151
|
Li QS, Cai HW, Li GX, Chen GY, Ma XY, He WL. Degradation behavior of triclosan by co-exposure to chlorine dioxide and UV irradiation: influencing factors and toxicity changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9391-9401. [PMID: 29349741 DOI: 10.1007/s11356-018-1223-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
This study investigated the transformation of triclosan (TCS) following co-exposure to UV irradiation and ClO2. Special attention was given to understand the influencing of water quality parameters and toxicity changes during the co-exposure process. The results show that the co-exposure process prompted TCS elimination quickly and effectively, with more than 99% of TCS degraded under the experimental conditions. The molar yield ratios of 2,4-dichlorophenol/TCS (2,4-DCP/TCS) were calculated to be 35.81-74.49%; however, the by-product of 2,8-dichlorodibenzop-dioxin (2,8-Cl2DD) was not detected. The TCS degradation was sensitive to ClO2 dosage, pH, H2O2, and natural organic matter (NOM), but not to the carbonate (CO32-) concentration. Neutral and slightly alkaline condition were favorable to TCS elimination. The TCS removal rate increased from 85.33 to 99.75% when the ClO2 concentration increased from 0.25 to 1.5 mg L-1. TCS degradation can be promoted at low NOM level (1, 3, and 5 mg L-1), whereas was inhibited at high NOM concentrations of 7 and 9 mg L-1. While adding H2O2, the degradation rate of TCS increased with increasing H2O2 concentration from 1 to 3 mg L-1; however, too low or overdosed H2O2 (0.5 and 5 mg L-1) hindered TCS degradation. Based on the results of a microtox bioassay, the toxicity did not change following the co-exposure process.
Collapse
Affiliation(s)
- Qing-Song Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| | - Hui-Wen Cai
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Guo-Xin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China
| | - Guo-Yuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China
| | - Xiao-Yan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen-Long He
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China
| |
Collapse
|
152
|
Bu L, Zhu S, Zhou S. Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors. CHEMOSPHERE 2018; 195:236-244. [PMID: 29268181 DOI: 10.1016/j.chemosphere.2017.12.088] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
A novel advanced oxidation process using boron-doped diamond (BDD) anode to activate persulfate (PS) with low concentration of electrolyte was systematically investigated in this study. Compared to direct electrochemical oxidation of atrazine (ATZ) using BDD anode, the addition and activation of PS significantly declined the demand for electrolytes. It was confirmed by scavenger experiments that both radical and non-radical oxidation occurred in this system. Degradation of ATZ was enhanced with the increase of current density and dosage of PS, and decrease of initial pH. However, the increase of current density can also lead to the decrease of current efficiency, then increase of energy consumption. Besides, the inhibitory effect of anions on the degradation of ATZ followed the order of HCO3->H2PO4->NO3-, while the presence of Cl- accelerated the degradation of ATZ. Furthermore, the degradation products mainly resulting from de-alkylation, de-chlorination, and hydroxylation were detected. Due to the distinctive preference to ethyl group in BDD/PS system, the formation of deethyl-atrazine was quicker than that of deisopropyl-atrazine. The study aims to provide a comprehensive understanding on the potential application of BDD/PS system in water treatment.
Collapse
Affiliation(s)
- Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Shumin Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
153
|
Kong X, Jiang J, Ma J, Yang Y, Pang S. Comparative investigation of X-ray contrast medium degradation by UV/chlorine and UV/H 2O 2. CHEMOSPHERE 2018; 193:655-663. [PMID: 29172156 DOI: 10.1016/j.chemosphere.2017.11.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
The degradation of iopamidol and diatrizoate sodium (DTZ) by UV/chlorine was carried out according to efficiency, mechanism, and oxidation products, and compared to that by UV/H2O2. The pseudo-first order rate (k') of iopamidol and DTZ was accelerated by UV/chlorine compared to that by UV and chlorine alone. k' of iopamidol and DTZ by UV/chlorine increased with increasing chlorine dosage. Both of iopamidol and DTZ could not be effectively removed by UV/H2O2 compared to that by UV/chlorine. Secondary radicals (Cl2- and ClO) rather than primary radicals (HO and Cl) were demonstrated to be mainly responsible for the enhanced removal of iopamidol and DTZ by UV/chlorine. The oxidation products of iopamidol and DTZ resulting from UV/chlorine and UV/H2O2 process were identified, and differences existed in the two systems. IO3- (the desired sink of I-) was the major inorganic product in the UV/chlorine process whereas I- was the predominant inorganic product in the UV/H2O2 process. The formation of chlorine-containing products during the degradation of iopamidol and DTZ by UV/chlorine was also observed. H-abstraction, additions, de-iodination were shared during the degradation of iopamidol by UV/chlorine and UV/H2O2. Neutral pH condition was preferred for the removal of iopamidol and DTZ by UV/chlorine. UV/chlorine could also be applied in real waters for the removal of iopamidol and DTZ.
