151
|
Gómez-Román A, Ortega-Sánchez JA, Rotllant D, Gagliano H, Belda X, Delgado-Morales R, Marín-Blasco I, Nadal R, Armario A. The neuroendocrine response to stress under the effect of drugs: Negative synergy between amphetamine and stressors. Psychoneuroendocrinology 2016; 63:94-101. [PMID: 26433325 DOI: 10.1016/j.psyneuen.2015.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023]
Abstract
There have been numerous studies into the interaction between stress and addictive drugs, yet few have specifically addressed how the organism responds to stress when under the influence of psychostimulants. Thus, we studied the effects of different acute stressors (immobilization, interleukin-1β and forced swimming) in young adult male rats simultaneously exposed to amphetamine (AMPH, 4 mg/kg SC), evaluating classic biological markers. AMPH administration itself augmented the plasma hypothalamic-pituitary-adrenal (HPA) hormones, adrenocorticotropin (ACTH) and corticosterone, without affecting plasma glucose levels. By contrast, this drug dampened the peripheral HPA axis, as well as the response of glucose to the three stressors. We also found that AMPH administration completely blocked the forced swim-induced expression of the corticotropin-releasing hormone (hnCRH) and it partially reduced c-fos expression in the paraventricular nucleus of the hypothalamus (PVN). Indeed, this negative synergy in the forced swim test could even be observed with a lower dose of AMPH (1mg/kg, SC), a dose that is usually received in self-administration experiments. In conclusion, when rats that receive AMPH are subjected to stress, a negative synergy occurs that dampens the prototypic peripheral physiological response to stress and activation of the PVN.
Collapse
Affiliation(s)
- Almudena Gómez-Román
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Juan A Ortega-Sánchez
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - David Rotllant
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Humberto Gagliano
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Xavier Belda
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Raúl Delgado-Morales
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ignacio Marín-Blasco
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Roser Nadal
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Psychobiology Unit (School of Psychology), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonio Armario
- Institut de Neurociències and Red de Transtornos Adictivos (RTA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Animal Physiology Unit (School of Biosciences), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
152
|
Rodriguez-Arias M, Navarrete F, Blanco-Gandia MC, Arenas MC, Bartoll-Andrés A, Aguilar MA, Rubio G, Miñarro J, Manzanares J. Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addict Biol 2016; 21:87-97. [PMID: 25219790 DOI: 10.1111/adb.12184] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study employs an oral operant conditioning paradigm to evaluate the effects of repeated social defeat during adolescence on the reinforcing and motivational actions of ethanol in adult OF1 mice. Social interaction, emotional and cognitive behavioral aspects were also analyzed, and real-time polymerase chain reaction (PCR) experiments were performed to study gene expression changes in the mesocorticolimbic and hypothalamus-hypophysis-adrenal (HHA) axis. Social defeat did not alter anxiety-like behavior in the elevated plus maze or cognitive performance in the passive avoidance and Hebb-Williams tests. A social interaction test revealed depression-like symptoms and social subordination behavior in defeated OF1 mice. Interestingly, social defeat in adolescence significantly increased the number of effective responses, ethanol consumption values and motivation to drink. Finally, real-time PCR analyses revealed that social defeat significantly increased tyrosine hydroxylase and corticotropin-releasing hormone in the ventral tegmental area and paraventricular nucleus, respectively. In contrast, mu-opioid receptor gene expression was decreased in the nucleus accumbens of socially defeated mice. In summary, these findings suggest that exposure to social defeat during adolescence increases vulnerability to the rewarding effects of ethanol without affecting emotional or cognitive performance. The gene expression alterations we have observed in the mesocorticolimbic and HHA axis systems of defeated mice could be related with their increased ethanol consumption. These results endorse future research into pharmacological strategies that modulate these systems for the treatment of social stress-related alcohol consumption problems.
Collapse
Affiliation(s)
- Marta Rodriguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Francisco Navarrete
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Spain
| | - Maria Carmen Blanco-Gandia
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Maria Carmen Arenas
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | | | - Maria A. Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Unidad de Psiquiatría; Hospital Universitario ‘12 de Octubre’; Spain
- Instituto de Investigación ‘12 de Octubre’; Spain
| | - José Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias; Departamento de Psicobiología; Facultad de Psicología; Universitat de València; Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
| | - Jorge Manzanares
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos); Instituto de Salud Carlos III; MICINN and FEDER; Spain
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Spain
| |
Collapse
|
153
|
Lutfy K, Zaveri NT. The Nociceptin Receptor as an Emerging Molecular Target for Cocaine Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:149-81. [PMID: 26810001 DOI: 10.1016/bs.pmbts.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is a global public health and socioeconomic issue that requires pharmacological and cognitive therapies. Currently there are no FDA-approved medications to treat cocaine addiction. However, in preclinical studies, interventions ranging from herbal medicine to deep-brain stimulation have shown promise for the therapy of cocaine addiction. Recent developments in molecular biology, pharmacology, and medicinal chemistry have enabled scientists to identify novel molecular targets along the pathways involved in drug addiction. In 1994, a receptor that showed a great deal of homology to the traditional opioid receptors was characterized. However, endogenous and exogenous opioids failed to bind to this receptor, which led scientists to name it opioid receptor-like receptor, now referred to as the nociceptin receptor. The endogenous ligand of NOPr was identified a year later and named orphanin FQ/nociceptin. Nociceptin and NOPr are widely distributed throughout the CNS and are involved in many physiological responses, such as food intake, nociceptive processing, neurotransmitter release, etc. Furthermore, exogenous nociceptin has been shown to regulate the activity of mesolimbic dopaminergic neurons, glutamate, and opioid systems, and the stress circuit. Importantly, exogenous nociceptin has been shown to reduce the rewarding and addictive actions of a number of drugs of abuse, such as psychostimulants, alcohol, and opioids. This paper reviews the existing literature on the role of endogenous nociceptin in the rewarding and addictive actions of cocaine. The effect of exogenous nociceptin on these processes is also reviewed. Furthermore, the effects of novel small-molecule NOPr ligands on these actions of cocaine are discussed. Overall, a review of the literature suggests that NOPr could be an emerging target for cocaine addiction pharmacotherapy.
