151
|
Nargesi S, Abastabar M, Valadan R, Mayahi S, Youn JH, Hedayati MT, Seyedmousavi S. Differentiation of Aspergillus flavus from Aspergillus oryzae Targeting the cyp51A Gene. Pathogens 2021; 10:pathogens10101279. [PMID: 34684228 PMCID: PMC8541052 DOI: 10.3390/pathogens10101279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is one of the most important agents of invasive and non-invasive aspergillosis, especially in tropical and subtropical regions of the world, including Iran. Aspergillus oryzae is closely related to A. flavus, and it is known for its economic importance in traditional fermentation industries. Reports of infection due to A. oryzae are scarce. Several studies reported that differentiating these two species in clinical laboratories is not possible using MALDI-TOF or by targeting fungal barcode genes, such as Internal Transcribed Spacer (ITS) and β-tubulin (benA). The species-level identification of causative agents and the determination of antifungal susceptibility patterns can play significant roles in the outcome of aspergillosis. Here, we aimed to investigate the discriminatory potential of cyp51A PCR-sequencing versus that of the ITS, benA and calmodulin (CaM) genes for the differentiation of A. flavus from A. oryzae. In a prospective study investigating the molecular epidemiology of A. flavus in Iran between 2008 and 2018, out of 200 clinical isolates of A. flavus, 10 isolates showed >99% similarity to both A. flavus and A. oryzae. Overall, the ITS, β-tubulin and CaM genes did not fulfil the criteria for differentiating these 10 isolates. However, the cyp51A gene showed promising results, which warrants further studies using a larger set of isolates from more diverse epidemiological regions of the world.
Collapse
Affiliation(s)
- Sanaz Nargesi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran; (S.N.); (S.M.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran; (S.N.); (S.M.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Correspondence: (M.A.); (M.T.H.); (S.S.)
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Mazandaran University of Medical Sciences, Sari 48157-33971, Iran;
| | - Sabah Mayahi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran; (S.N.); (S.M.)
| | - Jung-Ho Youn
- Clinical Center, Microbiology Service, Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran; (S.N.); (S.M.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Correspondence: (M.A.); (M.T.H.); (S.S.)
| | - Seyedmojtaba Seyedmousavi
- Clinical Center, Microbiology Service, Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA;
- Correspondence: (M.A.); (M.T.H.); (S.S.)
| |
Collapse
|
152
|
Sserumaga JP, Wagacha JM, Biruma M, Mutegi CK. Contamination of groundnut (Arachis hypogaea L.) with Aspergillus section Flavi communities and aflatoxin at the post-harvest stage. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
153
|
Ribeiro SR, Garcia MV, Copetti MV, Brackmann A, Both V, Wagner R. Effect of controlled atmosphere, vacuum packaging and different temperatures on the growth of spoilage fungi in shelled pecan nuts during storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
154
|
Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China. Toxins (Basel) 2021; 13:678. [PMID: 34678973 PMCID: PMC8541519 DOI: 10.3390/toxins13100678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia;
| | | | - Yougquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chengrong Nie
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Mingjun He
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Yang Liu
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| |
Collapse
|
155
|
González-López NM, Huertas-Ortiz KA, Leguizamon-Guerrero JE, Arias-Cortés MM, Tere-Peña CP, García-Castañeda JE, Rivera-Monroy ZJ. Omics in the detection and identification of biosynthetic pathways related to mycotoxin synthesis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4038-4054. [PMID: 34486583 DOI: 10.1039/d1ay01017d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycotoxins are secondary metabolites that are known to be toxic to humans and animals. On the other hand, some mycotoxins and their analogues possess antioxidant as well as antitumor properties, which could be relevant in the fields of pharmaceutical analysis and food research. Omics techniques are a group of analytical tools applied in the biological sciences in order to study genes (genomics), mRNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics). Omics have become a vital tool in the field of mycotoxins, especially contributing to the identification of biomarkers with potential use for the detection of mycotoxigenic species and the gathering of information about the biosynthetic pathways of mycotoxins in different environments. This approach has provided tools for the development of prevention strategies and control measures for different mycotoxins. Additionally, research has revealed important information about the impact of global warming and climate change on the prevalence of mycotoxin issues in society. In the context of foodomics, the aim is to apply omics techniques in order to ensure food safety. The objective of the present review is to determine the state of the art regarding the development of analytical techniques based on omics in the identification of biosynthetic pathways related to mycotoxin synthesis.
Collapse
Affiliation(s)
| | - Kevin Andrey Huertas-Ortiz
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| | | | | | | | | | - Zuly Jenny Rivera-Monroy
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Bogotá, Colombia.
| |
Collapse
|
156
|
In Vitro Biological Control of Aspergillus flavus by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793, Producers of Antifungal Volatile Organic Compounds. Toxins (Basel) 2021; 13:toxins13090663. [PMID: 34564667 PMCID: PMC8471246 DOI: 10.3390/toxins13090663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aspergillus flavus is a toxigenic fungal colonizer of fruits and cereals and may produce one of the most important mycotoxins from a food safety perspective, aflatoxins. Therefore, its growth and mycotoxin production should be effectively avoided to protect consumers' health. Among the safe and green antifungal strategies that can be applied in the field, biocontrol is a recent and emerging strategy that needs to be explored. Yeasts are normally good biocontrol candidates to minimize mold-related hazards and their modes of action are numerous, one of them being the production of volatile organic compounds (VOCs). To this end, the influence of VOCs produced by Hanseniaspora opuntiae L479 and Hanseniaspora uvarum L793 on growth, expression of the regulatory gene of the aflatoxin pathway (aflR) and mycotoxin production by A. flavus for 21 days was assessed. The results showed that both yeasts, despite producing different kinds of VOCs, had a similar effect on inhibiting growth, mycotoxin biosynthetic gene expression and phenotypic toxin production overall at the mid-incubation period when their synthesis was the greatest. Based on the results, both yeast strains, H. opuntiae L479 and H. uvarum L793, are potentially suitable as a biopreservative agents for inhibiting the growth of A. flavus and reducing aflatoxin accumulation.
Collapse
|
157
|
Ezekiel CN, Ayeni KI, Akinyemi MO, Sulyok M, Oyedele OA, Babalola DA, Ogara IM, Krska R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins (Basel) 2021; 13:635. [PMID: 34564639 PMCID: PMC8472633 DOI: 10.3390/toxins13090635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
This study characterized the health risks due to the consumption of mycotoxin-contaminated foods and assessed the consumer awareness level of mycotoxins in households in two north-central Nigerian states during the harvest and storage seasons of 2018. Twenty-six mycotoxins and 121 other microbial and plant metabolites were quantified by LC-MS/MS in 250 samples of cereals, nuts and legumes. Aflatoxins were detected in all food types (cowpea, maize, peanut and sorghum) except in millet. Aflatoxin B1 was the most prevalent mycotoxin in peanut (64%) and rice (57%), while fumonisin B1 occurred most in maize (93%) and beauvericin in sorghum (71%). The total aflatoxin concentration was highest in peanut (max: 8422 µg/kg; mean: 1281 µg/kg) and rice (max: 955 µg/kg; mean: 94 µg/kg), whereas the totals of the B-type fumonisins and citrinin were highest in maize (max: 68,204 µg/kg; mean: 2988 µg/kg) and sorghum (max: 1335 µg/kg; mean: 186 µg/kg), respectively. Citrinin levels also reached 51,195 µg/kg (mean: 2343 µg/kg) in maize. Aflatoxin and citrinin concentrations in maize were significantly (p < 0.05) higher during storage than at harvest. The estimated chronic exposures to aflatoxins, citrinin and fumonisins were high, resulting in as much as 247 new liver cancer cases/year/100,000 population and risks of nephrotoxicity and esophageal cancer, respectively. Children who consumed the foods were the most vulnerable. Mycotoxin co-occurrence was evident, which could increase the health risk of the outcomes. Awareness of mycotoxin issues was generally low among the households.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Muiz O. Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Oluwawapelumi A. Oyedele
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Daniel A. Babalola
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria;
| | - Isaac M. Ogara
- Faculty of Agriculture, Lafia Campus, Nasarawa State University, Keffi 950101, Nasarawa State, Nigeria;
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| |
Collapse
|
158
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
159
|
Bokor E, Flipphi M, Kocsubé S, Ámon J, Vágvölgyi C, Scazzocchio C, Hamari Z. Genome organization and evolution of a eukaryotic nicotinate co-inducible pathway. Open Biol 2021; 11:210099. [PMID: 34582709 PMCID: PMC8478523 DOI: 10.1098/rsob.210099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In Aspergillus nidulans a regulon including 11 hxn genes (hxnS, T, R, P, Y, Z, X, W, V, M and N) is inducible by a nicotinate metabolic derivative, repressible by ammonium and under stringent control of the nitrogen-state-sensitive GATA factor AreA and the specific transcription factor HxnR. This is the first report in a eukaryote of the genomic organization of a possibly complete pathway of nicotinate utilization. In A. nidulans the regulon is organized in three distinct clusters, this organization is variable in the Ascomycota. In some Pezizomycotina species all 11 genes map in a single cluster; in others they map in two clusters. This variable organization sheds light on cluster evolution. Instances of gene duplication followed by or simultaneous with integration in the cluster, partial or total cluster loss, and horizontal gene transfer of several genes (including an example of whole cluster re-acquisition in Aspergillus of section Flavi) were detected, together with the incorporation in some clusters of genes not found in the A. nidulans co-regulated regulon, which underlie both the plasticity and the reticulate character of metabolic cluster evolution. This study provides a comprehensive phylogeny of six members of the cluster across representatives of all Ascomycota classes.
