151
|
Oka M, Homma N, McMurtry IF. Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension. Methods Enzymol 2008; 439:191-204. [PMID: 18374166 DOI: 10.1016/s0076-6879(07)00415-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is current controversy regarding whether vasoconstriction plays a significant role in the elevated pressure of severe, advanced stages of pulmonary hypertension. Results of acute vasodilator testing using conventional vasodilators in such patients suggest there is only a minor contribution of vasoconstriction. However, there is a possibility that these results may underestimate the contribution of vasoconstriction because the most effective vasodilators have not yet been tested. This issue has not been addressed even experimentally, due mainly to a lack of appropriate animal models. A few animal models that mimic the pathology of human severe pulmonary hypertension more closely (i.e., development of occlusive neointimal lesions in small pulmonary arteries/arterioles) have been introduced, including rat models of left lung pneumonectomy plus monocrotaline injection and vascular endothelial growth factor inhibition plus exposure to chronic hypoxia. We have observed that Rho kinase inhibitors, a novel class of potent vasodilators, reduce the high pulmonary artery pressure of these models acutely and markedly, suggesting that vasoconstriction can significantly be involved in pulmonary hypertension with severely remodeled (occluded) pulmonary vessels. This chapter describes methods used for evaluation of the involvement of Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension.
Collapse
Affiliation(s)
- Masahiko Oka
- Cardiovascular Pulmonary Research Laboratory, University of Colorado at Denver, Health Sciences Center, Denver, Colorado, USA
| | | | | |
Collapse
|
152
|
Dhaliwal JS, Casey DB, Greco AJ, Badejo AM, Gallen TB, Murthy SN, Nossaman BD, Hyman AL, Kadowitz PJ. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in l-NAME-treated rats. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1306-13. [PMID: 17766587 DOI: 10.1152/ajplung.00189.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. l-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after l-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca++ entry blocker isradipine also decreased pulmonary and systemic arterial pressure in l-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of l-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following l-NAME treatment are mediated by Rho kinase and Ca++ entry through L-type channels, and that responses to l-NAME can be reversed by an NO donor.
Collapse
Affiliation(s)
- Jasdeep S Dhaliwal
- Dept. of Pharmacology, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Calaminus SDJ, Auger JM, McCarty OJT, Wakelam MJO, Machesky LM, Watson SP. MyosinIIa contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. J Thromb Haemost 2007; 5:2136-45. [PMID: 17645784 DOI: 10.1111/j.1538-7836.2007.02696.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND MyosinIIs are adenosine triphosphate-driven molecular motors that form part of a cell's contractile machinery. They are activated by phosphorylation of their light chains, by either activation of myosin light chain (MLC) kinase or inhibition of MLC phosphatase via Rho kinase (ROCK). MyosinIIa phosphorylation underlies platelet rounding and stress fiber formation. OBJECTIVE To identify the functional significance of myosinIIa in platelet spreading and thrombus formation on collagen using inhibitors of ROCK (Y27632) and myosinII (blebbistatin). RESULTS Stress fiber formation on collagen is inhibited by both Y27632 and blebbistatin. A substantial proportion of spread platelets generate internal holes or splits on collagen, presumably because of a reduction in contractile strength. Platelet integrity, however, is maintained. In an in vitro model, thrombus embolization on collagen is increased in the presence of Y27632 and blebbistatin at intermediate shear, leading to a reduction in platelet aggregate growth. Moreover, Y27632 causes a marked reduction in thrombus formation in an in vivo laser-injury model. CONCLUSIONS MyosinIIa contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability.
