151
|
Song H, Yoon SP, Kim J. Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells. Anat Cell Biol 2016; 49:79-87. [PMID: 27382509 PMCID: PMC4927434 DOI: 10.5115/acb.2016.49.2.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney proximal tubule epithelial LLC-PK1 cells using XFp extracellular flux analysis. Poly(ADP-ribosyl)ation by PARP activation was increased approximately 2-fold by incubation of the cells in 10 mM glucose for 30 minutes, but treatment with the PARP inhibitor 3-aminobenzamide (3-AB) does-dependently prevented the glucose-induced PARP activation (approximately 14.4% decrease in 0.1 mM 3-AB–treated group and 36.7% decrease in 1 mM 3-AB–treated group). Treatment with 1 mM 3-AB significantly enhanced the glucose-mediated increase in the extracellular acidification rate (61.1±4.3 mpH/min vs. 126.8±6.2 mpH/min or approximately 2-fold) compared with treatment with vehicle, indicating that PARP inhibition increases only glycolytic activity during glycolytic flux including basal glycolysis, glycolytic activity, and glycolytic capacity in kidney proximal tubule epithelial cells. Glucose increased the activities of glycolytic enzymes including hexokinase, phosphoglucose isomerase, phosphofructokinase-1, glyceraldehyde-3-phosphate dehydrogenase, enolase, and pyruvate kinase in LLC-PK1 cells. Furthermore, PARP inhibition selectively augmented the activities of hexokinase (approximately 1.4-fold over vehicle group), phosphofructokinase-1 (approximately 1.6-fold over vehicle group), and glyceraldehyde-3-phosphate dehydrogenase (approximately 2.2-fold over vehicle group). In conclusion, these data suggest that PARP activation may regulate glycolytic activity via poly(ADP-ribosyl)ation of hexokinase, phosphofructokinase-1, and glyceraldehyde-3-phosphate dehydrogenase in kidney proximal tubule epithelial cells.
Collapse
Affiliation(s)
- Hana Song
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea.; Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
152
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
153
|
KIM J. Poly(ADP-Ribose) Polymerase Activation Induces High Mobility Group Box 1 Release From Proximal Tubular Cells During Cisplatin Nephrotoxicity. Physiol Res 2016; 65:333-40. [DOI: 10.33549/physiolres.932948] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cisplatin is one of the most potent chemotherapy drugs against cancer, but its major side effect such as nephrotoxicity limits its use. Inhibition of poly(ADP-ribose) polymerase (PARP) protects against various renal diseases via gene transactivation and/or ADP-ribosylation. However, the role of PARP in necrotic cell death during cisplatin nephrotoxicity remains an open question. Here we demonstrated that pharmacological inhibition of PARP by postconditioning dose-dependently prevented tubular injury and renal dysfunction following cisplatin administration in mice. PARP inhibition by postconditioning also attenuated ATP depletion during cisplatin nephrotoxicity. Systemic release of high mobility group box 1 (HMGB1) protein in plasma induced by cisplatin administration was significantly diminished by PARP inhibition by postconditioning. In in vitro kidney proximal tubular cell lines, PARP inhibition by postconditioning also diminished HMGB1 release from cells. These data demonstrate that cisplatin-induced PARP1 activation contributes to HMGB1 release from kidney proximal tubular cells, resulting in the promotion of inflammation during cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- J. KIM
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea
| |
Collapse
|
154
|
Silva APG, Ryan DP, Galanty Y, Low JKK, Vandevenne M, Jackson SP, Mackay JP. The N-terminal Region of Chromodomain Helicase DNA-binding Protein 4 (CHD4) Is Essential for Activity and Contains a High Mobility Group (HMG) Box-like-domain That Can Bind Poly(ADP-ribose). J Biol Chem 2016; 291:924-38. [PMID: 26565020 PMCID: PMC4705410 DOI: 10.1074/jbc.m115.683227] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/09/2015] [Indexed: 01/11/2023] Open
Abstract
Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response.
