151
|
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, Naeem H, Ullah MO, Yameen M, Mukhtiar MS, Zafar F. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci 2020; 263:118525. [PMID: 33031826 PMCID: PMC7533657 DOI: 10.1016/j.lfs.2020.118525] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of death and a major public health problem, universally. According to accumulated data, annually, approximately 8.5 million people died because of the lethality of cancer. Recently, a novel RNA domain-containing endonuclease-based genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) have been proved as a powerful technique in the treatment of cancer cells due to its multifunctional properties including high specificity, accuracy, time reducing and cost-effective strategies with minimum off-target effects. The present review investigates the overview of recent studies on the newly developed genome-editing strategy, CRISPR/Cas9, as an excellent pre-clinical therapeutic option in the reduction and identification of new tumor target genes in the solid tumors. Based on accumulated data, we revealed that CRISPR/Cas9 significantly inhibited the robust tumor cell growth (breast, lung, liver, colorectal, and prostate) by targeting the oncogenes, tumor-suppressive genes, genes associated to therapies by inhibitors, genes associated to chemotherapies drug resistance, and suggested that CRISPR/Cas9 could be a potential therapeutic target in inhibiting the tumor cell growth by suppressing the cell-proliferation, metastasis, invasion and inducing the apoptosis during the treatment of malignancies in the near future. The present review also discussed the current challenges and barriers, and proposed future recommendations for a better understanding.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Mumtaz
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Fras Farooq
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Musfira Firdous
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Huma Naeem
- Department of Computer Science, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Obaid Ullah
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Yameen
- Department of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahid Mukhtiar
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatima Zafar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
152
|
Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19:839-859. [PMID: 33077937 PMCID: PMC7721651 DOI: 10.1038/s41573-020-0084-6] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Base editing - the introduction of single-nucleotide variants (SNVs) into DNA or RNA in living cells - is one of the most recent advances in the field of genome editing. As around half of known pathogenic genetic variants are due to SNVs, base editing holds great potential for the treatment of numerous genetic diseases, through either temporary RNA or permanent DNA base alterations. Recent advances in the specificity, efficiency, precision and delivery of DNA and RNA base editors are revealing exciting therapeutic opportunities for these technologies. We expect the correction of single point mutations will be a major focus of future precision medicine.
Collapse
Affiliation(s)
- Elizabeth M Porto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Ian M Slaymaker
- Synthetic Biology Department, Beam Therapeutics, Cambridge, MA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences and Bioinformatics and Systems Biology Graduate Programs, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
153
|
Kuscu C, Kuscu C, Bajwa A, Eason JD, Maluf D, Mas VR. Applications of CRISPR technologies in transplantation. Am J Transplant 2020; 20:3285-3293. [PMID: 32484284 PMCID: PMC8109183 DOI: 10.1111/ajt.16095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/25/2023]
Abstract
In transplantation, the ever-increasing number of an organ's demand and long-term graft dysfunction constitute some of the major problems. Therefore, alternative solutions to increase the quantity and quality of the organ supply for transplantation are desired. On this subject, revolutionary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology holds enormous potential for the scientific community with its expanding toolbox. In this minireview, we summarize the history and mechanism of CRISPR/Cas9 systems and explore its potential applications in cellular- and organ-level transplantation. The last part of this review includes future opportunities as well as the challenges in the transplantation field.
Collapse
Affiliation(s)
- Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - James D. Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Valeria R. Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
154
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Salehi G, Fatahi Y, Dinarvand R. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor. Sci Rep 2020; 10:20672. [PMID: 33244160 PMCID: PMC7693303 DOI: 10.1038/s41598-020-77809-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Evaluation of the effect of different parameters for designing a non-viral vector in gene delivery systems has great importance. In this manner, 2D crystals, precisely layered double hydroxides, have attracted the attention of scientists due to their significant adjustability and low-toxicity and low-cost preparation procedure. In this work, the relationship between different physicochemical properties of LDH, including pH, size, zeta potential, and synthesis procedure, was investigated and optimized for CRISPR/Cas9 delivery and reverse fluorescence response to the EGFP. In this manner, ZnAl LDH and ZnAl HMTA LDH were synthesized and characterized and applied in the HEK-293 cell line to deliver CRISPR/Cas9. The results were optimized by different characterizations as well as Gel Electrophoresis and showed acceptable binding ability with the DNA that could be considered as a promising and also new gold-standard for the delivery of CRISPR/Cas9. Also, the relationship of the presence of tertiary amines (in this case, hexamethylenetetramine (HMTA) as the templates) in the structure of the ZnAl LDH, as well as the gene delivery application, was evaluated. The results showed more than 79% of relative cell viability in most of the weight ratios of LDH to CRISPR/Cas9; fully quenching the fluorescence intensity of the EGFP/LDH in the presence of 15 µg mL-1 of the protoporphyrins along with the detection limit of below 2.1 µg mL-1, the transfection efficiency of around 33% of the GFP positive cell for ZnAl LDH and more than 38% for the ZnAl LDH in the presence of its tertiary amine template.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Ghazal Salehi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
155
|
Aksoy YA, Yang B, Chen W, Hung T, Kuchel RP, Zammit NW, Grey ST, Goldys EM, Deng W. Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52433-52444. [PMID: 33174413 DOI: 10.1021/acsami.0c16380] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The CRISPR-Cas9 and related systems offer a unique genome-editing tool allowing facile and efficient introduction of heritable and locus-specific sequence modifications in the genome. Despite its molecular precision, temporal and spatial control of gene editing with the CRISPR-Cas9 system is very limited. We developed a light-sensitive liposome delivery system that offers a high degree of spatial and temporal control of gene editing with the CRISPR-Cas9 system. We demonstrated its efficient protein release by respectively assessing the targeted knockout of the eGFP gene in human HEK293/GFP cells and the TNFAIP3 gene in TNFα-induced HEK293 cells. We further validated our results at a single-cell resolution using an in vivo eGFP reporter system in zebrafish (77% knockout). These findings indicate that light-triggered liposomes may have new options for precise control of CRISPR-Cas9 release and editing.