Collapse
Affiliation(s)
- S D J Calaminus
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
154
|
Ito T, Ohtori S, Hata K, Inoue G, Moriya H, Takahashi K, Yamashita T. Rho kinase inhibitor improves motor dysfunction and hypoalgesia in a rat model of lumbar spinal canal stenosis. Spine (Phila Pa 1976) 2007; 32:2070-5. [PMID: 17762807 DOI: 10.1097/brs.0b013e318145a502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical and behavioral study using a rat cauda equina compression model. OBJECTIVE To investigate, after cauda equina compression by spinal canal stenosis (SCS), Rho activation in the spinal cord and cauda equina, and the effect of intrathecal administration of a Rho kinase inhibitor on hypoalgesia and motor dysfunction. SUMMARY OF BACKGROUND DATA Compression of the cauda equina caused by SCS is a common clinical disorder associated with sensory disturbance and intermittent claudication. Cauda equina compression is thought to reduce blood flow and result in nerve degeneration caused by various cytokines. Rho, a member of the small GTPases, is a signal transmitter. It promotes Wallerian degeneration, decreases blood flow in the spinal cord and brain, and increases expression of several cytokines. Currently, Rho kinase inhibitor is used clinically to treat progressive nerve damage due to cerebrovascular disorders. However, its effect for SCS has not been evaluated. METHODS Forty-two 6-week-old male Sprague-Dawley rats (200-250 g) were used. For the SCS model (n = 27), a small piece of silicon was placed under the lamina of the fourth lumbar vertebra. In the sham-operated group, laminectomies were performed at L5 only (n = 15). We examined mechanical sensitivity and motor function using von Frey hairs and a treadmill, and immunohistochemically localized Rho in the spinal ventral neurons, axons, and Schwann cells in the cauda equina. We also examined the effects of intrathecally administered Rho kinase inhibitor for hypoalgesia or motor dysfunction caused by SCS. RESULTS We observed motor dysfunction and hypoalgesia and activated Rho-immunoreactive cells in spinal ventral neuroreported to induce neurite and axonal outgrowth in the spinal cord and brain after nervous system injury. In addition, 1 report showed that Rho kinase was involved in Wallerian degeneration that was rescued by Rho kinase inhibitor. Furthermore, it is thought that Rho is involved in TNF-alpha and interleukin (IL) production in the central nervous system, and the production was inhibited by administering Rho kinase inhibitor in the central nervous system. Regardns, axons, and Schwann cells in the cauda equina. Intrathecal administration of Rho kinase inhibitor improved mechanical hypoalgesia and motor dysfunction caused by SCS. CONCLUSION Activated Rho may play an important role in nerve damage in the cauda equina in SCS. Rho kinase inhibitor may be a useful tool in determining the pathomechanism of cauda equina syndrome caused by SCS.
Collapse
Affiliation(s)
- Toshinori Ito
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
155
|
Allahdadi KJ, Walker BR, Kanagy NL. ROK contribution to endothelin-mediated contraction in aorta and mesenteric arteries following intermittent hypoxia/hypercapnia in rats. Am J Physiol Heart Circ Physiol 2007; 293:H2911-8. [PMID: 17720771 DOI: 10.1152/ajpheart.00217.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We reported previously that intermittent hypoxia with CO(2) to maintain eucapnia (IH-C) elevates plasma endothelin-1 (ET-1) and arterial pressure. In small mesenteric arteries (sMA; inner diameter = 150 microm), IH-C augments ET-1 constrictor sensitivity but diminishes ET-1-induced increases in intracellular Ca(2+) concentration, suggesting IH-C exposure increases both ET-1 levels and ET-1-stimulated Ca(2+) sensitization. Because Rho-associated kinase (ROK) can mediate Ca(2+) sensitization, we hypothesized that augmented vasoconstrictor sensitivity to ET-1 in arteries from IH-C-exposed rats is dependent on ROK activation. In thoracic aortic rings, ET-1 contraction was not different between groups, but ROK inhibition (Y-27632, 3 and 10 microM) attenuated ET-1 contraction more in IH-C than in sham arteries (50 +/- 11 and 78 +/- 7% vs. 41 +/- 12 and 48 +/- 9% inhibition, respectively). Therefore, ROK appears to contribute more to ET-1 contraction in IH-C than in sham aorta. In sMA, ROK inhibitors did not affect ET-1-mediated constriction in sham arteries and only modestly inhibited it in IH-C arteries. In ionomycin-permeabilized sMA with intracellular Ca(2+) concentration held at basal levels, Y-27632 did not affect ET-1-mediated constriction in either IH-C or sham sMA and ET-1 did not stimulate ROK translocation. In contrast, inhibition of myosin light-chain kinase (ML-9, 100 microM) prevented ET-1-mediated constriction in sMA from both groups. Therefore, IH-C exposure increases ET-1 vasoconstrictor sensitivity in sMA but not in aorta. Furthermore, ET-1 constriction is myosin light-chain kinase dependent and mediated by Ca(2+) sensitization that is independent of ROK activation in sMA but not aorta. Thus ET-1-mediated signaling in aorta and sMA is altered by IH-C but is dependent on different second messenger systems in small vs. large arteries.