Collapse
Affiliation(s)
- Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA.
| | | |
Collapse
|
154
|
Shirahase T, Aoki M, Watanabe R, Watanabe Y, Tanaka M. Increased alcohol consumption in relaxin-3 deficient male mice. Neurosci Lett 2015; 612:155-160. [PMID: 26687275 DOI: 10.1016/j.neulet.2015.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Abstract
Relaxin-3 is a neuropeptide expressed in the brainstem, and predominantly localized in the gray matter of the midline dorsal pons termed the nucleus incertus. Relaxin-3-expressing neurons densely project axons rostrally to various forebrain regions including the septum, hippocampus, and lateral hypothalamus. Several relaxin-3 functions have been reported including food intake, stress responses, neuroendocrine function, emotion, and spatial memory. In addition, recently relaxin-3 and its receptor, RXFP3, were shown to regulate alcohol intake using an RXFP3 antagonist and RXFP3 gene knockout mice. In the present study, we investigated alcohol consumption in relaxin-3 knockout mice, and found that male but not female mice significantly drank more alcohol than wild-type mice in the two-bottle choice test. However, after chronic alcohol vapor exposure, wild-type and mutant mice did not show this difference in alcohol intake, although both genotypes exhibited increased alcohol consumption compared with non-alcohol-exposed control mice. There was no genotype difference in sucrose or quinine preference. These results suggest that the relaxin-3 neuronal system modestly affects alcohol preference and consumption.
Collapse
Affiliation(s)
- Takahira Shirahase
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan; Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Miku Aoki
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan; Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Ryuji Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan
| | - Masaki Tanaka
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
155
|
LeBlanc DM, McGinn MA, Itoga CA, Edwards S. The affective dimension of pain as a risk factor for drug and alcohol addiction. Alcohol 2015; 49:803-9. [PMID: 26008713 PMCID: PMC4628900 DOI: 10.1016/j.alcohol.2015.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/11/2015] [Accepted: 04/18/2015] [Indexed: 01/27/2023]
Abstract
Addiction, or substance use disorder (SUD), is a devastating psychiatric disease composed of multiple elemental features. As a biobehavioral disorder, escalation of drug and/or alcohol intake is both a cause and consequence of molecular neuroadaptations in central brain reinforcement circuitry. Multiple mesolimbic areas mediate a host of negative affective and motivational symptoms that appear to be central to the addiction process. Brain stress- and reinforcement-related regions such as the central amygdala (CeA), prefrontal cortex (PFC), and nucleus accumbens (NAc) also serve as central processors of ascending nociceptive input. We hypothesize that a sensitization of brain mechanisms underlying the processing of persistent and maladaptive pain contributes to a composite negative affective state to drive the enduring, relapsing nature of addiction, particularly in the case of alcohol and opioid use disorder. At the neurochemical level, pain activates central stress-related neuropeptide signaling, including the dynorphin and corticotropin-releasing factor (CRF) systems, and by this process may facilitate negative affect and escalated drug and alcohol use over time. Importantly, the widespread prevalence of unresolved pain and associated affective dysregulation in clinical populations highlights the need for more effective analgesic medications with reduced potential for tolerance and dependence. The burgeoning epidemic of prescription opioid abuse also demands a closer investigation into the neurobiological mechanisms of how pain treatment could potentially represent a significant risk factor for addiction in vulnerable populations. Finally, the continuing convergence of sensory and affective neuroscience fields is expected to generate insight into the critical balance between pain relief and addiction liability, as well as provide more effective therapeutic strategies for chronic pain and addiction.
Collapse
Affiliation(s)
- Dana M LeBlanc
- Department of Pediatrics, Division of Hematology and Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - M Adrienne McGinn
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christy A Itoga
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Scott Edwards
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
156
|
Chen Y, Molet J, Gunn BG, Ressler K, Baram TZ. Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons. Endocrinology 2015; 156:4769-80. [PMID: 26402844 PMCID: PMC4655217 DOI: 10.1210/en.2015-1673] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools.
