151
|
Quantifying Charge Effects on Fouling Layer Strength and (Ir)Removability during Cross-Flow Microfiltration. MEMBRANES 2021; 11:membranes11010028. [PMID: 33401452 PMCID: PMC7824541 DOI: 10.3390/membranes11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Fouling of membranes is still an important limiting factor in the application of membrane technology. Therefore, there is still a need for an in-depth understanding of which parameters affect the (ir)removability of fouling layers, as well as the mechanisms behind fouling. In this study, fluid dynamic gauging (FDG) was used to investigate the influence of charge effects between negatively charged foulant particles and cations on cake cohesive strength. Fouling cakes’ thicknesses and cohesive strengths were estimated during membrane operations, where microfiltration (MF) membranes were fouled in a feed-and-bleed cross-flow filtration system with low and highly negatively charged polystyrene–polyacrylic acid core-shell particles. In addition, an added procedure to determine the irremovability of cakes using FDG was also proposed. Comparing layers formed in the presence and absence of calcium ions revealed that layers formed without calcium ions had significantly lower cohesive strength than layers formed in the presence of calcium ions, which is explained by the bridging effect between negatively charged particles and calcium ions. Results also confirmed more cohesive cakes formed by high negative charge particles in the presence of calcium compared to lower negative charge particles. Hence, it was demonstrated that FDG can be used to assess the cohesive strength ((ir)removability) of cake layers, and to study how cake cohesive strength depends on foulant surface charge and ionic composition of the solution.
Collapse
|
152
|
Rashid SS, Liu YQ, Zhang C. Upgrading a large and centralised municipal wastewater treatment plant with sequencing batch reactor technology for integrated nutrient removal and phosphorus recovery: Environmental and economic life cycle performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141465. [PMID: 32827824 DOI: 10.1016/j.scitotenv.2020.141465] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Although nutrient removal and recovery from municipal wastewater are desirable to protect phosphorus resource and water-bodies from eutrophication, it is unclear how much environmental and economic benefits and burdens it might cause. This study evaluated the environmental and economic life cycle performance of three different upgraded Processes A, B and C with commercially available technologies for nutrient removal and phosphorus recovery based on an existing Malaysian wastewater treatment plant with a sequencing batch reactor technology and diluted municipal wastewater. It is found that the integration of nutrient removal, phosphorus recovery and electricity generation in all upgraded processes reduced eutrophication potential by 62-76%, and global warming potential by 7-22%, which, however, were gained at the cost of increases in human toxicity, acidification, abiotic depletion (fossil fuel) and freshwater ecotoxicity potentials by an average of 23%. New technologies for nutrient removal and phosphorus recovery are thus needed to achieve holistic rather than some environmental benefits at the expense of others. In addition, the study on two different functional units (FU), i.e. per m3 treated wastewater and per kg struvite recovered, shows that FU affected environmental assessment results, but the upgraded Process C had the least overall environmental burden with either of FUs, suggesting the necessity to use different functional units when comparing and selecting different technologies with two functions such as wastewater treatment and struvite production to confirm the best process configuration. The total life cycle costs of Processes A, B and C were 10.7%, 29.8% and 28.1%, respectively, higher than the existing process due to increased capital and operating costs. Therefore, a trade-off between environmental benefits and cost has to be balanced for technology selection or new integrated technologies have to be developed to achieve environmentally sustainable wastewater treatment economically.