Collapse
Affiliation(s)
- Kyan J Allahdadi
- Department of Cell Biology and Physiology, Vascular Physiology Group, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
156
|
Okamura N, Saito M, Mori A, Sakamoto K, Kametaka S, Nakahara T, Ishii K. Vasodilator effects of fasudil, a Rho-kinase inhibitor, on retinal arterioles in stroke-prone spontaneously hypertensive rats. J Ocul Pharmacol Ther 2007; 23:207-12. [PMID: 17593003 DOI: 10.1089/jop.2006.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The aim of this study was to examine the vasodilator effect of fasudil, a Rho-kinase inhibitor, on retinal arterioles in stroke-prone spontaneously hypertensive rats (SHRSPs) and in age-matched normotensive Wistar-Kyoto rats (WKYs). METHODS Rats (12-14 weeks-old) were anesthetized with thiobutabarbital (120 mg/kg, intraperitoneal). Fundus images were captured with a digital camera that was equipped with a special objective lens. The vasodilator responses of retinal arterioles were assessed by measuring changes in the diameters of the vessels. RESULTS The baseline diameter of the retinal arteriole was significantly smaller in SHRSPs than in WKYs. Fasudil (50-200 microg/kg/min, intravenous) dose-dependently increased the diameter of the retinal arteriole and decreased the systemic blood pressure in both groups. The vasodilator effect of fasudil on the retinal arteriole in SHRSPs was greater than in WKYs. CONCLUSIONS These results suggest that fasudil has beneficial effects on retinal vascular complications associated with chronic hypertension.
Collapse
Affiliation(s)
- Nami Okamura
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Rho kinase (ROCK1 and ROCK2) is a serine/threonine kinase that serves as an important downstream effector of Rho GTPase, and plays a critical role in regulating the contractile tone of smooth muscle tissues in a calcium-independent manner. Several lines of experimental evidence indicate that modulating ROCK activity within the aqueous humor outflow pathway using selective inhibitors could achieve very significant benefits for the treatment of increased intraocular pressure in patients with glaucoma. The rationale for such an approach stems from experimental data suggesting that both ROCK and Rho GTPase inhibitors can increase aqueous humor drainage through the trabecular meshwork, leading to a decrease in intraocular pressure. In addition to their ocular hypotensive properties, inhibitors of both ROCK and Rho GTPase have been shown to enhance ocular blood flow, retinal ganglion cell survival and axon regeneration. These properties of the ROCK and Rho GTPase inhibitors indicate that targeting the Rho GTPase/ROCK pathway with selective inhibitors represents a novel therapeutic approach aimed at lowering increased intraocular pressure in glaucoma patients.
Collapse
Affiliation(s)
- Vasantha P Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.
| | | |
Collapse
|
158
|
Ali O, Wharton J, Gibbs JSR, Howard L, Wilkins MR. Emerging therapies for pulmonary arterial hypertension. Expert Opin Investig Drugs 2007; 16:803-18. [PMID: 17501693 DOI: 10.1517/13543784.16.6.803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pulmonary arterial hypertension is characterised by increased pulmonary vascular resistance due to increased vascular tone and structural remodelling of pulmonary vessels. The therapies that are in use so far have been developed to correct endothelial dysfunction and reduce vasomotor tone. These treatments have a limited effect on the remodelling process and, increasingly, the focus is turning to potent strategies for inhibiting vascular proliferation and promoting vascular apoptosis. Multiple novel targets have been uncovered over the last 5 years and several are now in early clinical trials. At present, it is clear that there is no single treatment for the condition. Although this is the case, studies are investigating the role of combining therapies that are already established.