Collapse
Affiliation(s)
- Eszter Bokor
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Michel Flipphi
- Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | - Sándor Kocsubé
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Judit Ámon
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, UK,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Zsuzsanna Hamari
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| |
Collapse
|
160
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
161
|
Balbinot RB, de Oliveira JAM, Bernardi DI, Polli AD, Polonio JC, Cabral MRP, Zanqueta ÉB, Endo EH, Meneguello JE, Cardoso RF, Azevedo JL, Dias Filho BP, Nakamura TU, do Carmo MRB, Sarragiotto MH, Pamphile JA, Baldoqui DC. Chromolaena laevigata (Asteraceae) as a source of endophytic non-aflatoxigenic Aspergillus flavus: chemical profile in different culture conditions and biological applications. Braz J Microbiol 2021; 52:1201-1214. [PMID: 33929720 PMCID: PMC8324641 DOI: 10.1007/s42770-021-00502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Endophytes are microorganisms that form symbiotic relationships with their host. These microorganisms can produce a variety of secondary metabolites, some of which have inhibitory effects on pests and pathogens or even act to promote plant growth. Due to these characteristics, these microorganisms are used as sources of biologically active substances for a wide range of biotechnological applications. Based on that, the aim of this study was to evaluate the production of metabolites of the endophytic Aspergillus flavus CL7 isolated from Chromolaena laevigata, in four different cultivation conditions, and to determine the antimicrobial, cytotoxic, antiviral, and antioxidant potential of these extracts. The multiphasic approach used to identify this strain was based on morphology and ITS gene sequence analysis. The chemical investigation of A. flavus using potato dextrose and minimal medium, using both stationary and agitated methods, resulted in the isolation of kojic acid, α-cyclopiazonic acid, and 20,25-dihydroxyaflavinine. Another 18 compounds in these extracts were identified by UHPLC-HRMS/MS, of which dideacetyl parasiticolide A has been described for the first time from A. flavus. Aflatoxins, important chemomarkers of A. flavus, were not detected in any of the extracts, thus indicating that the CL7 strain is non-aflatoxigenic. The biological potential of all extracts was evaluated, and the best results were observed for the extract obtained using minimal medium against Trichophyton rubrum and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Rodolfo B Balbinot
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Josiane A M de Oliveira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Darlon I Bernardi
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Andressa D Polli
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Julio C Polonio
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Márcia R P Cabral
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Érica B Zanqueta
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Eliana H Endo
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jean E Meneguello
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosilene F Cardoso
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - João L Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil
| | - Benedito P Dias Filho
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Tania U Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Marta R B do Carmo
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4778, 84030-910, Ponta Grossa, Paraná, Brazil
| | - Maria H Sarragiotto
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - João A Pamphile
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Debora C Baldoqui
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
162
|
Khuna S, Suwannarach N, Kumla J, Frisvad JC, Matsui K, Nuangmek W, Lumyong S. Growth Enhancement of Arabidopsis ( Arabidopsis thaliana) and Onion ( Allium cepa) With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Aspergillus Section Nigri. Front Microbiol 2021; 12:705896. [PMID: 34456888 PMCID: PMC8397495 DOI: 10.3389/fmicb.2021.705896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Some soil fungi play an important role in supplying elements to plants by the solubilizing of insoluble minerals in the soil. The present study was conducted to isolate the mineral-solubilizing fungi from rhizosphere soil in some agricultural areas in northern Thailand. Seven fungal strains were obtained and identified using a polyphasic taxonomic approach with multilocus phylogenetic and phenotypic (morphology and extrolite profile) analyses. All obtained fungal strains were newly identified in the genus Aspergillus section Nigri, Aspergillus chiangmaiensis (SDBR-CMUI4 and SDBR-CMU15), Aspergillus pseudopiperis (SDBR-CMUI1 and SDBR-CMUI7), and Aspergillus pseudotubingensis (SDBR-CMUO2, SDBR-CMUO8, and SDBR-CMU20). All fungal strains were able to solubilize the insoluble mineral form of calcium, copper, cobalt, iron, manganese, magnesium, zinc, phosphorus, feldspar, and kaolin in the agar plate assay. Consequently, the highest phosphate solubilization strains (SDBR-CMUI1, SDBR-CMUI4, and SDBR-CMUO2) of each fungal species were selected for evaluation of their plant growth enhancement ability on Arabidopsis and onion in laboratory and greenhouse experiments, respectively. Plant disease symptoms were not found in any treatment of fungal inoculation and control. All selected fungal strains significantly increased the leaf number, leaf length, dried biomass of shoot and root, chlorophyll content, and cellular inorganic phosphate content in both Arabidopsis and onion plants under supplementation with insoluble mineral phosphate. Additionally, the inoculation of selected fungal strains also improved the yield and quercetin content of onion bulb. Thus, the selected strains reveal the potential in plant growth promotion agents that can be applied as a biofertilizer in the future.
Collapse
Affiliation(s)
- Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jens Christian Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Wipornpan Nuangmek
- Faculty of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
163
|
Thukral H, Dhaka P, Bedi JS, Aulakh RS. Occurrence of aflatoxin M1 in bovine milk and associated risk factors among dairy farms of Punjab, India. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin M1 (AFM1) contamination in milk and milk products may pose a major public health concern. The present cross-sectional study was aimed to estimate the prevalence of AFM1 in bovine milk across all districts of Punjab, India and to identify the associated animal and farm level risk factors. A total of 402 milk samples (266 cow milk and 136 buffalo milk) were analysed using commercial ELISA and representative samples were confirmed using HPLC-FLD. The results revealed that 56.2 and 13.4% of the milk samples exceeded the maximum levels of the European Union, i.e. 0.05 μg/l and Food Safety and Standards Authority of India (FSSAI), i.e. 0.5 μg/l for AFM1 in milk, respectively. On analysis of species variation, buffalo milk (prevalence: 56.6%; mean concentration: 0.42±0.9 μg/l) was found to have higher AFM1 levels than cow milk (prevalence: 56.0%; mean concentration: 0.19±0.3 μg/l), with statistically significant difference between mean concentrations (P<0.01) and non-significant difference between AFM1 prevalence (P=0.91). Furthermore, milk from commercial dairy farms (prevalence: 64.7%; mean concentration: 0.34±0.65 μg/l) was found to be more contaminated than from household dairy establishments (prevalence: 47.8%; mean concentration: 0.19±0.65 μg/l). The risk factors ‘above average milk yield/day’ (odds ratio (OR): 2.4) and ‘poor animal hygiene’ (OR: 1.9) were identified at animal level, and ‘intensive dairy farming’ (OR: 3.1) and ‘animal feed without aflatoxin binder’ (OR: 4.7) as farm level risk factors for AFM1 excretion above maximum levels of European Union in milk. Among cow breeds, the milk from ‘non-descript’ breed (OR: 11.5) was found to be most contaminated with AFM1 and the least from Jersey breed (OR: 1.0). The present study highlighted the presence of AFM1 in milk samples; therefore, regular monitoring of AFM1 in milk is required so that high risk regions and associated risk factors can be addressed appropriately.
Collapse
Affiliation(s)
- H. Thukral
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - P. Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - J. Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - R. Singh Aulakh
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| |
Collapse
|
164
|
Mohammed A, Faustinelli PC, Chala A, Dejene M, Fininsa C, Ayalew A, Ojiewo CO, Hoisington DA, Sobolev VS, Martínez-Castillo J, Arias RS. Genetic fingerprinting and aflatoxin production of Aspergillus section Flavi associated with groundnut in eastern Ethiopia. BMC Microbiol 2021; 21:239. [PMID: 34454439 PMCID: PMC8403416 DOI: 10.1186/s12866-021-02290-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aspergillus species cause aflatoxin contamination in groundnut kernels, being a health threat in agricultural products and leading to commodity rejection by domestic and international markets. Presence of Aspergillus flavus and A. parasiticus colonizing groundnut in eastern Ethiopia, as well as presence of aflatoxins have been reported, though in this region, no genetic studies have been done of these species in relation to their aflatoxin production. RESULTS In this study, 145 Aspergillus isolates obtained from groundnut kernels in eastern Ethiopia were genetically fingerprinted using 23 Insertion/Deletion (InDel) markers within the aflatoxin-biosynthesis gene cluster (ABC), identifying 133 ABC genotypes. Eighty-four isolates were analyzed by Ultra-Performance Liquid Chromatography (UPLC) for in vitro aflatoxin production. Analysis of genetic distances based on the approximately 85 kb-ABC by Neighbor Joining (NJ), 3D-Principal Coordinate Analysis (3D-PCoA), and Structure software, clustered the isolates into three main groups as a gradient in their aflatoxin production. Group I, contained 98% A. flavus, including L- and non-producers of sclerotia (NPS), producers of B1 and B2 aflatoxins, and most of them collected from the lowland-dry Babile area. Group II was a genetic admixture population of A. flavus (NPS) and A. flavus S morphotype, both low producers of aflatoxins. Group III was primarily represented by A. parasiticus and A. flavus S morphotype isolates both producers of B1, B2 and G1, G2 aflatoxins, and originated from the regions of Darolabu and Gursum. The highest in vitro producer of aflatoxin B1 was A. flavus NPS N1436 (77.98 μg/mL), and the highest producer of aflatoxin G1 was A. parasiticus N1348 (50.33 μg/mL), these isolates were from Gursum and Darolabu, respectively. CONCLUSIONS To the best of our knowledge, this is the first study that combined the use of InDel fingerprinting of the ABC and corresponding aflatoxin production capability to describe the genetic diversity of Aspergillus isolates from groundnut in eastern Ethiopia. Three InDel markers, AFLC04, AFLC08 and AFLC19, accounted for the main assignment of individuals to the three Groups; their loci corresponded to aflC (pksA), hypC, and aflW (moxY) genes, respectively. Despite InDels within the ABC being often associated to loss of aflatoxin production, the vast InDel polymorphism observed in the Aspergillus isolates did not completely impaired their aflatoxin production in vitro.