Collapse
Affiliation(s)
- Ana P G Silva
- From the School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia,
| | - Daniel P Ryan
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, and
| | - Yaron Galanty
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jason K K Low
- From the School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia
| | - Marylene Vandevenne
- From the School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Joel P Mackay
- From the School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia,
| |
Collapse
|
155
|
Vuong B, Hogan-Cann ADJ, Alano CC, Stevenson M, Chan WY, Anderson CM, Swanson RA, Kauppinen TM. NF-κB transcriptional activation by TNFα requires phospholipase C, extracellular signal-regulated kinase 2 and poly(ADP-ribose) polymerase-1. J Neuroinflammation 2015; 12:229. [PMID: 26637332 PMCID: PMC4670503 DOI: 10.1186/s12974-015-0448-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is required for pro-inflammatory effects of TNFα. Our previous studies demonstrated that PARP-1 mediates TNFα-induced NF-κB activation in glia. Here, we evaluated the mechanisms by which TNFα activates PARP-1 and PARP-1 mediates NF-κB activation. METHODS Primary cultures of mouse cortical astrocytes and microglia were treated with TNFα and suitable signaling pathway modulators (pharmacological and molecular). Outcome measures included calcium imaging, PARP-1 activation status, NF-κB transcriptional activity, DNA damage assesment and cytokine relesease profiling. RESULTS TNFα induces PARP-1 activation in the absence of detectable DNA strand breaks, as measured by the PANT assay. TNFα-induced transcriptional activation of NF-κB requires PARP-1 enzymatic activity. Enzymatic activation of PARP-1 by TNFα was blocked in Ca(2+)-free medium, by Ca(2+) chelation with BAPTA-AM, and by D609, an inhibitor of phoshatidyl choline-specific phospholipase C (PC-PLC), but not by thapsigargin or by U73112, an inhibitor of phosphatidyl inisitol-specific PLC (PI -PLC). A TNFR1 blocking antibody reduced Ca(2+) influx and PARP-1 activation. TNFα-induced PARP-1 activation was also blocked by siRNA downregulation of ERK2 and by PD98059, an inhibitor of the MEK / ERK protein kinase cascade. Moreover, TNFα-induced NF-κB (p65) transcriptional activation was absent in cells expressing PARP-1 that lacked ERK2 phosphorylation sites, while basal NF-κB transcriptional activation increased in cells expressing PARP-1 with a phosphomimetic substitution at an ERK2 phophorylation site. CONCLUSIONS These results suggest that TNFα induces PARP-1 activation through a signaling pathway involving TNFR1, Ca(2+) influx, activation of PC-PLC, and activation of the MEK1 / ERK2 protein kinase cascade. TNFα-induced PARP-1 activation is not associated with DNA damage, but ERK2 mediated phosphorylation of PARP-1.
Collapse
Affiliation(s)
- Billy Vuong
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada. .,Neuroscience Research Program, Health Sciences Centre and College of Medicine, Kleysen Institute for Advanced Medicine, 710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada.
| | - Adam D J Hogan-Cann
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada. .,Neuroscience Research Program, Health Sciences Centre and College of Medicine, Kleysen Institute for Advanced Medicine, 710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada.
| | - Conrad C Alano
- Department of Neurology, University of California San Francisco, and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Mackenzie Stevenson
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada. .,Neuroscience Research Program, Health Sciences Centre and College of Medicine, Kleysen Institute for Advanced Medicine, 710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada.
| | - Wai Yee Chan
- Present Address: Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada. .,Neuroscience Research Program, Health Sciences Centre and College of Medicine, Kleysen Institute for Advanced Medicine, 710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada.
| | - Raymond A Swanson
- Department of Neurology, University of California San Francisco, and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB, R3E 0T6, Canada. .,Neuroscience Research Program, Health Sciences Centre and College of Medicine, Kleysen Institute for Advanced Medicine, 710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada.
| |
Collapse
|
156
|
Mao H, Lockyer P, Townley-Tilson WHD, Xie L, Pi X. LRP1 Regulates Retinal Angiogenesis by Inhibiting PARP-1 Activity and Endothelial Cell Proliferation. Arterioscler Thromb Vasc Biol 2015; 36:350-60. [PMID: 26634655 DOI: 10.1161/atvbaha.115.306713] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We recently demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1) is required for cardiovascular development in zebrafish. However, what role LRP1 plays in angiogenesis remains to be determined. To better understand the role of LRP1 in endothelial cell function, we investigated how LRP1 regulates mouse retinal angiogenesis. APPROACH AND RESULTS Depletion of LRP1 in endothelial cells results in increased retinal neovascularization in a mouse model of oxygen-induced retinopathy. Specifically, retinas in mice lacking endothelial LRP1 have more branching points and angiogenic sprouts at the leading edge of the newly formed vasculature. Increased endothelial proliferation as detected by Ki67 staining was observed in LRP1-deleted retinal endothelium in response to hypoxia. Using an array of biochemical and cell biology approaches, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1) directly interacts with LRP1 in human retinal microvascular endothelial cells. This interaction between LRP1 and PARP-1 decreases under hypoxic condition. Moreover, LRP1 knockdown results in increased PARP-1 activity and subsequent phosphorylation of both retinoblastoma protein and cyclin-dependent kinase 2, which function to promote cell cycle progression and angiogenesis. CONCLUSIONS Together, these data reveal a pivotal role for LRP1 in endothelial cell proliferation and retinal neovascularization induced by hypoxia. In addition, we demonstrate for the first time the interaction between LRP1 and PARP-1 and the LRP1-dependent regulation of PARP-1-signaling pathways. These data bring forth the possibility of novel therapeutic approaches for pathological angiogenesis.