Collapse
Affiliation(s)
- Omar Ali
- Imperial College London, Experimental Medicine & Toxicology, Hammersmith Hospital, London, UK
| | | | | | | | | |
Collapse
|
159
|
Jensen J. More PKA independent beta-adrenergic signalling via cAMP: is Rap1-mediated glucose uptake in vascular smooth cells physiologically important? Br J Pharmacol 2007; 151:423-5. [PMID: 17450171 PMCID: PMC2013972 DOI: 10.1038/sj.bjp.0707248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The proteome characterising a specific cell type makes up a unique intracellular signalling network and signalling has to be studied in a cell specific manner. Beta-adrenergic receptors are coupled to production of cAMP and PKA was initially believed to be the only protein activated by cAMP. However, cAMP-mediated signalling via Epac and Rap1 has emerged as an important contributor to cAMP signalling. In the current issue of the British Journal of Pharmacology, Kanda and Watanabe report that adrenaline stimulates glucose uptake in vascular smooth muscle cells. With pharmacological methods, supplemented with small interfering RNA against Rap1, the authors demonstrate that adrenaline increases glucose uptake via G(s), adenylate cyclase, cAMP and Rap1 activation. The authors could document neither PKA nor Epac as the receptor for cAMP mediating the effect. Although there is no doubt that Rap1 mediates adrenaline-stimulated glucose uptake in vascular smooth muscle cells, it may be too early to exclude PKA and Epac.
Collapse
Affiliation(s)
- J Jensen
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway.
| |
Collapse
|
160
|
Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF. Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 2007; 100:923-9. [PMID: 17332430 DOI: 10.1161/01.res.0000261658.12024.18] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular remodeling, rather than vasoconstriction, is believed to account for high vascular resistance in severe pulmonary arterial hypertension (PAH). We have found previously that acute Rho kinase inhibition nearly normalizes PAH in chronically hypoxic rats that have no occlusive neointimal lesions. Here we examined whether Rho kinase-mediated vasoconstriction was also important in a rat model of severe occlusive PAH. Adult rats were exposed to chronic hypoxia ( approximately 10% O(2)) after subcutaneous injection of the vascular endothelial growth factor receptor inhibitor SUGEN 5416. Hemodynamic measurements were made in anesthetized rats after 2 weeks of hypoxia (early group) and 3 weeks of hypoxia plus 2 weeks of normoxia (late group). Both groups developed PAH, with greater severity in the late group. In the early group, intravenous fasudil was more effective than intravenous bradykinin, inhaled NO, or intravenous iloprost in reducing right ventricular systolic pressure. Despite more occlusive vascular lesions, fasudil also markedly reduced right ventricular systolic pressure in late-stage rats. Blood-perfused lungs from late-stage rats showed spontaneous vasoconstriction, which was reversed partially by the endothelin A receptor blocker BQ123 and completely by fasudil or Y-27632. Phosphorylation of MYPT1, a downstream target of Rho kinase, was increased in lungs from both groups of rats, and fasudil (intravenous) reversed the increased phosphorylation in the late group. Thus, in addition to structural occlusion, Rho kinase-mediated vasoconstriction is an important component of severe PAH in SUGEN 5416/hypoxia-exposed rats, and PAH can be significantly reduced in the setting of a severely remodeled lung circulation if an unconventional vasodilator is used.
Collapse
Affiliation(s)
- Masahiko Oka
- Cardiovascular Pulmonary Research Laboratory and Division of Pulmonary Sciences and Critical Care Medicine, Pulmonary Hypertension Center, University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Aarons CB, Cohen PA, Gower A, Reed KL, Leeman SE, Stucchi AF, Becker JM. Statins (HMG-CoA reductase inhibitors) decrease postoperative adhesions by increasing peritoneal fibrinolytic activity. Ann Surg 2007; 245:176-84. [PMID: 17245169 PMCID: PMC1876993 DOI: 10.1097/01.sla.0000236627.07927.7c] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aims of this study were to determine if statins reduce adhesion formation in vivo and to identify the mechanism of action in vitro. BACKGROUND : Intraperitoneal adhesions develop in up to 95% of patients following laparotomy. Adhesions are reduced by mechanisms that up-regulate fibrinolysis within the peritoneum. Statins promote fibrinolysis in the cardiovascular system and may play a role in the prevention of adhesions. METHODS Adhesions were induced in rats (n = 102) using our previously described ischemic button model. Rats received vehicle (controls), lovastatin (30 mg/kg), or atorvastatin (30 mg/kg) as a single intraperitoneal dose at the time of laparotomy. Animals were killed and adhesions were quantified at day 7. Peritoneal fluid and tissue were collected at day 1 to measure tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) by real-time PCR and ELISA. To assess the effects of statins on wound healing, burst pressures were measured in anastomoses of the colon. The effects of lovastatin on tPA and PAI-1 production were measured in vitro in human mesothelial cells (HMC) in the presence or absence of mevalonate (MVA), geranylgeranyl-pyrophosphate (GGPP) and farnesyl-pyrophosphate (FPP), all intermediates in the cholesterol pathway downstream of HMG-CoA. The effect of a Rho protein inhibitor, exoenzyme C3 transferase, on tPA production was also determined. RESULTS Lovastatin and atorvastatin reduced adhesion formation by 26% and 58%, respectively (P < 0.05), without affecting anastomotic burst pressure. At 24 hours, tPA mRNA levels in peritoneal tissue and tPA activity in peritoneal fluid from lovastatin-treated animals were increased by 57% and 379%, respectively (P < 0.05), while PAI-1 levels were unchanged. HMC incubated with either lovastatin or atorvastatin showed concentration-dependent increases in tPA production and decreases in PAI-1 production (P < 0.05). These lovastatin-induced changes in tPA and PAI-1 production were significantly reversed by the addition of MVA, GGPP, and FPP. The Rho protein inhibitor increased tPA production and rescued tPA production from the inhibitory effect of GGPP. CONCLUSION These data suggest that statins administered within the peritoneum can up-regulate local fibrinolysis, while the in vitro studies show that this effect may be mediated, in part, by intermediates of the cholesterol biosynthetic pathway that regulate Rho protein signaling.