Collapse
Affiliation(s)
- Siti Safirah Rashid
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | - Chi Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
153
|
An J, Li Y, Chen W, Li G, He J, Feng H. Electrochemically-deposited PANI on iron mesh-based metal-organic framework with enhanced visible-light response towards elimination of thiamphenicol and E. coli. ENVIRONMENTAL RESEARCH 2020; 191:110067. [PMID: 32818501 DOI: 10.1016/j.envres.2020.110067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging class of porous materials that attracted tremendous attention as eco-friendly photocatalysts. However, poor charge separation in most MOFs largely thwarts their photocatalytic performance. In this work, Materials of Institut Lavoisier-100(Fe) (MIL-100 (Fe)) based on iron mesh was successfully fabricated by in situ growth. MIL-100(Fe) doped with polyaniline, namely MIL-100(Fe)/PANI, were then fabricated by galvanostatic deposition followed by annealing. Compared to pure MIL-100(Fe), MIL-100(Fe)/PANI composites exhibited excellent photocatalytic performances towards Thiamphenicol (TAP) degradation and Escherichia coli (E. Coli.) inactivation. The apparent rate constant, k, for TAP elimination of the MIL-100(Fe)/PANI composites with H2O2 is approximately 3 times as high as that of pure MIL-100(Fe). The electrochemical studies showed enhanced photocatalytic performances, which can be attributed to the electronic conductivity of PANI polymers. Quenching experiments, fluorescent tests and electron paramagnetic resonance (EPR) all suggested ⋅O2-, e-, ⋅OH and h+ as reactive oxidizing species (ROSs) involved in the photocatalytic process, where ⋅OH played the predominant ROSs. The transformation products of TAP were also isolated and characterized by high-resolution mass spectrometry, and transformation pathways of TAP under Vis/MIL-100(Fe)/PANI/H2O2 were tentatively clarified based on involved intermediates. Herein, MOFs conjugated conductive polymers nanocomposites look promising as efficient photocatalysts for organic pollutants degradation and bacteria inactivation. This work could offer novel strategies for the development of heterojunction composites with enhanced photocatalytic performances for better environmental remediation.
Collapse
Affiliation(s)
- Jibin An
- Key Laboratory of Environmental Materials & Remediation Technologies of Chongqing, College of Chemistry & Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Yanlin Li
- Key Laboratory of Environmental Materials & Remediation Technologies of Chongqing, College of Chemistry & Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Wei Chen
- Key Laboratory of Environmental Materials & Remediation Technologies of Chongqing, College of Chemistry & Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Guoqiang Li
- Chongqing University, Chongqing, 400044, PR China
| | - Jiahong He
- Key Laboratory of Environmental Materials & Remediation Technologies of Chongqing, College of Chemistry & Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Huixia Feng
- Lanzhou University of Technology, Lanzhou, 730050, PR China
| |
Collapse
|
154
|
Hong SH, Kang SW. Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One. Polymers (Basel) 2020; 12:E2712. [PMID: 33207816 PMCID: PMC7696371 DOI: 10.3390/polym12112712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, a cellulose acetate (CA) membrane with pores generated by a water pressure treatment was investigated for its ability to serve as a pretreatment filter device for the detection of 2-n-octyl-4-isothiazolin-3-one (OIT). Pores were generated by applying a water pressure of 8 bar to a membrane manufactured using a CA-based polymer solution. The CA used for the manufacturing was an environment-friendly, low-cost and highly energy-efficient material. Furthermore, since the fabricated porous CA polymeric film possessed many hydrophilic functional groups, it could strongly bind hydrophilic substances while avoiding interaction with hydrophobic substances. OIT, which comprises a hydrophobic bond that forms weak bonds over time, can break down more easily than hydrophilic impurities. The different extents of interaction occurring between either the toxic fungicide OIT or the hydrophilic impurities and the CA film were determined by Fourier-transform infrared (FT-IR) spectroscopy. The physicochemical changes in the resulting membrane, which occurred when the pores were generated, were investigated through scanning electron microscopy (SEM) and thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Seong Ho Hong
- Department of Chemistry, Sangmyung University, Seoul 03016, Korea;
| | - Sang Wook Kang
- Department of Chemistry, Sangmyung University, Seoul 03016, Korea;
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|
155
|
Hu Y, Zang Y, Yang Y, Duan A, Wang XC, Ngo HH, Li YY, Du R. Zero-valent iron addition in anaerobic dynamic membrane bioreactors for preconcentrated wastewater treatment: Performance and impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140687. [PMID: 32721758 DOI: 10.1016/j.scitotenv.2020.140687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Wastewater preconcentration to capture abundant organics is promising for facilitating subsequent anaerobic digestion (AD) to recover bioenergy, however research efforts are still needed to verify the effectiveness of such an emerging strategy as carbon capture plus AD. Therefore, lab-scale anaerobic dynamic membrane bioreactors (AnDMBRs) without and with the addition of zero-valent iron (ZVI) (i.e., AnDMBR1 versus AnDMBR2) were developed for preconcentrated domestic wastewater (PDW) treatment, and the impact of ZVI addition on process performance and associated mechanisms were investigated. The stepwise addition of ZVI from 2 to 4 to 6 g/L improved the treatment performance as COD removal slightly increased and TP removal and methane production were enhanced by 53.3%-62.9% and 22.6%-31.3%, respectively, in consecutive operational phases. However, the average increasing rate of the transmembrane pressure (TMP) in AnDMBR2 (0.18 kPa/d) was obviously higher than that in AnDMBR1 (0.05 kPa/d), indicating an unfavorable impact of dosing ZVI on the dynamic membrane (DM) filtration performance. ZVI that has transformed to iron ions (mainly Fe2+) can behave as a coagulant, electron donor or inorganic foulant, thus enabling the excellent removal of dissolved phosphorous, enhancing the enrichment and activities of specific methanogens and causing the formation of a compact DM layer. Morphological, componential, and microbial community analyses provided new insights into the functional mechanisms of ZVI added to membrane-assisted anaerobic digesters, indicating that ZVI has the potential to improve bioenergy production and resource recovery, while optimizing the ZVI dosage should be considered to alleviate membrane fouling.
