers. Horizontal and vertical OCT images centered on the fovea were used to measure intra-retinal layer thicknesses and foveal morphometry. RESULTS Thicker foveal thickness, thinner foveal pit depth, and flatter foveal slopes were observed in unaffected carriers and affected LHON patients (all P<0.001). Further, the slopes of all four sectors in the LHON were flatter than those in the unaffected carriers (all P<0.001). Compared with the control group, affected LHON patients had a thinner retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer (GCL+IPL), and total retina (all P<0.01). The retinal nerve fiber layer (RNFL) of affected patients was 38.0% thinner than that of controls while the GCL+IPL was 40.1% thinner. CONCLUSION The foveal pit morphology shows changes in both unaffected carriers and affects patients. RNFL and GCL+IPL are thinner in affected LHON patients but not in unaffected carriers.
Collapse
Affiliation(s)
- Xin-Ting Liu
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Mei-Xiao Shen
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chong Chen
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Sheng-Hai Huang
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Xi-Ran Zhuang
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Qing-Kai Ma
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Qi Chen
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fan Lu
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Yi-Min Yuan
- School of Ophthalmology and Optometry, the Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| |
Collapse
|
178
|
Kurimoto T, Ueda K, Mori S, Kamada S, Sakamoto M, Yamada-Nakanishi Y, Matsumiya W, Nakamura M. A Single-Arm, Prospective, Exploratory Study to Preliminarily Test Effectiveness and Safety of Skin Electrical Stimulation for Leber Hereditary Optic Neuropathy. J Clin Med 2020; 9:jcm9051359. [PMID: 32384676 PMCID: PMC7290509 DOI: 10.3390/jcm9051359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/16/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is an intractable disease associated with mitochondrial DNA (mtDNA) mutations. In this preliminary, single-arm, prospective, open-label exploratory trial, we investigated the effectiveness and safety of skin electrical stimulation (SES) for cases of LHON harboring the mtDNA 11,778 mutation. Of the 11 enrolled patients, 10 completed six sessions of SES once every two weeks over a 10-week period. The primary outcome measure was the change in logarithm of the minimum angle of resolution (logMAR)-converted best-corrected visual acuity (BCVA) at one week after the last session of SES. The main secondary outcome measures were the logMAR BCVA at four and eight weeks and Humphrey visual field test sensitivities at one, four, and eight weeks. At all follow-up points, the logMAR BCVA had improved significantly from baseline, [1.80 (1.70–1.80) at baseline, 1.75 (1.52–1.80) at one week, 1.75 (1.50–1.80) at four weeks, and 1.75 (1.52–1.80) at eight weeks; p < 0.05]. At eight weeks of follow-up, five patients showed >2-fold increase in the summed sensitivity at 52 measurement points from baseline. No adverse effects were observed. In conclusion, SES could be a viable treatment option for patients with LHON in the chronic phase harboring the mtDNA 11,778 mutation.
