151
|
|
152
|
McGowan CP, Kram R, Neptune RR. Modulation of leg muscle function in response to altered demand for body support and forward propulsion during walking. J Biomech 2009; 42:850-6. [PMID: 19249784 DOI: 10.1016/j.jbiomech.2009.01.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/19/2008] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
Abstract
A number of studies have examined the functional roles of individual muscles during normal walking, but few studies have examined which are the primary muscles that respond to changes in external mechanical demand. Here we use a novel combination of experimental perturbations and forward dynamics simulations to determine how muscle mechanical output and contributions to body support and forward propulsion are modulated in response to independent manipulations of body weight and body mass during walking. Experimentally altered weight and/or mass were produced by combinations of added trunk loads and body weight support. Simulations of the same experimental conditions were used to determine muscle contributions to the vertical ground reaction force impulse (body support) and positive horizontal trunk work (forward propulsion). Contributions to the vertical impulse by the soleus, vastii and gluteus maximus increased (decreased) in response to increases (decreases) in body weight; whereas only the soleus increased horizontal work output in response to increased body mass. In addition, soleus had the greatest absolute contribution to both vertical impulse and horizontal trunk work, indicating that it not only provides the largest contribution to both body support and forward propulsion, but the soleus is also the primary mechanism to modulate the mechanical output of the leg in response to increased (decreased) need for body support and forward propulsion. The data also showed that a muscle's contribution to a specific task is likely not independent of its contribution to other tasks (e.g., body support vs. forward propulsion).
Collapse
Affiliation(s)
- C P McGowan
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712-0292, USA.
| | | | | |
Collapse
|
153
|
Abstract
Muscle synergies have been proposed as building blocks that could simplify the construction of motor behaviors. However, the muscles within synergistic groups may have different architectures, mechanical linkages to the skeleton, and biochemical properties, and these put competing demands on the most appropriate way to activate them for different mechanical tasks. This study identifies the extent to which synergistic patterns of muscle activity vary when the mechanical demands on a limb were altered, and additionally identifies how consistent the spectral profiles of the electromyographic (EMG) intensities were across the different movement tasks. The muscle activities were measured with surface EMG across 10 muscles in the leg during cycling at a range of loads and velocities. The EMGs were quantified by their intensities in time-frequency space using wavelet analysis; the instantaneous patterns of activity identified using principal component analysis, statistically compared and further visualized using the varimax rotation. Variability (35.7%) in the patterns of activity between the muscles were correlated with the torque and velocity of the pedal crank. Anatomic groups of muscles share a common mechanical action across a joint; uncoupling between such muscles was identified in 68.8% of the varimax patterns that encompassed all 10 muscles and 20.8-29.5% of the activity patterns when the anatomic groups were analyzed separately. The EMG spectra showed greatest heterogeneity for the gastrocnemii. These results show that the activity of muscles within anatomic groups is partially uncoupled in response to altered mechanical demands on the limb.
Collapse
Affiliation(s)
- James M Wakeling
- School of Kinesiology, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
154
|
Abstract
The authors review the available experimental evidence on what people do when they grasp an object with several digits and then manipulate it. The article includes three parts, each addressing a specific aspect of multifinger prehension. In the first part, the authors discuss manipulation forces (i.e., the resultant force and moment of force exerted on the object) and the digits' contribution to such forces' production. The second part deals with internal forces defined as forces that cancel each other and do not disturb object equilibrium. The authors discuss the role of the internal forces in maintaining the object stability, with respect to such issues as slip prevention, tilt prevention, and resistance to perturbations. The third part is devoted to the motor control of prehension. It covers such topics as prehension synergies, chain effects, the principle of superposition, interfinger connection matrices and reconstruction of neural commands, mechanical advantage of the fingers, and the simultaneous digit adjustment to several mutually reinforcing or conflicting demands.
Collapse
Affiliation(s)
- Vladimir M Zatsiorsky
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
155
|
Neptune RR, Sasaki K, Kautz SA. The effect of walking speed on muscle function and mechanical energetics. Gait Posture 2008; 28:135-43. [PMID: 18158246 PMCID: PMC2409271 DOI: 10.1016/j.gaitpost.2007.11.004] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 10/03/2007] [Accepted: 11/10/2007] [Indexed: 02/02/2023]
Abstract
Modulating speed over a large range is important in walking, yet understanding how the neuromotor patterns adapt to the changing energetic demands of different speeds is not well understood. The purpose of this study was to identify functional and energetic adaptations in individual muscles in response to walking at faster steady-state speeds using muscle-actuated forward dynamics simulations. The simulation data were invariant with speed as to whether muscles contributed to trunk support, forward propulsion or leg swing. Trunk support (vertical acceleration) was provided primarily by the hip and knee extensors in early stance and the plantar flexors in late stance, while trunk propulsion (horizontal acceleration) was provided primarily by the soleus and rectus femoris in late stance, and these muscle contributions all systematically increased with speed. The results also highlighted the importance of initiating and controlling leg swing as there was a dramatic increase at the higher walking speeds in iliopsoas muscle work to accelerate the leg in pre- and early swing, and an increase in the biarticular hamstring muscle work to decelerate the leg in late swing. In addition, walking near self-selected speeds (1.2m/s) improves the utilization of elastic energy storage and recovery in the uniarticular ankle plantar flexors and reduces negative fiber work, when compared to faster or slower speeds. These results provide important insight into the neuromotor mechanisms underlying speed regulation in walking and provide the foundation on which to investigate the influence of walking speed on various neuromotor measures of interest in pathological populations.
Collapse
Affiliation(s)
- Richard R Neptune
- Department of Mechanical Engineering, The University of Texas, 1 University Station C2200, Austin, TX, USA.
| | | | | |
Collapse
|
156
|
Chapman AR, Vicenzino B, Blanch P, Hodges PW. Patterns of leg muscle recruitment vary between novice and highly trained cyclists. J Electromyogr Kinesiol 2008; 18:359-71. [PMID: 17258470 DOI: 10.1016/j.jelekin.2005.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 08/11/2005] [Accepted: 12/10/2005] [Indexed: 10/23/2022] Open
Abstract
This study compared patterns of leg muscle recruitment and coactivation, and the relationship between muscle recruitment, coactivation and cadence, in novice and highly trained cyclists. Electromyographic (EMG) activity of tibialis anterior (TA), tibialis posterior (TP), peroneus longus (PL), gastrocnemius lateralis (GL) and soleus (SOL) was recorded using intramuscular fine-wire electrodes. Four experimental conditions of varying cadence were investigated. Differences were evident between novice and highly trained cyclists in the recruitment of all muscles. Novice cyclists were characterized by greater individual variance, greater population variance, more extensive and more variable muscle coactivation, and greater EMG amplitude in periods between primary EMG bursts. Peak EMG amplitude increased linearly with cadence and was not different at individual preferred cadence in either novice or highly trained cyclists. However, EMG amplitude in periods between primary EMG bursts, as well as the duration of primary EMG bursts, increased with increasing cadence in novice cyclists but were not influenced by cadence in highly trained cyclists. Our findings suggest that muscle recruitment is highly skilled in highly trained cyclists and less refined in novice cyclists. More skilled muscle recruitment in highly trained cyclists is likely a result of neuromuscular adaptations due to repeated performance of the cycling movement in training and competition.
Collapse
Affiliation(s)
- Andrew R Chapman
- Division of Physiotherapy, The University of Queensland, Australia.
| | | | | | | |
Collapse
|
157
|
Rankin JW, Neptune RR. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. J Biomech 2008; 41:1494-502. [PMID: 18395213 DOI: 10.1016/j.jbiomech.2008.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 01/23/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
Previous studies have sought to improve cycling performance by altering various aspects of the pedaling motion using novel crank-pedal mechanisms and non-circular chainrings. However, most designs have been based on empirical data and very few have provided significant improvements in cycling performance. The purpose of this study was to use a theoretical framework that included a detailed musculoskeletal model driven by individual muscle actuators, forward dynamic simulations and design optimization to determine if cycling performance (i.e., maximal power output) could be improved by optimizing the chainring shape to maximize average crank power during isokinetic pedaling conditions. The optimization identified a consistent non-circular chainring shape at pedaling rates of 60, 90 and 120 rpm with an average eccentricity of 1.29 that increased crank power by an average of 2.9% compared to a conventional circular chainring. The increase in average crank power was the result of the optimal chainrings slowing down the crank velocity during the downstroke (power phase) to allow muscles to generate power longer and produce more external work. The data also showed that chainrings with higher eccentricity increased negative muscle work following the power phase due to muscle activation-deactivation dynamics. Thus, the chainring shape that maximized average crank power balanced these competing demands by providing enough eccentricity to increase the external work generated by muscles during the power phase while minimizing negative work during the subsequent recovery phase.