Collapse
Affiliation(s)
- Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ying Zang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ao Duan
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Runda Du
- Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
156
|
Application of Hybrid Membrane Processes Coupling Separation and Biological or Chemical Reaction in Advanced Wastewater Treatment. MEMBRANES 2020; 10:membranes10100281. [PMID: 33066241 PMCID: PMC7602016 DOI: 10.3390/membranes10100281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023]
Abstract
The rapid urbanization and water shortage impose an urgent need in improving sustainable water management without compromising the socioeconomic development all around the world. In this context, reclaimed wastewater has been recognized as a sustainable water management strategy since it represents an alternative water resource for non-potable or (indirect) potable use. The conventional wastewater remediation approaches for the removal of different emerging contaminants (pharmaceuticals, dyes, metal ions, etc.) are unable to remove/destroy them completely. Hybrid membrane processes (HMPs) are a powerful solution for removing emerging pollutants from wastewater. On this aspect, the present paper focused on HMPs obtained by the synergic coupling of biological and/or chemical reaction driven processes with membrane processes, giving a critical overview and particular emphasis on some case studies reported in the pertinent literature. By using these processes, a satisfactory quality of treated water can be achieved, permitting its sustainable reuse in the hydrologic cycle while minimizing environmental and economic impact.
Collapse
|
157
|
Mohammed Redha Z. Multi-response optimization of the coagulation process of real textile wastewater using a natural coagulant. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1080/25765299.2020.1833509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Zainab Mohammed Redha
- Department of Chemical Engineering, College of Engineering, University of Bahrain, Sakheer, Bahrain
| |
Collapse
|
158
|
Hafuka A, Takahashi T, Kimura K. Anaerobic digestibility of up-concentrated organic matter obtained from direct membrane filtration of municipal wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
159
|
|
160
|
Kim D, Kim IC, Kwon YN, Myung S. Novel bio-based polymer membranes fabricated from isosorbide-incorporated poly(arylene ether)s for water treatment. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
161
|
Membrane-Based Processes Used in Municipal Wastewater Treatment for Water Reuse: State-Of-The-Art and Performance Analysis. MEMBRANES 2020; 10:membranes10060131. [PMID: 32630495 PMCID: PMC7344726 DOI: 10.3390/membranes10060131] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
Wastewater reuse as a sustainable, reliable and energy recovery concept is a promising approach to alleviate worldwide water scarcity. However, the water reuse market needs to be developed with long-term efforts because only less than 4% of the total wastewater worldwide has been treated for water reuse at present. In addition, the reclaimed water should fulfill the criteria of health safety, appearance, environmental acceptance and economic feasibility based on their local water reuse guidelines. Moreover, municipal wastewater as an alternative water resource for non-potable or potable reuse, has been widely treated by various membrane-based treatment processes for reuse applications. By collecting lab-scale and pilot-scale reuse cases as much as possible, this review aims to provide a comprehensive summary of the membrane-based treatment processes, mainly focused on the hydraulic filtration performance, contaminants removal capacity, reuse purpose, fouling resistance potential, resource recovery and energy consumption. The advances and limitations of different membrane-based processes alone or coupled with other possible processes such as disinfection processes and advanced oxidation processes, are also highlighted. Challenges still facing membrane-based technologies for water reuse applications, including institutional barriers, financial allocation and public perception, are stated as areas in need of further research and development.