Collapse
Affiliation(s)
- Takuji Kurimoto
- Correspondence: ; Tel.: +81-78-382-6048; Fax: 81-78-382-6059
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, Baratta S, Schöls L, Schüle R, Barboni P, Cascavilla ML, Maresca A, Capristo M, Ardissone A, Pareyson D, Cammarata G, Melzi L, Zeviani M, Peverelli L, Lamperti C, Marzoli SB, Fang M, Synofzik M, Ghezzi D, Carelli V, Taroni F. ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy. Ann Neurol 2020; 88:18-32. [PMID: 32219868 PMCID: PMC7383914 DOI: 10.1002/ana.25723] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Del Dotto
- Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria L Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Piero Barboni
- Studio Oculistico D'Azeglio, Bologna, Italy.,IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Anna Ardissone
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriella Cammarata
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Lisa Melzi
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Massimo Zeviani
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Lorenzo Peverelli
- Neurology Unit, Azienda Socio Sanitaria Territoriale Lodi, Ospedale Maggiore di Lodi, Lodi, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania B Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Mingyan Fang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
180
|
Mejia-Vergara AJ, Seleme N, Sadun AA, Karanjia R. Pathophysiology of Conversion to Symptomatic Leber Hereditary Optic Neuropathy and Therapeutic Implications: a Review. Curr Neurol Neurosci Rep 2020; 20:11. [DOI: 10.1007/s11910-020-01032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
181
|
Romagnoli M, La Morgia C, Carbonelli M, Di Vito L, Amore G, Zenesini C, Cascavilla ML, Barboni P, Carelli V. Idebenone increases chance of stabilization/recovery of visual acuity in OPA1-dominant optic atrophy. Ann Clin Transl Neurol 2020; 7:590-594. [PMID: 32243103 PMCID: PMC7187718 DOI: 10.1002/acn3.51026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
We previously documented that idebenone treatment in OPA1‐Dominant Optic Atrophy (OPA1‐DOA) led to some degrees of visual improvement in seven patients. We here present the results of a cohort study, which investigated the effect of off‐label idebenone administration in a larger OPA1‐DOA group compared with untreated patients. Inclusion criteria were: OPA1‐DOA clinical and molecular diagnosis, baseline visual acuity (VA) greater than/equal to counting fingers and treatment duration greater than 7 months. We found a significant difference between the last visit and baseline VA in favor of stabilization/recovery in idebenone‐treated as compared to untreated patients. This effect was retained after controlling for confounders.
Collapse
Affiliation(s)
- Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | - Giulia Amore
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | | | - Piero Barboni
- IRCCS Ospedale San Raffaele, Milan, Italy.,Studio Oculistico d'Azeglio, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
182
|
Indrieri A, Carrella S, Carotenuto P, Banfi S, Franco B. The Pervasive Role of the miR-181 Family in Development, Neurodegeneration, and Cancer. Int J Mol Sci 2020; 21:ijms21062092. [PMID: 32197476 PMCID: PMC7139714 DOI: 10.3390/ijms21062092] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs playing a fundamental role in the regulation of gene expression. Evidence accumulating in the past decades indicate that they are capable of simultaneously modulating diverse signaling pathways involved in a variety of pathophysiological processes. In the present review, we provide a comprehensive overview of the function of a highly conserved group of miRNAs, the miR-181 family, both in physiological as well as in pathological conditions. We summarize a large body of studies highlighting a role for this miRNA family in the regulation of key biological processes such as embryonic development, cell proliferation, apoptosis, autophagy, mitochondrial function, and immune response. Importantly, members of this family have been involved in many pathological processes underlying the most common neurodegenerative disorders as well as different solid tumors and hematological malignancies. The relevance of this miRNA family in the pathogenesis of these disorders and their possible influence on the severity of their manifestations will be discussed. A better understanding of the miR-181 family in pathological conditions may open new therapeutic avenues for devasting disorders such as neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Pietro Carotenuto
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- The Institute of Cancer Research, Cancer Therapeutics Unit 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| |
Collapse
|
183
|
Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Sci Rep 2020; 10:4785. [PMID: 32179840 PMCID: PMC7075867 DOI: 10.1038/s41598-020-61735-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria.
Collapse
|
184
|
Affiliation(s)
- Denize Atan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Eye Hospital, University Hospitals NHS Foundation Trust, Bristol, UK
| |
Collapse
|
185
|
Airen S, Shi C, Liu Z, Levin BE, Signorile JF, Wang J, Jiang H. Focal alteration of the intraretinal layers in neurodegenerative disorders. ACTA ACUST UNITED AC 2020; 5. [PMID: 32939442 DOI: 10.21037/aes.2019.12.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Focal intraretinal alterations have been studied to advance our understanding of the pathology of neurodegenerative diseases. The current literature involving focal alterations in the intraretinal layers was reviewed through PubMed using the search terms "focal alteration", "region of interest", "optical coherence tomography", "glaucoma", "multiple sclerosis", "Alzheimer's disease", "Parkinson disease", "neurodegenerative diseases" and other related items. It was found that focal alterations of intraretinal layers were different in various neurodegenerative diseases. The typical focal thinning might help differentiate various ocular and cerebral diseases, track disease progression, and evaluate the outcome of clinical trials. Advanced exploration of focal intraretinal alterations will help to further validate their clinical and research utility.