Collapse
Affiliation(s)
- Yagiz Alp Aksoy
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenjie Chen
- Center for Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Tzongtyng Hung
- The Biological Resource Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathan W Zammit
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shane T Grey
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
156
|
Ren XH, He XY, Liu BY, Xu C, Cheng SX. Self-Assembled Plasmid Delivery System for PPM1D Knockout to Reverse Tumor Malignancy. ACS APPLIED BIO MATERIALS 2020; 3:7831-7839. [DOI: 10.1021/acsabm.0c01009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
157
|
Geng BC, Choi KH, Wang SZ, Chen P, Pan XD, Dong NG, Ko JK, Zhu H. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells. Acta Pharmacol Sin 2020; 41:1427-1432. [PMID: 32555510 DOI: 10.1038/s41401-020-0452-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have become an essential research platform to study different human diseases once being discovered by Dr. Shinya Yamanaka in 2006. Another breakthrough in biomedical research is the application of CRISPR/Cas9 system for genome editing in mammalian cells. Although numerous studies have been done to develop methods for gene editing in iPSCs, the current approaches suffer from several limitations, including time and labor consuming, low editing efficiency, and potential off-target effects. In the current study, we report an electroporation-mediated plasmid CRISPR/Cas9 delivery approach for genome editing in iPSCs. With this approach, an edited iPSC cell line could be obtained within 2 weeks. In addition, the transit introducing of CRISPR/Cas9 machinery could minimize genomic integration of Cas9 gene, which avoided potential long-term side effects of Cas9 enzyme. We showed that CRISPR/Cas9-mediated genomic editing did not affect pluripotency and differentiation ability of iPSCs. With the quickly evolving of both iPSC and CRISPR/Cas9-mediated genome editing research fields, we believe that our method can significantly facilitate the application of genome editing in iPSCs research.
Collapse
|
158
|
Mashel TV, Tarakanchikova YV, Muslimov AR, Zyuzin MV, Timin AS, Lepik KV, Fehse B. Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials 2020; 258:120282. [PMID: 32798742 DOI: 10.1016/j.biomaterials.2020.120282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
159
|
Efficiency of Chitosan-Coated PLGA Nanocarriers for Cellular Delivery of siRNA and CRISPR/Cas9 Complex. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09496-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
160
|
Hernandez-Gordillo V, Casolaro TC, Ebrahimkhani MR, Kiani S. Multicellular Systems to Translate Somatic Cell Genome Editors to Humans. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 16:72-81. [PMID: 33718690 DOI: 10.1016/j.cobme.2020.100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As genome editors move into clinical trials, there is a need to establish ex vivo multicellular systems to rapidly assess and predict toxic effects of genome editors in physiologically relevant human models. Advancements in organoid and organs-on-chip technologies offer the possibility to create multicellular systems that replicate the cellular composition and metabolic function of native tissues. Some multicellular systems have been validated in multiple applications for drug discovery and could be easily adapted to test genome editors; other models, especially those of the adaptive immune system, will require validation before being used as benchmarks for testing genome editors. Likewise, protocols to assess immunogenicity, to detect off-target effects, and to predict ex vivo to in vivo translation will need to be established and validated. This review will discuss key aspects to consider when designing, building, and/or adopting in vitro human multicellular systems for testing genome editors.
Collapse
Affiliation(s)
- Victor Hernandez-Gordillo
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas Caleb Casolaro
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
161
|
Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors. Int J Mol Sci 2020; 21:ijms21197353. [PMID: 33027946 PMCID: PMC7583726 DOI: 10.3390/ijms21197353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses, need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications. Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and resistance to proteolysis. In this review, we discuss the most recent efforts towards novel non-viral delivery systems, focusing on strategies and mechanisms of peptide-based delivery systems, that can specifically deliver CRISPR components to different cell types for therapeutic and research purposes.
Collapse
|
162
|
Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020; 41:755-775. [PMID: 32893005 PMCID: PMC7470715 DOI: 10.1016/j.tips.2020.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Therapeutic RNA molecules possess high potential for treating medical conditions if they can successfully reach the target cell upon administration. However, unmodified RNA molecules are rapidly degraded and cleared from the circulation. In addition, their large size and negative charge complicates their passing through the cell membrane. The difficulty of RNA therapy, therefore, lies in the efficient intracellular delivery of intact RNA molecules to the tissue of interest without inducing adverse effects. Here, we outline the recent developments in therapeutic RNA delivery and discuss the wide potential in manipulating the function of cells with RNAs. The focus is not only on the variety of delivery strategies but also on the versatile nature of RNA and its wide applicability. This wide applicability is especially interesting when considering the modular nature of nucleic acids. An optimal delivery vehicle, therefore, can facilitate numerous clinical applications of RNA.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel,School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel,Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel,Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel,Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel; School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
163
|
Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Roohi Razlighi M, Davaran S, Khalilov R, Sugiyama M, Nosrati H, Kaboli S, Danafar H, Webster TJ. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. NANO TODAY 2020; 34:100895. [DOI: 10.1016/j.nantod.2020.100895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
164
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
165
|
Joshi RK, Bharat SS, Mishra R. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech 2020; 10:400. [PMID: 32864285 PMCID: PMC7438458 DOI: 10.1007/s13205-020-02390-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Drought stress is primarily responsible for heavy yield losses and productivity in major crops and possesses the greatest threat to the global food security. While conventional and molecular breeding approaches along with genetic engineering techniques have been instrumental in developing drought-tolerant crop varieties, these methods are cumbersome, time consuming and the genetically modified varieties are not widely accepted due to regulatory concerns. Plant breeders are now increasingly centring towards the recently available genome-editing tools for improvement of agriculturally important traits. The advent of multiple sequence-specific nucleases has facilitated precise gene modification towards development of novel climate ready crop variants. Amongst the available genome-editing platforms, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system has emerged as a revolutionary tool for its simplicity, adaptability, flexibility and wide applicability. In this review, we focus on understanding the molecular mechanism of drought response in plants and the application of CRISPR/Cas genome-editing system towards improved tolerance to drought stress.
Collapse
Affiliation(s)
- Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha India
| | - Suhas Sutar Bharat
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| |
Collapse
|
166
|
Cai W, Luo T, Mao L, Wang M. Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli-Responsive Vehicles. Angew Chem Int Ed Engl 2020; 60:8596-8606. [PMID: 32385892 DOI: 10.1002/anie.202005644] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Recent innovations in genome editing have enabled the precise manipulation of the genetic information of mammalians, and benefitted the development of next-generation gene therapy. Despite these advances, several barriers to the clinical translation of genome editing remain, including the intracellular delivery of genome editing machinery, and the risk of off-target editing effect. Here, we review the recent advance of spatiotemporal delivery of CRISPR/Cas9 genome editing machinery, which is composed of programmable Cas9 nuclease and a single-guide RNA (sgRNA) using stimuli-responsive nanoparticles. We discuss the specific chemistries that have been used for controlled Cas9/sgRNA delivery and intracellular release in the presence of endogenous or external signals. These methodologies can leverage biological signals found locally within disease cells, or exogenous signals administrated with spatiotemporal control, through which an improved genome editing could be achieved. We also discuss the future in exploiting these approaches for fundamental biomedical applications and therapeutic genome editing.