Collapse
Affiliation(s)
- Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Yi Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Suyan Pang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| |
Collapse
|
154
|
Jing L, Chen B, Zhang B, Ye X. Modeling marine oily wastewater treatment by a probabilistic agent-based approach. MARINE POLLUTION BULLETIN 2018; 127:217-224. [PMID: 29475657 DOI: 10.1016/j.marpolbul.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/26/2017] [Accepted: 12/02/2017] [Indexed: 06/08/2023]
Abstract
This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization.
Collapse
Affiliation(s)
- Liang Jing
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada; College of Environmental Science and Engineering, Peking University, Beijing, China, 100871.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Xudong Ye
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
155
|
Jing L, Chen B, Wen D, Zheng J, Zhang B. The removal of COD and NH 3-N from atrazine production wastewater treatment using UV/O 3: experimental investigation and kinetic modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2691-2701. [PMID: 29134527 DOI: 10.1007/s11356-017-0701-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, a UV/O3 hybrid advanced oxidation system was used to remove chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and atrazine (ATZ) from ATZ production wastewater. The removal of COD and NH3-N, under different UV and O3 conditions, was found to follow pseudo-first-order kinetics with rate constants ranging from 0.0001-0.0048 and 0.0015-0.0056 min-1, respectively. The removal efficiency of ATZ was over 95% after 180 min treatment, regardless the level of UV power. A kinetic model was further proposed to simulate the removal processes and to quantify the individual roles and contributions of photolysis, direct O3 oxidation, and hydroxyl radical (OH·) induced oxidation. The experimental and kinetic modeling results agreed reasonably well with deviations of 12.2 and 13.1% for the removal of COD and NH3-N, respectively. Photolysis contributed appreciably to the degradation of ATZ, while OH· played a dominant role for the removal of both COD and NH3-N, especially in alkaline environments. This study provides insights into the treatment of ATZ containing wastewater using UV/O3 and broadens the knowledge of kinetics of ozone-based advanced oxidation processes.
Collapse
Affiliation(s)
- Liang Jing
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
- Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China.
| | - Diya Wen
- Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| | - Jisi Zheng
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| |
Collapse
|
156
|
Shi XT, Liu YZ, Tang YQ, Feng L, Zhang LQ. Kinetics and pathways of Bezafibrate degradation in UV/chlorine process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:672-682. [PMID: 29058257 DOI: 10.1007/s11356-017-0461-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/09/2017] [Indexed: 05/28/2023]
Abstract
UV/chlorine, as a novel disinfection method, has attracted great interest due to its effective removal for pathogenic microorganism and degradation of trace organic contaminants existed in water environment. This paper investigated the degradation kinetics and pathways of Bezafibrate (BZF), a typical antilipemic drug, during UV/chlorine process. The results showed that 92.3% of BZF was degraded after 20 min in UV/chlorine process. This indicated HO• and reactive chlorine species (RCSs) formed in UV/chlorine played the dominant role in degrading BZF. Observed rate constants of BZF degradation (k obs,BZF) in UV/chlorine process increased linearly in a wide chlorine dosage from 0.1 to 1.0 mM, which implied that ClO• generated from the reactions of chlorine with HO• and Cl• could react with BZF rapidly. The steady-state kinetic modeling result proved this deduction and the rate constant of ClO• with BZF was fitted to be 5.0 × 108 M-1 s-1. k obs,BZF was affected by Cl- and HA. The total contribution of RCSs (including Cl•, Cl2•-, and ClO•) to the degradation of BZF was determined to be ~ 80%, which is much higher than that of HO•. Thirteen degradation products of BZF were identified by LC-MS/MS. Initial degradation products were arisen from hydroxylation, chlorine substitution and cyclization by HO• and RCSs, and then further oxidized to generate acylamino cleavage and demethylation products.