Collapse
Affiliation(s)
- Shriya Airen
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ce Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiping Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Bonnie E Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joseph F Signorile
- Department of Kinesiology and Sports Sciences, University of Miami, FL, USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
186
|
Endothelin-1 Mediated Decrease in Mitochondrial Gene Expression and Bioenergetics Contribute to Neurodegeneration of Retinal Ganglion Cells. Sci Rep 2020; 10:3571. [PMID: 32107448 PMCID: PMC7046667 DOI: 10.1038/s41598-020-60558-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Endothelin-1 (ET-1) is a vasoactive peptide that is elevated in aqueous humor as well as circulation of primary open angle glaucoma (POAG) patients. ET-1 has been shown to promote degeneration of optic nerve axons and apoptosis of retinal ganglion cells (RGCs), however, the precise mechanisms are still largely unknown. In this study, RNA-seq analysis was used to assess changes in ET-1 mediated gene expression in primary RGCs, which revealed that 23 out of 156 differentially expressed genes (DEGs) had known or predicted mitochondrial function, of which oxidative phosphorylation emerged as the top-most enriched pathway. ET-1 treatment significantly decreased protein expression of key mitochondrial genes including cytochrome C oxidase copper chaperone (COX17) and ATP Synthase, H+ transporting, Mitochondrial Fo Complex (ATP5H) in primary RGCs and in vivo following intravitreal ET-1 injection in rats. A Seahorse ATP rate assay revealed a significant decrease in the rate of mitochondrial ATP production following ET-1 treatment. IOP elevation in Brown Norway rats showed a trend towards decreased expression of ATP5H. Our results demonstrate that ET-1 produced a decrease in expression of vital components of mitochondrial electron transport chain, which compromise bioenergetics and suggest a mechanism by which ET-1 promotes neurodegeneration of RGCs in glaucoma.
Collapse
|
187
|
Zhunina OA, Yabbarov NG, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. Neurodegenerative Diseases Associated with Mitochondrial DNA Mutations. Curr Pharm Des 2020; 26:103-109. [DOI: 10.2174/1381612825666191122091320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction underlies several human chronic pathologies, including cardiovascular
disorders, cancers and neurodegenerative diseases. Impaired mitochondrial function associated with oxidative
stress can be a result of both nuclear and mitochondrial DNA (mtDNA) mutations. Neurological disorders associated
with mtDNA mutations include mitochondrial encephalomyopathy, chronic progressive external ophthalmoplegia,
neurogenic weakness, and Leigh syndrome. Moreover, mtDNA mutations were shown to play a role in the
development of Parkinson and Alzheimer’s diseases. In this review, current knowledge on the distribution and
possible roles of mtDNA mutations in the onset and development of various neurodegenerative diseases, with
special focus on Parkinson’s and Alzheimer’s diseases has been discussed.