Collapse
Affiliation(s)
- Abdi Mohammed
- School of Plant Science, College of Agriculture and Environmental Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Paola C Faustinelli
- United States Department of Agriculture-Agricultural Research Service-National Peanut Research Laboratory, Dawson, GA, 39842-0509, USA
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - Mashilla Dejene
- School of Plant Science, College of Agriculture and Environmental Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Chemeda Fininsa
- School of Plant Science, College of Agriculture and Environmental Sciences, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Amare Ayalew
- Partnership for Aflatoxin Control in Africa (PACA), African Union Commission, Addis Ababa, Ethiopia
| | - Chris O Ojiewo
- ICRISAT - Nairobi, UN-Avenue, Box 39063-00623, Nairobi, Kenya
| | - David A Hoisington
- College of Agriculture and Environmental Sciences, Peanut and Mycotoxin Innovation Lab, University of Georgia, Athens, GA, 30602-4356, USA
| | - Victor S Sobolev
- United States Department of Agriculture-Agricultural Research Service-National Peanut Research Laboratory, Dawson, GA, 39842-0509, USA
| | - Jaime Martínez-Castillo
- Centro de Investigación Científica de Yucatán A.C., Unidad de Recursos Naturales, Calle 43 No. 130, Colonia Chuburná de Hidalgo CP 97200, Mérida, Mexico
| | - Renee S Arias
- United States Department of Agriculture-Agricultural Research Service-National Peanut Research Laboratory, Dawson, GA, 39842-0509, USA.
| |
Collapse
|
165
|
Ching'anda C, Atehnkeng J, Bandyopadhyay R, Callicott KA, Orbach MJ, Mehl HL, Cotty PJ. Temperature Influences on Interactions Among Aflatoxigenic Species of Aspergillus Section Flavi During Maize Colonization. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:720276. [PMID: 37744097 PMCID: PMC10512225 DOI: 10.3389/ffunb.2021.720276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 09/26/2023]
Abstract
Fungal species within Aspergillus section Flavi contaminate food and feed with aflatoxins. These toxic fungal metabolites compromise human and animal health and disrupt trade. Genotypically and phenotypically diverse species co-infect crops, but temporal and spatial variation in frequencies of different lineages suggests that environmental factors such as temperature may influence structure of aflatoxin-producing fungal communities. Furthermore, though most species within Aspergillus section Flavi produce sclerotia, divergent sclerotial morphologies (small or S-type sclerotia vs. large or L-type sclerotia) and differences in types and quantities of aflatoxins produced suggest lineages are adapted to different life strategies. Temperature is a key parameter influencing pre- and post-harvest aflatoxin contamination of crops. We tested the hypothesis that species of aflatoxin-producing fungi that differ in sclerotial morphology will vary in competitive ability and that outcomes of competition and aflatoxin production will be modulated by temperature. Paired competition experiments between highly aflatoxigenic S-type species (A. aflatoxiformans and Lethal Aflatoxicosis Fungus) and L-type species (A. flavus L morphotype and A. parasiticus) were conducted on maize kernels at 25 and 30°C. Proportions of each isolate growing within and sporulating on kernels were measured using quantitative pyrosequencing. At 30°C, S-type fungi were more effective at host colonization compared to L-type isolates. Total aflatoxins and the proportion of B vs. G aflatoxins were greater at 30°C compared to 25°C. Sporulation by L-type isolates was reduced during competition with S-type fungi at 30°C, while relative quantities of conidia produced by S-type species either increased or did not change during competition. Results indicate that both species interactions and temperature can shape population structure of Aspergillus section Flavi, with warmer temperatures favoring growth and dispersal of highly toxigenic species with S-type sclerotia.
Collapse
Affiliation(s)
- Connel Ching'anda
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture (IITA), Lilongwe, Malawi
| | | | - Kenneth A. Callicott
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
| | - Marc J. Orbach
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Hillary L. Mehl
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
| | - Peter J. Cotty
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- United States Department of Agriculture - Agriculture Research Service, Tucson, AZ, United States
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
166
|
Duarte S, Magro A, Tomás J, Hilário C, Alvito P, Ferreira RB, Carvalho MO. The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. INSECTS 2021; 12:insects12080730. [PMID: 34442296 PMCID: PMC8396807 DOI: 10.3390/insects12080730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary It is important to hold cereals in storage conditions that exclude insect pests such as the red flour beetle and fungi, especially mycotoxin-producing ones (as a few strains of Aspergillus flavus). This work aims to investigate the interaction between these two organisms when thriving in maize flour. It was observed that when both organisms were together, the mycotoxins detected in maize flour were far higher than when the fungi were on their own, suggesting that the presence of insects may contribute positively to fungi development and mycotoxin production. The insects in contact with the fungi were almost all dead at the end of the trials, suggesting a negative effect of the fungi growth on the insects. Both organisms interacted when in contact. This is the first study on this issue, although further investigation would benefit from clarification on the mechanisms leading to the nature of the detected interactions. Abstract Tribolium castaneum is one of the most common insect pests of stored products. Its presence makes cereals more susceptible to the spread of the fungi Aspergillus flavus, which may produce mycotoxins. The aim of this work was to evaluate the influence of T. castaneum adults on the development of a mycotoxigenic A. flavus strain in maize flour as well as the influence of this fungus on the insects. Maize flour was exposed to T. castaneum, spores of A. flavus or to both. The results revealed an interaction between T. castaneum and A. flavus as the flour exposed to both organisms was totally colonized by the fungus whereas almost all the insects were killed. Aflatoxin B1 (AFB1) revealed a significantly higher concentration in the flour inoculated with both organisms (18.8 µg/kg), being lower when exposed only to A. flavus, suggesting that the presence of insects may trigger fungal development and enhance mycotoxin production. The ability of these organisms to thrive under the same conditions and the chemical compounds they release makes the interaction between them a subject of great importance to maintain the safety of stored maize. This is the first work evaluating the interaction between T. castaneum and A. flavus mycotoxin production.
Collapse
Affiliation(s)
- Sónia Duarte
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Magro
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- Correspondence:
| | - Joanna Tomás
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Carolina Hilário
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
| | - Paula Alvito
- National Health Institute Dr. Ricardo Jorge (INSA), 1600-609 Lisboa, Portugal;
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Boavida Ferreira
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Otília Carvalho
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.D.); (J.T.); (C.H.); (R.B.F.); (M.O.C.)
- LEAF—Linking Landscape, Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
167
|
Wang X, Subko K, Kildgaard S, Frisvad JC, Larsen TO. Mass Spectrometry-Based Network Analysis Reveals New Insights Into the Chemodiversity of 28 Species in Aspergillus section Flavi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:719420. [PMID: 37744124 PMCID: PMC10512371 DOI: 10.3389/ffunb.2021.719420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 09/26/2023]
Abstract
Aspergillus section Flavi includes some of the most famous mycotoxin producing filamentous fungi known to mankind. In recent years a number of new species have been included in section Flavi, however these species have been much less studied from a chemical point of view. In this study, we explored one representative strain of a total of 28 fungal species in section Flavi by systematically evaluating the relationship between taxonomy and secondary metabolites with LC-MS/MS analysis for the first time and dereplication through an in-house database and the Global Natural Product Social Molecular Networking (GNPS) platform. This approach allowed rapid identification of two new cyclopiazonic acid producers (A. alliaceus and A. arachidicola) and two new tenuazonic acid producers (A. arachidicola and A. leporis). Moreover, for the first time we report species from section Flavi to produce fumifungin and sphingofungins B-D. Altogether, this study emphasizes that the chemical diversity of species in genus Aspergillus section Flavi is larger than previously recognized, and especially that understudied species are prolific producers of important mycotoxins such as fumi- and sphingofungins not previously reported from this section. Furthermore, our work demonstrates Global Natural Product Social (GNPS) Molecular Networking as a powerful tool for large-scale chemotaxonomic analysis of closely related species in filamentous fungi.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Karolina Subko
- Food Machinery and Chemical (FMC) Agricultural Solutions, Hørsholm, Denmark
| | - Sara Kildgaard
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
168
|
Ekpakpale DO, Kraak B, Meijer M, Ayeni KI, Houbraken J, Ezekiel CN. Fungal Diversity and Aflatoxins in Maize and Rice Grains and Cassava-Based Flour (Pupuru) from Ondo State, Nigeria. J Fungi (Basel) 2021; 7:635. [PMID: 34436174 PMCID: PMC8397998 DOI: 10.3390/jof7080635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Grains and cassava-based foods serve as major dietary sources for many households in Nigeria. However, these foods are highly prone to contamination by moulds and aflatoxins owing to poor storage and vending practices. Therefore, we studied the fungal diversity in maize, cassava-based flour (pupuru), and rice vended in markets from Ondo state, Nigeria, and assessed their aflatoxin levels using an enzyme-linked immunosorbent assay. Molecular analysis of 65 representative fungal isolates recovered from the ground grains and pupuru samples revealed 26 species belonging to five genera: Aspergillus (80.9%), Penicillium (15.4%), and Talaromyces (1.9%) in the Ascomycota; Syncephalastrum (1.2%) and Lichtheimia (0.6%) in Mucoromycota. Aspergillus flavus was the predominant species in the ground grains and pupuru samples. Aflatoxins were found in 73.8% of the 42 representative food samples and 41.9% exceeded the 10 μg/kg threshold adopted in Nigeria for total aflatoxins.
Collapse
Affiliation(s)
- Daniella O. Ekpakpale
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (D.O.E.); (K.I.A.)
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 Utrecht, The Netherlands; (B.K.); (M.M.); (J.H.)
| | - Martin Meijer
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 Utrecht, The Netherlands; (B.K.); (M.M.); (J.H.)
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (D.O.E.); (K.I.A.)
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 Utrecht, The Netherlands; (B.K.); (M.M.); (J.H.)
| | - Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (D.O.E.); (K.I.A.)
| |
Collapse
|
169
|
Aflatoxin Biosynthesis, Genetic Regulation, Toxicity, and Control Strategies: A Review. J Fungi (Basel) 2021; 7:jof7080606. [PMID: 34436145 PMCID: PMC8397101 DOI: 10.3390/jof7080606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are highly toxic and cancer-causing compounds, predominantly synthesized by the Aspergillus species. AFs biosynthesis is a lengthy process that requires as minimum as 30 genes grouped inside 75 kilobytes (kB) of gene clusters, which are regulated by specific transcription factors, including aflR, aflS, and some general transcription factors. This paper summarizes the status of research on characterizing structural and regulatory genes associated with AF production and their roles in aflatoxigenic fungi, particularly Aspergillus flavus and A. parasiticus, and enhances the current understanding of AFs that adversely affect humans and animals with a great emphasis on toxicity and preventive methods.