Collapse
Affiliation(s)
- Weiqi Cai
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), No. 2, North first street, Zhongguancun, Beijing, 100190, China.,University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, China
| |
Collapse
|
167
|
A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement. Biotechnol Lett 2020; 42:1611-1632. [PMID: 32642978 DOI: 10.1007/s10529-020-02950-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
The Cas9 nuclease initiates double-stranded breaks at the target position in DNA, which are repaired by the intracellular restoration pathways to eliminate or insert pieces of DNA. CRISPR-Cas9 is proficient and cost-effective since cutting is guided by a piece of RNA instead of protein. Emphasis on this technology, in contrast with two recognized genome editing platforms (i.e., ZFNs and TALENs), is provided. This review evaluates the benefits of chemically synthesized gRNAs as well as the integration of chemical amendments to improve gene editing efficiencies. CRISPR is an indispensable means in biological investigations and is now as well transforming varied fields of biotechnology and agriculture. Recent advancement in targetable epigenomic-editing tools allows researchers to dispense direct functional and transcriptional significance to locus-explicit chromatin adjustments encompassing gene regulation and editing. An account of diverse sgRNA design tools is provided, principally on their target competence prediction model, off-target recognition algorithm, and generation of instructive annotations. The modern systems that have been utilized to deliver CRISPR-Cas9 in vivo and in vitro for crop improvement viz. nutritional enhancement, production of drought-tolerant and disease-resistant plants, are also highlighted. The conclusion is focused on upcoming directions, biosafety concerns, and expansive prospects of CRISPR technologies.
Collapse
|
168
|
Zhang Y, Karakikes I. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Trends Cardiovasc Med 2020; 31:341-348. [PMID: 32603681 DOI: 10.1016/j.tcm.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
The growing appreciation of human genetics and genomics in cardiovascular disease (CVD) accompanied by the technological breakthroughs in genome editing, particularly the CRISPR-Cas9 technologies, has presented an unprecedented opportunity to explore the application of genome editing in cardiovascular medicine. The ever-growing genome editing toolbox includes an assortment of CRISPR-Cas systems with increasing efficiency, precision, flexibility, and targeting capacity. Over the past decade, the advent of large-scale genotyping technologies and genome-wide association studies (GWAS) has provided numerous genotype-phenotype associations for diseases with complex traits. Notably, a growing number of loss-of-function mutations have been associated with favorable CVD risk-factor profiles that may confer protection. Combining the newly gained insights of human genetics with recent breakthrough technologies, such as the CRISPR-Cas9 technologies, holds great promise in elucidating novel disease mechanisms and transforming genes into medicines. Nonetheless, translating genetic insights into novel therapeuties remains challenging. Applications of "in body" genome editing for CVD treatment and engineering cardioprotection remain mostly theoretical. Here we highlight the recent advances of the CRISPR-based genome editing toolbox and discuss the potential and challenges of CRISPR-based technologies for translating GWAS findings into genomic medicines.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Suite 1347, Stanford, CA 94305-5515, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Suite 1347, Stanford, CA 94305-5515, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
169
|
Ishino Y. Studies on DNA-related enzymes to elucidate molecular mechanisms underlying genetic information processing and their application in genetic engineering. Biosci Biotechnol Biochem 2020; 84:1749-1766. [PMID: 32567488 DOI: 10.1080/09168451.2020.1778441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recombinant DNA technology, in which artificially "cut and pasted" DNA in vitro is introduced into living cells, contributed extensively to the rapid development of molecular biology over the past 5 decades since the latter half of the 20th century. Although the original technology required special experiences and skills, the development of polymerase chain reaction (PCR) has greatly eased in vitro genetic manipulation for various experimental methods. The current development of a simple genome-editing technique using CRISPR-Cas9 gave great impetus to molecular biology. Genome editing is a major technique for elucidating the functions of many unknown genes. Genetic manipulation technologies rely on enzymes that act on DNA. It involves artificially synthesizing, cleaving, and ligating DNA strands by making good use of DNA-related enzymes present in organisms to maintain their life activities. In this review, I focus on key enzymes involved in the development of genetic manipulation technologies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
170
|
Zhou W, Brown W, Bardhan A, Delaney M, Ilk AS, Rauen RR, Kahn SI, Tsang M, Deiters A. Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA. Angew Chem Int Ed Engl 2020; 59:8998-9003. [PMID: 32160370 PMCID: PMC7250724 DOI: 10.1002/anie.201914575] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/14/2020] [Indexed: 12/27/2022]
Abstract
We developed a new method for the conditional regulation of CRISPR/Cas9 activity in mammalian cells and zebrafish embryos using photochemically activated, caged guide RNAs (gRNAs). Caged gRNAs are generated by substituting four nucleobases evenly distributed throughout the 5'-protospacer region with caged nucleobases during synthesis. Caging confers complete suppression of gRNA:dsDNA-target hybridization and rapid restoration of CRISPR/Cas9 function upon optical activation. This tool offers simplicity and complete programmability in design, high spatiotemporal specificity in cells and zebrafish embryos, excellent off-to-on switching, and stability by preserving the ability to form Cas9:gRNA ribonucleoprotein complexes. Caged gRNAs are novel tools for the conditional control of gene editing, thereby enabling the investigation of spatiotemporally complex physiological events by obtaining a better understanding of dynamic gene regulation.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Michael Delaney
- Horizon Discovery, 2650 Crescent Drive, Lafayette, CO, 80026, USA
| | - Amber S Ilk
- Horizon Discovery, 2650 Crescent Drive, Lafayette, CO, 80026, USA
| | - Randy R Rauen
- Horizon Discovery, 2650 Crescent Drive, Lafayette, CO, 80026, USA
| | - Shoeb I Kahn
- Horizon Discovery, 2650 Crescent Drive, Lafayette, CO, 80026, USA
| | - Michael Tsang
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
171
|
Maggio I, Zittersteijn HA, Wang Q, Liu J, Janssen JM, Ojeda IT, van der Maarel SM, Lankester AC, Hoeben RC, Gonçalves MAFV. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Gene Ther 2020; 27:209-225. [PMID: 31900423 PMCID: PMC7253353 DOI: 10.1038/s41434-019-0119-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Enhancing the intracellular delivery and performance of RNA-guided CRISPR-Cas9 nucleases (RGNs) remains in demand. Here, we show that nuclear translocation of commonly used Streptococcus pyogenes Cas9 (SpCas9) proteins is suboptimal. Hence, we generated eCas9.4NLS by endowing the high-specificity eSpCas9(1.1) nuclease (eCas9.2NLS) with additional nuclear localization signals (NLSs). We demonstrate that eCas9.4NLS coupled to prototypic or optimized guide RNAs achieves efficient targeted DNA cleavage and probe the performance of SpCas9 proteins with different NLS compositions at target sequences embedded in heterochromatin versus euchromatin. Moreover, after adenoviral vector (AdV)-mediated transfer of SpCas9 expression units, unbiased quantitative immunofluorescence microscopy revealed 2.3-fold higher eCas9.4NLS nuclear enrichment levels than those observed for high-specificity eCas9.2NLS. This improved nuclear translocation yielded in turn robust gene editing after nonhomologous end joining repair of targeted double-stranded DNA breaks. In particular, AdV delivery of eCas9.4NLS into muscle progenitor cells resulted in significantly higher editing frequencies at defective DMD alleles causing Duchenne muscular dystrophy (DMD) than those achieved by AdVs encoding the parental, eCas9.2NLS, protein. In conclusion, this work provides a strong rationale for integrating viral vector and optimized gene-editing technologies to bring about enhanced RGN delivery and performance.