Collapse
Affiliation(s)
- Olga A. Zhunina
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd., 8, 117149, Moscow, Russian Federation
| | - Nikita G. Yabbarov
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd., 8, 117149, Moscow, Russian Federation
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240, Moscow, Russian Federation
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3rd Cherepkovskaya Street, Moscow 121552, Russian Federation
| | - Alexander N. Orekhov
- Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russian Federation
| |
Collapse
|
188
|
Ocular Involvement in Friedreich Ataxia Patients and its Relationship with Neurological Disability, a Follow-up Study. Diagnostics (Basel) 2020; 10:diagnostics10020075. [PMID: 32013267 PMCID: PMC7168917 DOI: 10.3390/diagnostics10020075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background: This study compared functional and structural visual changes in Friedreich ataxia (FRDA) patients with healthy controls (HC) and correlated these changes with neurological disability. Methods: Eight FRDA Spanish patients and eight HC were selected from 2014 to 2018. Best corrected visual acuity (BCVA), visual field (VF), optic coherence tomography (OCT), and neurological disability measured by “scale for the assessment and rating of ataxia” (SARA) were taken in a basal exploration and repeated after 6 months. A linear mixed analysis and Bonferroni p-value correction were performed. Results: FRDA baseline and follow-up patients showed statistically significant decreases in BCVA, VF, and OCT parameters compared with the HC. Some of the VF measurements and most of the OCT parameters had an inverse mild-to-strong correlation with SARA. Moreover, the analysis of the ROC curve demonstrated that the peripapillary retinal nerve fiber layer (pRNFL) average thickness was the best parameter to discriminate between FRDA patients and HC. Conclusions: The follow-up study showed a progression in OCT parameters. Findings showed a sequential effect in pRNFL, ganglion cell complex (GCC), and macula. The VF and the OCT could be useful biomarkers in FRDA, both for their correlation with neurological disease as well as for their ability to evaluate disease progression.
Collapse
|
189
|
Vohra R, Kolko M. Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina. Mol Neurobiol 2020; 57:2021-2037. [PMID: 31916030 DOI: 10.1007/s12035-019-01863-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
The retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer's disease, as well as inner retinal neurodegenerative disease, e.g., glaucoma. Neurodegeneration has increasingly been linked to dysfunctional energy metabolism or conditions in which the energy supply does not meet the demand. Likewise, increasing lactate levels have been correlated with conditions consisting of unbalanced energy supply and demand, such as ischemia-associated diseases or excessive exercise. Lactate has thus been acknowledged as a metabolic waste product in organs with high energy metabolism. However, in the past decade, numerous beneficial roles of lactate have been revealed in the central nervous system. In this context, lactate has been identified as a valuable energy substrate, protecting against glutamate excitotoxicity and ischemia, as well as having signaling properties which regulate cellular functions. The present review aims to summarize and discuss protective roles of lactate in various model systems (in vitro, ex vivo, and in vivo) reflecting the inner retina focusing on lactate metabolism and signaling in inner retinal homeostasis and disease.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
190
|
Lešták J, Diblík P, Zacharov S, Fůs M, Kynčl M, Tintěra J, Heissigerová J. Late Functional and Morphological Findings after Methylalcohol Poisoning. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2020; 76:278-285. [PMID: 33691428 DOI: 10.31348/2020/39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The aim of the study was to determine the morphological and functional findings in a patient after methanol poisoning. Examination methods: The patient (male, 38 years old) was suffered methanol poisoning in eight years ago (2012). The following tests and examinations were performed: neurological visual field XR test (Medmont M700), retinal nerve fibre layer (RNFL), ganglion cell complex (GCC) and peripapillary vessel density (all using Avanti RTvue, Optovue), pattern electroretinography (PERG) and pattern visual evoked potential (PVEP) examination according to ISCEV methodology (Roland Consult Instrument) and brain MRI examination (Philips Achieva Dstream 3 T). RESULTS The biggest changes were found in RNFL and VD. PERG also showed damage to retinal ganglion cell axons. In left eye we determined decrease in oscillations (in comparison with contralateral eye) at N35-P50 and P50-N95. VEPs in both eyes were significantly reduced, almost inconspicuous in the left eye. Extension of latency time of P100 was not identified. Functional MRI showed a bilateral decrease in voxel activity with a greater decrease in the left eye. There were postmalatical changes in the dorsal parts of the putamen on MRI. The width of the optic nerve and chiasm was physiological. CONCLUSION Asymmetric damaging of RNFL and cortical centres of the brain were determined. We registered large pathological changes in VD, which are probably responsible for the deepening of optic nerve excavation and further loss of nerve fibers of retinal ganglion cells, which have not yet been described in the literature. Following these results is possible to define direct damage of nerve structures and blood vessels by toxins of methanol metabolism in the acute stage and upcoming reparation processes in following periods.
