151
|
Affiliation(s)
- Edward H Hinchcliffe
- Department of Biological Sciences, and the Walther Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, IN 46556, USA
| | | |
Collapse
|
152
|
Hansen DV, Hsu JY, Kaiser BK, Jackson PK, Eldridge AG. Control of the centriole and centrosome cycles by ubiquitination enzymes. Oncogene 2002; 21:6209-21. [PMID: 12214251 DOI: 10.1038/sj.onc.1205824] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David V Hansen
- Programs in Chemical Biology and Cancer Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California, CA 94305-5324, USA
| | | | | | | | | |
Collapse
|
153
|
Abstract
Centrosomes are far more fascinating than the first explorers of this organelle a century ago could ever have imagined. Recent evidence indicates that deregulation of centrosome duplication affects centrosome number and promotes aneuploidy, features characteristic of human tumors.
Collapse
Affiliation(s)
- Stephen Doxsey
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
154
|
Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 2002; 3:339-50. [PMID: 12361598 DOI: 10.1016/s1534-5807(02)00258-7] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Centrosome duplication and separation are linked inextricably to certain cell cycle events, in particular activation of cyclin-dependent kinases (CDKs). However, relatively few CDK targets driving these events have been uncovered. Here, we have performed a screen for CDK substrates and have isolated a target, CP110, which is phosphorylated by CDKs in vitro and in vivo. Human CP110 localizes to centrosomes. Its expression is strongly induced at the G1-to-S phase transition, coincident with the initiation of centrosome duplication. RNAi-mediated depletion of CP110 indicates that this protein plays an essential role in centrosome duplication. Long-term disruption of CP110 phosphorylation leads to unscheduled centrosome separation and overt polyploidy. Our data suggest that CP110 is a physiological centrosomal CDK target that promotes centrosome duplication, and its deregulation may contribute to genomic instability.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
155
|
Iwanaga Y, Kasai T, Kibler K, Jeang KT. Characterization of regions in hsMAD1 needed for binding hsMAD2. A polymorphic change in an hsMAD1 leucine zipper affects MAD1-MAD2 interaction and spindle checkpoint function. J Biol Chem 2002; 277:31005-13. [PMID: 12042300 DOI: 10.1074/jbc.m110666200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the mitotic spindle assembly checkpoint provides a monitor for the fidelity of chromosomal segregation. In this context, the mitotic arrest deficiency protein 2 (MAD2) censors chromosomal mis-segregation by monitoring microtubule attachment/tension, a role that requires its attachment to kinetochores. Studies in yeast have shown that binding of MAD1 to MAD2 is important for the checkpoint function of the latter. The interactions between human MAD1 (hsMAD1) and human MAD2 (hsMAD2) have, however, remained poorly characterized. Here we report that two leucine zipper domains (amino acids 501-522 and 557-571) in hsMAD1 are required for its contact with hsMAD2. Interestingly, in several cancer cell lines, we noted the frequent presence of a coding single nucleotide Arg to His polymorphism at codon 558 located within the second leucine zipper of hsMAD1. We found that hsMAD1H558 is less proficient than hsMAD1R558 in binding hsMAD2 and in enforcing mitotic arrest. We also document a first example of loss-of-heterozygosity for a spindle checkpoint gene (at the hsMAD1 558 locus) in a human breast cancer. Based on our findings, it is possible that hsMAD1H558 could be an at-risk polymorphism that contributes to attenuated spindle checkpoint function in human cells.