Collapse
|
170
|
Castro-Ríos K, Montoya-Estrada CN, Martínez-Miranda MM, Hurtado Cortés S, Taborda-Ocampo G. Physicochemical treatments for the reduction of aflatoxins and Aspergillus niger in corn grains (Zea mays). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3707-3713. [PMID: 33301189 DOI: 10.1002/jsfa.11001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Corn grains are commonly contaminated with mycotoxins and fungi. The purpose of this study was to evaluate the reduction of aflatoxins B1 , B2 , G1 , and G2 and the inhibition of Aspergillus niger in corn grains using ultrasound, ultraviolet (UV) radiation, electrolyzed water, and sodium bicarbonate. The determination of aflatoxins was performed by high-performance liquid chromatography with fluorescence detection and postcolumn derivatization, and analysis of A. niger was performed by evaluating mycelial growth in potato dextrose agar. The best treatment for reducing aflatoxins and inhibiting mycelial growth was evaluated in corn contaminated with A. niger. RESULTS The results show a significant reduction in aflatoxins in the following order: sodium bicarbonate > ultrasound > UV > electrolyzed water for aflatoxins B1 , B2 , and G2 . For aflatoxin G1 , the order of reduction was sodium bicarbonate > ultrasound > electrolyzed water > UV, with maximum values between 70.50% and 87.03% reached with sodium bicarbonate; for the other treatments, the reduction was between 51.51% and 65.44%. Regarding the fungus, the order of inhibition in the control of mycelial growth was sodium bicarbonate > ultrasound > electrolyzed water > UV in corn grains, and inhibition of mycelial growth was obtained at a sodium bicarbonate concentration of 3.0 g L-1 . CONCLUSION Sodium bicarbonate, electrolyzed water, ultrasound, and UV radiation inhibited the growth of A. niger on potato dextrose agar and reduced the contents of aflatoxins B1 , B2 , G1 , and G2 in vitro. Sodium bicarbonate showed an ability to inhibit mycelial growth in corn grains. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Katherin Castro-Ríos
- Instituto de Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales, Carrera 23 #60-63, Manizales, Caldas, Colombia
- Grupo de Cromatografía y Técnicas Afines, Universidad de Caldas, Calle 65 #26-10, Manizales, Caldas, Colombia
| | - Claudia Nohemy Montoya-Estrada
- Instituto de Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales, Carrera 23 #60-63, Manizales, Caldas, Colombia
| | | | - Sebastián Hurtado Cortés
- Instituto de Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales, Carrera 23 #60-63, Manizales, Caldas, Colombia
| | - Gonzalo Taborda-Ocampo
- Grupo de Cromatografía y Técnicas Afines, Universidad de Caldas, Calle 65 #26-10, Manizales, Caldas, Colombia
| |
Collapse
|
171
|
Abstract
Infections due to Aspergillus species are an acute threat to human health; members of the Aspergillus section Fumigati are the most frequently occurring agents, but depending on the local epidemiology, representatives of section Terrei or section Flavi are the second or third most important. Aspergillus terreus species complex is of great interest, as it is usually amphotericin B resistant and displays notable differences in immune interactions in comparison to Aspergillus fumigatus. The latest epidemiological surveys show an increased incidence of A. terreus as well as an expanding clinical spectrum (chronic infections) and new groups of at-risk patients being affected. Hallmarks of these non-Aspergillus fumigatus invasive mold infections are high potential for tissue invasion, dissemination, and possible morbidity due to mycotoxin production. We seek to review the microbiology, epidemiology, and pathogenesis of A. terreus species complex, address clinical characteristics, and highlight the underlying mechanisms of amphotericin B resistance. Selected topics will contrast key elements of A. terreus with A. fumigatus. We provide a comprehensive resource for clinicians dealing with fungal infections and researchers working on A. terreus pathogenesis, aiming to bridge the emerging translational knowledge and future therapeutic challenges on this opportunistic pathogen.
Collapse
|
172
|
Differences in fungal contamination of broiler litter between summer and winter fattening periods. ACTA ACUST UNITED AC 2021; 72:140-147. [PMID: 34187106 PMCID: PMC8265200 DOI: 10.2478/aiht-2021-72-3508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/01/2021] [Indexed: 11/20/2022]
Abstract
This study aimed to compare fungal contamination of poultry litter between warm and cold seasons. It was carried out in commercial production conditions over two five-week fattening periods: one in the summer (July-August) and one in the winter (December-January). Broilers were reared on a litter composed of chopped straw and sawdust. Litter fungal concentration and composition were investigated weekly, along with litter temperature, moisture, and pH. Litter concentration of total fungi increased over both fattening periods, with no differences in median concentrations between them. Season also had no effect on yeast, Aspergillus section Nigri, and Cladosporium, Fusarium, and Rhizopus spp. concentrations, while the Aspergillus section Flavi and Aspergillus spp. combined showed higher concentrations in the summer, and Mucor and Penicillium spp. in the winter. Total fungal concentration highly correlated with litter temperature, moisture, and pH, regardless of the season. Our findings can be useful in the assessment and control of potential harmful effect of fungi on the health of poultry and poultry farm workers.
Collapse
|
173
|
Walther G, Zimmermann A, Theuersbacher J, Kaerger K, von Lilienfeld-Toal M, Roth M, Kampik D, Geerling G, Kurzai O. Eye Infections Caused by Filamentous Fungi: Spectrum and Antifungal Susceptibility of the Prevailing Agents in Germany. J Fungi (Basel) 2021; 7:511. [PMID: 34206899 PMCID: PMC8307352 DOI: 10.3390/jof7070511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/08/2023] Open
Abstract
Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.
Collapse
Affiliation(s)
- Grit Walther
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
| | - Anna Zimmermann
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany;
| | - Johanna Theuersbacher
- Department of Ophthalmology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.T.); (D.K.)
| | - Kerstin Kaerger
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
| | - Marie von Lilienfeld-Toal
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
- Department of Haematology and Medical Oncology, University Hospital Jena, 07747 Jena, Germany
| | - Mathias Roth
- Department of Ophthalmology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.R.); (G.G.)
| | - Daniel Kampik
- Department of Ophthalmology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.T.); (D.K.)
| | - Gerd Geerling
- Department of Ophthalmology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.R.); (G.G.)
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections (NRZMyk), Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; (K.K.); (M.v.L.-T.); (O.K.)
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany;
| |
Collapse
|
174
|
Al Khoury A, Sleiman R, Atoui A, Hindieh P, Maroun RG, Bailly JD, El Khoury A. Antifungal and anti-aflatoxigenic properties of organs of Cannabis sativa L.: relation to phenolic content and antioxidant capacities. Arch Microbiol 2021; 203:4485-4492. [PMID: 34143269 DOI: 10.1007/s00203-021-02444-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Aflatoxin B1 is a carcinogenic mycotoxin that frequently contaminates crops worldwide. Current research indicates that the use of natural extracts to combat mycotoxin contamination may represent an eco-friendly, sustainable strategy to ensure food safety. Although Cannabis sativa L. has long been known for its psychoactive cannabinoids, it is also rich in many other bioactive molecules. This study examines extracts from various organs of Cannabis sativa L. to determine their ability to limit aflatoxin production and growth of Aspergillus flavus. The results indicate that flower extract is most effective for limiting the synthesis of aflatoxin B1, leading to an almost-complete inhibition of toxin production at a concentration of 0.225 mg dry matter per gram of culture medium. Since flower extract is rich in phenolic compounds, its total antioxidant ability and radical-scavenging capacity are determined. Compared with other anti-aflatoxigenic extracts, the anti-oxidative potential of Cannabis sativa L. flower extract appears moderate, suggesting that its anti-mycotoxin effect may be related to other bioactive compounds.
Collapse
Affiliation(s)
- Anthony Al Khoury
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon.,Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 31300, Toulouse, France
| | - Rhend Sleiman
- Climate and Water Unit, Lebanese Agricultural Research Institute, Fanar station, P.O. Box 1965, Jdeidet El Maten, 1202, Lebanon
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Hadath Campus, P.O. Box 5, Beirut, 1104, Lebanon
| | - Pamela Hindieh
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon
| | - Richard G Maroun
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 31300, Toulouse, France.
| | - André El Khoury
- Centre d'analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté Des Sciences, Université Saint-Joseph, Mar Mikhael, P.O. Box 17-5208, Beirut, 1104, Lebanon
| |
Collapse
|
175
|
Pickova D, Ostry V, Toman J, Malir F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins (Basel) 2021; 13:399. [PMID: 34205163 PMCID: PMC8227755 DOI: 10.3390/toxins13060399] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
In the early 1960s the discovery of aflatoxins began when a total of 100,000 turkey poults died by hitherto unknown turkey "X" disease in England. The disease was associated with Brazilian groundnut meal affected by Aspergillus flavus. The toxin was named Aspergillus flavus toxin-aflatoxin. From the point of view of agriculture, aflatoxins show the utmost importance. Until now, a total of 20 aflatoxins have been described, with B1, B2, G1, and G2 aflatoxins being the most significant. Contamination by aflatoxins is a global health problem. Aflatoxins pose acutely toxic, teratogenic, immunosuppressive, carcinogenic, and teratogenic effects. Besides food insecurity and human health, aflatoxins affect humanity at different levels, such as social, economical, and political. Great emphasis is placed on aflatoxin mitigation using biocontrol methods. Thus, this review is focused on aflatoxins in terms of historical development, the principal milestones of aflatoxin research, and recent data on their toxicity and different ways of mitigation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
176
|
Melo AM, Silva Filho RPD, Poester VR, Fernandes CG, von Groll A, Stevens DA, Sabino R, Xavier MO. Aspergillosis in albatrosses. Med Mycol 2021; 58:852-855. [PMID: 31782484 DOI: 10.1093/mmy/myz122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 11/14/2022] Open
Abstract
Aspergillosis is a respiratory fungal disease of importance in captive marine birds. The aim of this study was to describe the occurrence of aspergillosis in Thalassarche melanophris during rehabilitation events and to identify the etiological agent. All the albatrosses that were received for rehabilitation and died within a 2-year period were included in the study. The proportionate mortality rate caused by aspergillosis was 21.4% (3/14). One of the etiological agents was Aspergillus flavus/oryzae lineage, and the other was A. fumigatus sensu stricto. Our study suggests that aspergillosis can act as a limiting factor in the rehabilitation of albatrosses.