Collapse
Affiliation(s)
- Xue-Ting Shi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083, People's Republic of China
| | - Yong-Ze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083, People's Republic of China
| | - Yu-Qing Tang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083, People's Republic of China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083, People's Republic of China
| | - Li-Qiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
157
|
Jin Q, Wang H, Hu C, Chen Z, Wang X. Effects of NOM on the degradation of chloramphenicol by UV/H2O2 and the characteristics of degradation products. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
158
|
Chuang YH, Chen S, Chinn CJ, Mitch WA. Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13859-13868. [PMID: 29121472 DOI: 10.1021/acs.est.7b03570] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Utilities incorporating the potable reuse of municipal wastewater are interested in converting from the UV/H2O2 to the UV/free chlorine advanced oxidation process (AOP). The AOP treatment of reverse osmosis (RO) permeate often includes the de facto UV/chloramine AOP because chloramines applied upstream permeate RO membranes. Models are needed that accurately predict oxidant photolysis and subsequent radical reactions. By combining radical scavengers and kinetic modeling, we have derived quantum yields for radical generation by the UV photolysis of HOCl, OCl-, and NH2Cl of 0.62, 0.55, and 0.20, respectively, far below previous estimates that incorporated subsequent free chlorine or chloramine scavenging by the •Cl and •OH daughter radicals. The observed quantum yield for free chlorine loss actually decreased with increasing free chlorine concentration, suggesting scavenging of radicals participating in free chlorine chain decomposition and even free chlorine reformation. Consideration of reactions of •ClO and its daughter products (e.g., ClO2-), not included in previous models, were critical for modeling free chlorine loss. Radical reactions (indirect photolysis) accounted for ∼50% of chloramine decay and ∼80% of free chlorine loss or reformation. The performance of the UV/chloramine AOP was comparable to the UV/H2O2 AOP for degradation of 1,4-dioxane, benzoate and carbamazepine across pH 5.5-8.3. The UV/free chlorine AOP was more efficient at pH 5.5, but only by 30% for 1,4-dioxane. At pH 7.0-8.3, the UV/free chlorine AOP was less efficient. •Cl converts to •OH. The modeled •Cl:•OH ratio was ∼20% for the UV/free chlorine AOP and ∼35% for the UV/chloramine AOP such that •OH was generally more important for contaminant degradation.
Collapse
Affiliation(s)
- Yi-Hsueh Chuang
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| | - Serena Chen
- Galileo Academy of Science and Technology , 1150 Francisco Street, San Francisco, California 94109, United States
| | - Curtis J Chinn
- Galileo Academy of Science and Technology , 1150 Francisco Street, San Francisco, California 94109, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
159
|
Jing L, Chen B, Wen D, Zheng J, Zhang B. Pilot-scale treatment of atrazine production wastewater by UV/O 3/ultrasound: Factor effects and system optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:182-190. [PMID: 28783014 DOI: 10.1016/j.jenvman.2017.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
This study shed light on removing atrazine from pesticide production wastewater using a pilot-scale UV/O3/ultrasound flow-through system. A significant quadratic polynomial prediction model with an adjusted R2 of 0.90 was obtained from central composite design with response surface methodology. The optimal atrazine removal rate (97.68%) was obtained at the conditions of 75 W UV power, 10.75 g h-1 O3 flow rate and 142.5 W ultrasound power. A Monte Carlo simulation aided artificial neural networks model was further developed to quantify the importance of O3 flow rate (40%), UV power (30%) and ultrasound power (30%). Their individual and interaction effects were also discussed in terms of reaction kinetics. UV and ultrasound could both enhance the decomposition of O3 and promote hydroxyl radical (OH·) formation. Nonetheless, the dose of O3 was the dominant factor and must be optimized because excess O3 can react with OH·, thereby reducing the rate of atrazine degradation. The presence of other organic compounds in the background matrix appreciably inhibited the degradation of atrazine, while the effects of Cl-, CO32- and HCO3- were comparatively negligible. It was concluded that the optimization of system performance using response surface methodology and neural networks would be beneficial for scaling up the treatment by UV/O3/ultrasound at industrial level.