Collapse
Affiliation(s)
- Ignazio Maggio
- Department of Pediatrics/Willem-Alexander Kinderziekenhuis (WAKZ), Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Hidde A Zittersteijn
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Qian Wang
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josephine M Janssen
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ivan Toral Ojeda
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Arjan C Lankester
- Department of Pediatrics/Willem-Alexander Kinderziekenhuis (WAKZ), Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology (CCB), Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
172
|
Hirakawa M, Krishnakumar R, Timlin J, Carney J, Butler K. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 2020; 40:BSR20200127. [PMID: 32207531 PMCID: PMC7146048 DOI: 10.1042/bsr20200127] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies, particularly those based on zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeat DNA sequences)/Cas9 are rapidly progressing into clinical trials. Most clinical use of CRISPR to date has focused on ex vivo gene editing of cells followed by their re-introduction back into the patient. The ex vivo editing approach is highly effective for many disease states, including cancers and sickle cell disease, but ideally genome editing would also be applied to diseases which require cell modification in vivo. However, in vivo use of CRISPR technologies can be confounded by problems such as off-target editing, inefficient or off-target delivery, and stimulation of counterproductive immune responses. Current research addressing these issues may provide new opportunities for use of CRISPR in the clinical space. In this review, we examine the current status and scientific basis of clinical trials featuring ZFNs, TALENs, and CRISPR-based genome editing, the known limitations of CRISPR use in humans, and the rapidly developing CRISPR engineering space that should lay the groundwork for further translation to clinical application.
Collapse
Affiliation(s)
| | - Raga Krishnakumar
- Systems Biology, Sandia National Laboratories, Livermore, CA 94551, U.S.A
| | - Jerilyn A. Timlin
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| | - James P. Carney
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| | - Kimberly S. Butler
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| |
Collapse
|
173
|
Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics 2020; 10:5532-5549. [PMID: 32373229 PMCID: PMC7196308 DOI: 10.7150/thno.43465] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gene editing is a versatile technique in biomedicine that promotes fundamental research as well as clinical therapy. The development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing machinery has accelerated the application of gene editing. However, the delivery of CRISPR components often suffers when using conventional transfection methods, such as viral transduction and chemical vectors, due to limited packaging size and inefficiency toward certain cell types. In this review, we discuss physical transfection methods for CRISPR gene editing which can overcome these limitations. We outline different types of physical transfection methods, highlight novel techniques to deliver CRISPR components, and emphasize the role of micro and nanotechnology to improve transfection performance. We present our perspectives on the limitations of current technology and provide insights on the future developments of physical transfection methods.
Collapse
Affiliation(s)
- Apresio K. Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Qing Qing He
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Nurul I. Wirusanti
- University Medical Center Groningen, University of Groningen, Groningen, The Netherland
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
174
|
Aghamiri S, Talaei S, Roshanzamiri S, Zandsalimi F, Fazeli E, Aliyu M, Kheiry Avarvand O, Ebrahimi Z, Keshavarz-Fathi M, Ghanbarian H. Delivery of genome editing tools: A promising strategy for HPV-related cervical malignancy therapy. Expert Opin Drug Deliv 2020; 17:753-766. [PMID: 32281426 DOI: 10.1080/17425247.2020.1747429] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Persistent high-risk human papillomavirus infection is the main cause of various types of cancer especially cervical cancer. The E6 and E7 oncoproteins of HPV play critical roles in promoting carcinogenesis and cancer cell growth. As a result, E6 and E7 oncogenes are considered as promising therapeutic targets for cervical cancer. Recently, the development of genome-editing technologies including transcription activator-like effector nucleases (TALEN), meganucleases (MNs), zinc finger nucleases (ZFN), and more importantly clustered regularly interspaced short palindromic repeat-CRISPR-associated protein (CRISPR-Cas) has sparked a revolution in the cervical cancer-targeted therapy. However, due to immunogenicity, off-target effect, renal clearance, guide RNA (gRNA) nuclease degradation, and difficult direct transportation into the cytoplasm and nucleus, the safe and effective delivery is considered as the Achilles' heel of this robust strategy. AREAS COVERED In this review, we discuss cutting-edge available strategies for in vivo delivery of genome-editing technologies for HPV-induced cervical cancer therapy. Moreover, the combination of genome-editing tools and other therapies has been fully discussed. EXPERT OPINION The combination of nanoparticle-based delivery systems and genome-editing tools is a promising powerful strategy for cervical cancer therapy. The most significant limitations of this strategy that need to be focused on are low efficiency and off-target events.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Farshid Zandsalimi
- Students' Scientific Research Center, Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Elnaz Fazeli
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus , Tehran, Iran
| | - Omid Kheiry Avarvand
- Student Research Committee, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Zahra Ebrahimi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN) , Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
175
|
Zhou W, Brown W, Bardhan A, Delaney M, Ilk AS, Rauen RR, Kahn SI, Tsang M, Deiters A. Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light‐Activated Guide RNA. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914575] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenyuan Zhou
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Wes Brown
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Anirban Bardhan
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Michael Delaney
- Horizon Discovery 2650 Crescent Drive Lafayette CO 80026 USA
| | - Amber S. Ilk
- Horizon Discovery 2650 Crescent Drive Lafayette CO 80026 USA
| | - Randy R. Rauen
- Horizon Discovery 2650 Crescent Drive Lafayette CO 80026 USA
| | - Shoeb I. Kahn
- Horizon Discovery 2650 Crescent Drive Lafayette CO 80026 USA
| | - Michael Tsang
- Department of Developmental Biology School of Medicine University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
176
|
|
177
|
Rohiwal SS, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, Pavlova E, Stepanek P, Babuka D, Benes H, Ellederova Z, Stieger K. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci Rep 2020; 10:4619. [PMID: 32165679 PMCID: PMC7067791 DOI: 10.1038/s41598-020-61465-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 01/09/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9) system has become a revolutionary tool for gene editing. Since viral delivery systems have significant side effects, and naked DNA delivery is not an option, the nontoxic, non-viral delivery of CRISPR/Cas9 components would significantly improve future therapeutic delivery. In this study, we aim at characterizing nanoparticles to deliver plasmid DNA encoding for the CRISPR-Cas system in eukaryotic cells in vitro. CRISPR/Cas9 complexed polyethylenimine (PEI) magnetic nanoparticles (MNPs) were generated. We used a stable HEK293 cell line expressing the traffic light reporter (TLR-3) system to evaluate efficient homology- directed repair (HDR) and non-homologous end joining (NHEJ) events following transfection with NPs. MNPs have been synthesized by co-precipitation with the average particle size around 20 nm in diameter. The dynamic light scattering and zeta potential measurements showed that NPs exhibited narrow size distribution and sufficient colloidal stability. Genome editing events were as efficient as compared to standard lipofectamine transfection. Our approach tested non-viral delivery of CRISPR/Cas9 and DNA template to perform HDR and NHEJ in the same assay. We demonstrated that PEI-MNPs is a promising delivery system for plasmids encoding CRISPR/Cas9 and template DNA and thus can improve safety and utility of gene editing.