Collapse
Affiliation(s)
- Aryse Martins Melo
- Programa de Pós-Graduação em Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Avenida Eliseu Maciel, s/n, Pelotas, RS, Brazil
| | | | - Vanice Rodrigues Poester
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua General Osório, 1109, Rio Grande, RS, Brazil
| | - Cristina Gevehr Fernandes
- Departamento de Patologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas Avenida Eliseu Maciel, s/n, Pelotas, RS, Brazil
| | - Andrea von Groll
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua General Osório, 1109, Rio Grande, RS, Brazil
| | - David A Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, USA.,California Institute for Medical Research, San Jose, California, USA
| | - Raquel Sabino
- National Institute of Health, Dr. Ricardo Jorge, Lisbon, Portugal
| | - Melissa Orzechowski Xavier
- Programa de Pós-Graduação em Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Avenida Eliseu Maciel, s/n, Pelotas, RS, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rua General Osório, 1109, Rio Grande, RS, Brazil
| |
Collapse
|
177
|
Ono LT, Silva JJ, Doná S, Martins LM, Iamanaka BT, Fungaro MHP, Pitt JI, Taniwaki MH. Aspergillus section Flavi and aflatoxins in Brazilian cassava (Manihot esculenta Crantz) and products. Mycotoxin Res 2021; 37:221-228. [PMID: 34036551 DOI: 10.1007/s12550-021-00430-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Aflatoxins are carcinogenic compounds produced by some species of Aspergillus, especially those belonging to Aspergillus section Flavi. Their occurrence in food may start in the field, in the post-harvest, or during storage due to inadequate handling and storage. Because cassava is a staple food for a high percentage of the Brazilian population, we evaluated the presence of aflatoxin-producing species in cassava tubers, cassava products (cassava flour, cassava starch, sour starch, and tapioca flour), and in soil samples collected from cassava fields. In addition, the levels of aflatoxin contamination in cassava products were quantified. A total of 101 samples were analyzed, and 45 strains of Aspergillus section Flavi were isolated. Among the identified species, Aspergillus flavus, Aspergillus arachidicola, Aspergillus novoparasiticus, and Aspergillus parasiticus were found. The majority of strains (73.3%) tested for their aflatoxin-producing ability in synthetic media was positive. Despite that, cassava and cassava products were essentially free of aflatoxins, and only one sample of cassava flour contained traces of AFB1 (0.35 μg/kg).
Collapse
Affiliation(s)
- L T Ono
- Institute of Food Technology (Ital), Campinas, SP, Brazil
| | - J J Silva
- Institute of Food Technology (Ital), Campinas, SP, Brazil
| | - S Doná
- Paulista Agribusiness Technology Agency (APTA), Technological Development Center of Agribusinesses in Médio Paranapanema, Assis, SP, Brazil
| | - L M Martins
- Institute of Food Technology (Ital), Campinas, SP, Brazil
| | - B T Iamanaka
- Institute of Food Technology (Ital), Campinas, SP, Brazil
| | - M H P Fungaro
- Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - J I Pitt
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - M H Taniwaki
- Institute of Food Technology (Ital), Campinas, SP, Brazil.
| |
Collapse
|
178
|
Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proc Natl Acad Sci U S A 2021; 118:2021683118. [PMID: 34016748 DOI: 10.1073/pnas.2021683118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.
Collapse
|
179
|
Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. Biocontrol of Aflatoxins Using Non-Aflatoxigenic Aspergillus flavus: A Literature Review. J Fungi (Basel) 2021; 7:jof7050381. [PMID: 34066260 PMCID: PMC8151999 DOI: 10.3390/jof7050381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are mycotoxins, predominantly produced by Aspergillus flavus, A. parasiticus, A. nomius, and A. pseudotamarii. AFs are carcinogenic compounds causing liver cancer in humans and animals. Physical and biological factors significantly affect AF production during the pre-and post-harvest time. Several methodologies have been developed to control AF contamination, yet; they are usually expensive and unfriendly to the environment. Consequently, interest in using biocontrol agents has increased, as they are convenient, advanced, and friendly to the environment. Using non-aflatoxigenic strains of A. flavus (AF−) as biocontrol agents is the most promising method to control AFs’ contamination in cereal crops. AF− strains cannot produce AFs due to the absence of polyketide synthase genes or genetic mutation. AF− strains competitively exclude the AF+ strains in the field, giving an extra advantage to the stored grains. Several microbiological, molecular, and field-based approaches have been used to select a suitable biocontrol agent. The effectiveness of biocontrol agents in controlling AF contamination could reach up to 99.3%. Optimal inoculum rate and a perfect time of application are critical factors influencing the efficacy of biocontrol agents.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Correspondence: ; Tel.: +60-12219-8912
| | - Nor Ainy Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
180
|
Zhao DT, Gao YJ, Zhang WJ, Bi TC, Wang X, Ma CX, Rong R. Development a multi-immunoaffinity column LC-MS-MS method for comprehensive investigation of mycotoxins contamination and co-occurrence in traditional Chinese medicinal materials. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122730. [PMID: 34146768 DOI: 10.1016/j.jchromb.2021.122730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/21/2021] [Accepted: 04/15/2021] [Indexed: 12/01/2022]
Abstract
Mycotoxins are poisonous secondary fungal toxic metabolites and harmful to human health. Traditional Chinese medicinal materials (TCMs), including more than two hundred functional foods, are vulnerably bred fungi, causing spoilage and multi-mycotoxins contamination. This study established a simultaneous analytical method by using multi-mycotoxins immunoaffinity column (multi-IAC) and HPLC-MS/MS to evaluate mycotoxins' contamination levels and natural incidence in TCMs. Aflatoxins (AFs, including AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), fumonisins (FB1 and FB2), zearalenone (ZEN), deoxynivalenol (DON) and T-2 toxins in three TCMs or functional foods of Polygalae Radix (PR), Coicis Semen (CS) and Eupolyphaga Steleophaga (ES) were detected. The systematically investigated results of 30 batch AFB1 positive samples revealed co-occurrence and correlation of multi-mycotoxins are significant differences in various matrices. All the samples in this study contain more than 5 mycotoxins. AFB1-AFs, AFB1-FBs, AFB1-DON, and AFB1-T-2 are the most observed co-occurrence, AFB1-OTA is also of concern due to its synergistic toxicity. This study's results can be used to establish guidelines for screening mycotoxin contaminants and limitations on acceptable levels in TCMs. Simultaneously, mycotoxin's correlation results in different matrices can also provide a reference for the standardization of TCM production and processing.
Collapse
Affiliation(s)
- Dan-Tong Zhao
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China; Heze Institute for Food and Drug Control, Heze, People's Republic of China
| | - Yi-Jun Gao
- Heze Municipal Hospital, Heze, People's Republic of China
| | - Wen-Jin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Tian-Chen Bi
- Heze Institute for Food and Drug Control, Heze, People's Republic of China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Chun-Xia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.
| | - Rong Rong
- College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| |
Collapse
|
181
|
Navale V, Vamkudoth KR, Ajmera S, Dhuri V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep 2021; 8:1008-1030. [PMID: 34408970 PMCID: PMC8363598 DOI: 10.1016/j.toxrep.2021.04.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Aspergillus species are the paramount ubiquitous fungi that contaminate various food substrates and produce biochemicals known as mycotoxins. Aflatoxins (AFTs), ochratoxin A (OTA), patulin (PAT), citrinin (CIT), aflatrem (AT), secalonic acids (SA), cyclopiazonic acid (CPA), terrein (TR), sterigmatocystin (ST) and gliotoxin (GT), and other toxins produced by species of Aspergillus plays a major role in food and human health. Mycotoxins exhibited wide range of toxicity to the humans and animal models even at nanomolar (nM) concentration. Consumption of detrimental mycotoxins adulterated foodstuffs affects human and animal health even trace amounts. Bioaerosols consisting of spores and hyphal fragments are active elicitors of bronchial irritation and allergy, and challenging to the public health. Aspergillus is the furthermost predominant environmental contaminant unswervingly defile lives with a 40-90 % mortality risk in patients with conceded immunity. Genomics, proteomics, transcriptomics, and metabolomics approaches useful for mycotoxins' detection which are expensive. Antibody based detection of toxins chemotypes may result in cross-reactivity and uncertainty. Aptamers (APT) are single stranded DNA (ssDNA/RNA), are specifically binds to the target molecules can be generated by systematic evolution of ligands through exponential enrichment (SELEX). APT are fast, sensitive, simple, in-expensive, and field-deployable rapid point of care (POC) detection of toxins, and a better alternative to antibodies.