Collapse
Affiliation(s)
- Yuncai Chen
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Jenny Molet
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Benjamin G Gunn
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Kerry Ressler
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| | - Tallie Z Baram
- Departments of Pediatrics (Y.C., B.G.G., T.Z.B.) and Anatomy/Neurobiology (Y.C., J.M., B.G.G., T.Z.B.), University of California, Irvine, Irvine, California 92697-4475; and Department of Psychiatry and Behavioral Sciences (K.R.), Emory University, Atlanta, Georgia 30322-4250
| |
Collapse
|
157
|
Hsu TY, He GY, Wang YC, Chen CY, Wang SH, Chen WK, Kao CH. Alcohol Use Disorder Increases the Risk of Irritable Bowel Disease: A Nationwide Retrospective Cohort Study. Medicine (Baltimore) 2015; 94:e2334. [PMID: 26705226 PMCID: PMC4697992 DOI: 10.1097/md.0000000000002334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alcohol use disorder (AUD) is considered a possible risk factor for irritable bowel syndrome (IBS); however, previous studies investigating the association between AUD and IBS have yielded inconsistent results. The study investigated whether AUD increases the risk of IBS by using a population-based database in Taiwan.This retrospective matched-cohort study included the health insurance claims data of 56,355 AUD inpatients and 225,420 randomly selected controls by frequency-matched for sex, age, and index year. Cox proportional hazards regression analysis was performed to measure the risk of IBS among AUD patients compared with non-AUD patients.During the follow-up period, the incidence rate ratio (IRR) of IBS had 12.3-fold (95% CI: 11.9-12.7) in the AUD patients than non-AUD patients and the adjusted hazard ratio (aHR) for IBS in the AUD patients was 5.51 (95% CI: 4.36-6.96). For several comorbidities, the risk of IBS was significantly higher in the AUD patients than in non-AUD patients, with aHRs of 2.14 (95% confidence interval [CI]: 1.19-3.84), 2.05 (95% CI: 1.06-3.96), and 2.91 (95% CI: 1.26-6.72) for sleep disorders, acute pancreatitis, and hepatitis B, respectively. When we stratified the severity of AUD according to the length of hospital stay, the aHRs exhibited a significant correlation (P < 0.001) with severity, yielding aHRs of 3.24 (95% CI: 2.49-4.22), 11.9 (95% CI: 8.96-15.9), and 26.1 (95% CI: 19.4-35.2) for mild, moderate, and severe AUD, respectively.The risk of IBS was higher among AUD patients, and increased with the length of hospital stay.
Collapse
Affiliation(s)
- Tai-Yi Hsu
- From the Department of Emergency Medicine, China Medical University Hospital (T-YH, C-YC, W-KC), School of Medicine, College of Medicine, China Medical University, Taichung (T-YH, C-YC, W-KC), Department of Dermatology, National Taiwan University Hospital, Yunlin Branch, Douliou (G-YH), Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei (G-YH), Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan (Y-CW), Altitude Research Center, Department of Emergency Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA (S-HW), Taiwan Wilderness Medical Association, Taipei (S-HW), Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University (C-HK); and Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan (C-HK)
| | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
The article provides an overview of common and differentiating self-reported and objective sleep disturbances seen in mood-disordered populations. The importance of considering sleep disturbances in the context of mood disorders is emphasized, because a large body of evidence supports the notion that sleep disturbances are a risk factor for onset, exacerbation, and relapse of mood disorders. In addition, potential mechanisms for sleep disturbance in depression, other primary sleep disorders that often occur with mood disorders, effects of antidepressant and mood-stabilizing drugs on sleep, and the adjunctive effect of treating sleep in patients with mood disorders are discussed.
Collapse
Affiliation(s)
- Meredith E Rumble
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Boulevard, Madison, WI 53719, USA.
| | - Kaitlin Hanley White
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Boulevard, Madison, WI 53719, USA
| | - Ruth M Benca
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Boulevard, Madison, WI 53719, USA
| |
Collapse
|
159
|
Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. PROGRESS IN BRAIN RESEARCH 2015; 224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
160
|
Xia N, Li J, Wang H, Wang J, Wang Y. Schisandra chinensis and Rhodiola rosea exert an anti-stress effect on the HPA axis and reduce hypothalamic c-Fos expression in rats subjected to repeated stress. Exp Ther Med 2015; 11:353-359. [PMID: 26889268 DOI: 10.3892/etm.2015.2882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/23/2015] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate the effects of Schisandra chinensis (S. chinensis) and Rhodiola rosea (R. rosea) on rats subjected to 5 h of stress, induced by water-floating followed by treadmill exercise. Hypothalamus-pituitary-adrenal (HPA) activity and c-Fos and Fos-related antigen 2 (Fra-2) mRNA expression levels in the hypothalamus of the rats were evaluated. Rats were distributed into four groups: S. chinensis (n=12), R. rosea (n=10), stress control (n=10) and quiet control (n=8). Following a training period of 6 consecutive days, the S. chinensis, R. rosea and stress control groups underwent a 3-h water-floating session in the presence of feline predators immediately followed by 2 h treadmill running to induce psychological and physical stress. Following compound stress induction, the serum levels of corticosterone (CORT), adrenocorticotropic hormone and interleukin-1β and the mRNA expression levels of hypothalamic corticotropin-releasing hormone (CRH), neuropeptide-Y, c-Fos and Fra-2 were evaluated using enzyme-linked immunosorbent assay, radioimmunoassay and quantitative polymerase chain reaction, respectively. The results indicated that S. chinensis and R. rosea markedly decreased the stress-induced elevation of CRH and peripheral CORT levels. The mRNA expression levels of c-Fos and Fra-2 in the hypothalamus were significantly increased after 5 h compound stress, and reduced levels of c-Fos expression were detected in rats treated with R. rosea. Thus, S. chinensis and R. rosea exert an anti-stress effect in rats subjected to stress by balancing the HPA axis, and possibly by reducing the expression of c-Fos in the hypothalamus.
