151
|
Alegre-Cebollada J, Badilla CL, Fernández JM. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J Biol Chem 2010; 285:11235-42. [PMID: 20139067 DOI: 10.1074/jbc.m110.102962] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the early stages of an infection, pathogenic bacteria use long fibrous structures known as pili as adhesive anchors for attachment to the host cells. These structures also play key roles in colony and biofilm formation. In all those processes, pili must withstand large mechanical forces. The pili of the nasty gram-positive human pathogen Streptococcus pyogenes are assembled as single, micrometer long tandem modular proteins of covalently linked repeats of pilin proteins. Here we use single molecule force spectroscopy techniques to study the mechanical properties of the major pilin Spy0128. In our studies, we engineer polyproteins containing repeats of Spy0128 flanked by the well characterized I27 protein which provides an unambiguous mechanical fingerprint. We find that Spy0128 is an inextensible protein, even when pulled at forces of up to 800 pN. We also found that this remarkable mechanical resilience, unique among the modular proteins studied to date, results from the strategically located intramolecular isopeptide bonds recently identified in the x-ray structure of Spy0128. Removal of the isopeptide bonds by mutagenesis readily allowed Spy0128 domains to unfold and extend, albeit at relatively high forces of 172 pN (N-terminal domain) or 250 pN (C-terminal domain). Our results show that in contrast to the elastic roles played by large tandem modular proteins such as titin and fibronectin, the giant pili of S. pyogenes evolved to abrogate mechanical extensibility, a property that may be crucial in the pathogenesis of this most virulent bacterium and, therefore, become the target of new therapeutic approaches against its infections.
Collapse
|
152
|
Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability. Proc Natl Acad Sci U S A 2010; 107:1989-94. [PMID: 20080695 DOI: 10.1073/pnas.0905796107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Resolving molecular determinants of mechanical stability of proteins is crucial in the rational design of advanced biomaterials for use in biomedical and nanotechnological applications. Here we present an interdisciplinary study combining bioinformatics screening, steered molecular dynamics simulations, protein engineering, and single-molecule force spectroscopy that explores the mechanical properties of a macro domain protein with mixed alpha + beta topology. The unique architecture is defined by a single seven-stranded beta-sheet in the core of the protein flanked by five alpha-helices. Unlike mechanically stable proteins studied thus far, the macro domain provides the distinct advantage of having the key load-bearing hydrogen bonds (H bonds) buried in the hydrophobic core protected from water attacks. This feature allows direct measurement of the force required to break apart the load-bearing H bonds under locally hydrophobic conditions. Steered molecular dynamics simulations predicted extremely high mechanical stability of the macro domain by using constant velocity and constant force methods. Single-molecule force spectroscopy experiments confirm the exceptional mechanical strength of the macro domain, measuring a rupture force as high as 570 pN. Furthermore, through selective deletion of shielding peptide segments, we examined the same key H bonds under hydrophilic environments in which the beta-strands are exposed to solvent and verify that the high mechanical stability of the macro domain results from excellent shielding of the load-bearing H bonds from competing water. Our study reveals that shielding water accessibility to the load-bearing strands is a critical molecular determinant for enhancing the mechanical stability of proteins.
Collapse
|
153
|
Wang Y, Zhang L, Cheng J. Steered molecular dynamics simulation of the detaching process of two parallel surfaces glued together by a single polyethylene chain. J Appl Polym Sci 2010. [DOI: 10.1002/app.29626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
154
|
Kienberger F, Zhu R, Rankl C, Gruber HJ, Blaas D, Hinterdorfer P. Atomic Force Microscopy Studies of Human Rhinovirus. Methods Enzymol 2010; 475:515-39. [DOI: 10.1016/s0076-6879(10)75019-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
155
|
Force-Extension and Force-Clamp AFM Spectroscopies in Investigating Mechanochemical Reactions and Mechanical Properties of Single Biomolecules. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2010. [DOI: 10.1007/978-3-642-03535-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
156
|
Bizzarri AR, Cannistraro S. The application of atomic force spectroscopy to the study of biological complexes undergoing a biorecognition process. Chem Soc Rev 2010; 39:734-49. [DOI: 10.1039/b811426a] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
157
|
Casero E, Vázquez L, Parra-Alfambra AM, Lorenzo E. AFM, SECM and QCM as useful analytical tools in the characterization of enzyme-based bioanalytical platforms. Analyst 2010; 135:1878-903. [DOI: 10.1039/c0an00120a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
158
|
ELASTIC BEHAVIOR OF POLYMER CHAINS CONFINED IN PARALLEL INTERFACES. ACTA POLYM SIN 2009. [DOI: 10.3724/sp.j.1105.2007.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Aioanei D, Samorì B, Brucale M. Maximum likelihood estimation of protein kinetic parameters under weak assumptions from unfolding force spectroscopy experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:061916. [PMID: 20365199 DOI: 10.1103/physreve.80.061916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Indexed: 05/29/2023]
Abstract
Single molecule force spectroscopy (SMFS) is extensively used to characterize the mechanical unfolding behavior of individual protein domains under applied force by pulling chimeric polyproteins consisting of identical tandem repeats. Constant velocity unfolding SMFS data can be employed to reconstruct the protein unfolding energy landscape and kinetics. The methods applied so far require the specification of a single stretching force increase function, either theoretically derived or experimentally inferred, which must then be assumed to accurately describe the entirety of the experimental data. The very existence of a suitable optimal force model, even in the context of a single experimental data set, is still questioned. Herein, we propose a maximum likelihood (ML) framework for the estimation of protein kinetic parameters which can accommodate all the established theoretical force increase models. Our framework does not presuppose the existence of a single force characteristic function. Rather, it can be used with a heterogeneous set of functions, each describing the protein behavior in the stretching time range leading to one rupture event. We propose a simple way of constructing such a set of functions via piecewise linear approximation of the SMFS force vs time data and we prove the suitability of the approach both with synthetic data and experimentally. Additionally, when the spontaneous unfolding rate is the only unknown parameter, we find a correction factor that eliminates the bias of the ML estimator while also reducing its variance. Finally, we investigate which of several time-constrained experiment designs leads to better estimators.