Collapse
|
191
|
Mani S. Response to "Letter to the editors" in regard to the article 'Genetic heterogeneity of mitochondrial genome in thiamine deficient Leigh syndrome patients'. J Neurol Sci 2019; 407:116441. [PMID: 31627180 DOI: 10.1016/j.jns.2019.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Shalini Mani
- Centre for emerging diseases, Departmenmt of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida 201301, India.
| |
Collapse
|
192
|
Darvizeh F, Asanad S, Falavarjani KG, Wu J, Tian JJ, Bandello F, Ross-Cisneros FN, Barboni P, Borrelli E, Sadun AA. Choroidal thickness and the retinal ganglion cell complex in chronic Leber's hereditary optic neuropathy: a prospective study using swept-source optical coherence tomography. Eye (Lond) 2019; 34:1624-1630. [PMID: 31804625 PMCID: PMC7608213 DOI: 10.1038/s41433-019-0695-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 11/12/2022] Open
Abstract
Background/Objectives Choroidal thinning has been suggested in Leber’s hereditary optic neuropathy (LHON). No study has been conducted of the choroid in relation to the retinal ganglion cell-inner plexiform layer (RGC-IPL). We sought to measure choroidal thickness in chronic LHON and to correlate thickness changes with the RGC-IPL. Subjects/Methods Chronic LHON, 11778 mitochondrial DNA (mtDNA) mutation, patients (26 eyes; mean age: 35.1 ± 16.1 years) were prospectively recruited at Doheny Eye Center, University of California Los Angeles from March 2016 to July 2017. Age-matched healthy controls (27 eyes; mean age: 32.4 ± 11.1 years) were enroled for comparison. Swept-source optical coherence tomography (SS-OCT) imaging was performed in chronic LHON patients and compared with age-matched healthy controls. Results The macular choroid was significantly thinner in chronic LHON (250.5 ± 62.2 μm) compared with controls (313.9 ± 60.2 μm; p < 0.0001). The peripapillary choroid was also significantly thinner in chronic LHON (135.7 ± 51.4 μm) compared with controls (183.0 ± 61.8 μm, p < 0.001). Choroidal thickness strongly correlated with retinal nerve fibre layer (RNFL) thickness in both the macular (R2 = 0.72; 95% CI, 0.57–0.84) and peripapillary regions (R2 = 0.53; 95% CI, 0.31–0.70). Choroidal thickness was also significantly correlated with macular RGC-IPL thickness (R2 = 0.51; 95% CI, 0.26–0.73). Conclusions Choroidal thinning in chronic LHON correlated strongly with both RNFL and RGC-IPL thicknesses. These findings may suggest a pathophysiological mechanism involving vascular pathology of the choroid in relation to the retinal ganglion cell complex in LHON.