Collapse
Affiliation(s)
- Jeffery W Rankin
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
158
|
Sasaki K, Neptune RR, Burnfield JM, Mulroy SJ. Muscle compensatory mechanisms during able-bodied toe walking. Gait Posture 2008; 27:440-6. [PMID: 17624784 DOI: 10.1016/j.gaitpost.2007.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/28/2007] [Accepted: 05/25/2007] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to use muscle-actuated forward dynamic simulations to quantify individual muscle contributions to body support (vertical ground reaction force) and propulsion (horizontal ground reaction force) and the mechanical energetics of the body segments during toe and heel-toe walking performed by able-bodied subjects to identify possible compensatory mechanisms necessary to toe walk. The simulations showed that an increased magnitude of plantar flexor power output in early stance, which was necessary to maintain the equinus posture during toe walking, contributed to body support and acted to brake (decelerate) the center-of-mass in the horizontal direction. This in turn required a reduction in the contributions to support from the vastii, gluteus maximus and biarticular hamstring muscles and decreased contributions to braking from the vastii and to a lesser extent the gluteus maximus. In late stance, the soleus contributed less to body support and forward propulsion during toe walking, which when combined with the increased braking by the plantar flexors in early stance, required a prolonged contribution to forward propulsion from the hamstrings from mid- to late stance. The multiple compensatory mechanisms necessary to toe walk have important implications for distinguishing between underlying pathology and necessary compensatory mechanisms, as well as for identifying the most appropriate treatment strategy for equinus gait.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
159
|
CHAPMAN ANDREWROBERT, VICENZINO BILL, BLANCH PETER, HODGES PAULW. Is Running Less Skilled in Triathletes Than Runners Matched for Running Training History? Med Sci Sports Exerc 2008; 40:557-65. [DOI: 10.1249/mss.0b013e31815e727a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
160
|
Hakansson NA, Hull ML. Influence of Pedaling Rate on Muscle Mechanical Energy in Low Power Recumbent Pedaling Using Forward Dynamic Simulations. IEEE Trans Neural Syst Rehabil Eng 2007; 15:509-16. [DOI: 10.1109/tnsre.2007.906959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
161
|
Bieuzen F, Lepers R, Vercruyssen F, Hausswirth C, Brisswalter J. Muscle activation during cycling at different cadences: Effect of maximal strength capacity. J Electromyogr Kinesiol 2007; 17:731-8. [PMID: 16996277 DOI: 10.1016/j.jelekin.2006.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/28/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022] Open
Abstract
The purpose of this study was to examine the influence of maximal strength capacity on muscle activation, during cycling, at three selected cadences: a low cadence (50 rpm), a high cadence (110 rpm) and the freely chosen cadence (FCC). Two groups of trained cyclists were selected on the basis of the different maximal isokinetic voluntary contraction values (MVCi) of their lower extremity muscles as follow: F(min) (lower MVCi group) and F(max) (higher MVCi group). All subjects performed three 4-min cycling exercises at a power output corresponding to 80% of the ventilatory threshold under the three cadences. Neuromuscular activity of vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF) was studied quantitatively (integrated electromyography, IEMG) and qualitatively (timing of muscle bursts during crank cycle). Cadence effects were observed on the EMG activity of VL muscle and on the burst onset of the BF, VL and RF muscles. A greater normalized EMG activity of VL muscle was observed for the F(min) group than the F(max) group at all cadences (respectively F(min) vs. F(max) at 50 rpm: 17+/-5% vs. 38+/-6%, FCC: 22+/-7% vs. 44+/-5% and 110 rpm: 21+/-6% vs. 45+/-6%). At FCC and 110 rpm, the burst onset of BF and RF muscles of the F(max) group started earlier in the crank cycle than the F(min) group These results indicate that in addition to the cadence, the maximal strength capacity influences the lower extremity muscular activity during cycling.
Collapse
Affiliation(s)
- François Bieuzen
- Laboratoire d'Ergonomie Sportive, EA 3162, Université du Sud Toulon-Var, Avenue de l'Université, BP 132, 83957 LA Garde Cedex, France
| | | | | | | | | |
Collapse
|
162
|
McKay JL, Ting LH. Functional muscle synergies constrain force production during postural tasks. J Biomech 2007; 41:299-306. [PMID: 17980370 PMCID: PMC4350792 DOI: 10.1016/j.jbiomech.2007.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 09/07/2007] [Accepted: 09/15/2007] [Indexed: 11/28/2022]
Abstract
We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each muscle synergy rotated with the limb axis as the hindlimb posture varied in the sagittal plane. Here, we used a detailed, 3D static model of the hindlimb to confirm that this assumption is biomechanically plausible: as we varied the model posture, simulated synergy force vectors rotated monotonically with the limb axis in the parasagittal plane (r2=0.94+/-0.08). We then tested whether a neural strategy of using these five functional muscle synergies provides the same force-generating capability as controlling each of the 31 muscles individually. We compared feasible force sets (FFSs) from the model with and without a muscle synergy organization. FFS volumes were significantly reduced with the muscle synergy organization (F=1556.01, p<<0.01), and as posture varied, the synergy-limited FFSs changed in shape, consistent with changes in experimentally measured active forces. In contrast, nominal FFS shapes were invariant with posture, reinforcing prior findings that postural forces cannot be predicted by hindlimb biomechanics alone. We propose that an internal model for postural force generation may coordinate functional muscle synergies that are invariant in intrinsic limb coordinates, and this reduced-dimension control scheme reduces the set of forces available for postural control.
Collapse
Affiliation(s)
- J. Lucas McKay
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lena H. Ting
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, 313 Ferst Drive, Atlanta, GA, 30322-0535, USA
| |
Collapse
|
163
|
Chapman AR, Vicenzino B, Blanch P, Knox JJ, Dowlan S, Hodges PW. The influence of body position on leg kinematics and muscle recruitment during cycling. J Sci Med Sport 2007; 11:519-26. [PMID: 17719847 DOI: 10.1016/j.jsams.2007.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 04/13/2007] [Accepted: 04/15/2007] [Indexed: 11/18/2022]
Abstract
The effects of upper body orientation on neuromuscular control of the leg during cycling are not well understood. Our aim was to investigate the effects of upper body orientation on control of movement of distal leg segments during cycling. We compared three-dimensional leg and foot kinematics and muscle recruitment patterns between upright and aerodynamic riding positions. Comparisons were made between 10 elite cyclists, 10 elite triathletes and 10 novice cyclists. We found that upper body orientation did not influence kinematics of the leg and foot or primary muscle activity (i.e., the main bursts of muscle activity). The aerodynamic riding position was, however, associated with less modulation of muscle activity (i.e., less relaxation of the muscle during secondary muscle activity) and greater coactivity in elite triathletes and novice cyclists. Our results suggest that orientation of the upper body influences neuromuscular control of the leg during cycling in elite triathletes and novice cyclists. The change in muscle recruitment (i.e., the change in how the goal movement was achieved) implies that the ability of the central nervous system to execute the cycling movement in the most skilled manner was adversely influenced by upper body orientation in elite triathletes and novice cyclists. Less modulation of muscle activity and greater coactivation in elite triathletes when cycling in the aerodynamic position, and the similarity of changes shown in elite triathletes and novice cyclists, may be interpreted as further evidence of less skilled control of movement in elite triathletes when compared to cyclists matched for cycling training history.
Collapse
Affiliation(s)
- Andrew R Chapman
- Division of Physiotherapy, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
164
|
van Antwerp KW, Burkholder TJ, Ting LH. Inter-joint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb. J Biomech 2007; 40:3570-9. [PMID: 17640652 PMCID: PMC4346316 DOI: 10.1016/j.jbiomech.2007.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 05/08/2007] [Accepted: 06/04/2007] [Indexed: 11/19/2022]
Abstract
The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and accelerations of 31 muscles in a 7 degree-of-freedom, three-dimensional model of the cat hindlimb. To test the effects of inter-joint coupling, we systematically immobilized the joints (excluded kinematic degrees of freedom) and evaluated how the endpoint force and acceleration directions changed for each muscle in 7 different conditions. We hypothesized that altered inter-joint coupling due to joint immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or acceleration direction by more than 90 degrees in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with behaviorally observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and distal muscles to produce functional endpoint actions during motor tasks.