Collapse
Affiliation(s)
- Nan Xia
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jie Li
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Hongwei Wang
- Jiangsu Key Laboratory for Molecular Medicine, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jian Wang
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Yangtian Wang
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
161
|
Van Skike CE, Diaz-Granados JL, Matthews DB. Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res 2015; 39:262-71. [PMID: 25684048 DOI: 10.1111/acer.12617] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/28/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ethanol (EtOH) dependence and tolerance in the adult are marked by increased function of NMDA receptors and decreased function of GABAA receptors, which coincide with altered receptor subunit expression in specific brain regions. Adolescents often use EtOH at levels greater than adults, yet the receptor subunit expression profiles following chronic intermittent EtOH (CIE) exposure in adolescents are not known. Persistent age-dependent changes in receptor subunit alterations coupled with withdrawal-related anxiety may help explain the increase in alcohol abuse following adolescent experimentation with the drug. METHODS Adolescent and adult rats received 10 intraperitoneal administrations of 4.0 g/kg EtOH or saline every 48 hours. At either 24 hours or 12 days after the final exposure, anxiety-like behavior was assessed on the elevated plus maze and tissue was collected. Western blotting was used to assess changes in selected NMDA and GABAA receptor subunits in whole cortex and bilateral hippocampus. RESULTS CIE exposure yields a persistent increase in anxiety-like behavior in both age groups. However, selected NMDA and GABAA receptor subunits were not differentially altered by this CIE exposure paradigm in adolescents or adults. CONCLUSIONS CIE exposure produced persistent anxiety-like behavior, which has important implications for alcohol cessation. Given the reported behavioral and neuropeptide expression changes in response to this dose of EtOH, it is important for future work to consider the circumstances under which these measures are altered by EtOH exposure.
Collapse
|
162
|
Sotomayor-Zárate R, Abarca J, Araya KA, Renard GM, Andrés ME, Gysling K. Exposure to repeated immobilization stress inhibits cocaine-induced increase in dopamine extracellular levels in the rat ventral tegmental area. Pharmacol Res 2015; 101:116-23. [DOI: 10.1016/j.phrs.2015.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
163
|
Schäfer I, Barnow S, Pawils S. [Substance use disorders as a cause and consequence of childhood abuse. Basic research, therapy and prevention in the BMBF-funded CANSAS-Network]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 59:35-43. [PMID: 26497814 DOI: 10.1007/s00103-015-2264-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Substance use disorders (SUDs) belong to the most frequent behavioural consequences of childhood abuse and neglect (CAN). In community samples, about 20% of adults with experiences of abuse or neglect in childhood have a lifetime diagnosis of an SUD. About 30% of individuals seeking treatment for a post-traumatic disorder have an SUD and 24–67% of all patients in treatment for an SUD have a history of CAN. About 16% of all children and adolescents under the age of 20 in Germany grow up in families where an alcohol- and/or drug-dependence is present. The children of parents with SUDs have, in addition to other risks to their development in cognitive and psychosocial domains, an increased risk of experiencing violence and neglect. Regarding both perspectives, SUD as a cause and as a consequence of CAN, a better understanding of relevant mediators and risk factors is necessary to improve prevention and develop adequate treatments. The aims of the BMBF-funded research network CANSAS are: 1. To gain a better understanding of the relationships between these two important public health problems (basic research), 2. To provide evidence-based treatments for survivors of CAN with SUDs and to increase the awareness for the necessity to diagnose CAN in patients with SUDs in counselling and treatment facilities (research on diagnostics and therapy), 3. To improve the systematic evaluation of child welfare among children of parents with SUDs through counselling services and to promote links between addiction services and youth welfare services (prevention research and health services research). In a multidisciplinary approach, the CANSAS network brings together experts in the fields of trauma treatment, epidemiology, basic research, health services research, prevention research as well as addiction services.
