151
|
Wazawa T, Yasui SI, Morimoto N, Suzuki M. 1,3-Diethylurea-enhanced Mg-ATPase activity of skeletal muscle myosin with a converse effect on the sliding motility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2620-9. [PMID: 23954499 DOI: 10.1016/j.bbapap.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
We investigate the effects of urea and its derivatives on the ATPase activity and on the in vitro motility of chicken skeletal muscle actomyosin. Mg-ATPase rate of myosin subfragment-1 (S1) is increased by 4-fold by 0.3M 1,3-diethylurea (DEU), but it is unaffected by urea, thiourea, and 1,3-dimethylurea at ≤1M concentration. Thus, we further examine the effects of DEU in comparison to those of urea as reference. In in vitro motility assay, we find that in the presence of 0.3M DEU, the sliding speeds of actin filaments driven by myosin and heavy meromyosin (HMM) are significantly decreased to 1/16 and 1/6.6, respectively, compared with the controls. However, the measurement of the actin-activated ATPase activity of HMM shows that the maximal rate, Vmax, is almost unchanged with DEU. Thus, the myosin-driven sliding motility of actin filaments is significantly impeded in the presence of 0.3M DEU, whereas the cyclic interaction of myosin with F-actin occurs during the ATP turnover, the rate of which is close to that without DEU. In contrast to DEU, 0.3M urea exhibits only modest effects on both actin-activated ATPase and sliding motility of actomyosin. Thus, DEU has the effect of uncoupling the sliding motility of actomyosin from its ATP turnover.
Collapse
Affiliation(s)
- Tetsuichi Wazawa
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | |
Collapse
|
152
|
A Modified Lumry–Eyring Analysis for the Determination of the Predominant Mechanism Underlying the Diminution of Protein Aggregation by Glycerol. Cell Biochem Biophys 2013; 68:133-42. [DOI: 10.1007/s12013-013-9700-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
153
|
Vagenende V, Han AX, Pek HB, Loo BLW. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions. PLoS Comput Biol 2013; 9:e1003072. [PMID: 23696727 PMCID: PMC3656110 DOI: 10.1371/journal.pcbi.1003072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022] Open
Abstract
Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.
Collapse
Affiliation(s)
- Vincent Vagenende
- Bioprocessing Technology Institute, ASTAR (Agency for Science, Technology and Research), Singapore.
| | | | | | | |
Collapse
|
154
|
Abbas SA, Sharma VK, Patapoff TW, Kalonia DS. Characterization of antibody–polyol interactions by static light scattering: Implications for physical stability of protein formulations. Int J Pharm 2013; 448:382-9. [DOI: 10.1016/j.ijpharm.2013.03.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
|
155
|
Characteristics and functional properties of buckwheat protein–sugar Schiff base complexes. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
156
|
Ploetz EA, Smith PE. Local Fluctuations in Solution: Theory and Applications. ADVANCES IN CHEMICAL PHYSICS 2013; 153:311-372. [PMID: 24683278 DOI: 10.1002/9781118571767.ch4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
157
|
Vagenende V, Han AX, Mueller M, Trout BL. Protein-associated cation clusters in aqueous arginine solutions and their effects on protein stability and size. ACS Chem Biol 2013; 8:416-22. [PMID: 23138654 DOI: 10.1021/cb300440x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arginine is one of the most prominent residues in protein interactions, and arginine hydrochloride is widely used as an additive in protein solutions because of its exceptional effects on protein association and folding. The molecular origins of arginine effects on protein processes remain, however, controversial, and little is known about the molecular interactions between arginine cations and protein surfaces in aqueous arginine solutions. In this study, we report a unique biochemical phenomenon whereby clusters of arginine cations (Arg(+)) are associated with a protein surface. The formation of protein-associated Arg(+) clusters is initiated by Arg(+) ions that associate with specific protein surface loci through cooperative interactions with protein guanidinium and carboxyl groups. Molecular dynamics simulations indicate that protein-associated Arg(+) ions subsequently attract other Arg(+) ions and form dynamic cation clusters that extend further than 10 Å from the protein surface. The effects of arginine on the thermal stability and size of lysozyme and ovalbumin are measured over a wide concentration range (0 to 2 M), and we find that the formation of protein-associated Arg(+) clusters consistently explains the complex effects of arginine on protein stability and size. This study elucidates the molecular mechanisms and implications of cluster formation of Arg(+) ions at a protein surface, and the findings of this study may be used to manipulate synthetic and biological systems through arginine-derived groups.