Collapse
Affiliation(s)
- Vishwambar Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | | | - Vaibhavi Dhuri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
182
|
Senghor AL, Ortega-Beltran A, Atehnkeng J, Jarju P, Cotty PJ, Bandyopadhyay R. Aflasafe SN01 is the First Biocontrol Product Approved for Aflatoxin Mitigation in Two Nations, Senegal and The Gambia. PLANT DISEASE 2021; 105:1461-1473. [PMID: 33332161 DOI: 10.1094/pdis-09-20-1899-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aflatoxin contamination is caused by Aspergillus flavus and closely related fungi. In The Gambia, aflatoxin contamination of groundnut and maize, two staple and economically important crops, is common. Groundnut and maize consumers are chronically exposed to aflatoxins, sometimes at alarming levels, and this has severe consequences on their health and productivity. Aflatoxin contamination also impedes commercialization in local and international premium markets. In neighboring Senegal, an aflatoxin biocontrol product containing four atoxigenic isolates of A. flavus, Aflasafe SN01, has been registered and is approved for commercial use in groundnut and maize. We detected that the four genotypes composing Aflasafe SN01 are also native to The Gambia. The biocontrol product was tested during two years in 129 maize and groundnut fields and compared with corresponding untreated fields cropped by smallholder farmers in The Gambia. Treated crops contained up to 100% less aflatoxins than untreated crops. A large portion of the crops could have been commercialized in premium markets due to the low aflatoxin content (in many cases no detectable aflatoxins), both at harvest and after storage. Substantial aflatoxin reductions were also achieved when commercially produced groundnut received treatment. Here we report for the first time the use and effectiveness of an aflatoxin biocontrol product registered for use in two nations. With the current scale-out and -up efforts of Aflasafe SN01, a large number of farmers, consumers, and traders in The Gambia and Senegal will obtain health, income, and trade benefits.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- A L Senghor
- La Direction de Protection Végétaux, BP20054 Dakar, Senegal
| | - A Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - J Atehnkeng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - P Jarju
- National Food Security, Processing and Marketing Corporation, Denton Bridge, Banjul, The Gambia
| | - P J Cotty
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, U.S.A
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
183
|
Azman NI, Wan-Mustapha WN, Goh YM, Hassim HA, Selamat J, Samsudin NIP. Climatic conditions and farm practices affected the prevalence of Aspergillus section Flavi on different types of dairy goat's feed. Int J Food Microbiol 2021; 347:109205. [PMID: 33901942 DOI: 10.1016/j.ijfoodmicro.2021.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
The present work aimed to determine the prevalence of aflatoxigenic Aspergillus section Flavi on different types of dairy goat's feed samples obtained from four dairy goat's farms around the central region of Peninsular Malaysia, and to examine the effects of climatic conditions (temperature, relative humidity) of the dairy goat's farms, and their feeding and storage practices on the fungal prevalence of different types of dairy goat's feed. A total of 60 goat's feed samples were obtained, and their proximate composition and water activity were determined, following which they were cultivated on DRBC and AFPA for total fungal load and Aspergillus section Flavi load determination, respectively. Fungal isolates were identified morphologically, and toxigenicity potentials of Aspergillus section Flavi isolates were determined using CCA. The temperature and relative humidity data of all farms were obtained from the Malaysian Meteorological Department. The total fungal loads (on DRBC) of the goat's feed samples were log 0.767 to 7.071 CFU/g which included the common feed contaminants such as Aspergillus, Fusarium, and Penicillium. The Aspergillus section Flavi loads (on AFPA) were log 0.667 to 3.206 CFU/g. Farm A yielded the highest number of Aspergillus section Flavi isolates as well as the highest number of aflatoxigenic isolates. It was found that climatic conditions and different practices between farms positively influenced the fungal prevalence on goat's feed samples based on the Pearson correlation analysis. The prevalence of mycotoxigenic isolates on goat's feed warrants for urgent intervention to ensure that goats are being fed with nutritionally adequate and safe feed. The presence of aflatoxigenic Aspergillus section Flavi isolates indicates the risk of aflatoxin B1 contamination on the goat's feed, aflatoxicosis development in the goats, and aflatoxin M1 bio-transformation in the goat's milk. This is a potential threat to the flourishing goat's milk industry in Malaysia.
Collapse
Affiliation(s)
- Nur Izzati Azman
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wan Norazihan Wan-Mustapha
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yoh Meng Goh
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hasliza Abu Hassim
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Veterinary Pre-Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jinap Selamat
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nik Iskandar Putra Samsudin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
184
|
Identification and in vitro antifungal susceptibility of causative agents of onychomycosis due to Aspergillus species in Mashhad, Iran. Sci Rep 2021; 11:6808. [PMID: 33762586 PMCID: PMC7991633 DOI: 10.1038/s41598-021-86038-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/09/2021] [Indexed: 01/30/2023] Open
Abstract
Aspergillus species are emerging causative agents of non-dermatophyte mold onychomycosis. In this study, 48 Aspergillus isolates were obtained from patients with onychomycosis in Mashhad, Iran, during 2015–2018. The aim is to identify the Aspergillus isolates to the species level by using partial calmodulin and beta-tubulin gene sequencing and MALDI-TOF MS, and to evaluate their in vitro susceptibility to ten antifungal drugs: terbinafine, itraconazole, voriconazole, posaconazole, ravuconazole, isavuconazole, caspofungin, micafungin, anidulafungin and amphotericin B according to CLSI M38-A3. Our results indicate that A.flavus (n = 38, 79%) is the most common Aspergillus species causing onychomycosis in Mashhad, Iran. Other detected species were A. terreus (n = 3), A. tubingensis (n = 2), A. niger (n = 1), A. welwitschiae (n = 1), A. minisclerotigenes (n = 1), A. citrinoterreus (n = 1) and A. ochraceus (n = 1). Aspergillus flavus, A. terreus and A. niger isolates were correctly identified at the species level by MALDI-TOF MS, while all cryptic species were misidentified. In conclusion, A. flavus is the predominant Aspergillus species causing onychomycosis due to Aspergillus spp. in Mashhad, Iran. MALDI-TOF MS holds promise as a fast and accurate identification tool, particularly for common Aspergillus species. It is important that the current database of reference spectra, representing different Aspergillus species is expanded to increase the precision of the species-level identification. Terbinafine, posaconazole and echinocandins were in vitro most active against the studies Aspergillus isolates and terbinafine could be the first choice for treatment of onychomycosis due to Aspergillus.
Collapse
|
185
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
186
|
Pickova D, Ostry V, Malir F. A Recent Overview of Producers and Important Dietary Sources of Aflatoxins. Toxins (Basel) 2021; 13:186. [PMID: 33802572 PMCID: PMC7998637 DOI: 10.3390/toxins13030186] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are some of the most agriculturally important and harmful mycotoxins. At least 20 AFs have been identified to this date. Aflatoxin B1 (AFB1), the most potent fungal toxin, can cause toxicity in many species, including humans. AFs are produced by 22 species of Aspergillus section Flavi, 4 species of A. section Nidulantes, and 2 species of A. section Ochraceorosei. The most important and well-known AF-producing species of section Flavi are Aspergillus flavus, A. parasiticus, and A. nomius. AFs contaminate a wide range of crops (mainly groundnuts, pistachio nuts, dried figs, hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts, and maize). Foods of animal origin (milk and animal tissues) are less likely contributors to human AF exposure. Despite the efforts to mitigate the AF concentrations in foods, and thus enhance food safety, AFs continue to be present, even at high levels. AFs thus remain a current and continuously pressing problem in the world.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| |
Collapse
|
187
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
188
|
Peles F, Sipos P, Kovács S, Győri Z, Pócsi I, Pusztahelyi T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins (Basel) 2021; 13:toxins13020104. [PMID: 33535580 PMCID: PMC7912779 DOI: 10.3390/toxins13020104] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins (AFs) are toxic secondary metabolites produced mostly by Aspergillus species. AF contamination entering the feed and food chain has been a crucial long-term issue for veterinarians, medicals, agroindustry experts, and researchers working in this field. Although different (physical, chemical, and biological) technologies have been developed, tested, and employed to mitigate the detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce AF levels in feed and food in the last decades. Possible biological control by bacteria, yeasts, and fungi, their excretes, the role of the ruminal degradation, pre-harvest biocontrol by competitive exclusion or biofungicides, and post-harvest technologies and practices based on biological agents currently used to alleviate the toxic effects of AFs are collected in this review. Pre-harvest biocontrol technologies can give us the greatest opportunity to reduce AF production on the spot. Together with post-harvest applications of bacteria or fungal cultures, these technologies can help us strictly reduce AF contamination without synthetic chemicals.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Péter Sipos
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
- Correspondence: ; Tel.: +36-20-210-9491
| |
Collapse
|
189
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
190
|
Zhou YB, Li DM, Houbraken J, Sun TT, de Hoog GS. Fatal Rhinofacial Mycosis Due to Aspergillus nomiae: Case Report and Review of Published Literature. Front Microbiol 2021; 11:595375. [PMID: 33414771 PMCID: PMC7782315 DOI: 10.3389/fmicb.2020.595375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background A 73-year-old female suffering from acute myeloid leukemia presented with progressive rhinofacial mycosis. Suspecting it to be mucormycosis, the antifungal amphotericin B (AMB) was administered empirically, but the patient did not respond as planned. The fungus was then isolated from the biopsied tissue and morphologically identified as a species of Aspergillus. Necrosis progressed and she died of cerebral hemorrhage. Since Aspergillus flavus is susceptible to AMB, and several other Aspergillus species can be misidentified as A. flavus, the observed resistance necessitated a re-examination of the fungal isolate. Methods The fungal strain was re-isolated and re-examined morphologically. Additionally, genomic DNA was extracted from the fungus and sequences were obtained from three genomic regions [the rDNA internal transcribed spacer (ITS) region, and portions of the β-tubulin and calmodulin genes] to more accurately identify this Aspergillus strain. Its antifungal susceptibility was assessed using multiple compounds and our findings were compared with literature data. Results The fungal culture again yielded an Aspergillus isolate morphologically identical to A. flavus. Molecular analyses, however, revealed the strain to be A. nomiae, a close relative of A. flavus in section Flavi, and it exhibited resistance to AMB. Reviewing the literature, only five other cases of A. nomiae infection in humans have been reported worldwide. Conclusion and Clinical Importance The rhinofacial mycosis of the patient was actually due to A. nomiae. The initial misidentification of the fungus, coupled with its resistance to AMB, could be the reason treatment did not help the patient. We postulate that clinical A. nomiae infections may be underreported and that accurate and speedy pathogen identification is important so that an effective antifungal regimen can be administered.