Collapse
|
164
|
Some of the people, some of the time: field evidence for associations and dissociations between stress and drug use. Psychopharmacology (Berl) 2015; 232:3529-37. [PMID: 26153066 DOI: 10.1007/s00213-015-3998-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
RATIONALE Stress's role in drug use is supported by retrospective interview and laboratory studies, but prospective data confirming the association in daily life are sparse. OBJECTIVES This study aims to assess the relationship between drug use and stress in real time with ambulatory monitoring. METHODS For up to 16 weeks, 133 outpatients on opiate agonist treatment used smartphones to report each time they used drugs or felt more stressed than usual. They rated stress-event severity on a 10-point scale and as a hassle, day spoiler, or more than a day spoiler. For analysis, stress reports made within 72 h before a reported use of cocaine or opioid were binned into 24-h periods. RESULTS Of 52 participants who reported stress events in the 72-h timeframe, 41 reported stress before cocaine use and 26 before opioid use. For cocaine use, the severity of stressors, rated numerically (r effect = 0.42, CL95 0.17-0.62, p = 0.00061) and percent rated as "more than a day spoiler" (r effect = 0.34, CL95 0.07-0.56, p = 0.0292)], increased linearly across the three days preceding use. The number of stressors did not predict cocaine use, and no measure of stress predicted opioid use. In ecological momentary assessment (EMA) from the whole sample of 133, stress and drug use occurred independently and there was no overall relationship. CONCLUSIONS EMA did not support the idea that stress is a necessary or sufficient trigger for cocaine or heroin use after accounting for the base rates of stress and use. But EMA did show that stressful events can increase in severity in the days preceding cocaine use.
Collapse
|
165
|
The Dorsal Agranular Insular Cortex Regulates the Cued Reinstatement of Cocaine-Seeking, but not Food-Seeking, Behavior in Rats. Neuropsychopharmacology 2015; 40:2425-33. [PMID: 25837282 PMCID: PMC4538357 DOI: 10.1038/npp.2015.92] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
Prior studies suggest that the insular cortex (IC), and particularly its posterior region (the PIc), is involved in nicotine craving and relapse in humans and rodents. The present experiments were conducted to determine whether the IC and its different subregions regulate relapse to cocaine-seeking behavior in rats. To address this issue, male Sprague-Dawley rats underwent cocaine self-administration followed by extinction training and reinstatement tests. Before each reinstatement, the PIc or the more anterior dorsal agranular IC (AId) was inactivated to determine their roles in the reinstatement to cocaine seeking. In contrast to the nicotine findings, PIc inactivation had no effect on cue-induced reinstatement for cocaine seeking. However, AId inactivation reduced cued reinstatement while having no effect on cocaine-prime reinstatement. AId inactivation had no effect on reinstatement of food-seeking behavior induced by cues, a food-prime, or cues+food-prime. Based on previous work hypothesizing a role for corticotropin-releasing factor (CRF) in the IC during craving and relapse, a subsequent experiment found that CRF receptor-1 (CRF1) blockade in the AId similarly reduced cued reinstatement. Our results suggest that the AId, along with CRF1 receptors in this region, regulates reinstatement to cocaine seeking, but not food seeking, depending on the type of reinstatement, whereas PIc activity does not influence cue-induced reinstatement.
Collapse
|
166
|
Sladek CD, Michelini LC, Stachenfeld NS, Stern JE, Urban JH. Endocrine‐Autonomic Linkages. Compr Physiol 2015; 5:1281-323. [DOI: 10.1002/cphy.c140028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
167
|
Robinson MJF, Anselme P, Suchomel K, Berridge KC. Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behav Neurosci 2015; 129:502-11. [PMID: 26076340 DOI: 10.1037/bne0000064] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amphetamine and stress can sensitize mesolimbic dopamine-related systems. In Pavlovian autoshaping, repeated exposure to uncertainty of reward prediction can enhance motivated sign-tracking or attraction to a discrete reward-predicting cue (lever-conditioned stimulus; CS+), as well as produce cross-sensitization to amphetamine. However, it remains unknown how amphetamine sensitization or repeated restraint stress interact with uncertainty in controlling CS+ incentive salience attribution reflected in sign-tracking. Here rats were tested in 3 successive phases. First, different groups underwent either induction of amphetamine sensitization or repeated restraint stress, or else were not sensitized or stressed as control groups (either saline injections only, or no stress or injection at all). All next received Pavlovian autoshaping training under either certainty conditions (100% CS-UCS association) or uncertainty conditions (50% CS-UCS association and uncertain reward magnitude). During training, rats were assessed for sign-tracking to the CS+ lever versus goal-tracking to the sucrose dish. Finally, all groups were tested for psychomotor sensitization of locomotion revealed by an amphetamine challenge. Our results confirm that reward uncertainty enhanced sign-tracking attraction toward the predictive CS+ lever, at the expense of goal-tracking. We also reported that amphetamine sensitization promoted sign-tracking even in rats trained under CS-UCS certainty conditions, raising them to sign-tracking levels equivalent to the uncertainty group. Combining amphetamine sensitization and uncertainty conditions did not add together to elevate sign-tracking further above the relatively high levels induced by either manipulation alone. In contrast, repeated restraint stress enhanced subsequent amphetamine-elicited locomotion, but did not enhance CS+ attraction.
Collapse
Affiliation(s)
| | - Patrick Anselme
- Département de Psychologie, Cognition & Comportement, Université de Liège
| | | | | |
Collapse
|
168
|
Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther 2015; 153:55-78. [PMID: 26049025 DOI: 10.1016/j.pharmthera.2015.06.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
169
|
Narla C, Dunn HA, Ferguson SSG, Poulter MO. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors. Front Cell Neurosci 2015; 9:200. [PMID: 26074770 PMCID: PMC4446537 DOI: 10.3389/fncel.2015.00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/10/2015] [Indexed: 11/29/2022] Open
Abstract
The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.