Collapse
Affiliation(s)
- S S Rohiwal
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - N Dvorakova
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - J Klima
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - M Vaskovicova
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic
| | - F Senigl
- Institute of Molecular Genetics, The Czech Academy of Sciences, Praha 4, Czech Republic
| | - M Slouf
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - E Pavlova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - P Stepanek
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - D Babuka
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - H Benes
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Z Ellederova
- The PIGMOD center, Institute of Animal Physiology and Genetics, v. v. i., The Czech Academy of Sciences, Libechov, Czech Republic.
| | - K Stieger
- Department of Ophthalmology, Justus-Liebig-University, 35392, Giessen, Germany.
| |
Collapse
|
178
|
Li Y, Glass Z, Huang M, Chen ZY, Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020; 234:119711. [PMID: 31945616 PMCID: PMC7035593 DOI: 10.1016/j.biomaterials.2019.119711] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
The recently developed CRISPR/Cas9 technology has revolutionized the genome engineering field. Since 2016, increasing number of studies regarding CRISPR therapeutics have entered clinical trials, most of which are focusing on the ex vivo genome editing. In this review, we highlight the ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. In these studies, CRISPR/Cas9 tools were used to edit cells in vitro and the successfully edited cells were considered as therapeutics, which can be introduced into patients to treat diseases. Considering a large number of previous reviews have been focused on the CRISPR/Cas9 delivery methods and materials, this review provides a different perspective, by mainly introducing the targeted conditions and design strategies for ex vivo CRISPR/Cas9 therapeutics. Brief descriptions of the history, functionality, and applications of CRISPR/Cas9 systems will be introduced first, followed by the design strategies and most significant results from previous research that used ex vivo CRISPR/Cas9 genome editing for the treatment of conditions or diseases. The last part of this review includes general information about the status of CRISPR/Cas9 therapeutics in clinical trials. We also discuss some of the challenges as well as the opportunities in this research area.
Collapse
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Mingqian Huang
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
| | - Zheng-Yi Chen
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
179
|
Yang DC, Eldredge AC, Hickey JC, Muradyan H, Guan Z. Multivalent Peptide-Functionalized Bioreducible Polymers for Cellular Delivery of Various RNAs. Biomacromolecules 2020; 21:1613-1624. [DOI: 10.1021/acs.biomac.0c00211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dong-Chu Yang
- Department of Chemistry, University of California, 1102 Natural
Sciences 2, Irvine, California 92697-2025, United States
| | - Alexander C. Eldredge
- Department of Chemistry, University of California, 1102 Natural
Sciences 2, Irvine, California 92697-2025, United States
| | - James C. Hickey
- Department of Chemistry, University of California, 1102 Natural
Sciences 2, Irvine, California 92697-2025, United States
| | - Hurik Muradyan
- Department of Chemistry, University of California, 1102 Natural
Sciences 2, Irvine, California 92697-2025, United States
| | - Zhibin Guan
- Department of Chemistry, University of California, 1102 Natural
Sciences 2, Irvine, California 92697-2025, United States
| |
Collapse
|
180
|
Hao M, Wang Z, Qiao H, Yin P, Qiao J, Qi H. Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in Escherichia coli. Cells 2020; 9:E467. [PMID: 32085579 PMCID: PMC7072734 DOI: 10.3390/cells9020467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
As a key element of genome editing, donor DNA introduces the desired exogenous sequence while working with other crucial machinery such as CRISPR-Cas or recombinases. However, current methods for the delivery of donor DNA into cells are both inefficient and complicated. Here, we developed a new methodology that utilizes rolling circle replication and Cas9 mediated (RC-Cas-mediated) in vivo single strand DNA (ssDNA) synthesis. A single-gene rolling circle DNA replication system from Gram-negative bacteria was engineered to produce circular ssDNA from a Gram-positive parent plasmid at a designed sequence in Escherichia coli. Furthermore, it was demonstrated that the desired linear ssDNA fragment could be cut out using CRISPR-associated protein 9 (CRISPR-Cas9) nuclease and combined with lambda Red recombinase as donor for precise genome engineering. Various donor ssDNA fragments from hundreds to thousands of nucleotides in length were synthesized in E. coli cells, allowing successive genome editing in growing cells. We hope that this RC-Cas-mediated in vivo ssDNA on-site synthesis system will be widely adopted as a useful new tool for dynamic genome editing.
Collapse
Affiliation(s)
- Min Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyan Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng Yin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (Z.W.); (H.Q.); (P.Y.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
181
|
Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology 2020; 147:25-33. [PMID: 32086048 DOI: 10.1016/j.theriogenology.2020.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Genetic modification is a rapidly developing field in which numerous significant breakthroughs have been achieved. Over the last few decades, genetic modification has evolved from insertional transgenesis to gene targeting and editing and, more recently, to base and prime editing using CRISPR-derived systems. Currently, CRISPR-based genome editing systems are showing great potential for generating gene-edited offspring with defined genetic characteristics. Domestic small ruminants (sheep and goats) have shown great potential as large animal models for genome engineering. Ovine and caprine genomes have been engineered using CRISPR-based systems for numerous purposes. These include generating superior agricultural breeds, expression of therapeutic agents in mammary glands, and developing animal models to be used in the study of human genetic disorders and regenerative medicine. The creation of these models has been facilitated by the continuous emergence and development of genetic modification tools. In this review, we provide an overview on how CRISPR-based systems have been used in the generation of gene-edited small ruminants through the two main pathways (embryonic microinjection and somatic cell nuclear transfer) and highlight the ovine and caprine genes that have been targeted via knockout, knockin, HDR-mediated point mutation, and base editing approaches, as well as the aims of these specific manipulations.
Collapse
|
182
|
Cong W, Shi Y, Qi Y, Wu J, Gong L, He M. Viral approaches to study the mammalian brain: Lineage tracing, circuit dissection and therapeutic applications. J Neurosci Methods 2020; 335:108629. [PMID: 32045571 DOI: 10.1016/j.jneumeth.2020.108629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/09/2023]
Abstract
Viral vectors are widely used to study the development, function and pathology of neural circuits in the mammalian brain. Their flexible payloads with customizable choices of tool genes allow versatile applications ranging from lineage tracing, circuit mapping and functional interrogation, to translational and therapeutic applications. Different applications have distinct technological requirements, therefore, often utilize different types of virus. This review introduces the most commonly used viruses for these applications and some recent advances in improving the resolution and throughput of lineage tracing, the efficacy and selectivity of circuit tracing and the specificity of cell type targeting.