Collapse
Affiliation(s)
- Cary B Aarons
- Department of Surgery, Boston University School of Medicine, Boston 02118, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
|
163
|
Berenjeno IM, Núñez F, Bustelo XR. Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases. Oncogene 2007; 26:4295-305. [PMID: 17213802 PMCID: PMC2084474 DOI: 10.1038/sj.onc.1210194] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have used microarray technology to identify the transcriptional targets of Rho subfamily guanosine 5'-triphosphate (GTP)ases in NIH3T3 cells. This analysis indicated that murine fibroblasts transformed by these proteins show similar transcriptomal profiles. Functional annotation of the regulated genes indicate that Rho subfamily GTPases target a wide spectrum of functions, although loci encoding proteins linked to proliferation and DNA synthesis/transcription are upregulated preferentially. Rho proteins promote four main networks of interacting proteins nucleated around E2F, c-Jun, c-Myc and p53. Of those, E2F, c-Jun and c-Myc are essential for the maintenance of cell transformation. Inhibition of Rock, one of the main Rho GTPase targets, leads to small changes in the transcriptome of Rho-transformed cells. Rock inhibition decreases c-myc gene expression without affecting the E2F and c-Jun pathways. Loss-of-function studies demonstrate that c-Myc is important for the blockage of cell-contact inhibition rather than for promoting the proliferation of Rho-transformed cells. However, c-Myc overexpression does not bypass the inhibition of cell transformation induced by Rock blockage, indicating that c-Myc is essential, but not sufficient, for Rock-dependent transformation. These results reveal the complexity of the genetic program orchestrated by the Rho subfamily and pinpoint protein networks that mediate different aspects of the malignant phenotype of Rho-transformed cells.
Collapse
Affiliation(s)
- I M Berenjeno
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Campus Unamuno, Salamanca, Spain
| | | | | |
Collapse
|
164
|
Loirand G, Guilluy C, Pacaud P. Regulation of Rho proteins by phosphorylation in the cardiovascular system. Trends Cardiovasc Med 2006; 16:199-204. [PMID: 16839863 DOI: 10.1016/j.tcm.2006.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/08/2006] [Accepted: 03/14/2006] [Indexed: 11/21/2022]
Abstract
The small G protein Rho signaling pathways are recognized as major regulators of cardiovascular functions, and activation of Rho proteins appears to be a common component for the pathogenesis of hypertension and vascular proliferative disorders. Rho proteins are tightly regulated, and recent evidence suggests that modulation of Rho protein signaling by phosphorylation of Rho proteins provides an additional simple mechanism for coordinating Rho protein functions. This regulation by phosphorylation is particularly important in the arterial wall, where RhoA protein expressed in vascular smooth muscle cells is controlled by the endothelium through the nitric oxide/cGMP-dependent kinase pathway.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM U533 Institut du Thorax, Université de Nantes, F-44000 Nantes, France.