Collapse
Affiliation(s)
- Vincent Vagenende
- Bioprocessing Technology
Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way #06-01 Centros, 138668 Singapore
| | - Alvin X. Han
- Bioprocessing Technology
Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way #06-01 Centros, 138668 Singapore
| | - Monika Mueller
- Bioprocessing Technology
Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way #06-01 Centros, 138668 Singapore
| | - Bernhardt L. Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, E19-502b, Massachusetts 02139, United States
| |
Collapse
|
158
|
Vagenende V, Trout BL. Quantitative characterization of local protein solvation to predict solvent effects on protein structure. Biophys J 2013; 103:1354-62. [PMID: 22995508 DOI: 10.1016/j.bpj.2012.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 12/14/2022] Open
Abstract
Characterization of solvent preferences of proteins is essential to the understanding of solvent effects on protein structure and stability. Although it is generally believed that solvent preferences at distinct loci of a protein surface may differ, quantitative characterization of local protein solvation has remained elusive. In this study, we show that local solvation preferences can be quantified over the entire protein surface from extended molecular dynamics simulations. By subjecting microsecond trajectories of two proteins (lysozyme and antibody fragment D1.3) in 4 M glycerol to rigorous statistical analyses, solvent preferences of individual protein residues are quantified by local preferential interaction coefficients. Local solvent preferences for glycerol vary widely from residue to residue and may change as a result of protein side-chain motions that are slower than the longest intrinsic solvation timescale of ∼10 ns. Differences of local solvent preferences between distinct protein side-chain conformations predict solvent effects on local protein structure in good agreement with experiment. This study extends the application scope of preferential interaction theory and enables molecular understanding of solvent effects on protein structure through comprehensive characterization of local protein solvation.
Collapse
Affiliation(s)
- Vincent Vagenende
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A STAR), Centros, Singapore.
| | | |
Collapse
|
159
|
The role of trehalose for metastable state and functional form of recombinant interferon beta-1b. J Biotechnol 2013. [DOI: 10.1016/j.jbiotec.2012.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
160
|
Shek YL, Chalikian TV. Interactions of Glycine Betaine with Proteins: Insights from Volume and Compressibility Measurements. Biochemistry 2013; 52:672-80. [DOI: 10.1021/bi301554h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuen Lai Shek
- Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, 144
College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, 144
College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
161
|
Saito S, Hasegawa J, Kobayashi N, Tomitsuka T, Uchiyama S, Fukui K. Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: influence of colloidal and conformational stabilities. Pharm Res 2013; 30:1263-80. [PMID: 23319172 DOI: 10.1007/s11095-012-0965-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To develop a general strategy for optimizing monoclonal antibody (MAb) formulations. METHODS Colloidal stabilities of four representative MAbs solutions were assessed based on the second virial coefficient (B 2) at 20°C and 40°C, and net charges at different NaCl concentrations, and/or in the presence of sugars. Conformational stabilities were evaluated from the unfolding temperatures. The aggregation propensities were determined at 40°C and after freeze-thawing. The electrostatic potential of antibody surfaces was simulated for the development of rational formulations. RESULTS Similar B 2 values were obtained at 20°C and 40°C, implying little dependence on temperature. B 2 correlated quantitatively with aggregation propensities at 40°C. The net charge partly correlated with colloidal stability. Salts stabilized or destabilized MAbs, depending on repulsive or attractive interactions. Sugars improved the aggregation propensity under freeze-thaw stress through improved conformational stability. Uneven and even distributions of potential surfaces were attributed to attractive and strong repulsive electrostatic interactions. CONCLUSIONS Assessment of colloidal stability at the lowest ionic strength is particularly effective for the development of formulations. If necessary, salts are added to enhance the colloidal stability. Sugars further improved aggregation propensities by enhancing conformational stability. These behaviors are rationally predictable according to the surface potentials of MAbs.
Collapse
Affiliation(s)
- Shuntaro Saito
- Analytical & Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka-shi, Kanagawa, 254-0014, Japan
| | | | | | | | | | | |
Collapse
|
162
|
Grueso E, Kuliszewska E, Prado-Gotor R, Perez-Tejeda P, Roldan E. Improving the understanding of DNA–propanediyl-1,3-bis(dodecyldimethylammonium) dibromide interaction using thermodynamic, structural and kinetic approaches. Phys Chem Chem Phys 2013; 15:20064-74. [DOI: 10.1039/c3cp53299b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
163
|
Xie WJ, Gao YQ. Ion cooperativity and the effect of salts on polypeptide structure – a molecular dynamics study of BBA5 in salt solutions. Faraday Discuss 2013; 160:191-206; discussion 207-24. [DOI: 10.1039/c2fd20065a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
164
|
Record MT, Guinn E, Pegram L, Capp M. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Discuss 2013; 160:9-44; discussion 103-20. [PMID: 23795491 PMCID: PMC3694758 DOI: 10.1039/c2fd20128c] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of
Collapse
Affiliation(s)
- M Thomas Record
- Department of Chemistry, University of Wisconsin, Madison WI 53706, USA
| | | | | | | |
Collapse
|
165
|
Yadav JK. Macromolecular Crowding Enhances Catalytic Efficiency and Stability of α-Amylase. ISRN BIOTECHNOLOGY 2012; 2013:737805. [PMID: 25969780 PMCID: PMC4403623 DOI: 10.5402/2013/737805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/13/2012] [Indexed: 01/10/2023]
Abstract
In the present study an attempt was made to investigate the macromolecular crowding effect on functional attributes of α-amylase. High concentrations of sugar based cosolvents, (e.g., trehalose, sucrose, sorbitol, and glycerol) were used to mimic the macromolecular crowding environment (of cellular milieu) under in vitro conditions. To assess the effect of macromolecular crowding, the activity and structural properties of the enzyme were evaluated in the presence of different concentrations of the above cosolvents. Based on the results it is suggested that the macromolecular crowding significantly improves the catalytic efficiency of the enzyme with marginal change in the structure. Out of four cosolvents examined, trehalose was found to be the most effective in consistently enhancing thermal stability of the enzyme. Moreover, the relative effectiveness of the above cosolvents was found to be dependent on their concentration used.