Collapse
Affiliation(s)
- Liang Jing
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada; Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China.
| | - Diya Wen
- Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| | - Jisi Zheng
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
160
|
Wu Z, Guo K, Fang J, Yang X, Xiao H, Hou S, Kong X, Shang C, Yang X, Meng F, Chen L. Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process. WATER RESEARCH 2017; 126:351-360. [PMID: 28985600 DOI: 10.1016/j.watres.2017.09.028] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 05/12/2023]
Abstract
The UV/chlorine process is an emerging advanced oxidation process (AOP) that produces various reactive species, such as hydroxyl radicals (HO) and reactive chlorine species (RCS). The effects of the treatment conditions, such as chlorine dosage and pH, and the water matrix components of natural organic matter (NOM), alkalinity, ammonia and halides, on the kinetics and reactive species in the degradation of four micropollutants, metronidazole (MDZ), nalidixic acid (NDA), diethyltoluamide (DEET) and caffeine (CAF), by the UV/chlorine process were investigated. The degradation of MDZ and CAF was primarily attributable to HO and ClO, respectively, while that of NDA was primarily attributable to both ClO and CO3-. HO, Cl and CO3- are important for the degradation of DEET. The second-order rate constants for ClO with CAF and CO3- with NDA were determined to be 5.1 (±0.2) × 107 M-1s-1 and 1.4 (±0.1) × 107 M-1s-1, respectively. Increasing chlorine dosage slightly changed the contribution of HO but linearly increased that of ClO to micropollutant degradation. Increasing pH decreased the contribution of either HO or Cl but not that of ClO. Both NOM and bicarbonate decreased the contributions of HO and Cl, whereas NOM but not bicarbonate significantly decreased that of ClO. The contribution of either HO or Cl first rose and then fell as the molar ratio of ammonia to chlorine increased from 0 to 1:1, while that of ClO decreased. The co-presence of high concentrations of Cl- and Br- enhanced the contribution of ClBr- and BrCl.
Collapse
Affiliation(s)
- Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xueqin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hong Xiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaodong Hou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiujuan Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liwei Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
161
|
Ye B, Li Y, Chen Z, Wu QY, Wang WL, Wang T, Hu HY. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: Radical roles, influencing factors, and degradation pathway. WATER RESEARCH 2017; 124:381-387. [PMID: 28783494 DOI: 10.1016/j.watres.2017.05.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 05/28/2023]
Abstract
Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min-1 to 0.3 min-1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl-], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed.
Collapse
Affiliation(s)
- Bei Ye
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Yue Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory and State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory and State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory and State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ting Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory and State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory and State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
162
|
Mansor NA, Tay KS. Degradation of 5,5-diphenylhydantoin by chlorination and UV/chlorination: kinetics, transformation by-products, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22361-22370. [PMID: 28801887 DOI: 10.1007/s11356-017-9892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the reaction kinetics and mechanism of the degradation of 5,5-diphenylhydantoin (DPH) during conventional chlorination and UV/chlorination. DPH is one of the antiepileptic drugs, which has frequently been detected in the aquatic environment. For chlorination, the second-order rate constant for the reaction between DPH and free active chlorine (FAC) was determined at pH 5 to 8. At pH 6 to 8, the efficiency of chlorination in the removal of DPH was found to be dominated by the reaction involving hypochlorous acid (HOCl). The result also showed that anionic species of DPH was more reactive toward FAC as compared with neutral DPH. For UV/chlorination, the effect of FAC dosage and pH on the degradation of DPH was evaluated. UV/chlorination is a more effective method for removing DPH as compared with conventional chlorination and UV irradiation. The DPH degradation rate was found to increase with increasing FAC concentration. On the other hand, the degradation of DPH was found to be more favorable under the acidic condition. Based on the identified transformation by-products, DPH was found to be degraded through the reaction at imidazolidine-2,4-dione moiety of DPH for both chlorination and UV/chlorination. Toxicity study on the chlorination and UV/chlorination-treated DPH solutions suggested that UV/chlorination is a more efficient method for reducing the toxicity of DPH.
Collapse
Affiliation(s)
- Nur Adawiyah Mansor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kheng Soo Tay
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
163
|
Javier Benitez F, Real FJ, Acero JL, Casas F. Assessment of the UV/Cl 2 advanced oxidation process for the degradation of the emerging contaminants amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol in water systems. ENVIRONMENTAL TECHNOLOGY 2017; 38:2508-2516. [PMID: 27927078 DOI: 10.1080/09593330.2016.1269836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Three emerging contaminants (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) frequently found in wastewaters were selected to be individually degraded in ultra-pure water by the advanced oxidation process (AOP) constituted by the combination of UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: AH > MS > PE. A later kinetic study was carried out focused on the evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water was also performed by the same combination UV/Cl2. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/[Formula: see text] and UV/H2O2 AOPs, and the influence of the operating variables was discussed. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested. The presence of dissolved organic matter and bicarbonate ions in the water matrix caused a decrease in the treatment efficiency.