Collapse
Affiliation(s)
- Chakravarthi Narla
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Henry A Dunn
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Stephen S G Ferguson
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Michael O Poulter
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| |
Collapse
|
170
|
P7, a novel antagonist of corticotropin releasing factor receptor type 1 (CRFR1) screened from phage display library. Biochem Biophys Res Commun 2015; 463:200-4. [PMID: 25998380 DOI: 10.1016/j.bbrc.2015.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 11/23/2022]
Abstract
The corticotropin releasing factor (CRF) plays a central role in regulating the activities of hypothalamic-pituitary-adrenal (HPA) axis in the presence of a variety of stressful stimuli via binding to its type 1 receptors (CRFR1). Despite that many peptidic or non-peptidic antagonists of CRFR1 have been developed to serve as therapeutic tools to CRF-related pathologies, none of them have been utilized clinically. Targeting the extracellular domain 1 (EC1) of CRFR1, the CRF-binding site, represents a new strategy to inhibit the function of the receptor. However, no such agents have been identified up to now. Herein, by using an 87-amino acid fragment corresponding to the EC1 region as the bait, we screened the binding polypeptides from a phage display (Ph.D.-12) peptide library. After 3-round biopanning, positive clones were selected and the polypeptides carried by them were identified. 5 polypeptides were found to bind with the target specifically. Among them, the P7 exhibited the highest affinity. By evaluating the cAMP accumulation in the CRFR1 or CRFR2-expressing HEK293 cells, we demonstrated that P7 blocking the function of CRFR1, but not CRFR2. In addition, we also found that P7 and CRF act on CRFR1 competitively. Taken together, we reveal that P7, a novel polypeptide identified from phage display library, inhibits the function of CRFR1 effectively and specifically by binding at its EC1 domain. The new polypeptide might provide a promising agent for diagnostic or therapeutic utilities in CRF-related disorders.
Collapse
|
171
|
Silberman Y, Winder DG. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions. Alcohol 2015; 49:179-84. [PMID: 25716197 PMCID: PMC4414799 DOI: 10.1016/j.alcohol.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/25/2022]
Abstract
The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Vanderbilt University Medical Center, 2200 Pierce Ave., Nashville, TN 37232, USA.
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Vanderbilt University Medical Center, 2200 Pierce Ave., Nashville, TN 37232, USA
| |
Collapse
|
172
|
The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle. Neuropsychopharmacology 2015; 40:1064-71. [PMID: 25430779 PMCID: PMC4367474 DOI: 10.1038/npp.2014.316] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/27/2023]
Abstract
Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist.
Collapse
|
173
|
Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015; 289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/27/2014] [Accepted: 12/31/2014] [Indexed: 12/30/2022]
|
174
|
Taché Y, Million M. Role of Corticotropin-releasing Factor Signaling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil 2015; 21:8-24. [PMID: 25611064 PMCID: PMC4288101 DOI: 10.5056/jnm14162] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) signaling systems encompass CRF and the structurally related peptide urocortin (Ucn) 1, 2, and 3 along with 2 G-protein coupled receptors, CRF1 and CRF2. CRF binds with high and moderate affinity to CRF1 and CRF2 receptors, respectively while Ucn1 is a high-affinity agonist at both receptors, and Ucn2 and Ucn3 are selective CRF2 agonists. The CRF systems are expressed in both the brain and the colon at the gene and protein levels. Experimental studies established that the activation of CRF1 pathway in the brain or the colon recaptures cardinal features of diarrhea predominant irritable bowel syndrome (IBS) (stimulation of colonic motility, activation of mast cells and serotonin, defecation/watery diarrhea, and visceral hyperalgesia). Conversely, selective CRF1 antagonists or CRF1/CRF2 antagonists, abolished or reduced exogenous CRF and stress-induced stimulation of colonic motility, defecation, diarrhea and colonic mast cell activation and visceral hyperalgesia to colorectal distention. By contrast, the CRF2 signaling in the colon dampened the CRF1 mediated stimulation of colonic motor function and visceral hyperalgesia. These data provide a conceptual framework that sustained activation of the CRF1 system at central and/or peripheral sites may be one of the underlying basis of IBS-diarrhea symptoms. While targeting these mechanisms by CRF1 antagonists provided a relevant novel therapeutic venue, so far these promising preclinical data have not translated into therapeutic use of CRF1 antagonists. Whether the existing or newly developed CRF1 antagonists will progress to therapeutic benefits for stress-sensitive diseases including IBS for a subset of patients is still a work in progress.