Collapse
Affiliation(s)
- Jay Kant Yadav
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore 570 020, India ; Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
166
|
Kluters S, Neumann S, von Hirschheydt T, Grossmann A, Schaubmar A, Frech C. Mechanism of improved antibody aggregate separation in polyethylene glycol-modulated cation exchange chromatography. J Sep Sci 2012; 35:3130-8. [DOI: 10.1002/jssc.201200715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Simon Kluters
- Institute for Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| | - Sebastian Neumann
- Pharma Research and Early Development; Roche Diagnostics GmbH; Penzberg Germany
| | | | - Adelbert Grossmann
- Pharma Research and Early Development; Roche Diagnostics GmbH; Penzberg Germany
| | - Andreas Schaubmar
- Pharma Research and Early Development; Roche Diagnostics GmbH; Penzberg Germany
| | - Christian Frech
- Institute for Biochemistry; University of Applied Sciences Mannheim; Mannheim Germany
| |
Collapse
|
167
|
Karunaweera S, Gee MB, Weerasinghe S, Smith PE. Theory and Simulation of Multicomponent Osmotic Systems. J Chem Theory Comput 2012; 8:3493-3503. [PMID: 23329894 DOI: 10.1021/ct300079v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly(2) and Gly(3) in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems.
Collapse
Affiliation(s)
- Sadish Karunaweera
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506
| | | | | | | |
Collapse
|
168
|
Panzica M, Emanuele A, Cordone L. Thermal Aggregation of Bovine Serum Albumin in Trehalose and Sucrose Aqueous Solutions. J Phys Chem B 2012; 116:11829-36. [DOI: 10.1021/jp3054197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Massimo Panzica
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Antonio Emanuele
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| | - Lorenzo Cordone
- Dipartimento di Fisica, Università degli Studi di Palermo, Via Archirafi 36, I-90123 Palermo,
Italy
| |
Collapse
|
169
|
Mokdad A, Herrick DZ, Kahn AK, Andrews E, Kim M, Cafiso DS. Ligand-induced structural changes in the Escherichia coli ferric citrate transporter reveal modes for regulating protein-protein interactions. J Mol Biol 2012; 423:818-30. [PMID: 22982293 DOI: 10.1016/j.jmb.2012.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Outer-membrane TonB-dependent transporters, such as the Escherichia coli ferric citrate transporter FecA, interact with the inner-membrane protein TonB through an energy-coupling segment termed the Ton box. In FecA, which regulates its own transcription, the Ton box is preceded by an N-terminal extension that interacts with the inner-membrane protein FecR. Here, site-directed spin labeling was used to examine the structural basis for transcriptional signaling and Ton box regulation in FecA. EPR spectroscopy indicates that regions of the N-terminal domain are in conformational exchange, consistent with its role as a protein binding element; however, the local fold and dynamics of the domain are not altered by substrate or TonB. Distance restraints derived from pulse EPR were used to generate models for the position of the extension in the apo, substrate-, and TonB-bound states. In the apo state, this domain is positioned at the periplasmic surface of FecA, where it interacts with the Ton box and blocks access of the Ton box to the periplasm. Substrate addition rotates the transcriptional domain and exposes the Ton box, leading to a disorder transition in the Ton box that may facilitate interactions with TonB. When a soluble fragment of TonB is bound to FecA, the transcriptional domain is displaced to one edge of the barrel, consistent with a proposed β-strand exchange mechanism. However, neither substrate nor TonB displaces the N-terminus further into the periplasm. This result suggests that the intact TonB system mediates both signaling and transport by unfolding portions of the transporter.