Collapse
Affiliation(s)
- Wei Cong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanqing Qi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
183
|
Martin JD, Cabral H, Stylianopoulos T, Jain RK. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 2020; 17:251-266. [PMID: 32034288 DOI: 10.1038/s41571-019-0308-z] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Multiple nanotherapeutics have been approved for patients with cancer, but their effects on survival have been modest and, in some examples, less than those of other approved therapies. At the same time, the clinical successes achieved with immunotherapy have revolutionized the treatment of multiple advanced-stage malignancies. However, the majority of patients do not benefit from the currently available immunotherapies and many develop immune-related adverse events. By contrast, nanomedicines can reduce - but do not eliminate - the risk of certain life-threatening toxicities. Thus, the combination of these therapeutic classes is of intense research interest. The tumour microenvironment (TME) is a major cause of the failure of both nanomedicines and immunotherapies that not only limits delivery, but also can compromise efficacy, even when agents accumulate in the TME. Coincidentally, the same TME features that impair nanomedicine delivery can also cause immunosuppression. In this Perspective, we describe TME normalization strategies that have the potential to simultaneously promote the delivery of nanomedicines and reduce immunosuppression in the TME. Then, we discuss the potential of a combined nanomedicine-based TME normalization and immunotherapeutic strategy designed to overcome each step of the cancer-immunity cycle and propose a broadly applicable 'minimal combination' of therapies designed to increase the number of patients with cancer who are able to benefit from immunotherapy.
Collapse
Affiliation(s)
- John D Martin
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
184
|
Kabadi A, McDonnell E, Frank CL, Drowley L. Applications of Functional Genomics for Drug Discovery. SLAS DISCOVERY 2020; 25:823-842. [PMID: 32026742 DOI: 10.1177/2472555220902092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many diseases, such as diabetes, autoimmune diseases, cancer, and neurological disorders, are caused by a dysregulation of a complex interplay of genes. Genome-wide association studies have identified thousands of disease-linked polymorphisms in the human population. However, detailing the causative gene expression or functional changes underlying those associations has been elusive in many cases. Functional genomics is an emerging field of research that aims to deconvolute the link between genotype and phenotype by making use of large -omic data sets and next-generation gene and epigenome editing tools to perturb genes of interest. Here we review how functional genomic tools can be used to better understand the biological interplay between genes, improve disease modeling, and identify novel drug targets. Incorporation of functional genomic capabilities into conventional drug development pipelines is predicted to expedite the development of first-in-class therapeutics.
Collapse
Affiliation(s)
- Ami Kabadi
- Element Genomics, a UCB company, Durham, NC, USA
| | | | | | | |
Collapse
|
185
|
Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 2020; 22:143-150. [PMID: 32015437 PMCID: PMC8008746 DOI: 10.1038/s41556-019-0454-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Deployment of RNA-guided DNA endonuclease CRISPR-Cas technology has led to radical advances in biology. As the functional diversity of CRISPR-Cas and parallel systems is further explored, RNA manipulation is emerging as a powerful mode of CRISPR-based engineering. In this Perspective, we chart progress in the RNA-targeting CRISPR-Cas (RCas) field and illustrate how continuing evolution in scientific discovery translates into applications for RNA biology and insights into mysteries, obstacles, and alternative technologies that lie ahead.
Collapse
Affiliation(s)
- Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yilan J Shi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
186
|
Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang JP, Ondzighi-Assoume CA, Montgomery GA, Burris KP, Mazarei M, Chesnut JD, Stewart CN. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. PLANT CELL REPORTS 2020; 39:245-257. [PMID: 31728703 DOI: 10.1007/s00299-019-02488-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/06/2019] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE A novel and robust lipofection-mediated transfection approach for the use of DNA-free Cas9/gRNA RNP for gene editing has demonstrated efficacy in plant cells. Precise genome editing has been revolutionized by CRISPR/Cas9 systems. DNA-based delivery of CRISPR/Cas9 is widely used in various plant species. However, protein-based delivery of the in vitro translated Cas9/guide RNA (gRNA) ribonucleoprotein (RNP) complex into plant cells is still in its infancy even though protein delivery has several advantages. These advantages include DNA-free delivery, gene-edited host plants that are not transgenic, ease of use, low cost, relative ease to be adapted to high-throughput systems, and low off-target cleavage rates. Here, we show a novel lipofection-mediated transfection approach for protein delivery of the preassembled Cas9/gRNA RNP into plant cells for genome editing. Two lipofection reagents, Lipofectamine 3000 and RNAiMAX, were adapted for successful delivery into plant cells of Cas9/gRNA RNP. A green fluorescent protein (GFP) reporter was fused in-frame with the C-terminus of the Cas9 protein and the fusion protein was successfully delivered into non-transgenic tobacco cv. 'Bright Yellow-2' (BY2) protoplasts. The optimal efficiencies for Lipofectamine 3000- and RNAiMAX-mediated protein delivery were 66% and 48%, respectively. Furthermore, we developed a biolistic method for protein delivery based on the known proteolistics technique. A transgenic tobacco BY2 line expressing an orange fluorescence protein reporter pporRFP was targeted for knockout. We found that the targeted mutagenesis frequency for our Lipofectamine 3000-mediated protein delivery was 6%. Our results showed that the newly developed lipofection-mediated transfection approach is robust for the use of the DNA-free Cas9/gRNA technology for genome editing in plant cells.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Horticultural Science, North Caroline State University, Raleigh, NC, 27607, USA.
| | - Mary R Rudis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew H Cheplick
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Reginald J Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jian-Ping Yang
- Synthetic Biology Research and Development, Thermo Fisher Scientific, Carlsbad, CA, 92008, USA
| | - Christine A Ondzighi-Assoume
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Garrett A Montgomery
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kellie P Burris
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Caroline State University, Raleigh, NC, 27606, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jonathan D Chesnut
- Synthetic Biology Research and Development, Thermo Fisher Scientific, Carlsbad, CA, 92008, USA
| | - Charles Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| |
Collapse
|
187
|
Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience 2020; 23:100789. [PMID: 31901636 PMCID: PMC6941877 DOI: 10.1016/j.isci.2019.100789] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to precisely modify human genes has been made possible by the development of tools such as meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas. These now make it possible to generate targeted deletions, insertions, gene knock outs, and point variants; to modulate gene expression by targeting transcription factors or epigenetic machineries to DNA; or to target and modify RNA. Endogenous repair mechanisms are used to make the modifications required in DNA; they include non-homologous end joining, homology-directed repair, homology-independent targeted integration, microhomology-mediated end joining, base-excision repair, and mismatch repair. Off-target effects can be monitored using in silico prediction and sequencing and minimized using Cas proteins with higher accuracy, such as high-fidelity Cas9, enhanced-specificity Cas9, and hyperaccurate Cas9. Alternatives to Cas9 have been identified, including Cpf1, Cas12a, Cas12b, and smaller Cas9 orthologs such as CjCas9. Delivery of gene-editing components is performed ex vivo using standard techniques or in vivo using AAV, lipid nanoparticles, or cell-penetrating peptides. Clinical development of gene-editing technology is progressing in several fields, including immunotherapy in cancer treatment, antiviral therapy for HIV infection, and treatment of genetic disorders such as β-thalassemia, sickle cell disease, lysosomal storage disorders, and retinal dystrophy. Here we review these technological advances and the challenges to their clinical implementation.