Collapse
Affiliation(s)
- Yoichi Iwanaga
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID/National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| | | | | | | |
Collapse
|
156
|
Kaiser BK, Zimmerman ZA, Charbonneau H, Jackson PK. Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol Biol Cell 2002; 13:2289-300. [PMID: 12134069 PMCID: PMC117313 DOI: 10.1091/mbc.01-11-0535] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In budding yeast, the Cdc14p phosphatase activates mitotic exit by dephosphorylation of specific cyclin-dependent kinase (Cdk) substrates and seems to be regulated by sequestration in the nucleolus until its release in mitosis. Herein, we have analyzed the two human homologs of Cdc14p, hCdc14A and hCdc14B. We demonstrate that the human Cdc14A phosphatase is selective for Cdk substrates in vitro and that although the protein abundance and intrinsic phosphatase activity of hCdc14A and B vary modestly during the cell cycle, their localization is cell cycle regulated. hCdc14A dynamically localizes to interphase but not mitotic centrosomes, and hCdc14B localizes to the interphase nucleolus. These distinct patterns of localization suggest that each isoform of human Cdc14 likely regulates separate cell cycle events. In addition, hCdc14A overexpression induces the loss of the pericentriolar markers pericentrin and gamma-tubulin from centrosomes. Overproduction of hCdc14A also causes mitotic spindle and chromosome segregation defects, defective karyokinesis, and a failure to complete cytokinesis. Thus, the hCdc14A phosphatase appears to play a role in the regulation of the centrosome cycle, mitosis, and cytokinesis, thereby influencing chromosome partitioning and genomic stability in human cells.
Collapse
Affiliation(s)
- Brett K Kaiser
- Departments of Pathology and Microbiology, and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
157
|
Marriott SJ, Lemoine FJ, Jeang KT. Damaged DNA and miscounted chromosomes: human T cell leukemia virus type I tax oncoprotein and genetic lesions in transformed cells. J Biomed Sci 2002; 9:292-8. [PMID: 12145525 DOI: 10.1007/bf02256583] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic instability is a recurring theme in human cancers. Although the molecular mechanisms mediating this effect commonly observed in transformed cells are not completely understood, it has been proposed to involve either the loss of DNA repair capabilities or the loss of chromosomal stability. The transforming retrovirus human T cell leukemia virus type I (HTLV-I) encodes a viral oncoprotein Tax, which is believed to cause the genomic instability characteristic of HTLV-I-infected cells. This review focuses on the ability of HTLV-I Tax to disrupt the cellular processes of DNA repair and chromosomal segregation. The consequences of these effects as well as the evolutionary advantage this may provide to HTLV-I are discussed.
Collapse
Affiliation(s)
- Susan J Marriott
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
158
|
Liu X, Erikson RL. Activation of Cdc2/cyclin B and inhibition of centrosome amplification in cells depleted of Plk1 by siRNA. Proc Natl Acad Sci U S A 2002; 99:8672-6. [PMID: 12077309 PMCID: PMC124355 DOI: 10.1073/pnas.132269599] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2002] [Indexed: 11/18/2022] Open
Abstract
The events of the cell cycle, the stages at which the cell proliferates and divides, are facilitated and controlled by multiple signaling pathways. Among the many regulatory enzymes that contribute to these processes is the polo-like kinase (Plk). Plks have been reported to mediate multiple mitotic processes, including bipolar spindle formation, activation of Cdc25C, actin ring formation, centrosome maturation, and activation of the anaphase-promoting complex. To investigate its functions in mammalian cells further, we used the recently developed small interfering RNA technique specifically to deplete Plk1 in cultured cells. We find that Plk1 depletion results in elevated Cdc2 protein kinase activity and thus attenuates cell-cycle progression. About 45% of cells treated with Plk1 small interfering RNA show the formation of a dumbbell-like DNA organization, suggesting that sister chromatids are not completely separated. About 15% of these cells do complete anaphase but do not complete cytokinesis. Finally, Plk1 depletion significantly reduces centrosome amplification in hydroxyurea-treated U2OS cells. These data provide direct evidence that Plk is required for multiple mitotic processes in mammalian cells and their significance is discussed.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
159
|
Abstract
The centrosome is the major microtubule-organizing center of animal cells. It influences cell shape and polarity and directs the formation of the bipolar mitotic spindle. Numerical and structural centrosome aberrations have been implicated in disease, notably cancer. In dividing cells, centrosomes need to be duplicated and segregated in synchrony with chromosomes. This centrosome cycle requires a series of structural and functional transitions that are regulated by both phosphorylation and proteolysis. Here we summarize recent information on the regulation of the centrosome cycle and its coordination with the chromosomal cell cycle.