Collapse
Affiliation(s)
- Keith W van Antwerp
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, 313 Ferst Drive, Atlanta, GA 30322-0535, USA
| | | | | |
Collapse
|
165
|
Samozino P, Horvais N, Hintzy F. Why does power output decrease at high pedaling rates during sprint cycling? Med Sci Sports Exerc 2007; 39:680-7. [PMID: 17414806 DOI: 10.1249/mss.0b013e3180315246] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The objective of this study was to partly explain, from electromyographical (EMG) activity, the decrease in power output beyond optimal pedaling rate (PRopt) during sprint cycling. METHODS Eleven cyclists performed four 8-s nonisokinetic sprints on a cycle ergometer against four randomized friction loads (0.5, twice 0.75, and 0.9 N x kg(-1) of body mass). Power output and EMG activity of both right and left gluteus maximus, rectus femoris, biceps femoris, and vastus lateralis were measured continuously. Individual crank cycles were analyzed. Crank angles corresponding to the beginning and the peak of each downstroke and EMG burst onset and offset crank angles were computed. Moreover, crank angles corresponding to the beginning and the end of muscle force response were determined assuming a 100-ms lag time between the EMG activity and the relevant force response (or electromechanical delay). RESULTS Muscle coordination (EMG onset and offset) was altered at high pedaling rates. Thus, crank angles corresponding to muscle force response increased significantly with pedaling rate. Consequently, at pedaling rates higher than the optimal pedaling rate, force production of lower-limb extensor muscles was shifted later in the crank cycle. Mechanical data confirmed that downstrokes occurred later in the crank cycle when pedaling rate increased. Hence, force was produced on the pedals during less effective crank cycle sectors of the downstroke and during the beginning of the upstroke. CONCLUSION During nonisokinetic sprint cycling, the decrease in power output when pedaling rates increased beyond PRopt may be partly explained by suboptimal muscle coordination.
Collapse
Affiliation(s)
- Pierre Samozino
- Research Unit of Physiology and Physiopathology of Exercise and Handicap, University of Saint-Etienne, Saint-Etienne, France.
| | | | | |
Collapse
|
166
|
Chapman AR, Vicenzino B, Blanch P, Hodges PW. Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads. Exp Brain Res 2007; 181:503-18. [PMID: 17549464 DOI: 10.1007/s00221-007-0949-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
Studies of arm movements suggest that interference with motor learning occurs when multiple tasks are practiced in sequence or with short interim periods. However, interference with learning has only been studied during training periods of 1-7 days and it is not known if interference with learning continues during long-term multitask training. This study investigated muscle recruitment in highly trained triathletes, who swim, cycle and run sequentially during training and competition. Comparisons were made to highly trained and novice cyclists, i.e. between trained multidiscipline, trained single-discipline and novice single-discipline athletes, to investigate adaptations of muscle recruitment that occur in response to ongoing multitask, or multidiscipline, training. Electromyographic (EMG) activity of five leg muscles, tibialis anterior, tibialis posterior, peroneus longus, gastrocnemius lateralis and soleus muscles, was recorded during cycling using intramuscular fine-wire electrodes. Differences were found between trained triathletes and trained cyclists in recruitment of all muscles, and patterns of muscle recruitment in trained triathletes were similar to those recorded in novice cyclists. More specifically, triathletes and novice cyclists were characterised by greater sample variance (i.e. greater variation between athletes), greater variation in muscle recruitment patterns between pedal strokes for individual cyclists, more extensive and more variable muscle coactivation, and less modulation of muscle activity (i.e. greater EMG amplitude between primary EMG bursts). In addition, modulation of muscle activity decreased with increasing cadence (i.e. the amplitude and duration of muscle activity was greater at higher movement speeds) in both triathletes and novice cyclists but modulation of muscle activity was not influenced by cadence in trained cyclists. Our findings imply that control of muscle recruitment is less developed in triathletes than in cyclists matched for cycling training loads, which suggests that multidiscipline training may interfere with adaptation of the neuromuscular system to cycling training in triathletes.
Collapse
Affiliation(s)
- Andrew R Chapman
- Division of Physiotherapy, The University of Queensland, Brisbane, QLD, Australia.
| | | | | | | |
Collapse
|
167
|
Rouffet DM, Hautier CA. EMG normalization to study muscle activation in cycling. J Electromyogr Kinesiol 2007; 18:866-78. [PMID: 17507240 DOI: 10.1016/j.jelekin.2007.03.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 03/20/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022] Open
Abstract
The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque-velocity test (T-V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque-velocity bicycling tests (T-V). Then, the reference EMG signals obtained from IMVC and T-V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T-V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99+/-43% higher (p<0.001) when measured during T-V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T-V bicycling normalization method (GMAX: 0.33+/-0.16 vs. 1.09+/-0.04, VL: 0.07+/-0.02 vs. 0.64+/-0.14, SOL: 0.07+/-0.03 vs. 1.00+/-0.07, RF: 1.21+/-0.20 vs. 0.92+/-0.13, BF: 1.47+/-0.47 vs. 0.84+/-0.11). It was concluded that T-V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.
Collapse
Affiliation(s)
- David M Rouffet
- Centre of Research and Innovation on Sport (CRIS) EA 647, University Claude Bernard, Lyon I, 27-29 Boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France.
| | | |
Collapse
|
168
|
Goldberg EJ, Neptune RR. Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness. Gait Posture 2007; 25:360-7. [PMID: 16720095 DOI: 10.1016/j.gaitpost.2006.04.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 04/16/2006] [Accepted: 04/18/2006] [Indexed: 02/02/2023]
Abstract
Compared to young adults, older adults exhibit a slower walking speed, smaller step length, shorter swing phase time and decreased range of motion in their lower extremity joints. The underlying mechanisms causing these gait adaptations is not well understood, with various musculoskeletal parameters being put forth as contributing factors, including increased joint stiffness and decreased isometric muscle strength. The objective of this study was to identify the necessary compensatory mechanisms to overcome such musculoskeletal deficits and regain a normal walking pattern. Understanding these mechanisms has important implications for designing effective rehabilitation interventions for older adults that target specific muscle groups and properties (e.g., isometric strength versus joint stiffness) to improve gait performance. Muscle-actuated forward dynamics simulations of normal walking were analyzed to quantify compensatory mechanisms in the presence of muscle weakness in specific muscle groups and increased hip joint stiffness. Of particular importance were the compensatory mechanisms provided by the plantar flexors, which were shown to be able to compensate for many musculoskeletal deficits, including diminished muscle strength in the hip and knee flexors and extensors and increased hip joint stiffness. This importance was further highlighted when a normal walking pattern could not be achieved through compensatory action of other muscle groups when the uniarticular and biarticular plantar flexor strength was decreased as a group. Thus, rehabilitation or preventative exercise programs may consider focusing on increasing or maintaining plantar flexor strength, which appears critical to maintaining normal walking mechanics.
Collapse
Affiliation(s)
- Evan J Goldberg
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
169
|
Erdemir A, McLean S, Herzog W, van den Bogert AJ. Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon) 2007; 22:131-54. [PMID: 17070969 DOI: 10.1016/j.clinbiomech.2006.09.005] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 02/07/2023]
Abstract
Estimation of individual muscle forces during human movement can provide insight into neural control and tissue loading and can thus contribute to improved diagnosis and management of both neurological and orthopaedic conditions. Direct measurement of muscle forces is generally not feasible in a clinical setting, and non-invasive methods based on musculoskeletal modeling should therefore be considered. The current state of the art in clinical movement analysis is that resultant joint torques can be reliably estimated from motion data and external forces (inverse dynamic analysis). Static optimization methods to transform joint torques into estimates of individual muscle forces using musculoskeletal models, have been known for several decades. To date however, none of these methods have been successfully translated into clinical practice. The main obstacles are the lack of studies reporting successful validation of muscle force estimates, and the lack of user-friendly and efficient computer software. Recent advances in forward dynamics methods have opened up new opportunities. Forward dynamic optimization can be performed such that solutions are less dependent on measured kinematics and ground reaction forces, and are consistent with additional knowledge, such as the force-length-velocity-activation relationships of the muscles, and with observed electromyography signals during movement. We conclude that clinical applications of current research should be encouraged, supported by further development of computational tools and research into new algorithms for muscle force estimation and their validation.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Department of Biomedical Engineering (ND-20), The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
170
|
Neptune RR, Burnfield JM, Mulroy SJ. The neuromuscular demands of toe walking: A forward dynamics simulation analysis. J Biomech 2007; 40:1293-300. [PMID: 16842801 DOI: 10.1016/j.jbiomech.2006.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 05/20/2006] [Indexed: 10/24/2022]
Abstract
Toe walking is a gait deviation with multiple etiologies and often associated with premature and prolonged ankle plantar flexor electromyographic activity. The goal of this study was to use a detailed musculoskeletal model and forward dynamical simulations that emulate able-bodied toe and heel-toe walking to understand why, despite an increase in muscle activity in the ankle plantar flexors during toe walking, the internal ankle joint moment decreases relative to heel-toe walking. The simulations were analyzed to assess the force generating capacity of the plantar flexors by examining each muscle's contractile state (i.e., the muscle fiber length, velocity and activation). Consistent with experimental measurements, the simulation data showed that despite a 122% increase in soleus muscle activity and a 76% increase in gastrocnemius activity, the peak internal ankle moment in late stance decreased. The decrease was attributed to non-optimal contractile conditions for the plantar flexors (primarily the force-length relationship) that reduced their ability to generate force. As a result, greater muscle activity is needed during toe walking to produce a given muscle force level. In addition, toe walking requires greater sustained plantar flexor force and moment generation during stance. Thus, even though toe walking requires lower peak plantar flexor forces that might suggest a compensatory advantage for those with plantar flexor weakness, greater neuromuscular demand is placed on those muscles. Therefore, medical decisions concerning whether to reduce equinus should consider not only the impact on the ankle moment, but also the expected change to the plantar flexor's force generating capacity.