Collapse
Affiliation(s)
- Daniel Aioanei
- Department of Biochemistry G Moruzzi, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | |
Collapse
|
160
|
|
161
|
Niewieczerzał S, Cieplak M. Stretching and twisting of the DNA duplexes in coarse-grained dynamical models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:474221. [PMID: 21832500 DOI: 10.1088/0953-8984/21/47/474221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three coarse-grained molecular dynamics models of the double-stranded DNA are proposed and compared in the context of single molecule mechanical manipulation such as twisting and various schemes of stretching-unzipping, shearing, two-strand stretching and stretching of only one strand. The models differ in the number of effective beads (between two and five) representing each nucleotide. They all show similar behaviour, but the bigger the resolution, the more details in the force patterns. The models incorporate the effective Lennard-Jones potentials in the couplings between two strands and harmonic potentials to describe the structure of a single strand. The force patterns are shown to depend on the sequence studied. In particular, both shearing and unzipping for an all-AT sequence lead to lower forces than for an all-CG sequence. The unzipping patterns and the corresponding scenario diagrams for the contact rupture events are found to reflect the sequential information if the temperature is moderate and initial transients are discarded. The derived torque-force phase diagram is found to be qualitatively consistent with experiments and all-atom simulations.
Collapse
Affiliation(s)
- Szymon Niewieczerzał
- Institute of Physics, Polish Academy of Science, Aleja Lotników 32/48, 02-668 Warsaw, Poland
| | | |
Collapse
|
162
|
Sikora M, Sułkowska JI, Cieplak M. Mechanical strength of 17,134 model proteins and cysteine slipknots. PLoS Comput Biol 2009; 5:e1000547. [PMID: 19876372 PMCID: PMC2759523 DOI: 10.1371/journal.pcbi.1000547] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/28/2009] [Indexed: 11/29/2022] Open
Abstract
A new theoretical survey of proteins' resistance to constant speed stretching is performed for a set of 17 134 proteins as described by a structure-based model. The proteins selected have no gaps in their structure determination and consist of no more than 250 amino acids. Our previous studies have dealt with 7510 proteins of no more than 150 amino acids. The proteins are ranked according to the strength of the resistance. Most of the predicted top-strength proteins have not yet been studied experimentally. Architectures and folds which are likely to yield large forces are identified. New types of potent force clamps are discovered. They involve disulphide bridges and, in particular, cysteine slipknots. An effective energy parameter of the model is estimated by comparing the theoretical data on characteristic forces to the corresponding experimental values combined with an extrapolation of the theoretical data to the experimental pulling speeds. These studies provide guidance for future experiments on single molecule manipulation and should lead to selection of proteins for applications. A new class of proteins, involving cystein slipknots, is identified as one that is expected to lead to the strongest force clamps known. This class is characterized through molecular dynamics simulations. The advances in nanotechnology have allowed for manipulation of single biomolecules and determination of their elastic properties. Titin was among the first proteins studied in this way. Its unravelling by stretching requires a 204 pN force. The resistance to stretching comes mostly from a localized region known as a force clamp. In titin, the force clamp is simple as it is formed by two parallel β-strands that are sheared on pulling. Studies of a set of under a hundred proteins accomplished in the last decade have revealed a variety of the force clamps that lead to forces ranging from under 20 pN to about 500 pN. This set comprises only a tiny fraction of proteins known. Thus one needs guidance as to what proteins should be considered for specific mechanical properties. Such a guidance is provided here through simulations within simplified coarse-grained models on 17 134 proteins that are stretched at constant speed. We correlate their unravelling forces with two structure classification schemes. We identify proteins with large resistance to unravelling and characterize their force clamps. Quite a few top strength proteins owe their sturdiness to a new type of the force clamp: the cystein slipknot in which the force peak is due to dragging of a piece of the backbone through a closed ring formed by two other pieces of the backbone and two connecting disulphide bonds.
Collapse
Affiliation(s)
- Mateusz Sikora
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna I. Sułkowska
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Center for Theoretical Biological Physics, University of California, San Diego, California, USA
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
163
|
Grützner A, Garcia-Manyes S, Kötter S, Badilla CL, Fernandez JM, Linke WA. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J 2009; 97:825-34. [PMID: 19651040 DOI: 10.1016/j.bpj.2009.05.037] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/10/2009] [Accepted: 05/26/2009] [Indexed: 01/05/2023] Open
Abstract
The giant protein titin is responsible for the elasticity of nonactivated muscle sarcomeres. Titin-based passive stiffness in myocardium is modulated by titin-isoform switching and protein-kinase (PK)A- or PKG-dependent titin phosphorylation. Additional modulatory effects on titin stiffness may arise from disulfide bonding under oxidant stress, as many immunoglobulin-like (Ig-)domains in titin's spring region have a potential for S-S formation. Using single-molecule atomic force microscopy (AFM) force-extension measurements on recombinant Ig-domain polyprotein constructs, we show that titin Ig-modules contain no stabilizing disulfide bridge, contrary to previous belief. However, we demonstrate that the human N2-B-unique sequence (N2-B(us)), a cardiac-specific, physiologically extensible titin segment comprising 572 amino-acid residues, contains up to three disulfide bridges under oxidizing conditions. AFM force spectroscopy on recombinant N2-B(us) molecules demonstrated a much shorter contour length in the absence of a reducing agent than in its presence, consistent with intramolecular S-S bonding. In stretch experiments on isolated human heart myofibrils, the reducing agent thioredoxin lowered titin-based stiffness to a degree that could be explained (using entropic elasticity theory) by altered extensibility solely of the N2-B(us). We conclude that increased oxidant stress can elevate titin-based stiffness of cardiomyocytes, which may contribute to the global myocardial stiffening frequently seen in the aging or failing heart.
Collapse
Affiliation(s)
- Anika Grützner
- Physiology and Biophysics Unit, University of Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
164
|
Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS. Mechanically-Induced Chemical Changes in Polymeric Materials. Chem Rev 2009; 109:5755-98. [DOI: 10.1021/cr9001353] [Citation(s) in RCA: 990] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mary M. Caruso
- Departments of Chemistry, Materials Science and Engineering, and Aerospace Engineering and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Douglas A. Davis
- Departments of Chemistry, Materials Science and Engineering, and Aerospace Engineering and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Qilong Shen
- Departments of Chemistry, Materials Science and Engineering, and Aerospace Engineering and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Susan A. Odom
- Departments of Chemistry, Materials Science and Engineering, and Aerospace Engineering and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Nancy R. Sottos
- Departments of Chemistry, Materials Science and Engineering, and Aerospace Engineering and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Scott R. White
- Departments of Chemistry, Materials Science and Engineering, and Aerospace Engineering and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Jeffrey S. Moore
- Departments of Chemistry, Materials Science and Engineering, and Aerospace Engineering and Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
165
|
Sorce B, Sabella S, Sandal M, Samorì B, Santino A, Cingolani R, Rinaldi R, Pompa PP. Single-molecule mechanical unfolding of amyloidogenic beta2-microglobulin: the force-spectroscopy approach. Chemphyschem 2009; 10:1471-7. [PMID: 19496082 DOI: 10.1002/cphc.200900220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The recombinant production of a novel chimeric polyprotein is described. The new protein contains either wild-type beta(2)-microglobulin (beta(2)m) or its truncated variant (DeltaN6 beta(2)m) (see picture). Structural characterization is achieved by means of single-molecule force spectroscopy studies of specific beta(2)m regions which could be involved in amyloidogenesis.