Collapse
Affiliation(s)
- P Meraldi
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | |
Collapse
|
160
|
Krämer A, Neben K, Ho AD. Centrosome replication, genomic instability and cancer. Leukemia 2002; 16:767-75. [PMID: 11986936 DOI: 10.1038/sj.leu.2402454] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Accepted: 01/07/2002] [Indexed: 01/14/2023]
Abstract
Karyotypic alterations, including whole chromosome loss or gain, ploidy changes, and a variety of chromosome aberrations are common in cancer cells. If proliferating cells fail to coordinate centrosome duplication with DNA replication, this will inevitably lead to a change in ploidy, and the formation of monopolar or multipolar spindles will generally provoke abnormal segregation of chromosomes. Indeed, it has long been recognized that errors in the centrosome duplication cycle may be an important cause of aneuploidy and thus contribute to cancer formation. This view has recently received fresh impetus with the description of supernumerary centrosomes in almost all solid human tumors. As the primary microtubule organizing center of most eukaryotic cells, the centrosome assures symmetry and bipolarity of the cell division process, a function that is essential for accurate chromosome segregation. In addition, a growing body of evidence indicates that centrosomes might be important for initiating S phase and completing cytokinesis. Centrosomes undergo duplication precisely once before cell division. Recent reports have revealed that this process is linked to the cell division cycle via cyclin-dependent kinase (cdk) 2 activity that couples centriole duplication to the onset of DNA replication at the G(1)/S phase transition. Alterations in G(1)/S phase regulating proteins like the retinoblastoma protein, cyclins D and E, cdk4 and 6, cdk inhibitors p16(INK4A) and p15(INK4B), and p53 are among the most frequent aberrations observed in human malignancies. These alterations might not only lead to unrestrained proliferation, but also cause karyotypic instability by uncontrolled centrosome replication. Since several excellent reports on cell cycle regulation and cancer have been published, this review will focus on the role of centrosomes in cell cycle progression, as well as causes and consequences of aberrant centrosome replication in human neoplasias.
Collapse
Affiliation(s)
- A Krämer
- Medizinische Klinik und Poliklinik V, Ruprecht-Karls-Universität Heidelberg, Hospitalstrasse 3, 69115 Heidelberg, Germany
| | | | | |
Collapse
|
161
|
Stucke VM, Silljé HH, Arnaud L, Nigg EA. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J 2002; 21:1723-32. [PMID: 11927556 PMCID: PMC125937 DOI: 10.1093/emboj/21.7.1723] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Budding yeast Mps1p kinase has been implicated in both the duplication of microtubule-organizing centers and the spindle assembly checkpoint. Here we show that hMps1, the human homolog of yeast Mps1p, is a cell cycle-regulated kinase with maximal activity during M phase. hMps1 localizes to kinetochores and its activity and phosphorylation state increase upon activation of the mitotic checkpoint. By antibody microinjection and siRNA, we demonstrate that hMps1 is required for human cells to undergo checkpoint arrest in response to microtubule depolymerization. In contrast, centrosome (re-)duplication as well as cell division occur in the absence of hMps1. We conclude that hMps1 is required for the spindle assembly checkpoint but not for centrosome duplication.