Collapse
Affiliation(s)
- Richard R Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station C2200, Austin, TX 78712, USA.
| | | | | |
Collapse
|
171
|
Van Sickle JR, Hull ML. Is economy of competitive cyclists affected by the anterior–posterior foot position on the pedal? J Biomech 2007; 40:1262-7. [PMID: 16901493 DOI: 10.1016/j.jbiomech.2006.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/29/2006] [Indexed: 11/24/2022]
Abstract
The primary purpose of this investigation was to test the hypothesis that cycling economy, as measured by rate of oxygen consumption (VO(2)) in healthy, young, competitive cyclists pedaling at a constant workrate, increases (i.e. VO(2) decreases) when the attachment point of the foot to the pedal is moved posteriorly on the foot. The VO(2) of 11 competitive cyclists (age 26.8+/-8.9 years) was evaluated on three separate days with three anterior-posterior attachment points of the foot to the pedal (forward=traditional; rear=cleat halfway between the head of the first metatarsal and the posterior end of the calcaneous; and mid=halfway between the rear and forward positions) on each day. With a randomly selected foot position, VO(2) was measured as each cyclist pedaled at steady state with a cadence of 90 rpm and with a power output corresponding to approximately 90% of their ventilatory threshold (VT) (mean power output 203.3+/-20.8 W). After heart rate returned to baseline, VO(2) was measured again as the subject pedaled with a different anterior-posterior foot position, followed by another rest period and then VO(2) was measured at the final foot position. The key finding of this investigation was that VO(2) was not affected by the anterior-posterior foot position either for the group (p=0.311) or for any individual subject (p>or=0.156). The VO(2) for the group was 2705+/-324, 2696+/-337, and 2747+/-297 ml/min for the forward, mid, and rear foot positions, respectively. The practical implication of these findings is that adjusting the anterior-posterior foot position on the pedal does not affect cycling economy in competitive cyclists pedaling at a steady-state power output eliciting approximately 90% of VT.
Collapse
Affiliation(s)
- J R Van Sickle
- Biomedical Engineering Graduate Group, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
172
|
Ting LH. Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. PROGRESS IN BRAIN RESEARCH 2007; 165:299-321. [PMID: 17925254 PMCID: PMC4121431 DOI: 10.1016/s0079-6123(06)65019-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass (CoM) position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task-variables such as CoM position in a predictable direction following postural perturbations. We propose a hierarchical feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low- and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation.
Collapse
Affiliation(s)
- Lena H Ting
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, 313 Ferst Drive, Atlanta, GA 30332-0535, USA.
| |
Collapse
|
173
|
Zmitrewicz RJ, Neptune RR, Sasaki K. Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J Biomech 2006; 40:1824-31. [PMID: 17045595 DOI: 10.1016/j.jbiomech.2006.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 07/24/2006] [Indexed: 11/26/2022]
Abstract
Energy storage and return (ESAR) foot-ankle prostheses have been developed in an effort to improve gait performance in lower-limb amputees. However, little is known about their effectiveness in providing the body segment mechanical energetics normally provided by the ankle muscles. The objective of this theoretical study was to use muscle-actuated forward dynamics simulations of unilateral transtibial amputee and non-amputee walking to identify the contributions of ESAR prostheses to trunk support, forward propulsion and leg swing initiation and how individual muscles must compensate in order to produce a normal, symmetric gait pattern. The simulation analysis revealed the ESAR prosthesis provided the necessary trunk support, but it could not provide the net trunk forward propulsion normally provided by the plantar flexors and leg swing initiation normally provided by the biarticular gastrocnemius. To compensate, the residual leg gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in early stance and late stance into pre-swing, respectively, while the residual iliopsoas delivered increased energy to the leg in pre- and early swing to help initiate swing. In the intact leg, the soleus, gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in the first half of stance, while the iliopsoas increased the leg energy it delivered in pre- and early swing. Thus, the energy stored and released by the ESAR prosthesis combined with these muscle compensations was able to produce a normal, symmetric gait pattern, although various neuromuscular and musculoskeletal constraints may make such a pattern non-optimal.
Collapse
Affiliation(s)
- Robert J Zmitrewicz
- Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712, USA
| | | | | |
Collapse
|
174
|
Duc S, Bouteille T, Bertucci W, Pernin JN, Grappe F. Comparaison de l'activité EMG du pédalage entre un exercice réalisé sur ergomètre stationnaire et sur tapis roulant motorisé. Sci Sports 2006. [DOI: 10.1016/j.scispo.2006.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
175
|
Camilleri MJ, Hull ML, Hakansson N. Sloped muscle excitation waveforms improve the accuracy of forward dynamic simulations. J Biomech 2006; 40:1423-32. [PMID: 16949082 DOI: 10.1016/j.jbiomech.2006.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 06/12/2006] [Indexed: 11/29/2022]
Abstract
Mathematical models of the muscle excitation are useful in forward dynamic simulations of human movement tasks. One objective was to demonstrate that sloped as opposed to rectangular excitation waveforms improve the accuracy of forward dynamic simulations. A second objective was to demonstrate the differences in simulated muscle forces using sloped versus rectangular waveforms. To fulfill these objectives, surface EMG signals from the triceps brachii and elbow joint angle were recorded and the intersegmental moment of the elbow joint was computed from 14 subjects who performed two cyclic elbow extension experiments at 200 and 300 deg/s. Additionally, the surface EMG signals from the leg musculature, joint angles, and pedal forces were recorded and joint intersegmental moments were computed during a more complex pedaling task (90 rpm at 250 W). Using forward dynamic simulations, four optimizations were performed in which the experimental intersegmental moment was tracked for the elbow extension tasks and four optimizations were performed in which the experimental pedal angle, pedal forces, and joint intersegmental moments were tracked for the pedaling task. In these optimizations the three parameters (onset and offset time, and peak excitation) defining the sloped (triangular, quadratic, and Hanning) and rectangular excitation waveforms were varied to minimize the difference between the simulated and experimentally tracked quantities. For the elbow extension task, the intersegmental elbow moment root mean squared error, onset timing error, and offset timing error were less from simulations using a sloped excitation waveform compared to a rectangular excitation waveform (p<0.001). The average and peak muscle forces were from 7% to 16% larger and 20-28% larger, respectively, when using a rectangular excitation waveform. The tracking error for pedaling also decreased when using a sloped excitation waveform, with the quadratic waveform generating the smallest tracking errors for both tasks. These results support the use of sloped over rectangular excitation waveforms to establish greater confidence in the results of forward dynamic simulations.
Collapse
Affiliation(s)
- M J Camilleri
- Biomedical Engineering Program, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
176
|
Torres-Oviedo G, Macpherson JM, Ting LH. Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 2006; 96:1530-46. [PMID: 16775203 DOI: 10.1152/jn.00810.2005] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently showed that four muscle synergies can reproduce multiple muscle activation patterns in cats during postural responses to support surface translations. We now test the robustness of functional muscle synergies, which specify muscle groupings and the active force vectors produced during postural responses under several biomechanically distinct conditions. We aimed to determine whether such synergies represent a generalized control strategy for postural control or if they are merely specific to each postural task. Postural responses to multidirectional translations at different fore-hind paw distances and to multidirectional rotations at the preferred stance distance were analyzed. Five synergies were required to adequately reconstruct responses to translation at the preferred stance distance-four were similar to our previous analysis of translation, whereas the fifth accounted for the newly added background activity during quiet stance. These five control synergies could account for > 80% total variability or r2 > 0.6 of the electromyographic and force tuning curves for all other experimental conditions. Forces were successfully reconstructed but only when they were referenced to a coordinate system that rotated with the limb axis as stance distance changed. Finally, most of the functional muscle synergies were similar across all of the six cats in terms of muscle synergy number, synergy activation patterns, and synergy force vectors. The robustness of synergy organization across perturbation types, postures, and animals suggests that muscle synergies controlling task-variables are a general construct used by the CNS for balance control.