Collapse
Affiliation(s)
- Hua Mao
- From the Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (H.M., W.H.D.T.-T., L.X., X.P.); and Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.)
| | - Pamela Lockyer
- From the Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (H.M., W.H.D.T.-T., L.X., X.P.); and Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.)
| | - W H Davin Townley-Tilson
- From the Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (H.M., W.H.D.T.-T., L.X., X.P.); and Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.)
| | - Liang Xie
- From the Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (H.M., W.H.D.T.-T., L.X., X.P.); and Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.)
| | - Xinchun Pi
- From the Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (H.M., W.H.D.T.-T., L.X., X.P.); and Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill (P.L.).
| |
Collapse
|
157
|
Ida C, Yamashita S, Tsukada M, Sato T, Eguchi T, Tanaka M, Ogata S, Fujii T, Nishi Y, Ikegami S, Moss J, Miwa M. An enzyme-linked immunosorbent assay-based system for determining the physiological level of poly(ADP-ribose) in cultured cells. Anal Biochem 2015; 494:76-81. [PMID: 26548958 DOI: 10.1016/j.ab.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells.
Collapse
Affiliation(s)
- Chieri Ida
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; Department of Applied Life Studies, College of Nagoya Women's University, Nagoya-shi, Aichi 467-8610, Japan
| | - Sachiko Yamashita
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Masaki Tsukada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Teruaki Sato
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Takayuki Eguchi
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Masakazu Tanaka
- Department of Microbiology, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Shin Ogata
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Takahiro Fujii
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Yoshisuke Nishi
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Susumu Ikegami
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masanao Miwa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| |
Collapse
|
158
|
Vicent GP, Wright RHG, Beato M. Linker histones in hormonal gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:520-5. [PMID: 26518266 DOI: 10.1016/j.bbagrm.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.
Collapse
Affiliation(s)
- G P Vicent
- Centre de Regulació Genòmica (CRG), Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| | - R H G Wright
- Centre de Regulació Genòmica (CRG), Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| | - M Beato
- Centre de Regulació Genòmica (CRG), Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, E-08003, Barcelona, Spain
| |
Collapse
|
159
|
Inaba H, Tsukagoshi A, Kida S. PARP-1 activity is required for the reconsolidation and extinction of contextual fear memory. Mol Brain 2015; 8:63. [PMID: 26471780 PMCID: PMC4608138 DOI: 10.1186/s13041-015-0153-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Memory consolidation, reconsolidation, and extinction have been shown to require new gene expression. Poly ADP-ribosylation mediated by poly (ADP-ribose) polymerase-1 (PARP-1) is known to regulate transcription through histone modification. Recent studies have suggested that PARP-1 positively regulates the formation of long-term memory (LTM); however, the roles of PARP-1 in memory processes, especially processes after retrieval, remain unknown. RESULTS Here, we show critical roles for PARP-1 in the consolidation, reconsolidation, and extinction of contextual fear memory in mice. We examined the effects of pharmacological inhibition of PARP-1 activity in the hippocampus or medial prefrontal cortex (mPFC) on these memory processes. Similarly with previous findings, a micro-infusion of the PARP-1 inhibitor 3-aminobenzamide or PJ34 into the dorsal hippocampus, but not mPFC, impaired LTM formation without affecting short-term memory (STM). Importantly, this pharmacological blockade of PARP-1 in the dorsal hippocampus, but not mPFC, also disrupted post-reactivation LTM without affecting post-reactivation STM. Conversely, micro-infusion of the PARP-1 inhibitors into the mPFC, but not dorsal hippocampus, blocked long-term extinction. Additionally, systemic administration of the PARP-1 inhibitor Tiq-A blocked c-fos induction in the hippocampus, which is observed when memory is consolidated or reconsolidated, and also blocked c-fos induction in the mPFC, which is observed when memory is extinguished. CONCLUSIONS Our observations showed that PARP-1 activation is required for the consolidation, reconsolidation, and extinction of contextual fear memory and suggested that PARP-1 contributes to the new gene expression necessary for these memory processes.