Collapse
Affiliation(s)
- Audrey Mokdad
- Department of Chemistry and the Center for Membrane Biology, University of Virginia, Charlottesville, VA 22904-4319, USA
| | | | | | | | | | | |
Collapse
|
170
|
Nasrollahi P, Khajeh K, Akbari N. Optimizing of the formation of active BMW-amylase after in vitro refolding. Protein Expr Purif 2012; 85:18-24. [DOI: 10.1016/j.pep.2012.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 12/01/2022]
|
171
|
|
172
|
Rawat K, Bohidar HB. Universal Charge Quenching and Stability of Proteins in 1-Methyl-3-alkyl (Hexyl/Octyl) Imidazolium Chloride Ionic Liquid Solutions. J Phys Chem B 2012; 116:11065-74. [DOI: 10.1021/jp3049108] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kamla Rawat
- Polymer and Biophysics Laboratory, School of Physical
Sciences, Jawaharlal Nehru University,
New Delhi 110067, India
| | - H. B. Bohidar
- Polymer and Biophysics Laboratory, School of Physical
Sciences, Jawaharlal Nehru University,
New Delhi 110067, India
| |
Collapse
|
173
|
Affiliation(s)
- Yi Qin Gao
- Institute of Theoretical
and Computational Chemistry,
College of Chemistry and Molecular Engineering, Peking National Laboratory
for Molecular Sciences, Peking University, Beijing, China, 100871
| |
Collapse
|
174
|
Boral S, Bohidar HB. Effect of water structure on gelation of agar in glycerol solutions and phase diagram of agar organogels. J Phys Chem B 2012; 116:7113-21. [PMID: 22657388 DOI: 10.1021/jp3022024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comprehensive study of hydration of polyanionic agar molecules in its solution and gel phase in glycerol-water binary solvent is reported. Raman spectroscopy results predict differential water structure arrangement for glycerol-water binary solvent, 0.02% (w/v) agar in glycerol solution and 0.3% (w/v) agar organogel. The 3200 cm(-1) Raman band pertaining to ice-like structure of water was found to increase in gel phase alike in glycerol-water solvent while it decreased in agar solutions with increase in glycerol concentration. In contrast, the partially structured water corresponding to the component 3310 cm(-1) of Raman spectra increased in agar solution, and decreased in gel phase similar to glycerol-water solvent case. We have explained these observations based on a simple model where the available oxygen to hydrogen atom ratio in a given solvent-polymer system uniquely defines hydration in solution and gel phases. The gelation concentration was found to increase from 0.18 (for water) to 0.22% (w/v) (50% v/v glycerol solution) as the glycerol concentration was raised. Correspondingly, the gelation temperature, T(g), showed a decline from 40 to 20 °C, and the gel melting temperature, T(m), revealed a reduction from 81 to 65 °C in the same glycerol concentration regime. Two distinctive features are evident here: (i) presence of glycerol as a cosolvent does not favor the gelation of agar as compared to water and (ii) agar organogels are softer than their hydrogels. A unique 3D phase diagram for the agar organogel is proposed. Circular dichroism data confirmed that the agar molecules retained their biological activity in these solvents. Thus, it is shown that thermo-mechanical properties of these organogels could be systematically tuned and adapted as per application requirement.
Collapse
Affiliation(s)
- Shilpi Boral
- Polymer and Biophysics Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | |
Collapse
|
175
|
Priya MH, Merchant S, Asthagiri D, Paulaitis ME. Quasi-Chemical Theory of Cosolvent Hydrophobic Preferential Interactions. J Phys Chem B 2012; 116:6506-13. [DOI: 10.1021/jp301629j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Hamsa Priya
- William G. Lowrie Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Safir Merchant
- Department of Chemical and Biomolecular
Engineering, Johns Hopkins University,
Baltimore, Maryland 21218, United States
| | - Dilip Asthagiri
- Department of Chemical and Biomolecular
Engineering, Johns Hopkins University,
Baltimore, Maryland 21218, United States
| | - Michael E. Paulaitis
- William G. Lowrie Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
176
|
Arfin N, Bohidar H. Concentration selective hydration and phase states of hydroxyethyl cellulose (HEC) in aqueous solutions. Int J Biol Macromol 2012; 50:759-67. [DOI: 10.1016/j.ijbiomac.2011.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/26/2011] [Indexed: 11/28/2022]
|
177
|
Abstract
To thrive, cells must control their own physical and chemical properties. This process is known as cellular homeostasis. The dilute solutions traditionally favored by experimenters do not simulate the cytoplasm, where macromolecular crowding and preferential interactions among constituents may dominate critical processes. Solutions that do simulate cytoplasmic conditions are now being characterized. Corresponding cytoplasmic properties can be varied systematically by imposing osmotic stress. This osmotic stress approach is revealing how cytoplasmic properties modulate protein folding and protein?nucleic acid interactions. Results suggest that cytoplasmic homeostasis may require adjustments to multiple, interwoven cytoplasmic properties. Osmosensory transporters with diverse structures and bioenergetic mechanisms activate in response to osmotic stress as other proteins inactivate. These transporters are serving as paradigms for the study of in vivo protein-solvent interactions. Experimenters have proposed three different osmosensory mechanisms. Distinct mechanisms may exist, or these proposals may reflect different perceptions of a single, unifying mechanism.