Collapse
Affiliation(s)
- Gelsy Torres-Oviedo
- The Wallace H. Coulter Department of Biomedical Engineering, at Georgia Tech and Emory University, Atlanta, GA 30332-0535, USA
| | | | | |
Collapse
|
177
|
Sasaki K, Neptune RR. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Gait Posture 2006; 23:383-90. [PMID: 16029949 DOI: 10.1016/j.gaitpost.2005.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 05/18/2005] [Accepted: 05/23/2005] [Indexed: 02/02/2023]
Abstract
Mechanical and metabolic energy conservation is considered to be a defining characteristic in many common motor tasks. During human gait, the storage and return of elastic energy in compliant structures is an important energy saving mechanism that may reduce the necessary muscle fiber work and be an important determinant of the preferred gait mode (i.e., walk or run) at a given speed. In the present study, the mechanical work done by individual muscle fibers and series-elastic elements (SEE) was quantified using a musculoskeletal model and forward dynamical simulations that emulated a group of young healthy adults walking and running above and below the preferred walk-run transition speed (PTS), and potential advantages associated with the muscle fiber-SEE interactions during these gait modes at each speed were assessed. The simulations revealed that: (1) running below the PTS required more muscle fiber work than walking, and inversely, walking above the PTS required more muscle fiber work than running, and (2) SEE utilization in running was greater above than below the PTS. These results support previous suggestions that muscle mechanical energy expenditure is an important determinant for the preferred gait mode at a given speed.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station C2200, Austin, TX 78712, USA
| | | |
Collapse
|
178
|
Weber CL, Chia M, Inbar O. Gender differences in anaerobic power of the arms and legs--a scaling issue. Med Sci Sports Exerc 2006; 38:129-37. [PMID: 16394965 DOI: 10.1249/01.mss.0000179902.31527.2c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Physiological variables must be scaled for body size differences to permit meaningful comparisons between groups. Using allometric scaling, this study compared the anaerobic performance, using both arms and legs, of men and women. Ten active male and 10 active female subjects performed the leg cycling and arm cranking in a 30-s all-out Wingate test (WAnT). Regional measurements of the legs, gluteal area, arms, and torso taken using dual-energy x-ray absorptiometry (DXA) served as indicators of lower body active musculature (LBAMM) and upper body (UBAMM) active musculature. RESULTS Body mass (BM) was the best predictor (i.e., r = 0.93-0.96) for peak power (PP) and mean power (MP) generated from sprint cycling and arm cranking. Sex differences for leg and arm power (i.e., PP and MP) were identified in absolute terms and then expressed in ratio to BM(1.0). When the same data were allometrically scaled to BM and expressed as power function ratios (Power;BM(b)), the sex differences in PP and MP for sprint cycling were nullified (female:male ratio x 100: 100-103%), but remained for arm cranking (female:male power ratio x 100: 69-84%). CONCLUSIONS These results confirmed that anaerobic power of the upper body and lower body were best normalized to BM and, when statistically appropriate methods were used to take into account differences in BM, PP, and MP generated from sprint cycling were similar for both men and women. In contrast, after allometric scaling for BM, men remained more powerful than women for the supramaximal arm cranking task. Qualitative differences in the upper body musculature between men and women are speculated to account for the more powerful performance of men, but confirmatory evidence using noninvasive techniques is warranted.
Collapse
Affiliation(s)
- Clare L Weber
- School of Physiotherapy and Exercise Science, Griffith University Gold Coast, Queensland, Australia
| | | | | |
Collapse
|
179
|
Chapman AR, Vicenzino B, Blanch P, Knox JJ, Hodges PW. Leg muscle recruitment in highly trained cyclists. J Sports Sci 2006; 24:115-24. [PMID: 16368620 DOI: 10.1080/02640410500131159] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, we examined patterns of leg muscle recruitment and co-activation, and the relationship between muscle recruitment and cadence, in highly trained cyclists. Electromyographic (EMG) activity of the tibialis anterior, tibialis posterior, peroneus longus, gastrocnemius lateralis and soleus was recorded using intramuscular electrodes, at individual preferred cadence, 57.5, 77.5 and 92.5 rev . min(-1). The influence of electrode type and location on recorded EMG was also investigated using surface and dual intramuscular recordings. Muscle recruitment patterns varied from those previously reported, but there was little variation in muscle recruitment between these highly trained cyclists. The tibialis posterior, peroneus longus and soleus were recruited in a single, short burst of activity during the downstroke. The tibialis anterior and gastrocnemius lateralis were recruited in a biphasic and alternating manner. Contrary to existing hypotheses, our results indicate little co-activation between the tibialis posterior and peroneus longus. Peak EMG amplitude increased linearly with cadence and did not decrease at individual preferred cadence. There was little variation in patterns of muscle recruitment or co-activation with changes in cadence. Intramuscular electrode location had little influence on recorded EMG. There were significant differences between surface and intramuscular recordings from the tibialis anterior and gastrocnemius lateralis, which may explain differences between our findings and those of previous studies.
Collapse
Affiliation(s)
- Andrew R Chapman
- Division of Physiotherapy, The University of Queensland, Brisbane, QLD, Australia.
| | | | | | | | | |
Collapse
|
180
|
Scovil CY, Ronsky JL. Sensitivity of a Hill-based muscle model to perturbations in model parameters. J Biomech 2006; 39:2055-63. [PMID: 16084520 DOI: 10.1016/j.jbiomech.2005.06.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Musculoskeletal simulations of human movement commonly use Hill muscle models to predict muscle forces, but their sensitivity to model parameter values is not well understood. The purpose of this study was to evaluate muscle model sensitivity to perturbations in 14 Hill muscle model parameters in forward dynamic simulations of running and walking by varying each by +/-50%. Three evaluations of the muscle model were performed based on: (1) calculating the sensitivity of the muscle model only, (2) determining the continuous partial derivatives of the muscle equations with respect to each parameter, and (3) evaluating the effects on the running and walking simulations. Model evaluations were found to be very sensitive (percent change in outputs greater than parameter perturbation) to parameters defining the series elastic component (tendon), force-length curve of the contractile element and maximum isometric force. For some parameters, the range of literature values was larger than the model sensitivity. Model evaluations were insensitive to parameters defining the parallel elastic element, force-velocity curve of the contractile element and muscle activation time constants. The derivative method provided similar results, but also provided a generic, continuous equation that can easily be applied to other motions. The sensitivities of the running and walking simulations were reduced compared to the sensitivity of the muscle model alone. Results demonstrate the importance of evaluating sensitivity of a musculoskeletal simulation in a controlled manner and provide an indication of which parameters must be selected most carefully based on the sensitivity of a given movement.
Collapse
Affiliation(s)
- Carol Y Scovil
- Human Performance Laboratory & Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4
| | | |
Collapse
|
181
|
Higginson JS, Zajac FE, Neptune RR, Kautz SA, Burgar CG, Delp SL. Effect of equinus foot placement and intrinsic muscle response on knee extension during stance. Gait Posture 2006; 23:32-6. [PMID: 16311192 DOI: 10.1016/j.gaitpost.2004.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/06/2004] [Accepted: 11/21/2004] [Indexed: 02/02/2023]
Abstract
Equinus gait, a common movement abnormality among individuals with stroke and cerebral palsy, is often associated with knee hyperextension during stance. Whether there exists a causal mechanism linking equinus foot placement with knee hyperextension remains unknown. To investigate the response of the musculoskeletal system to equinus foot placement, a forward dynamic simulation of normal walking was perturbed by augmenting ankle plantarflexion by 10 degrees at initial contact. The subsequent effect on knee extension was assessed when the muscle forces were allowed, or not allowed, to change in response to altered kinematics and intrinsic force-length-velocity properties. We found that an increase in ankle plantarflexion at initial contact without concomitant changes in muscle forces caused the knee to hyperextend. The intrinsic force-length-velocity properties of muscle, particularly in gastrocnemius and vastus, diminished the effect of equinus posture alone, causing the abnormal knee extension to be less pronounced. We conclude that the effect of ankle position at initial contact on knee motion should be considered in the analysis of equinus gait.
Collapse
|
182
|
Martin L, Cahouët V, Ferry M, Fouque F. Optimization model predictions for postural coordination modes. J Biomech 2006; 39:170-6. [PMID: 16271601 DOI: 10.1016/j.jbiomech.2004.10.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 10/13/2004] [Indexed: 11/23/2022]
Abstract
This paper examines the ability of the dynamic optimization model to predict changes between in-phase and anti-phase postural modes of coordination and to evaluate influence of two particular environmental and intentional constraints on postural strategy. The task studied was based on an experimental paradigm that consisted in tracking a target motion with the head. An original optimal procedure was developed for cyclic problems to calculate hip and ankle angular trajectories during postural sway with a minimum torque change criterion. Optimization results give a good description of the sudden bifurcation phase between in-phase and anti-phase postural coordination modes in visual target tracking. Transition frequency and predicted effects of environmental and intentional constraints are also in line with experimental observations described in existing literature. In particular, these investigations pointed out that postural planning process can be related to the minimization of a dynamic cost criterion with an equilibrium constraint. In conclusion, the optimization technique is well suited for the prediction of postural modes of coordination and seems to offer many opportunities for better comprehension of neuromuscular movement control.