Collapse
Affiliation(s)
- F Javier Benitez
- a Departamento de Ingeniería Química y Química Física , Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura , Badajoz , Spain
| | - Francisco J Real
- a Departamento de Ingeniería Química y Química Física , Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura , Badajoz , Spain
| | - Juan L Acero
- a Departamento de Ingeniería Química y Química Física , Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura , Badajoz , Spain
| | - Francisco Casas
- a Departamento de Ingeniería Química y Química Física , Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura , Badajoz , Spain
| |
Collapse
|
164
|
Guo K, Wu Z, Shang C, Yao B, Hou S, Yang X, Song W, Fang J. Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10431-10439. [PMID: 28809556 DOI: 10.1021/acs.est.7b02059] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The UV/chlorine process is an emerging advanced oxidation process (AOP) used for the degradation of micropollutants. However, the radical chemistry of this AOP is largely unknown for the degradation of numerous structurally diverse micropollutants in water matrices of varying quality. These issues were addressed by grouping 34 pharmaceuticals and personal care products (PPCPs) according to the radical chemistry of their degradation in the UV/chlorine process at practical PPCP concentrations (1 μg L-1) and in different water matrices. The contributions of HO• and reactive chlorine species (RCS), including Cl•, Cl2•-, and ClO•, to the degradation of different PPCPs were compound specific. RCS showed considerable reactivity with olefins and benzene derivatives, such as phenols, anilines, and alkyl-/alkoxybenzenes. A good linear relationship was found between the RCS reactivity and negative values of the Hammett ∑σp+ constant for aromatic PPCPs, indicating that electron-donating groups promote the attack of benzene derivatives by RCS. The contribution of HO•, but not necessarily RCS, to PPCP removal decreased with increasing pH. ClO• showed high reactivity with some PPCPs, such as carbamazepine, caffeine, and gemfibrozil, with second-order rate constants of 9.2 × 107, 1.03 × 108, and 4.16 × 108 M-1 s-1, respectively, which contributed to their degradation. Natural organic matter (NOM) induced significant scavenging of ClO• and greatly decreased the degradation of PPCPs that was attributable to ClO•, with a second-order rate constant of 4.5 × 104 (mg L-1)-1 s-1. Alkalinity inhibited the degradation of PPCPs that was primarily attacked by HO• and Cl• but had negligible effects on the degradation of PPCPs by ClO•. This is the first study on the reactivity of RCS, particularly ClO•, with structurally diverse PPCPs under simulated drinking water condition.
Collapse
Affiliation(s)
- Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Zihao Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | - Bo Yao
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, P. R. China
| | - Shaodong Hou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University , Shanghai 200433, P. R. China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
165
|
Aghdam E, Xiang Y, Sun J, Shang C, Yang X, Fang J. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination. J Environ Sci (China) 2017; 58:146-154. [PMID: 28774603 DOI: 10.1016/j.jes.2017.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The formation of disinfection by-products (DBPs) from the degradation of N,N-diethyl-3-methyl benzoyl amide (DEET) and ibuprofen (IBP) by the ultraviolet irradiation (UV)/chlorine process and subsequent post-chlorination was investigated and compared with the UV/H2O2 process. The pseudo first-order rate constants of the degradation of DEET and IBP by the UV/chlorine process were 2 and 3.1 times higher than those by the UV/H2O2 process, respectively, under the tested conditions. This was due to the significant contributions of both reactive chlorine species (RCS) and hydroxyl radicals (HO) in the UV/chlorine process. Trichloromethane, 1,1,1-trichloro-2-propanone and dichloroacetic acid were the major known DBPs formed after 90% of both DEET and IBP that were degraded by the UV/chlorine process. Their yields increased by over 50% after subsequent 1-day post-chlorination. The detected DBPs after the degradation of DEET and IBP comprised 13.5% and 19.8% of total organic chlorine (TOCl), respectively, and the proportions increased to 19.8% and 33.9% after subsequent chlorination, respectively. In comparison to the UV/H2O2 process accompanied with post-chlorination, the formation of DBPs and TOCl in the UV/chlorine process together with post-chlorination was 5%-63% higher, likely due to the generation of more DBP precursors from the attack of RCS, in addition to HO.