Collapse
Affiliation(s)
- Fatemeh Darvizeh
- Doheny Eye Institute, Los Angeles, CA, USA.,Department of Ophthalmology, San Raffaele Scientific Institute, Milan, Italy
| | - Samuel Asanad
- Doheny Eye Institute, Los Angeles, CA, USA. .,Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | | | - Jessica Wu
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Francesco Bandello
- Department of Ophthalmology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Piero Barboni
- Department of Ophthalmology, San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Borrelli
- Department of Ophthalmology, San Raffaele Scientific Institute, Milan, Italy
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
193
|
Karaarslan C. Leber's Hereditary Optic Neuropathy as a Promising Disease for Gene Therapy Development. Adv Ther 2019; 36:3299-3307. [PMID: 31605306 PMCID: PMC6860503 DOI: 10.1007/s12325-019-01113-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a relatively common, rapidly progressing inherited optic neuropathy wherein LHON-affected eyes undergo optic nerve atrophy due to retinal ganglion cell (RGC) loss. It is a maternally inherited (or sporadic) mitochondrial disorder caused primarily by mutations in genes that encode components of respiratory complex (RC)1 in mitochondria. Mitochondrial deficiency of RC1 compromises ATP production and oxidative stress management in RGCs. The most common LHON-causing mutations are 11778G>A, 3460G>A, and 14484T>C point mutations in MT-ND4, MT-ND1, and MT-ND6. The unusually high mitochondrial load of RGCs makes them particularly sensitive to these mutations. Patients with LHON may be prescribed ubiquinone (a component of RC3) or idebenone, a ubiquinone analogue with enhanced bioavailability to act downstream of RC1. The challenge of accessing the inner mitochondrial membrane with gene therapy for LHON, and other mitochondrial diseases, may be overcome by incorporation of a specific mitochondrion-targeting sequence (MTS) that enables allotropic expression of a nucleus-transcribed ND4 transgene. Because LHON penetrance is incomplete among carriers of the aforementioned mutations, identification of environmental factors, such as heavy smoking, that interact with genetics in the phenotypic expression of LHON may be helpful toward preventing or delaying disease development. LHON has become a model for mitochondrial and neurogenerative diseases owing to it having a clearly identified genetic cause and its early onset and rapid progression characteristics. Hence, LHON studies and genetic treatment advances may inform research of other diseases.
Collapse
|
194
|
Berardo A, Emmanuele V, Vargas W, Tanji K, Naini A, Hirano M. Leber hereditary optic neuropathy plus dystonia, and transverse myelitis due to double mutations in MT-ND4 and MT-ND6. J Neurol 2019; 267:823-829. [PMID: 31776719 DOI: 10.1007/s00415-019-09619-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/27/2019] [Accepted: 11/02/2019] [Indexed: 11/28/2022]
Abstract
Leber hereditary optic neuropathy (LHON) typically presents as painless central or centrocecal scotoma and is due to maternally inherited mitochondrial DNA (mtDNA) mutations. Over 95% of LHON cases are caused by one of three mtDNA "common" point mutations: m.3460G>A, m.11778G>A, or m.14484T>C, which are all in genes encoding structural subunits of complex I of the respiratory chain. Intriguing features of LHON include: incomplete penetrance, tissue specificity, and male predominance, indicating that additional genetic or environmental factors are modulating the phenotypic expression of the pathogenic mtDNA mutations. However, since its original description as a purely ophthalmological disorder, LHON has also been linked to multisystemic conditions with variable neurological, cardiac, and skeletal abnormalities. Although double "common" mutations have been reported to cause LHON and LHON-plus, they are extremely rare. Here, we present a patient with an unusual double point mutation (m.11778 G>A and m.14484T>C) with a multisystemic LHON-plus phenotype characterized by: optic neuropathy, ptosis, ataxia, dystonia, dysarthria, and recurrent extensive transverse myelitis.
Collapse
Affiliation(s)
- Andres Berardo
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY, 10032, USA
| | - Valentina Emmanuele
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY, 10032, USA
| | - Wendy Vargas
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY, 10032, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ali Naini
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, 630 West 168th Street, P&S 4-423, New York, NY, 10032, USA.
| |
Collapse
|
195
|
Sheremet NL, Andreeva NA, Shmel'kova MS, Tsigankova PG. [Mitochondrial biogenesis in hereditary optic neuropathies]. Vestn Oftalmol 2019; 135:85-91. [PMID: 31714518 DOI: 10.17116/oftalma201913505185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The article offers a review of mitochondrial biogenesis in hereditary optic neuropathies. It covers the mechanisms of mitochondrial biogenesis, factors affecting it and tools for mitochondrial turnover assessment.