Collapse
Affiliation(s)
- Luc Martin
- Laboratoire Sport et Performance Motrice EA 597, UFRAPS Université Joseph Fourier, 38041 Grenoble cedex 9, France.
| | | | | | | |
Collapse
|
183
|
Gregersen CS, Hull ML, Hakansson NA. How Changing the Inversion/Eversion Foot Angle Affects the Nondriving Intersegmental Knee Moments and the Relative Activation of the Vastii Muscles in Cycling. J Biomech Eng 2005; 128:391-8. [PMID: 16706588 DOI: 10.1115/1.2193543] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nondriving intersegmental knee moment components (i.e., varus/valgus and internal/external axial moments) are thought to be primarily responsible for the etiology of overuse knee injuries such as patellofermoral pain syndrome in cycling because of their relationship to muscular imbalances. However the relationship between these moments and muscle activity has not been studied. Thus the four primary objectives of this study were to test whether manipulating the inversion/eversion foot angle alters the varus/valgus knee moment (Objective 1) and axial knee moment (Objective 2) and to determine whether activation patterns of the vastus medialis oblique (VMO), vastus lateralis (VL), and tensor fascia latae (TFL) were affected by changes in the varus/valgus (Objective 3) and axial knee moments (Objective 4). To fulfill these objectives, pedal loads and lower limb kinematic data were collected from 15 subjects who pedaled with five randomly assigned inversion/eversion angles: 10 deg and 5 deg everted and inverted and 0deg (neutral). A previously described mathematical model was used to compute the nondriving intersegmental knee moments throughout the crank cycle. The excitations of the VMO, VL, and TFL muscles were measured with surface electromyography and the muscle activations were computed. On average, the 10-deg everted position decreased the peak varus moment by 55% and decreased the peak internal axial moment by 53% during the power stroke (crank cycle region where the knee moment is extensor). A correlation analysis revealed that the VMO/VL activation ratio increased significantly and the TFL activation decreased significantly as the varus moment decreased. For both the VMO/VL activation ratio and the TFL activation, a path analysis indicated that the varus/valgus moment was highly correlated to the axial moment but that the correlation between muscle activation and the varus moment was due primarily to the varus/valgus knee moment rather than the axial knee moment. The conclusion from these results is that everting the foot may be beneficial towards either preventing or ameliorating patellofemoral pain syndrome in cycling.
Collapse
Affiliation(s)
- Colin S Gregersen
- Biomedical Engineering Program, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
184
|
Chen HY, Chen SC, Chen JJJ, Fu LL, Wang YL. Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns. J Electromyogr Kinesiol 2005; 15:587-95. [PMID: 16051498 DOI: 10.1016/j.jelekin.2005.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This aim of this study is to provide quantitative analyses of asymmetrical movements between affected and unaffected limbs for hemiparetic subjects in a cycling ergometer. To acquire kinesiological and kinematical data, electromyography (EMG) of quadriceps muscles in the both legs as well as crank positions under three cycling workloads were recorded. The symmetry index (SI) was designed to measure the similarity between muscle activities recorded from affected and unaffected limbs. Using kinematical information of the crank position, the cycling unsmoothness (denoted as roughness index, RI) can be derived from the curvature of the instantaneous cycling speed. Thirteen hemiparetic subjects following a cerebrovascular accident (CVA) and eight able-bodied subjects participated in this study. With total symmetry at SI=1, the average SIs of hemiparetic subjects (0.66+/-0.18) were significantly lower (p<0.01) than those of normal subjects (0.91+/-0.08) but no significant difference found among three workloads. From the average RI, subjects with hemiparesis exhibited less smooth cycling movements compared to normal group (p<0.01). Non-parametric Friedman and Wilcoxon tests of RIs further indicated that the workload factors are significantly different only for hemiparetic group (p<0.01). No significant difference between lower workloads in RIs showed that the CVA subjects' sound side alone can execute most of the cycling load with minimal involvement of the affected side under lower workload condition. When cycling at a heavier load, however, it is essential to force the affected limb to assist in the pedaling, thus accomplishing an effective cycling exercise. By combining these two quantitative indices, we can observe the kinesiological measurement of the symmetry of EMG phasic activities from SI and the kinematical cycling smoothness in a coordinated movement from RI, which could provide a clinical guideline for cycling exercises for hemiparetic subjects.
Collapse
Affiliation(s)
- Hsin-Yung Chen
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | |
Collapse
|
185
|
Camilleri MJ, Hull ML. Are the maximum shortening velocity and the shape parameter in a Hill-type model of whole muscle related to activation? J Biomech 2005; 38:2172-80. [PMID: 15992802 DOI: 10.1016/j.jbiomech.2004.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Mathematical models of the inter-relationship of muscle force, velocity, and activation are useful in forward dynamic simulations of human movement tasks. The objective of this work was to determine whether the parameters (maximum shortening velocity V(max) and shape parameter k) of a Hill-type muscle model, interrelating muscle force, velocity, and activation, are themselves dependent on the activation. To fulfill this objective, surface EMG signals from four muscles, as well as the kinematics and kinetics of the arm, were recorded from 14 subjects who performed rapid-release elbow extension tasks at 25%, 50%, 75%, and 100% activation (MVC). The experimental elbow flexion angle was tracked by a forward dynamic simulation of the task in which V(max) and k of the triceps brachii were varied at each activation level to minimize the difference between the simulated and experimental elbow flexion angle. Because a preliminary analysis demonstrated no dependency of k on activation, additional simulations were performed with constant k values of 0.15, 0.20, and 0.25. The optimized values of V(max) normalized to the average value within a subject were then regressed onto the activation. Normalized V(max) depended significantly on the activation (p<0.001) for all values of k. Furthermore, the estimated V(max) values were not sensitive to the selected k value. The results support the use of Hill-type models in which V(max) depends on activation in forward dynamic simulations modeling muscles with mixed fiber-type composition recruited in the range of 25-100% activation. The use of more accurate models will lend greater confidence to the results of forward dynamic simulations.
Collapse
Affiliation(s)
- M J Camilleri
- Biomedical Engineering Program, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
186
|
Behr M, Arnoux PJ, Serre T, Thollon L, Brunet C. Tonic Finite Element Model of the Lower Limb. J Biomech Eng 2005; 128:223-8. [PMID: 16524334 DOI: 10.1115/1.2165700] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is widely admitted that muscle bracing influences the result of an impact, facilitating fractures by enhancing load transmission and reducing energy dissipation. However, human numerical models used to identify injury mechanisms involved in car crashes hardly take into account this particular mechanical behavior of muscles. In this context, in this work we aim to develop a numerical model, including muscle architecture and bracing capability, focusing on lower limbs. The three-dimensional (3-D) geometry of the musculoskeletal system was extracted from MRI images, where muscular heads were separated into individual entities. Muscle mechanical behavior is based on a phenomenological approach, and depends on a reduced number of input parameters, i.e., the muscle optimal length and its corresponding maximal force. In terms of geometry, muscles are modeled with 3-D viscoelastic solids, guided in the direction of fibers with a set of contractile springs. Validation was first achieved on an isolated bundle and then by comparing emergency braking forces resulting from both numerical simulations and experimental tests on volunteers. Frontal impact simulation showed that the inclusion of muscle bracing in modeling dynamic impact situations can alter bone stresses to potentially injury-inducing levels.
Collapse
Affiliation(s)
- Michel Behr
- Laboratoire de Biomécanique Appliquée, UMRT24 INRETS/Université de la Méditerranée, Faculté de Medecine secteur nord, Bld Pierre Dramard, 13916 Marseille, France
| | | | | | | | | |
Collapse
|
187
|
Schutte JF, Koh BI, Reinbolt JA, Haftka RT, George AD, Fregly BJ. Evaluation of a particle swarm algorithm for biomechanical optimization. J Biomech Eng 2005; 127:465-74. [PMID: 16060353 PMCID: PMC1769323 DOI: 10.1115/1.1894388] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units. In this study we evaluate a recently-developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm's global search capabilities were investigated using a suite of difficult analytical test problems, while its scale-independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms--a global genetic algorithm (GA) and multistart gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units.