Collapse
Affiliation(s)
- Ehsan Aghdam
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jianliang Sun
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Chii Shang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jingyun Fang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
166
|
Wang Y, Zhang X, Zhang X, Meng Q, Gao F, Zhang Y. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil. CHEMOSPHERE 2017; 180:531-539. [PMID: 28432890 DOI: 10.1016/j.chemosphere.2017.04.063] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/04/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
This study was aim to investigate the interaction between soil-derived dissolved organic matter (DOM) and atrazine as a kind of pesticides during the sorption process onto black soil. According to the experimental data, the adsorption capacity of Soil + DOM, Soil and DOM were 41.80, 31.45 and 9.35 mg kg-1, separately, which indicated that DOM significantly enhanced the adsorption efficiency of atrazine by soil. Data implied that the pseudo-second-order kinetic equation could well explain the adsorption process. The adsorption isotherms (R2 > 0.99) had a satisfactory fit in both Langmuir and Freundlich models. Three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FT-IR) were selected to analyze the interaction between DOM and atrazine. 3D-EEM showed that humic acid-like substances were the main component of DOM. The fluorescence of DOM samples were gradually quenched with the increased of atrazine concentrations. Synchronous fluorescence spectra showed that static fluorescence quenching was the main quenching process. 2D-COS indicated that the order of the spectral changes were as following: 336 nm > 282 nm. Furthermore, the fluorescence quenching of humic-like fraction occurred earlier than that of protein-like fraction under atrazine surroundings. FT-IR spectra indicated that main compositions of soil DOM include proteins, polysaccharides and humic substances. The findings of this study are significant to reveal DOM played an important role in the environmental fate of pesticides during sorption process onto black soil and also provide more useful information for understanding the interaction between DOM and pesticides by using spectral responses.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyuan Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xing Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengjie Gao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
167
|
Pan Y, Cheng S, Yang X, Ren J, Fang J, Shang C, Song W, Lian L, Zhang X. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics. WATER RESEARCH 2017; 116:254-265. [PMID: 28343060 DOI: 10.1016/j.watres.2017.03.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - ShuangShuang Cheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jingyue Ren
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingyun Fang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Lushi Lian
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
168
|
Huang N, Wang T, Wang WL, Wu QY, Li A, Hu HY. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation. WATER RESEARCH 2017; 114:246-253. [PMID: 28254642 DOI: 10.1016/j.watres.2017.02.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 05/12/2023]
Abstract
Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (kobs, DDBAC) increased from 0.046 min-1 to 0.123 min-1 in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone.
Collapse
Affiliation(s)
- Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Ting Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Ang Li
- Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China.
| |
Collapse
|
169
|
Qi C, Liu X, Li Y, Lin C, Ma J, Li X, Zhang H. Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfite. JOURNAL OF HAZARDOUS MATERIALS 2017; 328:98-107. [PMID: 28103489 DOI: 10.1016/j.jhazmat.2017.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/04/2016] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
In this study, the bisulfite-peroxydisulfate system (S(IV)/PDS) widely used in polymerization was innovatively applied for organic contaminants degradation in water. The addition of S(IV) into PDS system remarkably enhanced the degradation efficiency of bisphenol A (BPA, a frequently detected endocrine disrupting chemical in the environments) from 17.0% to 84.7% within 360 min. The degradation efficiency of BPA in the S(IV)/PDS system followed pseudo-first-order kinetics, with rate constant values ranging from 0.00005min-1 to 0.02717min-1 depending on the operating parameters, such as the initial S(IV) and PDS dosage, solution pH, reaction temperature, chloride and water type. Furthermore, nitrogen purging experiment, radical scavenging experiment and electron spin resonance (ESR) analysis were used to elucidate the possible mechanism. The results revealed that sulfate radical was the dominant reactive species in the S(IV)/PDS system. Finally, based on the results of liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), the BPA degradation pathway was proposed to involve β-scission (CC), hydroxylation, dehydration, oxidative skeletal rearrangement, and ring opening. This study helps to characterize the combination of PDS and inorganic S(IV), a common industrial contaminant, to generate reactive species to enhance organic contaminants degradation in water.