Collapse
Affiliation(s)
- Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
178
|
Adney WS, Dowe N, Jennings EW, Mohagheghi A, Yarbrough J, McMillan JD. Assessing the protein concentration in commercial enzyme preparations. Methods Mol Biol 2012; 908:169-180. [PMID: 22843399 DOI: 10.1007/978-1-61779-956-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Although a poor indicator of how a cellulase preparation will perform on biomass, the filter paper unit (FPU) still finds wide use in the literature as an apparent measure of performance efficacy. In actuality, the assessment of commercial enzyme preparation performance in terms of biomass conversion or solubilization of insoluble polysaccharides is largely dependent on the substrate composition, which cannot be easily standardized. Commercial cellulase preparations are evaluated based upon their performance or specific activity. The ability to compare commercial enzyme preparation efficacy across a wide variety of different preparations requires defining the amount of enzyme protein required in milligrams per gram of cellulose to achieve a targeted level of cellulose hydrolysis in a specified timeframe. Since biomass substrates are highly variable, reproducible and accurate protein determination is as important as performance testing to be able to rank order the effectiveness of diverse preparations. This chapter describes a protocol that overcomes many of the difficulties encountered with determining the protein concentration in commercial cellulase preparations.
Collapse
Affiliation(s)
- William S Adney
- Research Triangle Institute, International Research Triangle Park, Durham, NC, USA.
| | | | | | | | | | | |
Collapse
|
179
|
Riske F, Hamilton A, Zhang C, Hayes M. Remodeling the oligosaccharides on β-glucocerebrosidase using hydrophobic interaction chromatography and applications of hydroxyl ethyl starch for improving remodeling and enhancing protein stability. Biotechnol Bioeng 2011; 109:1217-27. [PMID: 22170377 DOI: 10.1002/bit.24406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/28/2011] [Accepted: 11/28/2011] [Indexed: 01/06/2023]
Abstract
In this article, we describe a hydrophobic interaction chromatography (HIC) method to remodel the carbohydrates on recombinant human β-glucocerebrosidase (GCR) and the use of hydroxyl ethyl starch (HES) an ethylated starch polymer, to improve this process. GCR is a therapeutic protein used in the treatment of Gaucher disease, a life threatening condition in which patients lack sufficient functional levels of this enzyme. Gaucher disease is the most common inherited lysosomal storage disorder resulting in hepatomegaly, splenomegaly, and bone and lung pathology due to the accumulation of glucosylceramide in the lysosomes of macrophages (Beutler and Grabowski, 2001). The oligosaccharide remodeling of GCR, performed on HIC using three enzymes that remove sugars, increases macrophage uptake through the mannose receptor and thereby lowers its therapeutic dose versus unmodified GCR (Furbish et al., 1981; Van Patten et al., 2007). In this article we describe findings that the addition of HES lowered the amounts of three deglycosylating enzymes needed for remodeling GCR. HES also stabilized the activity of α-glucosidase, α-galactosidase, and GCR under conditions in which these three enzymes rapidly lose activity in the absence of this polymer. Circular dichroism (CD) and second derivative UV spectroscopy revealed that the secondary and tertiary structure of α-glucosidase was unchanged while for GCR there was a slight compaction of the secondary structure but no apparent affect on the tertiary structure. The thermal stability of both GCR and α-glucosidase were enhanced by HES as both molecules showed an increased transition midpoint (T(m)).
Collapse
Affiliation(s)
- Frank Riske
- Purification Development, Genzyme Corporation, Framingham, Massachusetts 01701, USA.
| | | | | | | |
Collapse
|
180
|
Stanley C, Rau DC. Evidence for water structuring forces between surfaces. Curr Opin Colloid Interface Sci 2011; 16:551-556. [PMID: 22125414 DOI: 10.1016/j.cocis.2011.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Structured water on apposing surfaces can generate significant energies due to reorganization and displacement of water as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate common features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.
Collapse
Affiliation(s)
- Christopher Stanley
- Neutron Scattering Science Division, Oak Ridge National Laboratory, PO Box 2008 MSC 6473, Oak Ridge, TN 37831
| | | |
Collapse
|
181
|
Effects of Polyhydroxy Compounds on Enzymatic Synthesis of L-Tryptophan Catalyzed by Tryptophan Synthase. Catal Letters 2011. [DOI: 10.1007/s10562-011-0743-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
182
|
Graziano G. How does sucrose stabilize the native state of globular proteins? Int J Biol Macromol 2011; 50:230-5. [PMID: 22085755 DOI: 10.1016/j.ijbiomac.2011.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/17/2022]
Abstract
It is well known that sucrose stabilizes the native state of globular proteins against both chemical denaturants and temperature. A largely accepted explanation of sucrose-induced stabilization is not yet emerged. It is shown that the same theoretical approach able to rationalize the occurrence of cold denaturation, the contrasting role of GdmCl and Gdm(2)SO(4), and the TMAO counteraction of urea denaturing activity [PCCP 12 (2010) 14245; PCCP 13 (2011) 12008; PCCP 13 (2011) 17689] works well also in the case of sucrose. The solvent-excluded volume effect plays the fundamental role because sucrose addition to water causes a marked increase in volume packing density due to the large size of sucrose molecules, that act as crowding agents.