Collapse
Affiliation(s)
- Ya Bin Zhou
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Dong Ming Li
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Ting Ting Sun
- Mycological Laboratory, Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - G Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| |
Collapse
|
191
|
Chang PK, Chang TD, Katoh K. Deciphering the origin of Aspergillus flavus NRRL21882, the active biocontrol agent of Afla-Guard ®. Lett Appl Microbiol 2021; 72:509-516. [PMID: 33251654 DOI: 10.1111/lam.13433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022]
Abstract
Single nucleotide polymorphisms (SNPs) of genome sequences of eight Aspergillus flavus and seven Aspergillus oryzae strains were extracted with Mauve, a multiple-genome alignment programme. A phylogenetic analysis with sequences comprised of concatenated total SNPs by the unweighted pair group method with arithmetic mean (UPGMA) of MAFFT adequately separated them into three groups, A. flavus S-morphotype, A. flavus L-morphotype and A. oryzae. Divergence time inferred for A. flavus NRRL21882, the active agent of the biocontrol product Afla-Guard® , and S-morphotype was about 5·1 mya. Another biocontrol strain, A. flavus AF36, diverged from aflatoxigenic L-morphotype about 2·6-3·0 mya. Despite the close relatedness of A. oryzae to A. flavus, A. oryzae strains likely evolved from aflatoxigenic Aspergillus aflatoxiformans (=A. parvisclerotigenus). A survey of A. flavus populations implies that prior Afla-Guard® applications are associated with prevalence of NRRL21882-type isolates in Mississippi fields. In addition, a few NRRL21882 relatives were identified. A. flavus Og0222, a biocontrol ingredient of Aflasafe™, was verified as a NRRL21882-type strain, having identical sequence breakpoints that led to deletion of aflatoxin and cyclopiazonic acid gene clusters. A similar UPGMA analysis suggests that the occurrence of NRRL21882-type strains is a more recent event.
Collapse
Affiliation(s)
- P-K Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA, USA
| | - T D Chang
- 400 Poydras Street, New Orleans, LA, USA
| | - K Katoh
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
192
|
Sánchez Espinosa KC, Almaguer Chávez M, Duarte-Escalante E, Rojas Flores TI, Frías-De-León MG, Reyes-Montes MDR. Phylogenetic Identification, Diversity, and Richness of Aspergillus from Homes in Havana, Cuba. Microorganisms 2021; 9:115. [PMID: 33418970 PMCID: PMC7825327 DOI: 10.3390/microorganisms9010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Aspergillus is one of the most common fungal genera found indoors; it is important because it can cause a wide range of diseases in humans. Aspergillus species identification is based on a combination of morphological, physiological, and molecular methods. However, molecular methodologies have rarely been used for the identification of environmental isolates of Aspergillus in Cuba. Therefore, the objective of this work was to identify the species of the genus Aspergillus obtained from houses in Havana, Cuba, through the construction of phylogeny from a partial sequence of the benA gene region, and to analyze the diversity and richness of Aspergillus in the studied municipalities. Isolates of Aspergillus spp. included in this study presented the typical macro- and micromorphology described for the genus. According to this polyphasic characterization, A. niger, A. flavus, A. welwitschiae, A. heteromorphus, A. sydowii, A. tamarii, A. fumigatus, A. clavatus, and A. tubingensis were the most abundant species. Most of the identified species constitute new records for outdoor and indoor environments in Cuba and contribute to the knowledge of fungal biodiversity in the country. These results constitute an alert for the health authorities of the country, since prolonged exposure of the inhabitants to Aspergillus spores can cause severe persistent asthma, among other diseases.
Collapse
Affiliation(s)
- Kenia C. Sánchez Espinosa
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, 25, Número 455, Entre I y J, La Habana 10400, Cuba; (K.C.S.E.); (M.A.C.); (T.I.R.F.)
| | - Michel Almaguer Chávez
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, 25, Número 455, Entre I y J, La Habana 10400, Cuba; (K.C.S.E.); (M.A.C.); (T.I.R.F.)
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria No. 3000, Ciudad de México 04510, Mexico;
| | - Teresa Irene Rojas Flores
- Departamento de Microbiología y Virología, Facultad de Biología, Universidad de La Habana, 25, Número 455, Entre I y J, La Habana 10400, Cuba; (K.C.S.E.); (M.A.C.); (T.I.R.F.)
| | - María Guadalupe Frías-De-León
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico;
| | - María del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria No. 3000, Ciudad de México 04510, Mexico;
| |
Collapse
|
193
|
Yiannikouris A, Apajalahti J, Kettunen H, Ojanperä S, Bell ANW, Keegan JD, Moran CA. Efficient Aflatoxin B1 Sequestration by Yeast Cell Wall Extract and Hydrated Sodium Calcium Aluminosilicate Evaluated Using a Multimodal In-Vitro and Ex-Vivo Methodology. Toxins (Basel) 2021; 13:24. [PMID: 33401432 PMCID: PMC7824576 DOI: 10.3390/toxins13010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
In this work, adsorption of the carcinogenic mycotoxin aflatoxin B1 (AFB1) by two sequestrants-a yeast cell wall-based adsorbent (YCW) and a hydrated sodium calcium aluminosilicate (HSCAS)-was studied across four laboratory models: (1) an in vitro model from a reference method was employed to quantify the sorption capabilities of both sequestrants under buffer conditions at two pH values using liquid chromatography with fluorescence detection (LC-FLD); (2) in a second in vitro model, the influence of the upper gastrointestinal environment on the mycotoxin sorption capacity of the same two sequestrants was studied using a chronic AFB1 level commonly encountered in the field (10 µg/L and in the presence of feed); (3) the third model used a novel ex vivo approach to measure the absorption of 3H-labelled AFB1 in the intestinal tissue and the ability of the sequestrants to offset this process; and (4) a second previously developed ex vivo model readapted to AFB1 was used to measure the transfer of 3H-labelled AFB1 through live intestinal tissue, and the influence of sequestrants on its bioavailability by means of an Ussing chamber system. Despite some sorption effects caused by the feed itself studied in the second model, both in vitro models established that the adsorption capacity of both YCW and HSCAS is promoted at a low acidic pH. Ex vivo Models 3 and 4 showed that the same tested material formed a protective barrier on the epithelial mucosa and that they significantly reduced the transfer of AFB1 through live intestinal tissue. The results indicate that, by reducing the transmembrane transfer rate and reducing over 60% of the concentration of free AFB1, both products are able to significantly limit the bioavailability of AFB1. Moreover, there were limited differences between YCW and HSCAS in their sorption capacities. The inclusion of YCW in the dietary ration could have a positive influence in reducing AFB1's physiological bioavailability.
Collapse
Affiliation(s)
- Alexandros Yiannikouris
- Chemistry and Toxicology Division, Center for Animal Nutrigenomic and Applied Animal Nutrition, Alltech Inc., 3031 Nicholasville, KY 40356, USA
| | - Juha Apajalahti
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Hannele Kettunen
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Suvi Ojanperä
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (H.K.); (S.O.)
| | - Andrew N. W. Bell
- Alltech Ireland, Sarney, Summerhill Road, A86 X006 Dunboyne, Ireland; (A.N.W.B.); (J.D.K.)
| | - Jason D. Keegan
- Alltech Ireland, Sarney, Summerhill Road, A86 X006 Dunboyne, Ireland; (A.N.W.B.); (J.D.K.)
| | - Colm A. Moran
- Alltech SARL (France), ZA La Papillionnière, Rue Charles Amand, 14500 Vire, France;
| |
Collapse
|
194
|
Ono LT, Taniwaki MH. Fungi and mycotoxins in cassava (Manihot esculenta Crantz) and its products. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Cassava (Manihot esculenta Crantz) is a highly consumed food in the world, especially in developing countries. Much of this tuber production comes from small farmers and it can suffer microbial infection during pre-harvest in the field and/or postharvest if stored under inadequate conditions. This review presented cassava production and the processing steps, resulting in products consumed in Brazil and other countries. Studies on fungal occurrence, including toxigenic fungi, presence of aflatoxins and other mycotoxins in cassava and its products carried out in several countries have been revised as well as the used methodologies for mycotoxin detection.
Collapse
|
195
|
Xu Y, Chen M, Zhu J, Gerrits van den Ende B, Chen AJ, Al-Hatmi AMS, Li L, Zhang Q, Xu J, Liao W, Chen Y. Aspergillus Species in Lower Respiratory Tract of Hospitalized Patients from Shanghai, China: Species Diversity and Emerging Azole Resistance. Infect Drug Resist 2020; 13:4663-4672. [PMID: 33402838 PMCID: PMC7778383 DOI: 10.2147/idr.s281288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/28/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose To investigate species diversity and prevalence of antifungal resistance among clinical isolates of Aspergillus spp. in Shanghai, China. Patients and Methods In this study, the Aspergillus spp. isolates were analyzed by multilocus sequence typing (MLST) targeting the internal transcribed spacer (ITS) regions, and partial β-tubulin (BenA) and calmodulin (CaM) genes. The susceptibilities of these isolates to nine antifungal agents were determined according to the protocol in document M38-A3 established by the Clinical and Laboratory Standards Institute (CLSI). Results The most common Aspergillus spp. was A. fumigatus (58.2%), followed by the A. flavus complex (23.5%), and A. niger complex (15.3%). Isolates belonging to A. tamarii and A. effusus of the A. flavus complex and A. tubingensis and A. awamori of the A. niger complex were identified. Moreover, several mutations were found in the azole target cyp51A gene (TR46/Y121F/T289A and F46Y, G89G, M172V, N248T and D255E) in azole-resistant isolates of A. fumigatus. Conclusion The results of our study revealed a diversity of species in the lower respiratory tract of inpatients in Shanghai and approximately 9% of our isolates were resistant to at least one of the triazole antifungals. Formulation of local treatment strategies to combat emerging azole resistance and species diversity in clinically relevant Aspergillus spp. is needed.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, People's Republic of China.,Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, ChangZheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, ChangZheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Junhao Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Bert Gerrits van den Ende
- Department of Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Amanda Juan Chen
- Department of Medical Mycology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Abdullah M S Al-Hatmi
- Centre of Expertise in Mycology, Radboud University Medical Centre, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands.,Ministry of Health, Directorate General of Health Services, Ibri, Oman
| | - Li Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Canada
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, ChangZheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuchong Chen
- Department of Dermatosurgery, Shanghai Skin Diseases Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
196
|
Gao Y, Du X, Li H, Wang Y. Genome sequence of Aspergillus flavus A7, a marine-derived fungus with antibacterial activity. Genome 2020; 64:719-733. [PMID: 33356862 DOI: 10.1139/gen-2020-0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the specific properties of the marine environment, marine microorganisms have exclusive physicochemical characteristics that are different from those of terrestrial microorganisms, which can produce various secondary metabolites (SMs) with considerable structural diversity and biological activity. In this study, three strains of coepiphytic Aspergillus with potential antibacterial activities, A7 (Aspergillus flavus), B27 (Aspergillus flavipes), and R12 (Aspergillus sydowii), were isolated from the South China Sea. Via the Illumina MiSeq sequencing platform, the genomes of the three strains were sequenced, and genome comparison showed the highest diversity of the biosynthetic gene clusters (BGCs) in A7. In addition, a comparison of physiological and genomic characteristics between A7 and other A. flavus strains demonstrated the superior environmental adaptability of A7, which is apparently consistent with the genetic richness of BGCs. By assigning reads to known BGCs, putative BGCs were allocated in A7 that corresponded to various SMs, including naphthopyrone, pyranonigrin E, and cyclopiazonic acids. Based on gene homology analysis, we surmise that a region is involved in the biosynthesis of ustiloxin-like RiPPs, a less thoroughly studied SM in fungi. Our results provide genetic information for the investigation of marine Aspergillus spp., which may help to elucidate their chemical diversity and adaptive strategies.