Collapse
Affiliation(s)
- B Sorce
- National Nanotechnology Laboratory of INFM-CNR, Italian Institute of Technology, Via Arnesano 16, 73100 Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
166
|
On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc Natl Acad Sci U S A 2009; 106:13791-6. [PMID: 19666489 DOI: 10.1073/pnas.0813093106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein mechanostability is a fundamental biological property that can only be measured by single-molecule manipulation techniques. Such studies have unveiled a variety of highly mechanostable modules (mainly of the Ig-like, beta-sandwich type) in modular proteins subjected to mechanical stress from the cytoskeleton and the metazoan cell-cell interface. Their mechanostability is often attributed to a "mechanical clamp" of secondary structure (a patch of backbone hydrogen bonds) fastening their ends. Here we investigate the nanomechanics of scaffoldins, an important family of scaffolding proteins that assembles a variety of cellulases into the so-called cellulosome, a microbial extracellular nanomachine for cellulose adhesion and degradation. These proteins anchor the microbial cell to cellulose substrates, which makes their connecting region likely to be subjected to mechanical stress. By using single-molecule force spectroscopy based on atomic force microscopy, polyprotein engineering, and computer simulations, here we show that the cohesin I modules from the connecting region of cellulosome scaffoldins are the most robust mechanical proteins studied experimentally or predicted from the entire Protein Data Bank. The mechanostability of the cohesin modules studied correlates well with their mechanical kinetic stability but not with their thermal stability, and it is well predicted by computer simulations, even coarse-grained. This extraordinary mechanical stability is attributed to 2 mechanical clamps in tandem. Our findings provide the current upper limit of protein mechanostability and establish shear mechanical clamps as a general structural/functional motif widespread in proteins putatively subjected to mechanical stress. These data have important implications for the scaffoldin physiology and for protein design in biotechnology and nanotechnology.
Collapse
|
167
|
|
168
|
Abstract
Single-molecule force-clamp spectroscopy offers a novel platform for mechanically denaturing proteins by applying a constant force to a polyprotein. A powerful emerging application of the technique is that, by introducing a disulfide bond in each protein module, the chemical kinetics of disulfide bond cleavage under different stretching forces can be probed at the single-bond level. Even at forces much lower than that which can rupture the chemical bond, the breaking of the S-S bond at the presence of various chemical reducing agents is significantly accelerated. Our previous work demonstrated that the rate of thiol/disulfide exchange reaction is force-dependent and well-described by an Arrhenius term of the form r = A(exp((FΔx(r) - E(a))/k(B)T)[nucleophile]). From Arrhenius fits to the force dependency of the reduction rate, we measured the bond elongation parameter, Δx(r), along the reaction coordinate to the transition state of the S(N)2 reaction cleaved by different nucleophiles and enzymes, never before observed by any other technique. For S-S cleavage by various reducing agents, obtaining the Δx(r) value can help depicting the energy landscapes and elucidating the mechanisms of the reactions at the single-molecule level. Small nucleophiles, such as 1,4-dl-dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), and l-cysteine, react with the S-S bond with monotonically increasing rates under the applied force, while thioredoxin enzymes exhibit both stretching-favored and -resistant reaction-rate regimes. These measurements demonstrate the power of the single-molecule force-clamp spectroscopy approach in providing unprecedented access to chemical reactions.
Collapse
Affiliation(s)
- Jian Liang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Julio M. Fernández
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
169
|
Abstract
A number of experiments and experimentally based simulations showed that beta-proteins are mechanically more stable than alpha-proteins. However, the theory that might explain this evidence is still lacking. In this paper we have developed a simple elastic theory, which allows to estimate critical forces for stretching both kinds of proteins. It has been shown that unfolding of beta-proteins does really require notably higher forces as compared to the stretching of alpha-proteins.
Collapse
Affiliation(s)
- A M Gabovich
- Institute of Physics, Nauka Avenue 46, Kiev 03680, Ukraine.
| | | |
Collapse
|
170
|
Yadavalli VK, Forbes JG, Wang K. Nanomechanics of full-length nebulin: an elastic strain gauge in the skeletal muscle sarcomere. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7496-505. [PMID: 19463013 PMCID: PMC2998391 DOI: 10.1021/la9009898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nebulin, a family of giant modular proteins (MW 700-800 kDa), acts as a F-actin thin filament ruler and calcium-linked regulator of actomyosin interaction. The nanomechanics of full length, native rabbit nebulin was investigated with an atomic force microscope by tethering, bracketing, and stretching full-length molecules via pairs of site-specific antibodies that were attached covalently, one to a protein resistant self-assembled monolayer of oligoethylene glycol and the other to the cantilever. Using this new nanomechanics platform that enables the identification of single molecule events via an unbiased analysis of detachment force and distance of all force curves, we showed that nebulin is elastic and extends to approximately 1 microm by external force up to an antibody detachment force of approximately 300-400 pN. Upon stretching, nebulin unravels and yields force spectra with craggy mountain range profiles with variable numbers and heights of force peaks. The peak spacings, analyzed by the model-independent, empirical Hilbert-Huang transform method, displayed underlying periodicities at approximately 15 and approximately 22 nm that may result from the unfolding of one or more nebulin modules between force peaks. Nebulin may act as an elastic strain gauge that interacts optimally with actin only under appropriate strain and stress. This stretch to match protein ruler may also exert a compressive force that stabilizes thin filaments against stress during contraction. We propose that the elasticity of nebulin is integral and essential in the muscle sarcomere.