Collapse
Affiliation(s)
| | | | - Lionel Arnaud
- Max-Planck Institute for Biochemistry, Department of Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany and
Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop A2-025, PO Box 19024, Seattle, WA 98109-1024, USA Corresponding author e-mail:
| | - Erich A. Nigg
- Max-Planck Institute for Biochemistry, Department of Cell Biology, Am Klopferspitz 18a, D-82152 Martinsried, Germany and
Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop A2-025, PO Box 19024, Seattle, WA 98109-1024, USA Corresponding author e-mail:
| |
Collapse
|
162
|
Descamps S, Prigent C. Aurora-A, -B et -C : À l’aube d’une nouvelle connexion entre l’amplification des centrosomes, l’aneuploïdie et le cancer ? Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002184474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
163
|
Meraldi P, Honda R, Nigg EA. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 2002; 21:483-92. [PMID: 11847097 PMCID: PMC125866 DOI: 10.1093/emboj/21.4.483] [Citation(s) in RCA: 527] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aberrations in centrosome numbers have long been implicated in aneuploidy and tumorigenesis, but their origins are unknown. Here we have examined how overexpression of Aurora-A kinase causes centrosome amplification in cultured cells. We show that excess Aurora-A does not deregulate centrosome duplication but gives rise to extra centrosomes through defects in cell division and consequent tetraploidization. Over expression of other mitotic kinases (Polo-like kinase 1 and Aurora-B) also causes multinucleation and concomitant increases in centrosome numbers. Absence of a p53 checkpoint exacerbates this phenotype, providing a plausible explanation for the centrosome amplification typical of p53-/- cells. We propose that errors during cell division, combined with the inability to detect the resulting hyperploidy, constitute a major cause for numerical centrosome aberrations in tumors.
Collapse
Affiliation(s)
| | | | - Erich A. Nigg
- Department of Cell Biology, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
Corresponding author e-mail:
| |
Collapse
|
164
|
Lange BMH. Integration of the centrosome in cell cycle control, stress response and signal transduction pathways. Curr Opin Cell Biol 2002; 14:35-43. [PMID: 11792542 DOI: 10.1016/s0955-0674(01)00291-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification of cell cycle control and signal transduction components on the centrosome has fostered the idea that the centrosome is more than a microtubule-organizing center. Indeed, recent molecular evidence suggests that the centrosome plays an active role not only in the regulation of microtubule nucleation activity, but also in the coordination of centrosome duplication with cell cycle progression, in stress response and in cell cycle checkpoint control. To achieve these roles, it interacts with a multitude of signal transduction molecules. The specificity of the interactions is mediated through anchoring proteins that bring centrosomal components and regulatory proteins into close proximity. The molecular composition and organization of the centrosome thus reflects its multiple functions.
Collapse
Affiliation(s)
- Bodo M H Lange
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, D-69117, Heidelberg, Germany.
| |
Collapse
|
165
|
Affiliation(s)
- Yannick Arlot-Bonnemains
- Groupe Cycle Cellulaire, UMR 6061 Génétique et Développement, CNRS-Université de Rennes I, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, CS 34317, 35043 Rennes Cedex, France
| | | |
Collapse
|
166
|
Matsumoto Y, Maller JL. Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. Science 2002; 295:499-502. [PMID: 11799245 DOI: 10.1126/science.1065693] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aberrant centrosome duplication is observed in many tumor cells and may contribute to genomic instability through the formation of multipolar mitotic spindles. Cyclin-dependent kinase 2 (Cdk2) is required for multiple rounds of centrosome duplication in Xenopus egg extracts but not for the initial round of replication. Egg extracts undergo periodic oscillations in the level of free calcium. We show here that chelation of calcium in egg extracts or specific inactivation of calcium/calmodulin-dependent protein kinase II (CaMKII) blocks even initial centrosome duplication, whereas inactivation of Cdk2 does not. Duplication can be restored to inhibited extracts by addition of CaMKII and calmodulin. These results indicate that calcium, calmodulin, and CaMKII are required for an essential step in initiation of centrosome duplication. Our data suggest that calcium oscillations in the cell cycle may be linked to centrosome duplication.