Collapse
Affiliation(s)
- Jaco F Schutte
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | | | | | | | | | | |
Collapse
|
188
|
Umberger BR, Gerritsen KGM, Martin PE. Muscle fiber type effects on energetically optimal cadences in cycling. J Biomech 2005; 39:1472-9. [PMID: 15923008 DOI: 10.1016/j.jbiomech.2005.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 03/28/2005] [Indexed: 11/30/2022]
Abstract
Fast-twitch (FT) and slow-twitch (ST) muscle fibers vary in their mechanical and energetic properties, and it has been suggested that muscle fiber type distribution influences energy expenditure and the energetically optimal cadence during pedaling. However, it is challenging to experimentally isolate the effects of muscle fiber type on pedaling energetics. In the present study, a modeling and computer simulation approach was used to test the dependence of muscle energy expenditure on pedaling rate during submaximal cycling. Simulations were generated using a musculoskeletal model at cadences from 40 to 120 rev min(-1), and the dynamic and energetic properties of the model muscles were scaled to represent a range of muscle fiber types. Energy expenditure and the energetically optimal cadence were found to be higher in a model with more FT fibers than a model with more ST fibers, consistent with predictions from the experimental literature. At the muscle level, mechanical efficiency was lower in the model with a greater proportion of FT fibers, but peaked at a higher cadence than in the ST model. Regardless of fiber type distribution, mechanical efficiency was low at 40 rev min(-1), increased to a broad plateau between 60 and 100 rev min(-1) , and decreased substantially at 120 rev min(-1). In conclusion, muscle fiber type distribution was confirmed as an important determinant of the energetics of pedaling.
Collapse
Affiliation(s)
- Brian R Umberger
- Biodynamics Laboratory, 100 Seaton Center, University of Kentucky, Lexington, KY 40506, USA.
| | | | | |
Collapse
|
189
|
|
190
|
Valero-Cuevas FJ. An integrative approach to the biomechanical function and neuromuscular control of the fingers. J Biomech 2005; 38:673-84. [PMID: 15713287 DOI: 10.1016/j.jbiomech.2004.04.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2004] [Indexed: 11/30/2022]
Abstract
The exquisite mechanical functionality and versatility of the human hand emerges from complex neuro-musculo-skeletal interactions that are not completely understood. I have found it useful to work within a theoretical/experimental paradigm that outlines the fundamental neuro-musculo-skeletal components and their interactions. In this integrative paradigm, the laws of mechanics, the specifications of the manipulation task, and the sensorimotor signals define the interactions among hand anatomy, the nervous system, and manipulation function. Thus, our collaborative research activities emphasize a firm grounding in the mechanics of finger function, insistence on anatomical detail, and meticulous characterization of muscle activity. This overview of our work on precision pinch (i.e., the ability to produce and control fingertip forces) presents some of our findings around three Research Themes: Mechanics-based quantification of manipulation ability; Anatomically realistic musculoskeletal finger models; and Neural control of finger muscles. I conclude that (i) driving the fingers to some limit of sensorimotor performance is instrumental to elucidating motor control strategies; (ii) that the cross-over of tendons from flexors to extensors in the extensor mechanism is needed to produce force in every direction, and (iii) the anatomical routing of multiarticular muscles makes co-contraction unavoidable for many tasks. Moreover, creating realistic and clinically useful finger models still requires developing new computational means to simulate the viscoelastic tendinous networks of the extensor mechanism, and the muscle-bone-ligament interactions in complex articulations. Building upon this neuromuscular biomechanics paradigm is of immense clinical relevance: it will be instrumental to the development of clinical treatments to preserve and restore manual ability in people suffering from neurological and orthopedic conditions. This understanding will also advance the design and control of robotic hands whose performance lags far behind that of their biological counterparts.
Collapse
Affiliation(s)
- Francisco J Valero-Cuevas
- Neuromuscular Biomechanics Laboratory, Sibley School of Mechanical and Aerospace Engineering, Cornell University, 220 Upson Hall, Ithaca, NY 14853, USA.
| |
Collapse
|
191
|
Neptune RR, Sasaki K. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J Exp Biol 2005; 208:799-808. [PMID: 15755878 DOI: 10.1242/jeb.01435] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The mechanisms that govern the voluntary transition from walking to running as walking speed increases in human gait are not well understood. The objective of this study was to examine the hypothesis that plantar flexor muscle force production is greatly impaired at the preferred transition speed(PTS) due to intrinsic muscle properties and, thus, serves as a determinant for the walk-to-run transition. The plantar flexors have been shown to be important contributors to satisfying the mechanical energetic demands of walking and are the primary contributors to the observed ground reaction forces (GRFs) during the propulsion phase. Thus, if the plantar flexor force production begins to diminish near the PTS despite an increase in muscle activation, then a corresponding decrease in the GRFs during the propulsion phase would be expected. This expectation was supported. Both the peak anterior/posterior and vertical GRFs decreased during the propulsion phase at walking speeds near the PTS. A similar decrease was not observed during the braking phase. Further analysis using forward dynamics simulations of walking at increasing speeds and running at the PTS revealed that all lower extremity muscle forces increased with walking speed, except the ankle plantar flexors. Despite an increase in muscle activation with walking speed, the gastrocnemius muscle force decreased with increasing speed, and the soleus force decreased for walking speeds exceeding 80% PTS. These decreases in force production were attributed to the intrinsic force–length–velocity properties of muscle. In addition, the running simulation analysis revealed that the plantar flexor forces nearly doubled for similar activation levels when the gait switched to a run at the PTS due to improved contractile conditions. These results suggest the plantar flexors may serve as an important determinant for the walk-to-run transition and highlight the important role intrinsic muscle properties play in determining the specific neuromotor strategies used in human locomotion.
Collapse
Affiliation(s)
- Richard R Neptune
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
192
|
Billaut F, Basset FA, Falgairette G. Muscle coordination changes during intermittent cycling sprints. Neurosci Lett 2005; 380:265-9. [PMID: 15862899 DOI: 10.1016/j.neulet.2005.01.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
Maximal muscle power is reported to decrease during explosive cyclical exercises owing to metabolic disturbances, muscle damage, and adjustments in the efferent neural command. The aim of the present study was to analyze the influence of inter-muscle coordination in fatigue occurrence during 10 intermittent 6-s cycling sprints, with 30-s recovery through electromyographic activity (EMG). Results showed a decrease in peak power output with sprint repetitions (sprint 1 versus sprint 10: -11%, P<0.01) without any significant modifications in the integrated EMG. The timing between the knee extensor and the flexor EMG activation onsets was reduced in sprint 10 (sprint 1 versus sprint 10: -90.2 ms, P<0.05), owing to an earlier antagonist activation with fatigue occurrence. In conclusion, the maximal power output, developed during intermittent cycling sprints of short duration, decreased possibly due to the inability of muscles to maintain maximal force. This reduction in maximal power output occurred in parallel to changes in the muscle coordination pattern after fatigue.
Collapse
Affiliation(s)
- François Billaut
- Laboratoire Ergonomie Sportive et Performance -- EA 3162, Université du Sud Toulon-Var, Avenue de l'Université, BP 132, 83957 La Garde Cedex, France.
| | | | | |
Collapse
|
193
|
Abstract
This review presents information that is useful to athletes, coaches and exercise scientists in the adoption of exercise protocols, prescription of training regimens and creation of research designs. Part 2 focuses on the factors that affect cycling performance. Among those factors, aerodynamic resistance is the major resistance force the racing cyclist must overcome. This challenge can be dealt with through equipment technological modifications and body position configuration adjustments. To successfully achieve efficient transfer of power from the body to the drive train of the bicycle the major concern is bicycle configuration and cycling body position. Peak power output appears to be highly correlated with cycling success. Likewise, gear ratio and pedalling cadence directly influence cycling economy/efficiency. Knowledge of muscle recruitment throughout the crank cycle has important implications for training and body position adjustments while climbing. A review of pacing models suggests that while there appears to be some evidence in favour of one technique over another, there remains the need for further field research to validate the findings. Nevertheless, performance modelling has important implications for the establishment of performance standards and consequent recommendations for training.
Collapse
Affiliation(s)
- Erik W Faria
- Exercise Physiology Laboratories, University of New Mexico, Albuquerque, USA
| | | | | |
Collapse
|
194
|
Hakansson NA, Hull ML. Functional Roles of the Leg Muscles When Pedaling in the Recumbent Versus the Upright Position. J Biomech Eng 2004; 127:301-10. [PMID: 15971708 DOI: 10.1115/1.1865192] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An understanding of the coordination of the leg muscles in recumbent pedaling would be useful to the design of rehabilitative pedaling exercises. The objectives of this work were to (i) determine whether patterns of muscle activity while pedaling in the recumbent and upright positions are similar when the different orientation in the gravity field is considered, (ii) compare the functional roles of the leg muscles while pedaling in the recumbent position to the upright position to the upright position and (iii) determine whether leg muscle onset and offset timing for recumbent and upright pedaling respond similarly to changes in pedaling rate. To fulfill these objectives, surface electromyograms were recorded from 10 muscles of 15 subjects who pedaled in both the recumbent and upright positions at 75, 90, and 105rpm and at a constant workrate of 250W. Patterns of muscle activation were compared over the crank cycle. Functional roles of muscles in recumbent and upright pedaling were compared using the percent of integrated activation in crank cycle regions determined previously for upright pedaling. Muscle onset and offset timing were also compared. When the crank cycle was adjusted for orientation in the gravity field, the activation patterns for the two positions were similar. Functional roles of the muscles in the two positions were similar as well. In recumbent pedaling, the uniarticular hip and knee extensors functioned primarily to produce power during the extension region of the crank cycle, whereas the biarticular muscles crossing the hip and knee functioned to propel the leg through the transition regions of the crank cycle. The adaptations of the muscles to changes in pedaling rate were also similar for the two body positions with the uniarticular power producing muscles of the hip and knee advancing their activity to earlier in the crank cycle as the pedaling rate increased. This information on the functional roles of the leg muscles provides a basis by which to form functional groups, such as power-producing muscles and transition muscles, to aid in the development of rehabilitative pedaling exercises and recumbent pedaling simulations to further our understanding of task-dependent muscle coordination.