Collapse
Affiliation(s)
- N L Sheremet
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - N A Andreeva
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - M S Shmel'kova
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - P G Tsigankova
- Research Centre for Medical Genetics, 1 Moskvorech'e St., Moscow, Russian Federation, 115522
| |
Collapse
|
196
|
Rickmann A, Wocker L, Damm LJ, Ivanescu C, Szurman P, Pérez Guerra N. LHON – Behandlungsoption trotz schlechtem Ausgangsvisus? Ophthalmologe 2019; 116:970-974. [DOI: 10.1007/s00347-019-0864-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
197
|
Visual function in chronic Leber's hereditary optic neuropathy during idebenone treatment initiated 5 to 50 years after onset. Graefes Arch Clin Exp Ophthalmol 2019; 257:2751-2757. [PMID: 31482278 DOI: 10.1007/s00417-019-04444-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by a subacute and progressive impairment and subsequent degeneration of retinal ganglion cells (RGCs). In most cases, it results in optic nerve atrophy and permanently reduced visual acuity (VA). Idebenone has recently been approved in Europe for treating LHON. However, published clinical data has only focused on efficacy in patients within the first years after disease onset. The present study is the first to evaluate possible effects of idebenone treatment in patients with LHON when initiated after more than 5 years from disease onset. METHODS Oral treatment with idebenone 300 mg tid was started in seven patients 5 to 51 years after LHON onset. All patients had genetically confirmed primary LHON mutations (m11778G>A, m14484T>C, and m13051G>A). Visual function of all fourteen eyes was tested every 3 months using logarithmic reading charts and automated static threshold perimetry. The obtained clinical data were analyzed retrospectively using a multivariate analysis for VA and the Wilcoxon signed-rank test for visual field data. RESULTS Before treatment, VA was 0.78 ± 0.38 logMAR (range 0.24 to 1.50 logMAR). During the first year of therapy, VA improved significantly by an average of - 0.20 ± 0.10 logMAR or 10 ± 5 ETDRS letters (P = 0.002; VA range 0.06 to 1.30 logMAR). Seven of fourteen eyes showed an improvement of 2 or more lines. Visual field mean deviation increased from - 8.02 ± 6.11 to - 6.48 ± 5.26 dB after 12 months, but this change was not statistically significant (P = 0.056). CONCLUSIONS The increase in VA of patients who have had LHON for more than 5 years observed soon after start of treatment may not constitute a coincidental spontaneous recovery. We hypothesize that the treatment response in chronic LHON was the result of a reactivated signal transduction in surviving dysfunctional RGCs. The results of this study indicate a beneficial effect of idebenone on improvement of visual function in LHON patients with established optic atrophy.
Collapse
|
198
|
Li S, Duan S, Qin Y, Lin S, Zheng K, Li X, Zhang L, Gu X, Yao K, Wang B. Leber's Hereditary Optic Neuropathy-Specific Heteroplasmic Mutation m.14495A>G Found in a Chinese Family. Transl Vis Sci Technol 2019; 8:3. [PMID: 31316863 PMCID: PMC6615366 DOI: 10.1167/tvst.8.4.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/06/2019] [Indexed: 01/25/2023] Open
Abstract
Purpose Leber's hereditary optic neuropathy (LHON) is a mitochondrial DNA (mtDNA)-associated, maternally inherited eye disease. Mutation heteroplasmy level is one of the leading causes to trigger LHON manifestation. In this study, we aimed to identify the causative mutation in a large Han Chinese family with LHON and explore the underlying pathogenic mechanism in this LHON family. Methods The whole-mtDNA sequence was amplified by long-range PCR. Mutations were subsequently identified by next-generation sequencing (NGS) and validated by Sanger sequencing. The heteroplasmy rates of those family members were determined by digital PCR (dPCR). Mitochondrial haplogroups were assigned based on mtDNA tree build 17. Results The m.14495A>G mutation was identified as causative due to its higher heteroplasmy level (>50%) in patients than in their unaffected relatives. All mutation carriers belong to M7b1a1 and are assigned to Asian mtDNA lineage. Interestingly, our result revealed that high mtDNA copy number in carrier might prevent LHON manifestation. Conclusions This is the first report of m.14495A>G mutation in Asian individuals with LHON. Our study shows that dPCR technology can provide more reliable results in mutation heteroplasmy assay and determination of the cellular mtDNA content, making it a potentially promising tool for clinical precise diagnosis of LHON. Furthermore, our results also add evidence to the opinion that higher mtDNA content may protect mutation carriers from LHON. Translational Relevance dPCR can be used for the assessment of LHON disease, and a new genetic-based diagnostic strategy has been proposed for LHON patients with the m.14495A>G mutation.