Collapse
Affiliation(s)
- Yaru Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xinyang Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Huanhuan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
197
|
Ferrara M, Gallo A, Perrone G, Magistà D, Baker SE. Comparative Genomic Analysis of Ochratoxin A Biosynthetic Cluster in Producing Fungi: New Evidence of a Cyclase Gene Involvement. Front Microbiol 2020; 11:581309. [PMID: 33391201 PMCID: PMC7775548 DOI: 10.3389/fmicb.2020.581309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
The widespread use of Next-Generation Sequencing has opened a new era in the study of biological systems by significantly increasing the catalog of fungal genomes sequences and identifying gene clusters for known secondary metabolites as well as novel cryptic ones. However, most of these clusters still need to be examined in detail to completely understand the pathway steps and the regulation of the biosynthesis of metabolites. Genome sequencing approach led to the identification of the biosynthetic genes cluster of ochratoxin A (OTA) in a number of producing fungal species. Ochratoxin A is a potent pentaketide nephrotoxin produced by Aspergillus and Penicillium species and found as widely contaminant in food, beverages and feed. The increasing availability of several new genome sequences of OTA producer species in JGI Mycocosm and/or GenBank databanks led us to analyze and update the gene cluster structure in 19 Aspergillus and 2 Penicillium OTA producing species, resulting in a well conserved organization of OTA core genes among the species. Furthermore, our comparative genome analyses evidenced the presence of an additional gene, previously undescribed, located between the polyketide and non-ribosomal synthase genes in the cluster of all the species analyzed. The presence of a SnoaL cyclase domain in the sequence of this gene supports its putative role in the polyketide cyclization reaction during the initial steps of the OTA biosynthesis pathway. The phylogenetic analysis showed a clustering of OTA SnoaL domains in accordance with the phylogeny of OTA producing species at species and section levels. The characterization of this new OTA gene, its putative role and its expression evidence in three important representative producing species, are reported here for the first time.
Collapse
Affiliation(s)
- Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Donato Magistà
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Scott E Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.,DOE Joint Bioenergy Institute, Emeryville, CA, United States
| |
Collapse
|
198
|
da Silva JJ, Iamanaka BT, Ferranti LS, Massi FP, Taniwaki MH, Puel O, Lorber S, Frisvad JC, Fungaro MHP. Diversity within Aspergillus niger Clade and Description of a New Species: Aspergillus vinaceus sp. nov. J Fungi (Basel) 2020; 6:jof6040371. [PMID: 33348541 PMCID: PMC7767288 DOI: 10.3390/jof6040371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes. To elucidate the taxonomic position of these haplotypes, two other loci, part of the beta-tubulin gene and part of the RNA polymerase II gene, were sequenced and used to perform an analysis of Genealogical Concordance Phylogenetic Species Recognition. This analysis enabled the recognition of two new phylogenetic species. One of the new phylogenetic species showed morphological and chemical distinguishable features in comparison to the known species A. welwitschiae and A. niger. This species is illustrated and described as Aspergillus vinaceus sp. nov. In contrast to A. niger and A. welwitschiae, A. vinaceus strains produced asperazine, but none of them were found to produce ochratoxin A and/or fumonisins. Sclerotium production on laboratory media, which does not occur in strains of A. niger and A. welwitschiae, and strictly sclerotium-associated secondary metabolites (14-Epi-hydroxy-10,23-dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydro-21-oxo-aflavinine) were found in A. vinaceus. The strain type of A. vinaceus sp. nov. is ITAL 47,456 (T) (=IBT 35556).
Collapse
Affiliation(s)
- Josué J. da Silva
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Beatriz T. Iamanaka
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Larissa S. Ferranti
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Fernanda P. Massi
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
| | - Marta H. Taniwaki
- Centro de Ciência e Qualidade de Alimentos, Instituto de Tecnologia de Alimentos, Campinas, São Paulo 13070-178, Brazil; (B.T.I.); (M.H.T.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, 31027 Toulouse, France; (O.P.); (S.L.)
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Maria Helena P. Fungaro
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; (J.J.d.S.); (L.S.F.); (F.P.M.)
- Correspondence: ; Tel.: +55-4399-955-4100
| |
Collapse
|
199
|
Priesterjahn EM, Geisen R, Schmidt-Heydt M. Influence of Light and Water Activity on Growth and Mycotoxin Formation of Selected Isolates of Aspergillus flavus and Aspergillus parasiticus. Microorganisms 2020; 8:microorganisms8122000. [PMID: 33333925 PMCID: PMC7765403 DOI: 10.3390/microorganisms8122000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/03/2022] Open
Abstract
Aspergillus flavus and A. parasiticus are the main causes of aflatoxin contamination in various foods, particularly grains, as they can thrive in environments with lower water activity and higher temperatures. The growth of Aspergillus and the formation of the mycotoxins aflatoxin and cyclopiazonic acid are strongly influenced by environmental stimuli and can be reduced by modulating parameters such as water activity, pH, temperature and light during the storage. This study has two objectives—on the one hand, to assess how global warming and an increase in exposure to sunlight affect growth and mycotoxin formation, and on the other hand, how the findings from these experiments can be used to reduce fungal growth and mycotoxin formation in stored foods. Using growth substrates with two different water activities (aw 0.95, aw 0.98), together with a light incubation device consisting of different chambers equipped with diodes emitting visible light of five different wavelengths (455 nm, 470 nm, 530 nm, 590 nm, 627 nm) plus white light, we analyzed the growth and mycotoxin formation of selected Aspergillus flavus and A. parasiticus isolates. It was shown that light with a wavelength of 455/470 nm alone, but especially in combination with a lower water activity of aw 0.95, leads to a significant reduction in growth and mycotoxin formation, which was accompanied by reduced transcriptional activity of the responsible mycotoxin biosynthetic genes. Therefore, these results can be used to significantly reduce the growth and the mycotoxin formation of the analyzed fungi during storage and to estimate the trend of fungal infestation by Aspergillus flavus and A. parasiticus in water activity- and light exposure-equivalent climate change scenarios. Mycotoxin-producing aspergilli can be effective and sustainably inhibited using a combination of short-wave light and lowered water activity in the substrate. A higher annual mean temperature accompanying climate change may lead to an increased spread of aflatoxin-producing fungi in areas that were previously too cold for them. On the other hand, there will be regions in the world where contamination with aflatoxin-producing fungi will be reduced due to increased drought and sun exposure.
Collapse
|
200
|
Bata-Vidács I, Kosztik J, Mörtl M, Székács A, Kukolya J. Aflatoxin B1 and Sterigmatocystin Binding Potential of Non- Lactobacillus LAB Strains. Toxins (Basel) 2020; 12:E799. [PMID: 33327631 PMCID: PMC7765123 DOI: 10.3390/toxins12120799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023] Open
Abstract
Research on the ability of lactic acid bacteria (LAB) to bind aflatoxin B1 (AFB1) has mostly been focusing on lactobacilli and bifidobacteria. In this study, the AFB1 binding capacities of 20 Enterococcus strains belonging to E. casseliflavus, E. faecalis, E. faecium, E. hirae, E. lactis, and E. mundtii, 24 Pediococcus strains belonging to species P. acidilactici, P. lolii, P. pentosaceus, and P. stilesii, one strain of Lactococcus formosensis and L.garviae, and 3 strains of Weissella soli were investigated in MRS broth at 37 °C at 0.2 µg/mL mycotoxin concentration. According to our results, among non-lactobacilli LAB, the genera with the best AFB1 binding abilities were genus Pediococcus, with a maximum binding percentage of 7.6% by P. acidilactici OR83, followed by genus Lactococcus. For AFB1 bio-detoxification purposes, beside lactobacilli, pediococci can also be chosen, but it is important to select a strain with better binding properties than the average value of its genus. Five Pediococcus strains have been selected to compare their sterigmatocystin (ST) binding abilities to AFB1 binding, and a 2-3-fold difference was obtained similar to previous findings for lactobacilli. The best strain was P. acidilactici OR83 with 18% ST binding capacity. This is the first report on ST binding capabilities of non-Lactobacillus LAB strains.
Collapse
Affiliation(s)
- Ildikó Bata-Vidács
- Department of Environmental and Applied Microbiology, Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, 1022 Budapest, Hungary; (J.K.); (J.K.)
| | - Judit Kosztik
- Department of Environmental and Applied Microbiology, Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, 1022 Budapest, Hungary; (J.K.); (J.K.)
| | - Mária Mörtl
- Department of Environmental Analysis, Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, 1022 Budapest, Hungary; (M.M.); (A.S.)
| | - András Székács
- Department of Environmental Analysis, Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, 1022 Budapest, Hungary; (M.M.); (A.S.)
| | - József Kukolya
- Department of Environmental and Applied Microbiology, Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, 1022 Budapest, Hungary; (J.K.); (J.K.)
| |
Collapse
|