Collapse
Affiliation(s)
- Yvette Taché
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, and Center for the Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, University of California Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
175
|
Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. Neuroscience 2015; 289:153-65. [PMID: 25595987 DOI: 10.1016/j.neuroscience.2015.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022]
Abstract
The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
Collapse
|
176
|
TACHÉ Y. Corticotrophin-releasing factor 1 activation in the central amygdale and visceral hyperalgesia. Neurogastroenterol Motil 2015; 27:1-6. [PMID: 25557223 PMCID: PMC4389773 DOI: 10.1111/nmo.12495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF)-CRF1 receptor in the brain plays a key role in stress-related alterations of behavior including anxiety/depression, and autonomic and visceral functions. In particular, CRF1 signaling mediates hypersensitivity to colorectal distension (CRD) in various models (early life adverse events, repeated psychological stress, chronic high anxiety, postcolonic inflammation, or repeated nociceptive CRD). So far, knowledge of brain sites involved is limited. A recent article demonstrates in rats that CRF microinjected into the central amygdala (CeA) induces a hyperalgesic response to CRD and enhances the noradrenaline and dopamine levels at this site. The visceral and noradrenaline, unlike dopamine, responses were blocked by a CRF1 antagonist injected into the CeA. Here, we review the emerging role that CRF-CRF1 signaling plays in the CeA to induce visceral hypersensitivity. In the somatic pain field, CRF in the CeA was shown to induce pain sensitization. This is mediated by the activation of postsynaptic CRF1 receptors and protein kinase A signaling that increases N-methyl-d-aspartate receptor neurotransmission. In addition, the activation of tetraethylamonium-sensitive ion channels such as Kv3 accelerates repolarization and firing rate. Whether facilitation of pain transmission underlies CRF action in the CeA-induced visceral hypersensitivity will need to be delineated. CRF1 signaling in the CeA is also an important component of the neuronal circuitry inducing anxiety-like behavior and positioned at the interphase of the reciprocal relationship between pain and affective state. The hyperactivity of this system may represent the neuroanatomical and biochemical substrate contributing to the coexpression of hypersensitivity to CRD and mood disorders in subsets of irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Y. TACHÉ
- Center for Neurobiology of Stress & Women’s Health and CURE: Digestive Diseases Research Center, Digestive Diseases Division, UCLA David Geffen School of Medicine and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
177
|
Hillemacher T, Weinland C, Lenz B, Kraus T, Heberlein A, Glahn A, Muschler MAN, Bleich S, Kornhuber J, Frieling H. DNA methylation of the LEP gene is associated with craving during alcohol withdrawal. Psychoneuroendocrinology 2015; 51:371-7. [PMID: 25462909 DOI: 10.1016/j.psyneuen.2014.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 01/10/2023]
Abstract
Different studies have described evidence for an association between leptin serum levels and craving in alcohol dependent patients. As leptin expression is regulated by DNA methylation we investigated changes of DNA methylation of the LEP gene promoter region in alcohol dependent patients undergoing withdrawal. Results show that low methylation status is associated with increasing serum leptin levels and elevation of craving for alcohol in the referring patients group. These findings point towards a pathophysiological relevance of changes in DNA methylation of the LEP gene promoter region in alcohol dependence.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Christian Weinland
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Kraus
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany; Frankenalb-Klinik Engelthal, Nürnberg, Germany
| | - Annemarie Heberlein
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexander Glahn
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Marc A N Muschler
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Helge Frieling
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany; Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
178
|
Abstract
This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.
Collapse
Affiliation(s)
- Yvonne M. Ulrich-Lai
- Dept. of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219
| | - Stephanie Fulton
- CRCHUM, Dept. of Nutrition, Université de Montréal, Montreal, QC, Canada, H1W 4A4
| | - Mark Wilson
- Division of Developmental and Cognitive Neuroscience, Emory, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | | | - Linda Rinaman
- Dept. of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
179
|
Holmes A. G2B Reviews: stress at the intersection of anxiety, addiction and eating disorders. GENES, BRAIN, AND BEHAVIOR 2015; 14:1-3. [PMID: 25626482 PMCID: PMC4976599 DOI: 10.1111/gbb.12196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
180
|
Phillips TJ, Reed C, Pastor R. Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation. GENES, BRAIN, AND BEHAVIOR 2015; 14:98-135. [PMID: 25565358 PMCID: PMC4851463 DOI: 10.1111/gbb.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF(1)) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF(1) antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.
Collapse
Affiliation(s)
- T. J. Phillips
- VA Portland Health Care System, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C. Reed
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - R. Pastor
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Area de Psicobiología, Universitat Jaume I, 12071 Castellón, Spain
- Department of Psychology, Reed College, Portland, OR, USA
| |
Collapse
|
181
|
Fuenzalida J, Galaz P, Araya KA, Slater PG, Blanco EH, Campusano JM, Ciruela F, Gysling K. Dopamine D1 and corticotrophin-releasing hormone type-2α receptors assemble into functionally interacting complexes in living cells. Br J Pharmacol 2014; 171:5650-64. [PMID: 25073922 PMCID: PMC4290708 DOI: 10.1111/bph.12868] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/05/2014] [Accepted: 07/23/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine and corticotrophin-releasing hormone (CRH; also known as corticotrophin-releasing factor) are key neurotransmitters in the interaction between stress and addiction. Repeated treatment with cocaine potentiates glutamatergic transmission in the rat basolateral amygdala/cortex pathway through a synergistic action of D1 -like dopamine receptors and CRH type-2α receptors (CRF2 α receptors). We hypothesized that this observed synergism could be instrumented by heteromers containing the dopamine D1 receptor and CRF2 α receptor. EXPERIMENTAL APPROACH D1 /CRF2 α receptor heteromerization was demonstrated in HEK293T cells using co-immunoprecipitation, BRET and FRET assays, and by using the heteromer mobilization strategy. The ability of D1 receptors to signal through calcium, when singly expressed or co-expressed with CRF2 α receptors, was evaluated by the calcium mobilization assay. KEY RESULTS D1 /CRF2 α receptor heteromers were observed in HEK293T cells. When singly expressed, D1 receptors were mostly located at the cell surface whereas CRF2 α receptors accumulated intracellularly. Interestingly, co-expression of both receptors promoted D1 receptor intracellular and CRF2 α receptor cell surface targeting. The heteromerization of D1 /CRF2 α receptors maintained the signalling through cAMP of both receptors but switched D1 receptor signalling properties, as the heteromeric D1 receptor was able to mobilize intracellular calcium upon stimulation with a D1 receptor agonist. CONCLUSIONS AND IMPLICATIONS D1 and CRF2 α receptors are capable of heterodimerization in living cells. D1 /CRF2 α receptor heteromerization might account, at least in part, for the complex physiological interactions established between dopamine and CRH in normal and pathological conditions such as addiction, representing a new potential pharmacological target.