Collapse
Affiliation(s)
- Giuseppe Graziano
- Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento, Italy.
| |
Collapse
|
183
|
Shimizu S. The effect of urea on hydrophobic hydration: Preferential interaction and the enthalpy of transfer. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
184
|
Priya MH, Ashbaugh HS, Paulaitis ME. Cosolvent Preferential Molecular Interactions in Aqueous Solutions. J Phys Chem B 2011; 115:13633-42. [DOI: 10.1021/jp2083067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Hamsa Priya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - H. S. Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - M. E. Paulaitis
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
185
|
Gao YQ. Simple Theoretical Model for Ion Cooperativity in Aqueous Solutions of Simple Inorganic Salts and Its Effect on Water Surface Tension. J Phys Chem B 2011; 115:12466-72. [DOI: 10.1021/jp2076512] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
186
|
Serno T, Geidobler R, Winter G. Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev 2011; 63:1086-106. [PMID: 21907254 DOI: 10.1016/j.addr.2011.08.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/16/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Aggregation is arguably the biggest challenge for the development of stable formulations and robust manufacturing processes of therapeutic proteins. In search of novel excipients inhibiting protein aggregation, cyclodextrins and their derivatives have been under examination for use in parenteral protein products since more than 20 years and significant research work has been accomplished highlighting the great potential of cyclodextrins as stabilizers of therapeutic proteins. Oftentimes, the potential of cyclodextrins to inhibit protein aggregation has been attributed to their capability to incorporate hydrophobic residues on aggregation-prone proteins or on their partially unfolded intermediates into the hydrophobic cavity. In addition, also other mechanisms besides or even instead of complex formation play a role in the stabilization mechanism, e.g. non-ionic surfactant-like effects. In this review a comprehensive overview of the available research work on the beneficial use of cyclodextrins and their derivatives in protein formulations, liquid as well as dried, is provided. The mechanisms of stabilization against different kinds of stress conditions, such as thermal or surface-induced, are discussed in detail.
Collapse
|
187
|
Viscosity of concentrated therapeutic protein compositions. Adv Drug Deliv Rev 2011; 63:1107-17. [PMID: 22014592 DOI: 10.1016/j.addr.2011.09.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022]
Abstract
The use of monoclonal antibodies as therapeutic agents has been increasing steadily over the last decade for the treatment of various conditions. There is often a need to deliver a large dose of the protein, so there is a trend toward developing commercially viable liquid formulations of highly concentrated antibodies. Such concentrated solutions are associated with a number of challenges, including optimization of production processes, plus chemical and physical stability of the final product where solution viscosity becomes a critical quality attribute. Assessment of the rheological characteristics of concentrated compositions is essential as are development strategies to reduce the viscosity. This review covers the state-of-the-art rheology measurement techniques, focusing particularly on concentrated protein solutions. Current understanding of the mechanisms leading to high viscosity and control by formulation parameters is discussed.
Collapse
|
188
|
Shukla D, Schneider CP, Trout BL. Molecular level insight into intra-solvent interaction effects on protein stability and aggregation. Adv Drug Deliv Rev 2011; 63:1074-85. [PMID: 21762737 DOI: 10.1016/j.addr.2011.06.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/14/2011] [Accepted: 06/29/2011] [Indexed: 11/16/2022]
Abstract
Protein based therapeutics hold great promise in the treatment of human diseases and disorders and subsequently, they have become the fastest growing sector of new drugs being developed. Proteins are, however, inherently unstable and the degraded form can be quite harmful if administered to a patient. Of the various degradation pathways, aggregation is one of the most common and a cause for great concern. Aggregation suppressing additives have long been used to stabilize proteins, and they still remain the most viable option for combating this problem. Much work has been devoted toward investigating the behavior of commonly used additives and the resulting models give valuable insight toward explaining aggregation suppression. In a few cases, an explanation for unique behavior is lacking or new insight provides an alternate explanation. Additive selection and the development of better performing additives may benefit from a more refined understanding of how commonly used additives inhibit or enhance aggregation. In this review, we focus on recent molecular-level studies into how a select group of commonly used additives interact with proteins and subsequently influence aggregation. The intent of the review is not meant to be comprehensive for each additive but rather to provide new insights into additive-additive interactions, which may be contributing to protein-additive interactions. This is something that is often overlooked but yet essential to understanding the effect of additives on aggregation. The importance of understanding such interactions is clear when one considers that most formulations contain a mixture of cosolutes and that ideal stability might be better achieved through tuning intra-solvent interactions. We give an example of this when we describe how novel aggregation suppressing additives were developed from the knowledge gained from the reviewed studies.