Collapse
Affiliation(s)
- Vamsi K Yadavalli
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
171
|
B Staple D, Payne SH, Reddin ALC, Kreuzer HJ. Stretching and unfolding of multidomain biopolymers: a statistical mechanics theory of titin. Phys Biol 2009; 6:025005. [PMID: 19571360 DOI: 10.1088/1478-3975/6/2/025005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
172
|
Das A, Mukhopadhyay C. Mechanical unfolding pathway and origin of mechanical stability of proteins of ubiquitin family: An investigation by steered molecular dynamics simulation. Proteins 2009; 75:1024-34. [DOI: 10.1002/prot.22314] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
173
|
Calderon CP, Janosi L, Kosztin I. Using stochastic models calibrated from nanosecond nonequilibrium simulations to approximate mesoscale information. J Chem Phys 2009; 130:144908. [PMID: 19368472 PMCID: PMC2832035 DOI: 10.1063/1.3106225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 02/23/2009] [Indexed: 11/14/2022] Open
Abstract
We demonstrate how the surrogate process approximation (SPA) method can be used to compute both the potential of mean force along a reaction coordinate and the associated diffusion coefficient using a relatively small number (10-20) of bidirectional nonequilibrium trajectories coming from a complex system. Our method provides confidence bands which take the variability of the initial configuration of the high-dimensional system, continuous nature of the work paths, and thermal fluctuations into account. Maximum-likelihood-type methods are used to estimate a stochastic differential equation (SDE) approximating the dynamics. For each observed time series, we estimate a new SDE resulting in a collection of SPA models. The physical significance of the collection of SPA models is discussed and methods for exploiting information in the population of estimated SPA models are demonstrated and suggested. Molecular dynamics simulations of potassium ion dynamics inside a gramicidin A channel are used to demonstrate the methodology, although SPA-type modeling has also proven useful in analyzing single-molecule experimental time series [J. Phys. Chem. B 113, 118 (2009)].
Collapse
Affiliation(s)
- Christopher P Calderon
- Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005, USA.
| | | | | |
Collapse
|
174
|
|
175
|
Junker JP, Ziegler F, Rief M. Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Science 2009; 323:633-7. [PMID: 19179531 DOI: 10.1126/science.1166191] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-molecule force spectroscopy allows superb mechanical control of protein conformation. We used a custom-built low-drift atomic force microscope to observe mechanically induced conformational equilibrium fluctuations of single molecules of the eukaryotic calcium-dependent signal transducer calmodulin (CaM). From this data, the ligand dependence of the full energy landscape can be reconstructed. We find that calcium ions affect the folding kinetics of the individual CaM domains, whereas target peptides stabilize the already folded structure. Single-molecule data of full length CaM reveal that a wasp venom peptide binds noncooperatively to CaM with 2:1 stoichiometry, whereas a target enzyme peptide binds cooperatively with 1:1 stoichiometry. If mechanical load is applied directly to the target peptide, real-time binding/unbinding transitions can be observed.
Collapse
Affiliation(s)
- Jan Philipp Junker
- Physik Department E22, Technische Universität München, James-Franck-Strasse, 85748 München, Germany
| | | | | |
Collapse
|
176
|
Fuson KL, Ma L, Sutton RB, Oberhauser AF. The c2 domains of human synaptotagmin 1 have distinct mechanical properties. Biophys J 2009; 96:1083-90. [PMID: 19186144 PMCID: PMC2716670 DOI: 10.1016/j.bpj.2008.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Synaptotagmin 1 (Syt1) is the Ca(+2) receptor for fast, synchronous vesicle fusion in neurons. Because membrane fusion is an inherently mechanical, force-driven event, Syt1 must be able to adapt to the energetics of the fusion apparatus. Syt1 contains two C2 domains (C2A and C2B) that are homologous in sequence and three-dimensional in structure; yet, a number of observations have suggested that they have distinct biochemical and biological properties. In this study, we analyzed the mechanical stability of the C2A and C2B domains of human Syt1 using single-molecule atomic force microscopy. We found that stretching the C2AB domains of Syt1 resulted in two distinct unfolding force peaks. The larger force peak of approximately 100 pN was identified as C2B and the second peak of approximately 50 pN as C2A. Furthermore, a significant fraction of C2A domains unfolded through a low force intermediate that was not observed in C2B. We conclude that these domains have different mechanical properties. We hypothesize that a relatively small stretching force may be sufficient to deform the effector-binding regions of the C2A domain and modulate the affinity for soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), phospholipids, and Ca(+2).
Collapse
Affiliation(s)
- Kerry L. Fuson
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Liang Ma
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - R. Bryan Sutton
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | - Andres F. Oberhauser
- Department of Neuroscience and Cell Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
177
|
Mills M, Andricioaei I. An experimentally guided umbrella sampling protocol for biomolecules. J Chem Phys 2009; 129:114101. [PMID: 19044944 DOI: 10.1063/1.2976440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a simple method for utilizing experimental data to improve the efficiency of numerical calculations of free energy profiles from molecular dynamics simulations. The method involves umbrella sampling simulations with restraining potentials based on a known approximate estimate of the free energy profile derived solely from experimental data. The use of the experimental data results in optimal restraining potentials, guides the simulation along relevant pathways, and decreases overall computational time. In demonstration of the method, two systems are showcased. First, guided, unguided (regular) umbrella sampling simulations and exhaustive sampling simulations are compared to each other in the calculation of the free energy profile for the distance between the ends of a pentapeptide. The guided simulation use restraints based on a simulated "experimental" potential of mean force of the end-to-end distance that would be measured by fluorescence resonance energy transfer (obtained from exhaustive sampling). Statistical analysis shows a dramatic improvement in efficiency for a 5 window guided umbrella sampling over 5 and 17 window unguided umbrella sampling simulations. Moreover, the form of the potential of mean force for the guided simulations evolves, as one approaches convergence, along the same milestones as the extensive simulations, but exponentially faster. Second, the method is further validated by replicating the forced unfolding pathway of the titin I27 domain using guiding umbrella sampling potentials determined from actual single molecule pulling data. Comparison with unguided umbrella sampling reveals that the use of guided sampling encourages unfolding simulations to converge faster to a forced unfolding pathway that agrees with previous results and produces a more accurate potential of mean force.