Collapse
Affiliation(s)
- Chengdu Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jun Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xiaowan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Huijuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
170
|
Zhao X, Wang L, Ma F, Bai S, Yang J, Qi S. Pseudomonas sp. ZXY-1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology. J Environ Sci (China) 2017; 54:152-159. [PMID: 28391924 DOI: 10.1016/j.jes.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 06/07/2023]
Abstract
Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09mg/L/hr. Temperature, pH, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model (R2=0.9821) being obtained, the highest biodegradation efficiency of 19.03mg/L/hr was reached compared to previous reports under the optimal conditions (30.71°C, pH7.14, 4.23% (V/V) inoculum size and 157.1mg/L initial atrazine concentration). Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
171
|
Coledam DAC, Pupo MMS, Silva BF, Silva AJ, Eguiluz KIB, Salazar-Banda GR, Aquino JM. Electrochemical mineralization of cephalexin using a conductive diamond anode: A mechanistic and toxicity investigation. CHEMOSPHERE 2017; 168:638-647. [PMID: 27847122 DOI: 10.1016/j.chemosphere.2016.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
The contamination of surface and ground water by antibiotics is of significant importance due to their potential chronic toxic effects to the aquatic and human lives. Thus, in this work, the electrochemical oxidation of cephalexin (CEX) was carried out in a one compartment filter-press flow cell using a boron-doped diamond (BDD) electrode as anode. During the electrolysis, the investigated variables were: supporting electrolyte (Na2SO4, NaCl, NaNO3, and Na2CO3) at constant ionic strength (0.1 M), pH (3, 7, 10, and without control), and current density (5, 10 and 20 mA cm-2). The oxidation and mineralization of CEX were assessed by high performance liquid chromatography, coupled to mass spectrometry and total organic carbon. The oxidation process of CEX was dependent on the type of electrolyte and on pH of the solution due to the distinct oxidant species electrogenerated; however, the conversion of CEX and its hydroxylated intermediates to CO2 depends only on their diffusion to the surface of the BDD. In the final stages of electrolysis, an accumulation of recalcitrant oxamic and oxalic carboxylic acids, was detected. Finally, the growth inhibition assay with Escherichia coli cells showed that the toxicity of CEX solution decreased along the electrochemical treatment due to the rupture of the β-lactam ring of the antibiotic.
Collapse
Affiliation(s)
- Douglas A C Coledam
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - Marília M S Pupo
- Instituto de Tecnologia e Pesquisa/Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes, 49032-490 Aracaju, SE, Brazil
| | - Bianca F Silva
- Instituto de Química de Araraquara, Departamento de Química Analítica, Universidade Estadual Paulista, 14800-900 Araraquara, SP, Brazil
| | - Adilson J Silva
- Departamento de Engenharia Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - Katlin I B Eguiluz
- Instituto de Tecnologia e Pesquisa/Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes, 49032-490 Aracaju, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Instituto de Tecnologia e Pesquisa/Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes, 49032-490 Aracaju, SE, Brazil
| | - José M Aquino
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
172
|
|
173
|
Shao S, Feng Y, Yu H, Li J, Li G, Liang H. Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system. WATER RESEARCH 2017; 108:240-249. [PMID: 27863738 DOI: 10.1016/j.watres.2016.10.081] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Gravity-driven membrane (GDM) filtration is a promising decentralized drinking water treatment process. To improve the performance of GDM system, a thin layer of adsorbent was pre-deposited on the membrane surface prior to filtration (adsorbent-laden GDM system). The tested adsorbents include powdered activated carbon (PAC) and anion exchange resin (AER), and an unmodified GDM system and a SiO2-laden GDM system were used as controls. In the adsorbent-laden GDM systems, the adsorption of the PAC and AER increased the removal efficiency of natural organic matter by 7.2-43.5% and microcystin-LR, atrazine, and bisphenol A by 7.9-81.2%. The presence of adsorbent particles increased the amount of microorganisms in the cake layer and therefore increased the removal efficiency of assimilable organic matter (AOC) by 20.1-34.4%. In the adsorbent-laden GDM systems, the physically irrecoverable fouling decreased because of the reduction in membrane foulants by the adsorbent layer. However, the presence of adsorbent particles in the cake layer counteracted this effect and increased the physically recoverable fouling. Consequently, the pre-deposited adsorbent layers had only a limited effect on the stabilized flux (2.26-2.65 L/m2 h). A bilayer structure was found in the cake layer of the adsorbent-laden GDM systems via scanning electron microscopy (SEM), and the cake layer was looser in the presence of adsorbent particles. These results demonstrate that pre-depositing a thin layer of adsorbents on the membrane surface of the GDM system can significantly improve the quality of the permeate without decreasing the stabilized flux.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Yijing Feng
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| | - Jiangyun Li
- School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| |
Collapse
|
174
|
Luo C, Jiang J, Guan C, Ma J, Pang S, Song Y, Yang Y, Zhang J, Wu D, Guan Y. Factors affecting formation of deethyl and deisopropyl products from atrazine degradation in UV/H2O2 and UV/PDS. RSC Adv 2017. [DOI: 10.1039/c7ra03660d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation of deethyl products (DEPs) (i.e., atrazine amide and deethylatrazine) and deisopropyl product (i.e., deisopropylatrazine (DIA)) from parent atrazine (ATZ) degraded in UV/H2O2 and UV/PDS processes under various conditions was monitored.