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| | - Akinori Tsukagoshi
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
160
|
Luo X, Nie J, Wang S, Chen Z, Chen W, Li D, Hu H, Li B. Poly(ADP-ribosyl)ation of FOXP3 Protein Mediated by PARP-1 Protein Regulates the Function of Regulatory T Cells. J Biol Chem 2015; 290:28675-82. [PMID: 26429911 DOI: 10.1074/jbc.m115.661611] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is an ADP-ribosylating enzyme participating in diverse cellular functions. The roles of PARP-1 in the immune system, however, have not been well understood. Here we find that PARP-1 interacts with FOXP3 and induces its poly(ADP-ribosyl)ation. By using PARP-1 inhibitors, we show that reduced poly(ADP-ribosyl)ation of FOXP3 results in not only FOXP3 stabilization and increased FOXP3 downstream genes but also enhanced suppressive function of regulatory T cells. Our results suggest that PARP-1 negatively regulates the suppressive function of Treg cells at the posttranslational level via FOXP3 poly(ADP-ribosyl)ation. This finding has implications for developing PARP-1 inhibitors as potential agents for the prevention and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xuerui Luo
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Nie
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuaiwei Wang
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zuojia Chen
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - WanJun Chen
- the Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland, 20892-2190
| | - Dan Li
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Hu
- the Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170
| | - Bin Li
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
161
|
Abstract
Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion-the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed.
Collapse
Affiliation(s)
- W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
162
|
Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2. Mol Cell Biol 2015; 35:3934-44. [PMID: 26370511 DOI: 10.1128/mcb.00635-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modifications, such as poly(ADP-ribosyl)ation (PARylation), regulate chromatin-modifying enzymes, ultimately affecting gene expression. This study explores the role of poly(ADP-ribose) polymerase (PARP) on global gene expression in a lymphoblastoid B cell line. We found that inhibition of PARP catalytic activity with olaparib resulted in global gene deregulation, affecting approximately 11% of the genes expressed. Gene ontology analysis revealed that PARP could exert these effects through transcription factors and chromatin-remodeling enzymes, including the polycomb repressive complex 2 (PRC2) member EZH2. EZH2 mediates the trimethylation of histone H3 at lysine 27 (H3K27me3), a modification associated with chromatin compaction and gene silencing. Both pharmacological inhibition of PARP and knockdown of PARP1 induced the expression of EZH2, which resulted in increased global H3K27me3. Chromatin immunoprecipitation confirmed that PARP1 inhibition led to H3K27me3 deposition at EZH2 target genes, which resulted in gene silencing. Moreover, increased EZH2 expression is attributed to the loss of the occupancy of the transcription repressor E2F4 at the EZH2 promoter following PARP inhibition. Together, these data show that PARP plays an important role in global gene regulation and identifies for the first time a direct role of PARP1 in regulating the expression and function of EZH2.
Collapse
|
163
|
Bai W, Chen Y, Gao A. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles. Int J Nanomedicine 2015; 10:5561-9. [PMID: 26366077 PMCID: PMC4562766 DOI: 10.2147/ijn.s88059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2′-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2′-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.
Collapse
Affiliation(s)
- Wenlin Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, People's Republic of China ; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
164
|
Rom S, Reichenbach NL, Dykstra H, Persidsky Y. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity. Front Microbiol 2015; 6:878. [PMID: 26379653 PMCID: PMC4548080 DOI: 10.3389/fmicb.2015.00878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023] Open
Abstract
Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
165
|
Abstract
Impaired mitochondrial structure and function are common features of neurodegenerative disorders, ultimately characterized by the death of neural cells promoted by still unknown signals. Among the possible modulators of neurodegeneration, the activation of poly(ADP-ribosylation), a post-translational modification of proteins, has been considered, being the product of the reaction, poly(ADP-ribose), a signaling molecule for different cell death paradigms. The basic properties of poly(ADP-ribosylation) are here described, focusing on the mitochondrial events; cell death paradigms such as apoptosis, parthanatos, necroptosis and mitophagy are illustrated. Finally, the promising use of poly(ADP-ribosylation) inhibitors to rescue neurodegeneration is addressed.