| | | | | |
Collapse
|
165
|
Xing XQ, Gan Y, Wu SJ, Chen P, Zhou R, Xiang XD. Statins may ameliorate pulmonary hypertension via RhoA/Rho-kinase signaling pathway. Med Hypotheses 2006; 68:1108-1113. [PMID: 17097823 DOI: 10.1016/j.mehy.2006.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 02/08/2023]
Abstract
Statins are the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors that function as potent inhibitors of cholesterol biosynthesis and have been used for many years for the treatment of hypercholesterolemia. However, accumulating experimental and clinical studies have revealed that the health benefits associated with statins treatment, particularly those conferred on the cardiovascular system, were the cholesterol-independent. Because statins inhibit an early step in the cholesterol biosynthetic pathway, they also inhibit the synthesis of isoprenoids such as farnesylpyrophosphate and geranylgeranylpyrophosphate, which are important postranslational lipid attachments for intracellular signaling molecules such as the Rho GTPases. The isoprenylation of Rho is a prerequisite for Rho activation, facilitating its interaction with the plasma membrane, undergoing GDP-GTP exchange and be activated. Inhibition of RhoA geranylgeranylation by statins decreases membrane GTP-bound active RhoA and subsequent Rho-kinase activity. Activated RhoA via its downstream effector Rho-kinase is involved in a wide range of cellular functions, such as cell migration, proliferation and apoptosis. Recently, rising evidences suggested that RhoA/Rho-kinase pathway was essentially involved in various models of pulmonary hypertension and statins effectively ameliorated pulmonary hypertension. Based on this findings, we hypothesis that statins attenuate pulmonary hypertension via RhoA/Rho-kinase signaling pathway in vivo.
Collapse
Affiliation(s)
- Xi-Qian Xing
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Middle Renmin Road, No. 86, Changsha, Hunan 410011, PR China
| | | | | | | | | | | |
Collapse
|
166
|
Rattan S, De Godoy MAF, Patel CA. Rho kinase as a novel molecular therapeutic target for hypertensive internal anal sphincter. Gastroenterology 2006; 131:108-16. [PMID: 16831595 DOI: 10.1053/j.gastro.2006.03.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 03/16/2006] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS An increase in Rho kinase (ROK) activity has been associated with agonist-induced sustained contraction of the smooth muscle, but its role in the pathophysiology of spontaneously tonic smooth muscle is not known. METHODS Present studies examined the effects of ROK inhibitor Y-27632 in the tonic smooth muscle of the rat internal anal sphincter (IAS) versus in the flanking phasic smooth muscle of the rectum. In addition, studies were performed to determine the relationship between the decreases in the basal IAS tone and the ROK activity. Confocal microscopic studies determined the cellular distribution of the smooth muscle-predominant isoform of ROK (ROCK-II) in the smooth muscle cells (SMCs). RESULTS In in vitro studies using neurohumoral inhibitors and tetrodotoxin and the use of SMCs demonstrate direct relaxation of the IAS SMCs by Y-27632. The ROK inhibitor was more potent in the IAS than in the rectal smooth muscle. The IAS relaxation by Y-27632 correlated specifically with the decrease in ROK activity. Confocal microscopy revealed high levels of ROCK-II toward the periphery of the IAS SMCs. In in vivo studies, the lower doses of Y-27632 caused a potent and selective decrease in the IAS pressures without any adverse cardiovascular systemic effects. The ROK inhibitor also caused potent relaxation of the hypertensive IAS. CONCLUSIONS RhoA/ROK play a crucial role in the maintenance of the basal tone in the IAS, and ROK inhibitors have a therapeutic potential in the IAS dysfunction characterized by the hypertensive IAS.
Collapse
Affiliation(s)
- Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
167
|
Abstract
BACKGROUND AND PURPOSE The small G protein rhoA and its downstream effector rho-kinase are both expressed in vascular cells and are involved in several cellular processes. One of these processes is the regulation of the phosphorylation state of myosin light chain in vascular muscle and thus, the development of force. Recently, considerable evidence for increased activity of this pathway in cerebral and noncerebral vessels has been reported in several cardiovascular diseases associated with increased vascular tone. SUMMARY OF REVIEW The main aim of this brief review is to summarize current evidence for the involvement of rhoA/rho-kinase signaling in dysfunction of the cerebral circulation in disease states, such as cerebral vasospasm, hypertension, diabetes, and ischemic brain injury. We will also briefly consider the novel hypothesis that augmented activity of endothelial rho-kinase decreases nitric oxide production and contributes to increased vascular tone in disease and the possibility of this action being a key therapeutic target of statins (inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase) in cerebral and noncerebral arteries. CONCLUSIONS Considerable evidence indicates that rhoA/rho-kinase activity is commonly increased in cerebral vascular disease, not only in vascular muscle, but also in the endothelium and possibly in inflammatory cells and neurons.