Collapse
Affiliation(s)
- Congwei Luo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Chaoting Guan
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Suyan Pang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- China
| | - Yang Song
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Yi Yang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Jianqiao Zhang
- Luohu District Environment Protection and Water Affairs Bureau
- China
| | - Daoji Wu
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan
- China
| | - Yinghong Guan
- School of Water Conservancy and Civil Engineering
- Northeast Agricultural University
- Harbin 150040
- China
| |
Collapse
|
175
|
Gao YQ, Gao NY, Chu WH, Yang QL, Yin DQ. Kinetics and mechanistic investigation into the degradation of naproxen by a UV/chlorine process. RSC Adv 2017. [DOI: 10.1039/c7ra04540a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The degradation kinetics and mechanism of naproxen during UV/chlorine treatment were investigated.
Collapse
Affiliation(s)
- Yu-qiong Gao
- School of Environment and Architecture
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Nai-yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| | - Wen-hai Chu
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| | - Qin-lin Yang
- School of Environment and Architecture
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Da-qiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| |
Collapse
|
176
|
Sun P, Lee WN, Zhang R, Huang CH. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13265-13273. [PMID: 27993038 DOI: 10.1021/acs.est.6b02287] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br- and Cl- may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.
Collapse
Affiliation(s)
- Peizhe Sun
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Wan-Ning Lee
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
177
|
Wang WL, Wu QY, Huang N, Wang T, Hu HY. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species. WATER RESEARCH 2016; 98:190-8. [PMID: 27105033 DOI: 10.1016/j.watres.2016.04.015] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 05/03/2023]
Abstract
For successful wastewater reclamation, advanced oxidation processes have attracted attention for elimination of emerging contaminants. In this study, the synergistic treatment with UV irradiation and chlorine (UV/chlorine) was used to degrade carbamazepine (CBZ). Neither UV irradiation alone nor chlorination alone could efficiently degraded CBZ. UV/chlorine oxidation showed a significant synergistic effect on CBZ degradation through generation of radical species (OH and Cl), and this process could be well depicted by pseudo first order kinetic. The degradation rate constants (kobs,CBZ) of CBZ increased linearly with increasing UV irradiance and chlorine dosage. The degradation of CBZ by UV/chlorine in acidic solutions was more efficient than that in basic solutions mainly due to the effect of pH on the dissociation of HOCl and OCl(-) and then on the quantum yields and radical species quenching of UV/chlorine. When pH was increased from 5.5 to 9.5, the rate constants of degradation of CBZ by OH decreased from 0.65 to 0.14 min(-1) and that by Cl decreased from 0.40 to 0.11 min(-1). The rate constant for the reaction between Cl and CBZ was 5.6 ± 1.6 × 10(10) M(-1) s(-1). Anions of HCO3(-) (1-50 mM) showed moderate inhibition of CBZ degradation by UV/chlorine, while Cl(-) did not. UV/chlorine could efficiently degrade CBZ in wastewater treatment plant effluent, although the degradation was inhibited by about 30% compared with that in ultrapure water with chlorine dosage of 0.14-0.56 mM. Nine main oxidation products of the CBZ degradation by UV/chlorine were identified using the HPLC-QToF MS/MS. Initial oxidation products arose from hydroxylation, carboxylation and hydrogen atom abstraction of CBZ by OH and Cl, and were then further oxidized to generate acylamino cleavage and decarboxylation products of acridine and acridione.
Collapse
Affiliation(s)
- Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ting Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|