Collapse
Affiliation(s)
- Shouqing Li
- Department of Neuro-ophthalmology, Weifang Eye Hospital, Shandong Province, China
| | - Shan Duan
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Yueyuan Qin
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Sheng Lin
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Kaifeng Zheng
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Xi Li
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| | - Linghua Zhang
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China
| | - Xueying Gu
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China
| | - Keqin Yao
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China
| | - Baojiang Wang
- Laboratory of Medical Genetics, Shenzhen Health Development Research Center, Shenzhen, China.,Center for Birth Defect Research and Prevention, Shenzhen Health Development Research Center, Shenzhen, China
| |
Collapse
|
199
|
Parisi V, Ziccardi L, Sadun F, De Negri AM, La Morgia C, Barbano L, Carelli V, Barboni P. Functional Changes of Retinal Ganglion Cells and Visual Pathways in Patients with Chronic Leber’s Hereditary Optic Neuropathy during One Year of Follow-up. Ophthalmology 2019; 126:1033-1044. [DOI: 10.1016/j.ophtha.2019.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022] Open
|
200
|
Multilocus Mitochondrial Mutations Do Not Directly Affect the Efficacy of Gene Therapy for Leber Hereditary Optic Neuropathy. J Neuroophthalmol 2019; 40:22-29. [PMID: 31246675 DOI: 10.1097/wno.0000000000000797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Clinical trials of gene therapy for Leber hereditary optic neuropathy (LHON) were conducted in 9 volunteers with the mitochondrial mutation, G11778A in ND4. The purpose of this study was to investigate whether multilocus mitochondrial mutations directly influence the efficacy of gene therapy for LHON. METHODS Nine volunteers with LHON participated in a clinical trial with intravitreal injection of an adenoviral vector expressing wild-type ND4. Patients were subsequently divided into 2 groups: according to the differences in therapy efficacy and based on improvements in visual acuity. Full mitochondrial DNA sequences of the 2 groups of patients were generated and compared using PubMed, PolyPhen, and PROVEAN. Furthermore, the association between the detected mutations and clinical effects of gene therapy was analyzed. RESULTS Best-corrected visual acuity (BCVA) significantly improved (≥0.3 log of minimum angle of resolution [logMAR]) in 7 patients 6 months after gene therapy, whereas there was no significant change in BCVA (<0.3 logMAR) of the remaining 2 patients. All 9 patients carried the G1178A mutation in addition to other nonsynonymous mutations. Among these mutations, some were predicted to be neutral and deleterious. Meanwhile, different mitochondrial mutations in the group in which treatment was ineffective, compared with those in responders, were at nucleotide positions 6569 (CO1; Patient 3), 9641 (CO3; Patient 3), and 4491 (ND2; Patient 5). CONCLUSIONS Detection of the 3 primary mitochondrial mutations causing LHON is sufficient for screening before gene therapy; sequencing of the entire mitochondrial genome is unnecessary before treatment. Patients with LHON can respond to targeted gene therapy irrespective of additional multilocus mitochondrial mutations.
Collapse
|