Collapse
|
162
|
Castro-Muñoz R. The Role of New Inorganic Materials in Composite Membranes for Water Disinfection. MEMBRANES 2020; 10:E101. [PMID: 32422940 PMCID: PMC7281186 DOI: 10.3390/membranes10050101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/22/2023]
Abstract
Today, there is an increasing interest in improving the physicochemical properties of polymeric membranes by merging the membranes with different inorganic materials. These so-called composite membranes have been implemented in different membrane-based technologies (e.g., microfiltration, ultrafiltration, nanofiltration, membrane bioreactors, among others) for water treatment and disinfection. This is because such inorganic materials (such as TiO2-, ZnO-, Ag-, and Cu-based nanoparticles, carbon-based materials, to mention just a few) can improve the separation performance of membranes and also some other properties, such as antifouling, mechanical, thermal, and physical and chemical stability. Moreover, such materials display specific biological activity towards viruses, bacteria, and protozoa, showing enhanced water disinfection properties. Therefore, the aim of this review is to collect the latest advances (in the last five years) in using composite membranes and new hybrid materials for water disinfection, paying particular emphasis on relevant results and new hydride composites together with their preparation protocols. Moreover, this review addresses the main mechanism of action of different conventional and novel inorganic materials toward biologically active matter.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca. Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| |
Collapse
|
163
|
Obotey Ezugbe E, Rathilal S. Membrane Technologies in Wastewater Treatment: A Review. MEMBRANES 2020; 10:E89. [PMID: 32365810 PMCID: PMC7281250 DOI: 10.3390/membranes10050089] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/01/2022]
Abstract
In the face of water shortages, the world seeks to explore all available options in reducing the over exploitation of limited freshwater resources. One of the surest available water resources is wastewater. As the population grows, industrial, agricultural, and domestic activities increase accordingly in order to cater for the voluminous needs of man. These activities produce large volumes of wastewater from which water can be reclaimed to serve many purposes. Over the years, conventional wastewater treatment processes have succeeded to some extent in treating effluents for discharge purposes. However, improvements in wastewater treatment processes are necessary in order to make treated wastewater re-usable for industrial, agricultural, and domestic purposes. Membrane technology has emerged as a favorite choice for reclaiming water from different wastewater streams for re-use. This review looks at the trending membrane technologies in wastewater treatment, their advantages and disadvantages. It also discusses membrane fouling, membrane cleaning, and membrane modules. Finally, recommendations for future research pertaining to the application of membrane technology in wastewater treatment are made.
Collapse
Affiliation(s)
- Elorm Obotey Ezugbe
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa;
| | | |
Collapse
|
164
|
Effects of Room Temperature Stretching and Annealing on the Crystallization Behavior and Performance of Polyvinylidene Fluoride Hollow Fiber Membranes. MEMBRANES 2020; 10:membranes10030038. [PMID: 32121401 PMCID: PMC7142550 DOI: 10.3390/membranes10030038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022]
Abstract
A treatment consisting of room temperature stretching and subsequent annealing was utilized to regulate the morphology and performance of polyvinylidene fluoride (PVDF) hollow fiber membranes. The effects of stretching ratios and stretching rates on the crystallization behavior, morphology, and performance of the PVDF membranes were investigated. The results showed that the treatment resulted in generation of the β crystalline phase PVDF and increased the crystallinity of the membrane materials. The treatment also brought about the orientation of the membrane pores along the stretching direction and led to an increase in the mean pore size of the membranes. In addition, as the stretching ratio increased, the tensile strength and permeation flux were improved while the elongation at break was depressed. However, compared to the stretching ratio, the stretching rate had less influence on the membrane structure and performance. In general, as the stretching ratio was 50% and the stretching rate was 20 mm/min, the tensile strength was increased by 36% to 7.47 MPa, and the pure water flux was as high as 776.28 L/(m2·h·0.1bar), while the mean pore size was not changed significantly. This research proved that the room temperature stretching and subsequent annealing was a simple but effective method for regulating the structure and the performance of the PVDF porous membranes.
Collapse
|
165
|
A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. MEMBRANES 2020; 10:membranes10020024. [PMID: 32033001 PMCID: PMC7073750 DOI: 10.3390/membranes10020024] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
Compared with the traditional activated sludge process, a membrane bioreactor (MBR) has many advantages, such as good effluent quality, small floor space, low residual sludge yield and easy automatic control. It has a promising prospect in wastewater treatment and reuse. However, membrane fouling is the biggest obstacle to the wide application of MBR. This paper aims at summarizing the new research progress of membrane fouling mechanism, control, prediction and detection in the MBR systems. Classification, mechanism, influencing factors and control of membrane fouling, membrane life prediction and online monitoring of membrane fouling are discussed. The research trends of relevant research areas in MBR membrane fouling are prospected.
Collapse
|