Collapse
Affiliation(s)
- J Fuenzalida
- Millennium Nucleus in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Smith ML, Li J, Ryabinin AE. Increased alcohol consumption in urocortin 3 knockout mice is unaffected by chronic inflammatory pain. Alcohol Alcohol 2014; 50:132-9. [PMID: 25451237 DOI: 10.1093/alcalc/agu084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AIMS Stress neurocircuitry may modulate the relationship between alcohol drinking and chronic pain. The corticotropin-releasing factor (CRF) system is crucial for regulation of stress responses. The current study aimed to elucidate the role of the endogenous CRF ligand Urocortin 3 (Ucn3) in the relationship between alcohol drinking behavior and chronic pain using a genetic approach. METHODS Ucn3 (KO) and wildtype (WT) littermates were subjected to a 24-h access drinking procedure prior to and following induction of chronic inflammatory pain. RESULTS Ucn3 KO mice displayed significantly increased ethanol intake and preference compared with WT across the time course. There were no long-term effects of chronic pain on alcohol drinking behavior, regardless of genotype, nor any evidence for alcohol-induced analgesia. CONCLUSION The increased drinking in Ucn3 KO supports a role for this peptide in alcohol-related behavior. These data suggest the necessity for more research exploring the relationship between alcohol drinking, chronic pain and the CRF system in rodent models.
Collapse
Affiliation(s)
- Monique L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| | - Ju Li
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239-3098, USA
| |
Collapse
|
183
|
Food addiction: an evolving nonlinear science. Nutrients 2014; 6:5370-91. [PMID: 25421535 PMCID: PMC4245594 DOI: 10.3390/nu6115370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to familiarize readers with the role that addiction plays in the formation and treatment of obesity, type 2 diabetes and disorders of eating. We will outline several useful models that integrate metabolism, addiction, and human relationship adaptations to eating. A special effort will be made to demonstrate how the use of simple and straightforward nonlinear models can and are being used to improve our knowledge and treatment of patients suffering from nutritional pathology. Moving forward, the reader should be able to incorporate some of the findings in this review into their own practice, research, teaching efforts or other interests in the fields of nutrition, diabetes, and/or bariatric (weight) management.
Collapse
|
184
|
Knockdown of CRF1 receptors in the ventral tegmental area attenuates cue- and acute food deprivation stress-induced cocaine seeking in mice. J Neurosci 2014; 34:11560-70. [PMID: 25164654 DOI: 10.1523/jneurosci.4763-12.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Corticotrophin-releasing factor (CRF) modulates the influence of stress on cocaine reward and reward seeking acting at multiple sites, including the ventral tegmental area (VTA). There is controversy, however, concerning the contribution of CRF receptor type 1 (CRFR1) to this effect and whether CRF within the VTA is involved in other aspects of reward seeking independent of acute stress. Here we examine the role of CRFR1 within the VTA in relation to cocaine and natural reward using viral delivery of short hairpin RNAs (lenti-shCRFR1) and investigate the effect on operant self-administration and motivation to self-administer, as well as stress- and cue-induced reward seeking in mice. While knockdown of CRFR1 in the VTA had no effect on self-administration behavior for either cocaine or sucrose, it effectively blocked acute food deprivation stress-induced reinstatement of cocaine seeking. We also observed reduced cue-induced cocaine seeking assessed in a single extinction session after extended abstinence, but cue-induced sucrose seeking was unaffected, suggesting dissociation between the contribution of CRFR1 in the VTA in cocaine reward and sucrose and cocaine seeking. Further, our data indicate a role for VTA CRFR1 signaling in cocaine seeking associated with, and independent of, stress potentially involving conditioning and/or salience attribution of cocaine reward-related cues. CRFR1 signaling in the VTA therefore presents a target for convergent effects of both cue- and stress-induced cocaine-seeking pathways.
Collapse
|
185
|
Affiliation(s)
- Tracy L Bale
- Neuroscience Center SOVM, University of Pennsylvania, 201E Vet, 6046, 3800 Spruce Street, Philadelphia, PA 19104-6046, United States.
| |
Collapse
|