Collapse
Affiliation(s)
- Nils A Hakansson
- Department of Mechanical Engineering, Biomedical Engineering Program, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
195
|
Schindler-Ivens S, Brown DA, Brooke JD. Direction-dependent phasing of locomotor muscle activity is altered post-stroke. J Neurophysiol 2004; 92:2207-16. [PMID: 15175363 PMCID: PMC3912995 DOI: 10.1152/jn.01207.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major contributor to impaired locomotion post-stroke is abnormal phasing of muscle activity. While inappropriate paretic muscle phasing adapts to changing body orientation, load, and speed, it remains unclear whether paretic muscle phasing adapts to reversal of locomotor direction. We examined muscle phasing in backward pedaling, a task that requires shifts in biarticular but not uniarticular muscle phasing relative to forward pedaling. We hypothesized that if paretic and neurologically intact muscle phasing adapt similarly, then paretic biarticular but not paretic uniarticular muscles would shift phasing in backward pedaling. Paretic and neurologically intact individuals pedaled forward and backward while recording electromyograms (EMGs) from vastus medialis (VM), soleus (SOL), rectus femoris (RF), semimembranosus (SM), and biceps femoris (BF). Changes in muscle phasing were assessed by comparing the probability of muscle activity in forward and backward pedaling throughout 18 pedaling cycles. Paretic uniarticular muscles (VM and SOL) showed phase-advanced activity in backward versus forward pedaling, whereas the corresponding neurologically intact muscles showed little to no phasing change. Paretic biarticular muscles were less likely than neurologically intact biarticular muscles to display phasing changes in backward pedaling. Paretic RF displayed no phase change during backward pedaling, and paretic BF displayed no consistent adaptation to backward pedaling. Paretic SM was the only muscle to display backward/forward phase changes that were similar to the neurologically intact group. We conclude that paretic uniarticular muscles are more susceptible and paretic biarticular muscles are less susceptible to direction-dependent phase shifts, consistent with altered sensory integration and impaired cortical control of locomotion.
Collapse
Affiliation(s)
- Sheila Schindler-Ivens
- Dept. of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611-2814, USA.
| | | | | |
Collapse
|
196
|
Neptune RR, Zajac FE, Kautz SA. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant. J Biomech 2004; 37:817-25. [PMID: 15111069 DOI: 10.1016/j.jbiomech.2003.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2003] [Indexed: 10/26/2022]
Abstract
Inverted pendulum models of walking predict that little muscle work is required for the exchange of body potential and kinetic energy in single-limb support. External power during walking (product of the measured ground reaction force and body center-of-mass (COM) velocity) is often analyzed to deduce net work output or mechanical energetic cost by muscles. Based on external power analyses and inverted pendulum theory, it has been suggested that a primary mechanical energetic cost may be associated with the mechanical work required to redirect the COM motion at the step-to-step transition. However, these models do not capture the multi-muscle, multi-segmental properties of walking, co-excitation of muscles to coordinate segmental energetic flow, and simultaneous production of positive and negative muscle work. In this study, a muscle-actuated forward dynamic simulation of walking was used to assess whether: (1). potential and kinetic energy of the body are exchanged with little muscle work; (2). external mechanical power can estimate the mechanical energetic cost for muscles; and (3.) the net work output and the mechanical energetic cost for muscles occurs mostly in double support. We found that the net work output by muscles cannot be estimated from external power and was the highest when the COM moved upward in early single-limb support even though kinetic and potential energy were exchanged, and muscle mechanical (and most likely metabolic) energetic cost is dominated not only by the need to redirect the COM in double support but also by the need to raise the COM in single support.
Collapse
Affiliation(s)
- R R Neptune
- Department of Mechanical Engineering, University of Texas at Austin, TX 78712, USA.
| | | | | |
Collapse
|
197
|
Erdemir A, Piazza SJ. Changes in Foot Loading Following Plantar Fasciotomy: A Computer Modeling Study. J Biomech Eng 2004; 126:237-43. [PMID: 15179854 DOI: 10.1115/1.1691447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Forward dynamic simulations of a toe-rise task were developed to explore the outcomes of plantar fasciotomy, a surgery commonly performed to relieve heel pain. The specific objectives of this study were to develop such a simulation, validate its predictions, and simulate rising on toes using a model from which the plantar fascia had been removed. Root-mean squared differences between the intact model and measurements of healthy subjects were found to be 0.009 body weights (BW) and 0.055 BW for the horizontal and vertical ground reaction forces and 7.1 mm, 11.3 mm, and 0.48 deg for the horizontal, vertical and rotational positions of the pelvis. Simulated plantar fasciotomy increased passive arch torques by 7.4%, increased metatarsal head contact forces by 18%, and resulted in greater toe flexor activity. These simulations may explain the mechanisms behind plantar fasciotomy complications when patients perform activities that require loading of the plantarflexors and the longitudinal arch.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
198
|
Neptune RR, Zajac FE, Kautz SA. Muscle force redistributes segmental power for body progression during walking. Gait Posture 2004; 19:194-205. [PMID: 15013508 DOI: 10.1016/s0966-6362(03)00062-6] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2003] [Indexed: 02/02/2023]
Abstract
The ankle plantar flexors were previously shown to support the body in single-leg stance to ensure its forward progression [J. Biomech. 34 (2001) 1387]. The uni- (SOL) and biarticular (GAS) plantar flexors accelerated the trunk and leg forward, respectively, with each opposing the effect of the other. Around mid-stance their net effect on the trunk and the leg was negligible, consistent with the body acting as an inverted pendulum. In late stance, their net effect was to accelerate the leg and trunk forward, consistent with an active push-off. Because other muscles are active in the beginning and end of stance, we hypothesized that their active concentric and eccentric force generation also supports the body and redistributes segmental power to enable body forward progression. Muscle-actuated forward dynamical simulations that emulated observed walking kinematics and kinetics of young adult subjects were analyzed to quantify muscle contributions to the vertical and horizontal ground reaction force, and to the acceleration and mechanical power of the leg and trunk. The eccentric uniarticular knee extensors (vasti, VAS) and concentric uniarticular hip extensors (gluteus maximus, GMAX) were found to provide critical support to the body in the beginning of stance, before the plantar flexors became active. VAS also decelerated the forward motion of both the trunk and the leg. Afterwards when VAS shortens in mid-stance, it delivered the power produced to accelerate the trunk and also redistributed segmental power to the trunk by continuing to decelerate the leg. When present, rectus femoris (RF) activity in the beginning of stance had a minimal effect. But in late stance the lengthening RF accelerated the knee and hip into extension, which opposed swing initiation. Though RF was lengthening, it still accelerated the trunk forward by decelerating the leg and redistributing the leg segmental power to the trunk, as SOL does though it is shortening instead of lengthening. Force developed from highly stretched passive hip structures and active force produced by the uniarticular hip flexors assisted GAS in swing initiation. Hamstrings (HAM) decelerated the leg in late swing while lengthening and accelerated the leg in the beginning of stance while shortening. We conclude that the uniarticular knee and hip extensor muscles are critical to body support in the beginning of stance and redistribution of segmental power by muscles throughout the gait cycle is critical to forward progression of the trunk and legs.
Collapse
Affiliation(s)
- R R Neptune
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712-1063, USA.
| | | | | |
Collapse
|
199
|
Affiliation(s)
- Randy D Trumbower
- Functional Performance Laboratory, School of Engineering, University of Connecticut, Storrs, USA.
| | | |
Collapse
|
200
|
Li L. Neuromuscular control and coordination during cycling. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2004; 75:16-22. [PMID: 15532357 DOI: 10.1080/02701367.2004.10609129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint moment, reduced hip joint moment and greater activity in specific muscles. Due to the influence of lower extremity inertial properties, higher pedaling frequency induces more neuromuscular changes at the hip than at the knee or ankle joints. These neuromuscular adaptations to environmental and task constraints are discussed with regard to the contributions of the central nervous system and the solution provided by peripheral anatomical structure--mono- and biarticular muscles. The results indicate that training and related movement analysis should be specific to the motion, supporting the notion of task-specific training.
Collapse
Affiliation(s)
- Li Li
- Department of Kinesiology at Louisiana State University, Baton Rouge, 70803, USA.
| |
Collapse
|