Collapse
Affiliation(s)
- Maria Mills
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
178
|
Calderon CP, Harris NC, Kiang CH, Cox DD. Quantifying multiscale noise sources in single-molecule time series. J Phys Chem B 2009; 113:138-48. [PMID: 19072043 PMCID: PMC2682735 DOI: 10.1021/jp807908c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When analyzing single-molecule data, a low-dimensional set of system observables typically serves as the observational data. We calibrate stochastic dynamical models from time series that record such observables. Numerical techniques for quantifying noise from multiple time scales in a single trajectory, including experimental instrument and inherent thermal noise, are demonstrated. The techniques are applied to study time series coming from both simulations and experiments associated with the nonequilibrium mechanical unfolding of titin's I27 domain. The estimated models can be used for several purposes, (1) detect dynamical signatures of "rare events" by analyzing the effective diffusion and force as a function of the monitored observable, (2) quantify the influence that conformational degrees of freedom, which are typically difficult to directly monitor experimentally, have on the dynamics of the monitored observable, (3) quantitatively compare the inherent thermal noise to other noise sources, for example, instrument noise, variation induced by conformational heterogeneity, and so forth, (4) simulate random quantities associated with repeated experiments, and (5) apply pathwise, that is, trajectory-wise, hypothesis tests to assess the goodness-of-fit of the models and even detect conformational transitions in noisy signals. These items are all illustrated with several examples.
Collapse
Affiliation(s)
- Christopher P Calderon
- Department of Computational & Applied Mathematics, Rice University, Houston, Texas 77005-1892, USA.
| | | | | | | |
Collapse
|
179
|
Brucale M, Sandal M, Di Maio S, Rampioni A, Tessari I, Tosatto L, Bisaglia M, Bubacco L, Samorì B. Pathogenic Mutations Shift the Equilibria of α-Synuclein Single Molecules towards Structured Conformers. Chembiochem 2009; 10:176-83. [DOI: 10.1002/cbic.200800581] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
180
|
Calderon CP, Arora K. Extracting Kinetic and Stationary Distribution Information from Short MD Trajectories via a Collection of Surrogate Diffusion Models. J Chem Theory Comput 2009; 5:47-58. [PMID: 20046947 PMCID: PMC2739417 DOI: 10.1021/ct800282a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-dimensional stochastic models can summarize dynamical information and make long time predictions associated with observables of complex atomistic systems. Maximum likelihood based techniques for estimating low-dimensional surrogate diffusion models from relatively short time series are presented. It is found that a heterogeneous population of slowly evolving conformational degrees of freedom modulates the dynamics. This underlying heterogeneity results in a collection of estimated low-dimensional diffusion models. Numerical techniques for exploiting this finding to approximate skewed histograms associated with the simulation are presented. In addition, statistical tests are also used to assess the validity of the models and determine physically relevant sampling information, e.g. the maximum sampling frequency at which one can discretely sample from an atomistic time series and have a surrogate diffusion model pass goodness-of-fit tests. The information extracted from such analyses can possibly be used to assist umbrella sampling computations as well as help in approximating effective diffusion coefficients. The techniques are demonstrated on simulations of Adenylate Kinase.
Collapse
Affiliation(s)
- Christopher P. Calderon
- Department of Statistics and Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005-1892, USA
| | - Karunesh Arora
- Department of Chemistry, Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
181
|
Abstract
Selectins are adhesion molecules that resist large tensile forces applied by hydrodynamic forces to leukocytes binding to vessel walls. In crystals, the liganded (high-affinity) and unliganded (low-affinity) conformations differ in orientation between their tandem lectin and EGF domains. I examine how tensile force exerted on a selectin-ligand complex in vivo could favor the more extended, high-affinity conformation. Allostery is transmitted from the EGF-lectin domain interface to the ligand-binding interface on the lectin domain, 30 A away. Trp-1 of the lectin domain and the long axis of the EGF domain form an L-shaped prybar that is welded together by hydrogen bonds to the Trp-1 alpha-amino group. Pivoting of the prybar induced by force demolishes an interface between the Trp-1 side chain and the lectin domain at a switch1 region. These changes are transmitted by rigid body movement of the switch2 region to rearrangements in the switch3 region at the ligand binding site. Another switch region corresponds to a single residue in the EGF domain with large effects on ligand binding and rolling adhesion. Allostery in selectins, and the alignment of tensile force on a selectin-ligand complex with the transition pathway for conformational change, explain much of the structural basis for selectin mechanochemistry.
Collapse
|
182
|
Li MS, Gabovich AM, Voitenko AI. New method for deciphering free energy landscape of three-state proteins. J Chem Phys 2008; 129:105102. [DOI: 10.1063/1.2976760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
183
|
Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins. Proc Natl Acad Sci U S A 2008; 105:11152-7. [PMID: 18685107 DOI: 10.1073/pnas.0803446105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Significant mechanical stability is an essential feature shared by many elastomeric proteins, which function as molecular springs in a wide variety of biological machinery and biomaterials of superb mechanical properties. Despite the progress in understanding molecular determinants of mechanical stability, it remains challenging to rationally enhance the mechanical stability of proteins. Using single molecule force spectroscopy and protein engineering techniques, we demonstrate that engineered bi-histidine metal chelation can enhance the mechanical stability of proteins significantly and reversibly. Based on simple thermodynamic cycle analysis, we engineered a bi-histidine metal chelation site into various locations of the small protein, GB1, to achieve preferential stabilization of the native state over the mechanical unfolding transition state of GB1 through the binding of metal ions. Our results demonstrate that the metal chelation can enhance the mechanical stability of GB1 by as much as 100 pN. Since bi-histidine metal chelation sites can be easily implemented, engineered metal chelation provides a general methodology to enhance the mechanical stability of a wide variety of proteins. This general approach in protein mechanics will enable the rational tuning of the mechanical stability of proteins. It will not only open new avenues toward engineering proteins of tailored nanomechanical properties, but also provide new approaches to systematically map the mechanical unfolding pathway of proteins.
Collapse
|
184
|
Cao Y, Li H. Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator. NATURE NANOTECHNOLOGY 2008; 3:512-516. [PMID: 18685641 DOI: 10.1038/nnano.2008.168] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/23/2008] [Indexed: 05/26/2023]
Abstract
Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.