Collapse
Affiliation(s)
- Yutaka Matsumoto
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
167
|
Schnackenberg BJ, Marzluff WF. Novel localization and possible functions of cyclin E in early sea urchin development. J Cell Sci 2002; 115:113-21. [PMID: 11801729 DOI: 10.1242/jcs.115.1.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In somatic cells, cyclin E-cdk2 activity oscillates during the cell cycle and is required for the regulation of the G1/S transition. Cyclin E and its associated kinase activity remain constant throughout early sea urchin embryogenesis, consistent with reports from studies using several other embryonic systems. Here we have expanded these studies and show that cyclin E rapidly and selectively enters the sperm head after fertilization and remains concentrated in the male pronucleus until pronuclear fusion, at which time it disperses throughout the zygotic nucleus. We also show that cyclin E is not concentrated at the centrosomes but is associated with condensed chromosomes throughout mitosis for at least the first four cell cycles. Isolated mitotic spindles are enriched for cyclin E and cdk2, which are localized to the chromosomes. The chromosomal cyclin E is associated with active kinase during mitosis. We propose that cyclin E may play a role in the remodeling of the sperm head and re-licensing of the paternal genome after fertilization. Furthermore, cyclin E does not need to be degraded or dissociated from the chromosomes during mitosis; instead, it may be required on chromosomes during mitosis to immediately initiate the next round of DNA replication.
Collapse
Affiliation(s)
- Bradley J Schnackenberg
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
168
|
Abstract
Despite over one hundred years of research, the duplication of the centrosome is a poorly understood process. Three recent papers--exploring three different kinases--may have provided the answer.
Collapse
Affiliation(s)
- E H Hinchcliffe
- University of Massachusetts Medical School, Department of Cell Biology, 377 Plantation Street, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
169
|
Abstract
Previous studies of the spindle checkpoint suggested that its ability to prevent entry into anaphase was mediated by the inhibition of the anaphase-promoting complex (APC) ubiquitin ligase by Mad2. Two new studies challenge that view by demonstrating that another checkpoint protein, BubR1, is a far more potent inhibitor of APC function.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
170
|
Kitagawa K, Hieter P. Evolutionary conservation between budding yeast and human kinetochores. Nat Rev Mol Cell Biol 2001; 2:678-87. [PMID: 11533725 DOI: 10.1038/35089568] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate chromosome segregation during mitosis requires the correct assembly of kinetochores--complexes of centromeric DNA and proteins that link chromosomes to spindle microtubules. Studies on the kinetochore of the budding yeast Saccharomyces cerevisiae have revealed functionally novel components of the kinetochore and its regulatory complexes, some of which are highly conserved in humans.
Collapse
Affiliation(s)
- K Kitagawa
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105-2794, USA.
| | | |
Collapse
|
171
|
Abstract
Over the past 100 years, the centrosome has risen in status from an enigmatic organelle, located at the focus of microtubules, to a key player in cell-cycle progression and cellular control. A growing body of evidence indicates that centrosomes might not be essential for spindle assembly, whereas recent data indicate that they might be important for initiating S phase and completing cytokinesis. Molecules that regulate centrosome duplication have been identified, and the expanding list of intriguing centrosome-anchored activities, the functions of which have yet to be determined, promises continued discovery.
Collapse
Affiliation(s)
- S Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
172
|
Abstract
Most current models of spindle assembly checkpoint signaling involve inhibition of the Cdc20-APC by Mad2 protein. Interestingly, a paper from Hongtao Yu and colleagues in this issue of Developmental Cell suggests that the Cdc20/APC can also be inhibited in a Mad2-independent manner by a complex of proteins that includes BubR1.
Collapse
Affiliation(s)
- E S Gillett
- Massachusetts Institute of Technology, Dept of Biology, Cambridge 02139, USA
| | | |
Collapse
|
173
|
Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbé JC. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106:83-93. [PMID: 11461704 DOI: 10.1016/s0092-8674(01)00410-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|