Collapse
Affiliation(s)
- Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
188
|
Padayachee J, Singh M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine (Rij) 2020; 7:1849543520983196. [PMID: 33488814 PMCID: PMC7768851 DOI: 10.1177/1849543520983196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, approximately 1 in 4 cancers in women are diagnosed as breast cancer (BC). Despite significant advances in the diagnosis and therapy BCs, many patients develop metastases or relapses. Hence, novel therapeutic strategies are required, that can selectively and efficiently kill malignant cells. Direct targeting of the genetic and epigenetic aberrations that occur in BC development is a promising strategy to overcome the limitations of current therapies, which target the tumour phenotype. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, composed of only an easily modifiable single guide RNA (sgRNA) sequence bound to a Cas9 nuclease, has revolutionised genome editing due to its simplicity and efficiency compared to earlier systems. CRISPR/Cas9 and its associated catalytically inactivated dCas9 variants facilitate the knockout of overexpressed genes, correction of mutations in inactivated genes, and reprogramming of the epigenetic landscape to impair BC growth. To achieve efficient genome editing in vivo, a vector is required to deliver the components to target cells. Gold nanomaterials, including gold nanoparticles and nanoclusters, display many advantageous characteristics that have facilitated their widespread use in theranostics, as delivery vehicles, and imaging and photothermal agents. This review highlights the therapeutic applications of CRISPR/Cas9 in treating BCs, and briefly describes gold nanomaterials and their potential in CRISPR/Cas9 delivery.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
189
|
Li B, Niu Y, Ji W, Dong Y. Strategies for the CRISPR-Based Therapeutics. Trends Pharmacol Sci 2020; 41:55-65. [PMID: 31862124 PMCID: PMC10082448 DOI: 10.1016/j.tips.2019.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)-based genome editing technology is an emerging RNA-guided nuclease system initially identified from the microbial adaptive immune systems. In recent years, the CRISPR system has been reprogrammed to target specific regions of the eukaryotic genome and has become a powerful tool for genetic engineering. Researchers have explored many approaches to improve the genome editing activity of the CRISPR-Cas system and deliver its components both ex vivo and in vivo. Moreover, these strategies have been applied to genome editing in preclinical research and clinical trials. In this review, we focus on representative strategies for regulation and delivery of the CRISPR-Cas system, and outline current therapeutic applications in their clinical translation.
Collapse
Affiliation(s)
- Bin Li
- Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China.
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
190
|
Shan S, Soltis PS, Soltis DE, Yang B. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11314. [PMID: 31993256 PMCID: PMC6976890 DOI: 10.1002/aps3.11314] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/26/2019] [Indexed: 05/03/2023]
Abstract
The past six years have seen the rapid growth of studies of CRISPR/Cas9 in plant genome editing, a method that enormously facilitates both basic research and practical applications. Most studies have focused on genetic model species, but plant species that are not genetic models may also be economically important or biologically significant, or both. However, developing the CRISPR/Cas9 system in a nongenetic model is challenging. Here, we summarize CRISPR/Cas9 applications in 45 plant genera across 24 families and provide a reference for practical application of CRISPR in nongenetic model plant systems. Suggestions for selecting plant species and target genes are given for proof-of-principle CRISPR studies, and the processes of vector construction are reviewed. We recommend using transient assays to identify a desired CRISPR/Cas9 system in a nongenetic model. We then review methods of plant transformation and describe approaches, using regenerated transgenic plants, for evaluating CRISPR editing results. Lastly, potential future applications of CRISPR in nongenetic model plant species are discussed. This review provides a road map for developing CRISPR in nongenetic models, an application that holds enormous potential in plant biology.
Collapse
Affiliation(s)
- Shengchen Shan
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFlorida32611‐0180USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611‐7800USA
| | - Pamela S. Soltis
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFlorida32611‐0180USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611‐7800USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611‐5585USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32610USA
| | - Douglas E. Soltis
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFlorida32611‐0180USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611‐7800USA
- Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611‐5585USA
- Genetics InstituteUniversity of FloridaGainesvilleFlorida32610USA
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611‐8525USA
| | - Bing Yang
- Division of Plant SciencesUniversity of MissouriColumbiaMissouri65211USA
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| |
Collapse
|
191
|
Gong Y, Tian S, Xuan Y, Zhang S. Lipid and polymer mediated CRISPR/Cas9 gene editing. J Mater Chem B 2020; 8:4369-4386. [DOI: 10.1039/d0tb00207k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) system is the most widely used tool for gene editing.
Collapse
Affiliation(s)
- Yan Gong
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Siyu Tian
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education
- College of Life Science
- Dalian Minzu University
- Dalian
- China
| |
Collapse
|
192
|
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1609. [PMID: 31797562 DOI: 10.1002/wnan.1609] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-based genome editing technology has become an important potential therapeutic tool for various diseases. A vital challenge is to reach a safe, efficient, and clinically suitable delivery of a CRISPR-associated protein and a single-guide RNA. A possible translational approach to applying CRISPR-based technology is the use of viral vectors such as adeno-associated virus. However, such vectors give long-term exposure in vivo that may increase potential off-target effects as well as the risk of immunogenicity. Therefore, limitations to clinical applications are addressed using nonviral delivery systems such as nanoparticle-based delivery strategies. Today, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapeutics because of its specific targeting, scale-up efficiency, efficacy of customization, minor stimulation of immune response, and minimal exposure to nucleases. In this review, we will present the most recent advances in developing innovations and potential advantages of the nanoparticle delivery system in CRISPR genome editing. We will also propose potential strategies of CRISPR-based technology for therapeutic and industrial applications. Our review will differ in focus from previous reviews and advance the literature on the subject by (a) focusing on the challenges of the CRISPR/Cas9 delivery system; (b) focusing on the application of nanoparticle-based delivery of CRISPR components (Cas9 and sgRNA), such as lipids and polymeric vectors; (c) discussing the potential nanoparticle-based delivery approaches for CRISPR/Cas9 application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | - Martin Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
193
|
Carmignotto GP, Azzoni AR. On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. J Biotechnol 2019; 306:62-70. [DOI: 10.1016/j.jbiotec.2019.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023]
|
194
|
Molla KA, Yang Y. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol 2019; 37:1121-1142. [PMID: 30995964 DOI: 10.1016/j.tibtech.2019.03.008] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Kutubuddin A Molla
- Department of Plant Pathology and Environmental Microbiology, and Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, and Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
195
|
Shahbazi R, Sghia-Hughes G, Reid JL, Kubek S, Haworth KG, Humbert O, Kiem HP, Adair JE. Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations. NATURE MATERIALS 2019; 18:1124-1132. [PMID: 31133730 PMCID: PMC6754292 DOI: 10.1038/s41563-019-0385-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 05/09/2023]
Abstract
Ex vivo CRISPR gene editing in haematopoietic stem and progenitor cells has opened potential treatment modalities for numerous diseases. The current process uses electroporation, sometimes followed by virus transduction. While this complex manipulation has resulted in high levels of gene editing at some genetic loci, cellular toxicity was observed. We have developed a CRISPR nanoformulation based on colloidal gold nanoparticles with a unique loading design capable of cellular entry without the need for electroporation or viruses. This highly monodispersed nanoformulation avoids lysosomal entrapment and localizes to the nucleus in primary human blood progenitors without toxicity. Nanoformulation-mediated gene editing is efficient and sustained with different CRISPR nucleases at multiple loci of therapeutic interest. The engraftment kinetics of nanoformulation-treated primary cells in humanized mice are better relative to those of non-treated cells, with no differences in differentiation. Here we demonstrate non-toxic delivery of the entire CRISPR payload into primary human blood progenitors.