Collapse
|
185
|
Greene DN, Garcia T, Sutton RB, Gernert KM, Benian GM, Oberhauser AF. Single-molecule force spectroscopy reveals a stepwise unfolding of Caenorhabditis elegans giant protein kinase domains. Biophys J 2008; 95:1360-70. [PMID: 18390597 PMCID: PMC2479574 DOI: 10.1529/biophysj.108.130237] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/18/2008] [Indexed: 12/20/2022] Open
Abstract
Myofibril assembly and disassembly are complex processes that regulate overall muscle mass. Titin kinase has been implicated as an initiating catalyst in signaling pathways that ultimately result in myofibril growth. In titin, the kinase domain is in an ideal position to sense mechanical strain that occurs during muscle activity. The enzyme is negatively regulated by intramolecular interactions occurring between the kinase catalytic core and autoinhibitory/regulatory region. Molecular dynamics simulations suggest that human titin kinase acts as a force sensor. However, the precise mechanism(s) resulting in the conformational changes that relieve the kinase of this autoinhibition are unknown. Here we measured the mechanical properties of the kinase domain and flanking Ig/Fn domains of the Caenorhabditis elegans titin-like proteins twitchin and TTN-1 using single-molecule atomic force microscopy. Our results show that these kinase domains have significant mechanical resistance, unfolding at forces similar to those for Ig/Fn beta-sandwich domains (30-150 pN). Further, our atomic force microscopy data is consistent with molecular dynamic simulations, which show that these kinases unfold in a stepwise fashion, first an unwinding of the autoinhibitory region, followed by a two-step unfolding of the catalytic core. These data support the hypothesis that titin kinase may function as an effective force sensor.
Collapse
Affiliation(s)
- Dina N Greene
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | | | | | | | | | | |
Collapse
|
186
|
Stabilization provided by neighboring strands is critical for the mechanical stability of proteins. Biophys J 2008; 95:3935-42. [PMID: 18599623 DOI: 10.1529/biophysj.108.134072] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule force spectroscopy studies and steered molecular dynamics simulations have revealed that protein topology and pulling geometry play important roles in determining the mechanical stability of proteins. Most studies have focused on local interactions that are associated with the force-bearing beta-strands. Interactions mediated by neighboring strands are often overlooked. Here we use Top7 and barstar as model systems to illustrate the critical importance of the stabilization effect provided by neighboring beta-strands on the mechanical stability. Using single-molecule atomic force microscopy, we showed that Top7 and barstar, which have similar topology in their force-bearing region, exhibit vastly different mechanical-stability characteristics. Top7 is mechanically stable and unfolds at approximately 150 pN, whereas barstar is mechanically labile and unfolds largely below 50 pN. Steered molecular dynamics simulations revealed that stretching force peels one force-bearing strand away from barstar to trigger unfolding, whereas Top7 unfolds via a substructure-sliding mechanism. This previously overlooked stabilization effect from neighboring beta-strands is likely to be a general mechanism in protein mechanics and can serve as a guideline for the de novo design of proteins with significant mechanical stability and novel protein topology.
Collapse
|
187
|
Kumar S, Mishra G. Force-induced stretched state: effects of temperature. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:011907. [PMID: 18763982 DOI: 10.1103/physreve.78.011907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 06/10/2008] [Indexed: 05/26/2023]
Abstract
A model of self-avoiding walks with suitable constraint has been developed to study the effect of temperature on a single-stranded DNA (ssDNA) in the constant force ensemble. Our exact calculations for small chains show that the extension (reaction coordinate) may increase or decrease with the temperature depending on the applied force. The simple model developed here, which incorporates semimicroscopic details of base direction, provides an explanation of the force-induced transitions in ssDNA as observed in experiments.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
188
|
Selection of optimal variants of Gō-like models of proteins through studies of stretching. Biophys J 2008; 95:3174-91. [PMID: 18567634 DOI: 10.1529/biophysj.107.127233] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gō-like models of proteins are constructed based on the knowledge of the native conformation. However, there are many possible choices of a Hamiltonian for which the ground state coincides with the native state. Here, we propose to use experimental data on protein stretching to determine what choices are most adequate physically. This criterion is motivated by the fact that stretching processes usually start with the native structure, in the vicinity of which the Gō-like models should work the best. Our selection procedure is applied to 62 different versions of the Gō model and is based on 28 proteins. We consider different potentials, contact maps, local stiffness energies, and energy scales--uniform and nonuniform. In the latter case, the strength of the nonuniformity was governed either by specificity or by properties related to positioning of the side groups. Among them is the simplest variant: uniform couplings with no i, i + 2 contacts. This choice also leads to good folding properties in most cases. We elucidate relationship between the local stiffness described by a potential which involves local chirality and the one which involves dihedral and bond angles. The latter stiffness improves folding but there is little difference between them when it comes to stretching.
Collapse
|
189
|
Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 2008; 5:491-505. [PMID: 18511917 PMCID: PMC3397402 DOI: 10.1038/nmeth.1218] [Citation(s) in RCA: 1432] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.
Collapse
Affiliation(s)
- Keir C Neuman
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, 50 South Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
190
|
Calderon CP, Chelli R. Approximating nonequilibrium processes using a collection of surrogate diffusion models. J Chem Phys 2008; 128:145103. [DOI: 10.1063/1.2903439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
191
|
Cao Y, Yoo T, Zhuang S, Li H. Protein-protein interaction regulates proteins' mechanical stability. J Mol Biol 2008; 378:1132-41. [PMID: 18433770 DOI: 10.1016/j.jmb.2008.03.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/18/2008] [Accepted: 03/21/2008] [Indexed: 11/19/2022]
Abstract
Elastomeric proteins are molecular springs found not only in a variety of biological machines and tissues, but also in biomaterials of superb mechanical properties. Regulating the mechanical stability of elastomeric proteins is not only important for a range of biological processes, but also critical for the use of engineered elastomeric proteins as building blocks to construct nanomechanical devices and novel materials of well-defined mechanical properties. Here we demonstrate that protein-protein interactions can potentially serve as an effective means to regulate the mechanical properties of elastomeric proteins. We show that the binding of fragments of IgG antibody to a small protein, GB1, can significantly enhance the mechanical stability of GB1. The regulation of the mechanical stability of GB1 by IgG fragments is not through direct modification of the interactions in the mechanically key region of GB1; instead, it is accomplished via the long-range coupling between the IgG binding site and the mechanically key region of GB1. Although Fc and Fab bind GB1 at different regions of GB1, their binding to GB1 can increase the mechanical stability of GB1 significantly. Using alanine point mutants of GB1, we show that the amplitude of mechanical stability enhancement of GB1 by Fc does not correlate with the binding affinity, suggesting that binding affinity only affects the population of GB1/human Fc (hFc) complex at a given concentration of hFc, but does not affect the intrinsic mechanical stability of the GB1/hFc complex. Furthermore, our results indicate that the mechanical stability enhancement by IgG fragments is robust and can tolerate sequence/structural perturbation to GB1. Our results demonstrate that the protein-protein interaction is an efficient approach to regulate the mechanical stability of GB1-like proteins and we anticipate that this new methodology will help to develop novel elastomeric proteins with tunable mechanical stability and compliance.