Collapse
Affiliation(s)
- Diwakar Shukla
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
189
|
Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev 2011; 63:1160-71. [PMID: 21763375 DOI: 10.1016/j.addr.2011.06.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 02/01/2023]
Abstract
Loss of activity through aggregation and surface-induced denaturation is a significant problem in the production, formulation and administration of therapeutic proteins. Surfactants are commonly used in upstream and downstream processing and drug formulation. However, the effectiveness of a surfactant strongly depends on its mechanism(s) of action and properties of the protein and interfaces. Surfactants can modulate adsorption loss and aggregation by coating interfaces and/or participating in protein-surfactant associations. Minimizing protein loss from colloidal and interfacial interaction requires a fundamental understanding of the molecular factors underlying surfactant effectiveness and mechanism. These concepts provide direction for improvements in the manufacture and finishing of therapeutic proteins. We summarize the roles of surfactants, proteins, and surfactant-protein complexes in modulating interfacial behavior and aggregation. These events depend on surfactant properties that may be quantified using a thermodynamic model, to provide physical/chemical direction for surfactant selection or design, and to effectively reduce aggregation and adsorption loss.
Collapse
Affiliation(s)
- Hyo Jin Lee
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
190
|
Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev 2011; 63:1053-73. [PMID: 21756953 DOI: 10.1016/j.addr.2011.06.011] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/18/2011] [Accepted: 06/23/2011] [Indexed: 12/12/2022]
Abstract
A variety of excipients are used to stabilize proteins, suppress protein aggregation, reduce surface adsorption, or to simply provide physiological osmolality. The stabilizers encompass a wide variety of molecules including sugars, salts, polymers, surfactants, and amino acids, in particular arginine. The effects of these excipients on protein stability in solution are mainly caused by their interaction with the protein and the container surface, and most importantly with water. Some excipients stabilize proteins in solution by direct binding, while others use a number of fundamentally different mechanisms that involve indirect interactions. In the dry state, any effects that the excipients confer to proteins through their interactions with water are irrelevant, as water is no longer present. Rather, the excipients stabilize proteins through direct binding and their effects on the physical properties of the dried powder. This review will describe a number of mechanisms by which the excipients interact with proteins in solution and with various interfaces, and their effects on the physical properties of the dried protein structure, and explain how the various interaction forces are related to their observed effects on protein stability.
Collapse
|
191
|
Shek YL, Chalikian TV. Volumetric Characterization of Interactions of Glycine Betaine with Protein Groups. J Phys Chem B 2011; 115:11481-9. [DOI: 10.1021/jp205777a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuen Lai Shek
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
192
|
Shimizu S. Molecular origin of the cosolvent-induced changes in the thermal stability of proteins. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
193
|
Breydo L, Uversky VN. Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 2011; 3:1163-80. [PMID: 21869995 DOI: 10.1039/c1mt00106j] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases constitute a set of pathological conditions originating from the slow, irreversible, and systematic cell loss within the various regions of the brain and/or the spinal cord. Depending on the affected region, the outcomes of the neurodegeneration are very broad and diverse, ranging from the problems with movements to dementia. Some neurodegenerative diseases are associated with protein misfolding and aggregation. Many proteins that misfold in human neurodegenerative diseases are intrinsically disordered; i.e., they lack a stable tertiary and/or secondary structure under physiological conditions in vitro. These intrinsically disordered proteins (IDPs) functionally complement ordered proteins, being typically involved in regulation and signaling. There is accumulating evidence that altered metal homeostasis may be related to the progression of neurodegenerative diseases. This review examines the effects of metal ion binding on the aggregation pathways of IDPs found in neurodegenerative diseases.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, Florida 33612, USA.