Collapse
Affiliation(s)
- Reza Shahbazi
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jack L Reid
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sara Kubek
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kevin G Haworth
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olivier Humbert
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer E Adair
- Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
196
|
Babaei M, Liu Y, Wuerzberger-Davis SM, McCaslin EZ, DiRusso CJ, Yeo AT, Kagermazova L, Miyamoto S, Gilmore TD. CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein. PLoS One 2019; 14:e0222588. [PMID: 31553754 PMCID: PMC6760803 DOI: 10.1371/journal.pone.0222588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/02/2019] [Indexed: 11/25/2022] Open
Abstract
The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, non-canonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wild-type NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU-423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell type-specific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.
Collapse
Affiliation(s)
- Milad Babaei
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Yuekun Liu
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Shelly M. Wuerzberger-Davis
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ethan Z. McCaslin
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Christopher J. DiRusso
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Alan T. Yeo
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Larisa Kagermazova
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Shigeki Miyamoto
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Thomas D. Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
197
|
Qiu M, Glass Z, Xu Q. Nonviral Nanoparticles for CRISPR-Based Genome Editing: Is It Just a Simple Adaption of What Have Been Developed for Nucleic Acid Delivery? Biomacromolecules 2019; 20:3333-3339. [PMID: 31342740 DOI: 10.1021/acs.biomac.9b00783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-editing technologies hold tremendous potential for treating genetic diseases. However, the efficient and safe delivery of genome-editing elements to the location of interest, and the achievement of specific targeted gene correction without off-target side effect remains a big challenge. In this Perspective, we highlight recent developments and discuss the challenges of nonviral nanoparticles for the delivery of genome-editing tools. Finally, we will propose promising strategies to improve the delivery efficacy and advance the clinical translation of gene-editing technology.
Collapse
Affiliation(s)
- Min Qiu
- Department of Biomedical Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| | - Zachary Glass
- Department of Biomedical Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| | - Qiaobing Xu
- Department of Biomedical Engineering , Tufts University , 4 Colby Street , Medford , Massachusetts 02155 , United States
| |
Collapse
|
198
|
Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, Xu Q, Wang M. Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902575. [PMID: 31215123 PMCID: PMC6732788 DOI: 10.1002/adma.201902575] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/02/2019] [Indexed: 05/17/2023]
Abstract
A main challenge to broaden the biomedical application of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat (CRISPR) associated protein 9) genome editing technique is the delivery of Cas9 nuclease and single-guide RNA (sgRNA) into the specific cell and organ. An effective and very fast CRISPR/Cas9 genome editing in vitro and in vivo enabled by bioreducible lipid/Cas9 messenger RNA (mRNA) nanoparticle is reported. BAMEA-O16B, a lipid nanoparticle integrated with disulfide bonds, can efficiently deliver Cas9 mRNA and sgRNA into cells while releasing RNA in response to the reductive intracellular environment for genome editing as fast as 24 h post mRNA delivery. It is demonstrated that the simultaneous delivery of Cas9 mRNA and sgRNA using BAMEA-O16B knocks out green fluorescent protein (GFP) expression of human embryonic kidney cells with efficiency up to 90%. Moreover, the intravenous injection of BAMEA-O16B/Cas9 mRNA/sgRNA nanoparticle effectively accumulates in hepatocytes, and knocks down proprotein convertase subtilisin/kexin type 9 level in mouse serum down to 20% of nontreatment. The leading lipid nanoparticle, BAMEA-O16B, represents one of the most efficient CRISPR/Cas9 delivery nanocarriers reported so far, and it can broaden the therapeutic promise of mRNA and CRISPR/Cas9 technique further.
Collapse
Affiliation(s)
- Ji Liu
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Chang
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Jiang
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Xiandi Meng
- The First Hospital and International Center of Future Science, Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Tianmeng Sun
- The First Hospital and International Center of Future Science, Jilin University, Changchun, Jilin, 130021, P. R. China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
199
|
Abstract
The emergence of the CRISPR-Cas9 gene editing system has brought much hope and excitement to the field of gene therapy and the larger scientific community. However, in order for CRISPR-based therapies to be translated to the clinical setting, there is an urgent need to develop optimized vectors for their delivery. The delivery vector is a crucial determinant of the therapeutic efficacy of gene editing and should be designed to accommodate various factors including the form of the payload, the physiological environment, and the potential immune responses. Recently, biomaterials have become an attractive option for the delivery of Cas9 due to their tunability, biocompatibility and increasing efficacy at drug delivery. Biomaterials offer a unique solution for creating tailored vectors to meet the demands of various applications that cannot be easily met by other delivery methods. In this review, we will discuss the various biomaterial systems that have been used to deliver Cas9 in its plasmid, mRNA and protein forms. In addition, the functions of these materials will be reviewed to understand their roles in Cas9 delivery. Finally, the immune challenges associated with Cas9 and the delivery materials will be discussed as an understanding of the immune responses along with the functions of biomaterials will ultimately guide the field in designing new delivery systems for the clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Joon Eoh
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
200
|
Spiegel A, Bachmann M, Jurado Jiménez G, Sarov M. CRISPR/Cas9-based knockout pipeline for reverse genetics in mammalian cell culture. Methods 2019; 164-165:49-58. [PMID: 31051255 DOI: 10.1016/j.ymeth.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
We present a straightforward protocol for reverse genetics in cultured mammalian cells, using CRISPR/Cas9-mediated homology-dependent repair (HDR) based insertion of a protein trap cassette, resulting in a termination of the endogenous gene expression. Complete loss of function can be achieved with monoallelic trap cassette insertion, as the second allele is frequently disrupted by an error-prone non-homologous end joining (NHEJ) mechanism. The method should be applicable to any expressed gene in most cell lines, including those with low HDR efficiency, as the knockout alleles can be directly selected for.
Collapse
Affiliation(s)
- Aleksandra Spiegel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Mandy Bachmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Gabriel Jurado Jiménez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|