Collapse
Affiliation(s)
- Yi Cao
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
192
|
Sandal M, Valle F, Tessari I, Mammi S, Bergantino E, Musiani F, Brucale M, Bubacco L, Samorì B. Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biol 2008; 6:e6. [PMID: 18198943 PMCID: PMC2174973 DOI: 10.1371/journal.pbio.0060006] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/26/2007] [Indexed: 01/24/2023] Open
Abstract
Human α-Synuclein (αSyn) is a natively unfolded protein whose aggregation into amyloid fibrils is involved in the pathology of Parkinson disease. A full comprehension of the structure and dynamics of early intermediates leading to the aggregated states is an unsolved problem of essential importance to researchers attempting to decipher the molecular mechanisms of αSyn aggregation and formation of fibrils. Traditional bulk techniques used so far to solve this problem point to a direct correlation between αSyn's unique conformational properties and its propensity to aggregate, but these techniques can only provide ensemble-averaged information for monomers and oligomers alike. They therefore cannot characterize the full complexity of the conformational equilibria that trigger the aggregation process. We applied atomic force microscopy–based single-molecule mechanical unfolding methodology to study the conformational equilibrium of human wild-type and mutant αSyn. The conformational heterogeneity of monomeric αSyn was characterized at the single-molecule level. Three main classes of conformations, including disordered and “β-like” structures, were directly observed and quantified without any interference from oligomeric soluble forms. The relative abundance of the “β-like” structures significantly increased in different conditions promoting the aggregation of αSyn: the presence of Cu2+, the pathogenic A30P mutation, and high ionic strength. This methodology can explore the full conformational space of a protein at the single-molecule level, detecting even poorly populated conformers and measuring their distribution in a variety of biologically important conditions. To the best of our knowledge, we present for the first time evidence of a conformational equilibrium that controls the population of a specific class of monomeric αSyn conformers, positively correlated with conditions known to promote the formation of aggregates. A new tool is thus made available to test directly the influence of mutations and pharmacological strategies on the conformational equilibrium of monomeric αSyn. Natively unstructured proteins defy the classical “one sequence–one structure” paradigm of protein science. In pathological conditions, monomers of these proteins can aggregate in the cell, a process that underlies neurodegenerative diseases such as Alzheimer and Parkinson. A key step in the aggregation process—the formation of misfolded intermediates—remains obscure. To shed light on this process, we characterized the folding and conformational diversity of αSyn, a natively unstructured protein involved in Parkinson disease, by mechanically stretching single molecules of this protein and recording their mechanical properties. These experiments permitted us to observe directly and quantify three main classes of conformations that, under in vitro physiological conditions, exist simultaneously in the αSyn sample. We found that one class of conformations, “β-like” structures, is directly related to αSyn aggregation. In fact, their relative abundance increases drastically in three different conditions known to promote the formation of αSyn fibrils. We expect that a critical concentration of αSyn with a “β-like” structure must be reached to trigger fibril formation. This critical concentration is therefore controlled by a chemical equilibrium. Novel pharmacological strategies can now be tailored to act upstream, before the aggregation process ensues, by targeting this equilibrium. To this end, single-molecule force spectroscopy can be an effective tool to tailor and test new pharmacological agents. A single-molecule study detects structured and unstructured conformers in equilibrium in monomeric α-synuclein. The β-like conformers increase with pathological mutations and under other conditions known to promote aggregation.
Collapse
Affiliation(s)
- Massimo Sandal
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - Francesco Valle
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
- National Center on Nanostructures and BioSystems at Surfaces (S3) INFM-CNR, Modena, Italy
- * To whom correspondence should be addressed. E-mail: (FV); (BS)
| | | | - Stefano Mammi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Francesco Musiani
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - Marco Brucale
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | - Bruno Samorì
- Department of Biochemistry “G. Moruzzi”, University of Bologna, Bologna, Italy
- National Center on Nanostructures and BioSystems at Surfaces (S3) INFM-CNR, Modena, Italy
- * To whom correspondence should be addressed. E-mail: (FV); (BS)
| |
Collapse
|
193
|
Chiovitti A, Heraud P, Dugdale TM, Hodson OM, Curtain RCA, Dagastine RR, Wood BR, Wetherbee R. Divalent cations stabilize the aggregation of sulfated in the adhesive nanofibers of the biofouling diatom Toxarium undulatum. SOFT MATTER 2008; 4:811-820. [PMID: 32907187 DOI: 10.1039/b715455k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A species of marine diatom, Toxarium undulatum, has emerged as a problematic biofouler of contemporary environmentally benign marine coatings. Previous analyses by atomic force microscopy (AFM) showed the cell-substratum adhesive of this alga contained macromolecules with a modular protein backbone assembled into nanofibers in which the domains of the macromolecules folded and unfolded in a co-ordinated manner. In the present study, we investigated further the composition and properties of the adhesive. A combination of energy dispersive X-ray analysis (EDXA) and Fourier transform infrared (FTIR) spectroscopy showed that the adhesive contained mainly protein, carbohydrate, sulfate, calcium, and magnesium. AFM demonstrated that EDTA treatment of native T. undulatum adhesive resulted in rapid disruption of the adhesive nanofiber (ANF) structure but ANFs were restored by subsequent treatment (within 1 h) with solutions containing divalent cations. Prolonged exposure to EDTA (≥18 h) led to cell detachment. The soluble EDTA extract was separated from the cells, dialyzed, concentrated, and analyzed further. The extract had a protein-to-carbohydrate-to-sulfate weight ratio of 1.0 : 0.2 : 0.9 and contained a single, high-molecular-mass (>220 kDa) band by SDS-PAGE which was visualized by Stains-All® but not by Coomassie blue, indicating that it was a highly anionic macromolecule. The most abundant amino acids in the extract were glycine (22 mol%), aspartic acid/aspartamine (14 mol%), and histidine (11 mol%). The adhesive contained 11 neutral sugars dominated by mannose (50 mol%) and xylose (29 mol%). On the basis of these data, we propose that the ANFs of T. undulatum are composed of sulfated high-molecular-mass glycoproteins cross-linked by calcium and magnesium ions. The cross-linking enables domains of adjacent protein backbones to unfold and re-fold in register.