Collapse
|
168
|
Budzyn K, Paull M, Marley PD, Sobey CG. Segmental differences in the roles of rho-kinase and protein kinase C in mediating vasoconstriction. J Pharmacol Exp Ther 2006; 317:791-6. [PMID: 16452393 DOI: 10.1124/jpet.105.100040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rho-kinase and protein kinase C (PKC) have each been reported to mediate vasoconstriction via calcium sensitization. However, the relative contributions of these two kinases to vascular contraction, and whether their roles vary between large and small arteries, are largely unknown. We therefore assessed the relative roles of rho-kinase and PKC in mediating vasoconstriction in arteries from three segments of the aortic and mesenteric vasculature. We studied contractile responses of rat isolated thoracic aorta (diameter approximately 2 mm), superior mesenteric artery (SMA; approximately 1.5 mm), and second order branches of the superior mesenteric artery (BMA; approximately 300 mum). The roles of rho-kinase and PKC in mediating contractile responses to phenylephrine, 9,11-dideoxy-9,11-methanoepoxy prostaglandin F(2alpha) (U46619), and KCl were assessed by using the rho-kinase inhibitor R-[+]-trans-N-[4-pyridyl]-4-[1-aminoethyl]-cycloheaxanecarboxamide (Y-27632) (1 and 10 muM) and the PKC inhibitor 3-[1-[3-(amidinothio)propyl-1H-indol-3-yl]-3-(1-methyl-1H-indol-3-yl) maleimide (Ro 31-8220) (5 muM). Contractile responses of aorta and SMA were reduced by either 1 or 10 muM Y-27632 (P < 0.05), whereas responses of BMA were reduced by 10 muM (P < 0.05) but not 1 muM Y-27632. In contrast, Ro 31-8220 partly reduced contractile responses in aorta and SMA (P < 0.05), but it abolished responses of BMA (P < 0.05). Cotreatment with Y-27632 and Ro 31-8220 markedly attenuated contractile responses to phenylephrine and KCl in all vessels, but it had only a moderate inhibitory effect on responses to U46619 in aorta and SMA. Thus, contractile responses of the larger arteries can involve both rho-kinase and PKC to varying degrees. Conversely, contractile responses of small mesenteric resistance arteries seem to be mediated exclusively by PKC, with no apparent role for rho-kinase.
Collapse
Affiliation(s)
- Klaudia Budzyn
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
169
|
Hemmings DG. Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:18-29. [PMID: 16570136 DOI: 10.1007/s00210-006-0046-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two related lysosphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediate diverse cellular responses through signals transduced by either activation of G-protein coupled receptors or possibly by acting intracellularly. Vascular responses to S1P and SPC measured both in vivo and in dissected vessels show predominantly vasoconstriction with some evidence for vasodilation. Although stimulation with S1P or SPC generally leads to similar vascular responses, the signalling pathways stimulated to produce these responses are often distinct. Nevertheless, mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+, which both increase [Ca2+]i, occur in response to S1P and SPC. Both mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+ occur in response to S1P and SPC. As well, both S1P and SPC induce Ca2+-sensitization in vascular smooth muscle which is mediated through Rho kinase activation. In the endothelium, S1P and SPC stimulate the production of the vasodilator, nitric oxide through activation of endothelial nitric oxide synthase. This activation occurs through phosphorylation by Akt and through binding of Ca2+-calmodulin upon increased [Ca2+]i. These lysosphingolipids also activate cyclooxygenase-2 which produces prostaglandins with both vasoconstrictor and vasodilator properties. A balance between the signals inducing vasodilation versus the signals inducing vasoconstriction will determine the vascular outcome. Thus, perturbations in S1P and SPC concentrations, relative expression of receptors or downstream signalling pathways may provide a mechanism for pathophysiological conditions such as hypertension. Given this background, recent studies examining a potential role for S1P and SPC in hypertension and vascular dysfunction in aging are discussed.
Collapse
Affiliation(s)
- Denise G Hemmings
- Department Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, 227 Heritage Medical Research Center, T6G 2S2, Edmonton, Alberta, Canada.
| |
Collapse
|