| | | |
Collapse
|
194
|
Abbas SA, Sharma VK, Patapoff TW, Kalonia DS. Solubilities and Transfer Free Energies of Hydrophobic Amino Acids in Polyol Solutions: Importance of the Hydrophobicity of Polyols. J Pharm Sci 2011; 100:3096-3104. [DOI: 10.1002/jps.22584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/10/2011] [Accepted: 04/06/2011] [Indexed: 11/08/2022]
|
195
|
Wang C, Ge Y, Mortensen J, Westh P. Interaction Free Energies of Eight Sodium Salts and a Phosphatidylcholine Membrane. J Phys Chem B 2011; 115:9955-61. [DOI: 10.1021/jp112203p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunhua Wang
- Research Unit for Functional Biomaterials, Roskilde University NSM, 1 Universitetsvej DK-4000 Roskilde, Denmark
- MEMPHYS — Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ying Ge
- Research Unit for Functional Biomaterials, Roskilde University NSM, 1 Universitetsvej DK-4000 Roskilde, Denmark
| | - John Mortensen
- Research Unit for Functional Biomaterials, Roskilde University NSM, 1 Universitetsvej DK-4000 Roskilde, Denmark
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University NSM, 1 Universitetsvej DK-4000 Roskilde, Denmark
- MEMPHYS — Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
196
|
Toal S, Amidi O, Schweitzer-Stenner R. Conformational Changes of Trialanine Induced by Direct Interactions between Alanine Residues and Alcohols in Binary Mixtures of Water with Glycerol and Ethanol. J Am Chem Soc 2011; 133:12728-39. [DOI: 10.1021/ja204123g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Siobhan Toal
- Departments of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Omid Amidi
- Departments of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Reinhard Schweitzer-Stenner
- Departments of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
197
|
Lemos GSD, Márquez-Bernardes LF, Arvelos LR, Paraíso LF, Penha-Silva N. Influence of Glucose Concentration on the Membrane Stability of Human Erythrocytes. Cell Biochem Biophys 2011; 61:531-7. [DOI: 10.1007/s12013-011-9235-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
198
|
Evers F, Steitz R, Tolan M, Czeslik C. Reduced protein adsorption by osmolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6995-7001. [PMID: 21568286 DOI: 10.1021/la2010908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Osmolytes are substances that affect osmosis and are used by cells to adapt to environmental stress. Here, we report a neutron reflectivity study on the influence of some osmolytes on protein adsorption at solid-liquid interfaces. Bovine ribonuclease A (RNase) and bovine insulin were used as model proteins adsorbing at a hydrophilic silica and at a hydrophobic polystyrene surface. From the neutron reflectivity data, the adsorbed protein layers were characterized in terms of layer thickness, protein packing density, and adsorbed protein mass in the absence and presence of urea, trehalose, sucrose, and glycerol. All data point to the clear effect of these nonionic cosolvents on the degree of protein adsorption. For example, 1 M sucrose leads to a reduction of the adsorbed amount of RNase by 39% on a silica surface and by 71% on a polystyrene surface. Trehalose was found to exhibit activity similar to that of sucrose. The changes in adsorbed protein mass can be attributed to a decreased packing density of the proteins in the adsorbed layers. Moreover, we investigated insulin adsorption at a hydrophobic surface in the absence and presence of glycerol. The degree of insulin adsorption is decreased by even 80% in the presence of 4 M of glycerol. The results of this study demonstrate that nonionic cosolvents can be used to tune and control nonspecific protein adsorption at aqueous-solid interfaces, which might be relevant for biomedical applications.
Collapse
Affiliation(s)
- Florian Evers
- Fakultät Chemie, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | | | | | | |
Collapse
|
199
|
Ohtake S, Wang YJ. Trehalose: Current Use and Future Applications. J Pharm Sci 2011; 100:2020-53. [DOI: 10.1002/jps.22458] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/05/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022]
|
200
|
Sanwlani S, Kumar P, Bohidar HB. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels. J Phys Chem B 2011; 115:7332-40. [PMID: 21563783 DOI: 10.1021/jp201877d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a systematic investigation of hydration and gelation of the polypeptide gelatin in water-glycerol mixed solvent (glycerol solutions). Raman spectroscopy results indicated enhancement in water structure in glycerol solutions and the depletion of glycerol density close to hydration sheath of the protein molecule. Gelation concentration (c(g)) was observed to decrease from 1.92 to 1.15% (w/v) while the gelation temperature (T(g)) was observed to increase from 31.4 to 40.7 °C with increase in glycerol concentration. Data on hand established the formation of organogels having interconnected networks, and the universal gelation mechanism could be described through an anomalous percolation model. The viscosity of sol diverged as η ∼ (1 - c(g)/c)(-k) as c(g) was approached from below (c < c(g)), while the elastic storage modulus grew as G' ∼ (c/c(g) - 1)(t) (for c > c(g)). It is important to note that values determined for critical exponents k and t were universal; that is, they did not depend on the microscopic details. The measured values were k = 0.38 ± 0.10 and t = 0.92 ± 0.17 whereas the percolation model predicts k = 0.7-1.3 and t = 1.9. Isothermal frequency sweep studies showed power-law dependence of gel storage modulus (G') and loss modulus (G'') on oscillation frequency ω given as G'(ω) ∼ ω(n') and G''(ω) ∼ ω(n''), and consistent with percolation model prediction it was found that n' ≈ n'' ≈ δ ≈ 0.73 close to gelation concentration. We propose a unique 3D phase diagram for the gelatin organogels. Circular dichroism data revealed that the gelatin molecules retained their biological activity in these solvents. Thus, it is shown that the thermomechanical properties of these organogels could be systematically tuned and customized as per application requirement.
Collapse
Affiliation(s)
- Shilpa Sanwlani
- Polymer and Biophysics Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|