Collapse
Affiliation(s)
- Anthony Chiovitti
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | - Philip Heraud
- Centre for Biospectroscopy, Monash University, Clayton, Victoria 3800, Australia
| | - Tony M Dugdale
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | - Oliver M Hodson
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| | - Roger C A Curtain
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | - Raymond R Dagastine
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia and Particulate Fluids Processing Centre, University of Melbourne, Victoria 3010, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, Monash University, Clayton, Victoria 3800, Australia
| | - Richard Wetherbee
- School of Botany, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
194
|
Valle F, Zuccheri G, Bergia A, Ayres L, Rowan A, Nolte R, Samorì B. A Polymeric Molecular “Handle” for Multiple AFM-Based Single-Molecule Force Measurements. Angew Chem Int Ed Engl 2008; 47:2431-4. [DOI: 10.1002/anie.200704526] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
195
|
Valle F, Zuccheri G, Bergia A, Ayres L, Rowan A, Nolte R, Samorì B. A Polymeric Molecular “Handle” for Multiple AFM-Based Single-Molecule Force Measurements. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
196
|
Feng G, Lu H. Computer simulation of I27 translocation through ClpY reveals a critical role of protein mechanical strength and local stability. ACTA ACUST UNITED AC 2008; 2007:1213-6. [PMID: 18002181 DOI: 10.1109/iembs.2007.4352515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clp family is one type of AAA+ proteases, which catalyze protein degradation and translocation. Because of the steric restriction of the complex structure, the substrates have to be denaturated before accessing the active sites of the peptidases. This type of translocation-induced protein unfolding has been studied in bulk biochemical experiments, but the detailed dynamic process is still unknown. Two models are proposed: the target protein somehow unfolds before it is pulled through a protease or the target protein is unfolded by pulling force during the translocation. We performed steered molecular dynamics (SMD) simulations to pull a model protein I27 and its variants (V11P, V13P and V15P) through ClpY, which is a member of Clp family with the available crystal structure. Resulting force-position profiles showed that the protein translocation needs a large initial force to break it open, and further unfolding needs relatively weaker forces. Comparison of the unfolding forces among translocation of I27 and its variants showed that the local mechanical stability of the protein determines the unfolding force. We also simulated the I27 translocation starting with different orientations and found that the unfolding dynamics are similar. The simulations presented here, combined with published experimental data, support the model that the target protein is pulled apart during translocation, and the force needed to unfold a protein follows the local stability model. This model does not only give a close insight into the process of force-driven protein unfolding in translocation, but also is instructive to design protein in protein degradation, which is one of the most important steps in cellular cycles.
Collapse
Affiliation(s)
- Gang Feng
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
197
|
Abstract
The activity of proteins and their complexes often involves the conversion of chemical energy (stored or supplied) into mechanical work through conformational changes. Mechanical forces are also crucial for the regulation of the structure and function of cells and tissues. Thus, the shape of eukaryotic cells (and by extension, that of the multicellular organisms they form) is the result of cycles of mechanosensing, mechanotransduction, and mechanoresponse. Recently developed single-molecule atomic force microscopy techniques can be used to manipulate single molecules, both in real time and under physiological conditions, and are ideally suited to directly quantify the forces involved in both intra- and intermolecular protein interactions. In combination with molecular biology and computer simulations, these techniques have been applied to characterize the unfolding and refolding reactions in a variety of proteins. Single-molecule mechanical techniques are providing fundamental information on the structure and function of proteins and are becoming an indispensable tool to understand how these molecules fold and work.
Collapse
Affiliation(s)
- Andres F Oberhauser
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
198
|
Dietz H, Rief M. Elastic bond network model for protein unfolding mechanics. PHYSICAL REVIEW LETTERS 2008; 100:098101. [PMID: 18352751 DOI: 10.1103/physrevlett.100.098101] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Indexed: 05/26/2023]
Abstract
Recent advances in single molecule mechanics have made it possible to investigate the mechanical anisotropy of protein stability in great detail. A quantitative prediction of protein unfolding forces at experimental time scales has so far been difficult. Here, we present an elastically bonded network model to describe the mechanical unfolding forces of green fluorescent protein in eight different pulling directions. The combination of an elastic network and irreversible bond fracture kinetics offers a new concept to understand the determinants of mechanical protein stability.
Collapse
Affiliation(s)
- Hendrik Dietz
- Dana-Farber Cancer Institute and BCMP, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
199
|
Granzier H, Labeit S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 2008; 36:740-55. [PMID: 17763461 DOI: 10.1002/mus.20886] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The striated muscle sarcomere contains, in addition to thin and thick filaments, a third myofilament comprised of titin. The extensible region of titin spans the I-band region of the sarcomere and develops passive force in stretched sarcomeres. This force positions the A-bands in the middle of the sarcomere, maintains sarcomere length homogeneity and, importantly, is responsible for myocardial passive tension that determines diastolic filling. Recent work suggests that smooth muscle expresses a truncated titin isoform with a short extensible region that is predicted to develop high passive force levels. Several mechanisms for tuning the titin-based passive tension have been discovered that involve alternative splicing as well as posttranslational modification, mechanisms that are at play both during normal muscle function as well as during disease.
Collapse
Affiliation(s)
- Henk Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology Physiology, and Physiology, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
200
|
Kloss E, Courtemanche N, Barrick D. Repeat-protein folding: new insights into origins of cooperativity, stability, and topology. Arch Biochem Biophys 2008; 469:83-99. [PMID: 17963718 PMCID: PMC2474553 DOI: 10.1016/j.abb.2007.08.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Although our understanding of globular protein folding continues to advance, the irregular tertiary structures and high cooperativity of globular proteins complicates energetic dissection. Recently, proteins with regular, repetitive tertiary structures have been identified that sidestep limitations imposed by globular protein architecture. Here we review recent studies of repeat-protein folding. These studies uniquely advance our understanding of both the energetics and kinetics of protein folding. Equilibrium studies provide detailed maps of local stabilities, access to energy landscapes, insights into cooperativity, determination of nearest-neighbor interaction parameters using statistical thermodynamics, relationships between consensus sequences and repeat-protein stability. Kinetic studies provide insight into the influence of short-range topology on folding rates, the degree to which folding proceeds by parallel (versus localized) pathways, and the factors that select among multiple potential pathways. The recent application of force spectroscopy to repeat-protein unfolding is providing a unique route to test and extend many of these findings.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| | - Naomi Courtemanche
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| | - Doug Barrick
- T.C. Jenkins Department of Biophyics, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218 USA
| |
Collapse
|