Collapse
Affiliation(s)
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
166
|
Jiang BH, Tseng WL, Li HY, Wang ML, Chang YL, Sung YJ, Chiou SH. Poly(ADP-Ribose) Polymerase 1: Cellular Pluripotency, Reprogramming, and Tumorogenesis. Int J Mol Sci 2015; 16:15531-45. [PMID: 26184161 PMCID: PMC4519911 DOI: 10.3390/ijms160715531] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2023] Open
Abstract
Poly(ADP-ribos)ylation (PARylation) is the catalytic function of the Poly(ADP-ribose) polymerases (Parps) family for post-translational modification in cellular process. Being a major member of Parps, Parp1 is a crucial nuclear factor with biological significance in modulating DNA repair, DNA replication, transcription, DNA methylation and chromatin remodeling through PARylation of downstream proteins. In addition, high expression level and activity of Parp1 are correlated with pluripotent status, reprogramming, and cancer. Furthermore, epigenetic modulation of Parp1 is explored for regulating wide variety of gene expression. Genetic and pharmaceutical disruption of Parp1 further confirmed the importance of Parp1 in cell growth, DNA repair, and reprogramming efficiency. Taken together, the proximity toward the understanding of the modulation of Parp1 including interaction and modification in different fields will provide new insight for future studies. In this review, the biological significance of Parp1 in transcription and the epigenetic modulation of Parp1 in pluripotent status, reprogramming process and cancer will be summarized.
Collapse
Affiliation(s)
- Bo-Hua Jiang
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wei-Lien Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Hsin-Yang Li
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Mong-Lien Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- VGH-YM Genomic Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Lih Chang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Yen-Jen Sung
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
167
|
ARTD1 Suppresses Interleukin 6 Expression by Repressing MLL1-Dependent Histone H3 Trimethylation. Mol Cell Biol 2015; 35:3189-99. [PMID: 26149390 DOI: 10.1128/mcb.00196-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022] Open
Abstract
ADP-ribosyltransferase diphtheria-toxin like 1/poly(ADP-ribose) polymerase 1 (ARTD1/PARP1) is a chromatin-associated protein in the nucleus and plays an important role in different cellular processes such as regulation of gene transcription. ARTD1 has been shown to coregulate the inflammatory response by modulating the activity of the transcription factor nuclear factor κB (NF-κB), the principal regulator of interleukin 6 (IL-6), an important inflammatory cytokine implicated in a variety of diseases such as cancer. However, to what extent and how ARTD1 regulates IL-6 transcription has not been clear. Here, we show that ARTD1 suppresses lipopolysaccharide (LPS)-induced IL-6 expression in macrophages, without affecting the recruitment of the NF-κB subunit RelA to the IL-6 promoter and independent of its enzymatic activity. Interestingly, knockdown of ARTD1 did not alter H3 occupancy but increased LPS-induced trimethylation of histone 3 at lysine 4 (H3K4me3), a hallmark of transcriptionally active genes. We found that ARTD1 mediates its effect through the methyltransferase MLL1, by catalyzing H3K4me3 at the IL-6 promoter and forming a complex with NF-κB. These results demonstrate that ARTD1 modulates IL-6 expression by regulating the function of an NF-κB enhanceosome complex, which involves MLL1 and does not require ADP-ribosylation.
Collapse
|
168
|
Salmas RE, Unlu A, Yurtsever M, Noskov SY, Durdagi S. In silicoinvestigation of PARP-1 catalytic domains inholoandapostates for the design of high-affinity PARP-1 inhibitors. J Enzyme Inhib Med Chem 2015; 31:112-20. [DOI: 10.3109/14756366.2015.1005011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
169
|
Motta C, D'Angeli F, Scalia M, Satriano C, Barbagallo D, Naletova I, Anfuso CD, Lupo G, Spina-Purrello V. PJ-34 inhibits PARP-1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells. Eur J Pharmacol 2015; 761:55-64. [PMID: 25934569 DOI: 10.1016/j.ejphar.2015.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Inhibitors of PARP-1(Poly(ADP-ribose) polymerase-1) act by competing with NAD(+), the enzyme physiological substrate, which play a protective role in many pathological conditions characterized by PARP-1 overactivation. It has been shown that PARP-1 also promotes tumor growth and progression through its DNA repair activity. Since angiogenesis is an essential requirement for these activities, we sought to determine whether PARP inhibition might affect rat brain microvascular endothelial cells (GP8.3) migration, stimulated by C6-glioma conditioned medium (CM). Through wound-healing experiments and MTT analysis, we demonstrated that PARP-1 inhibitor PJ-34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide] abolishes the migratory response of GP8.3 cells and reduces their viability. PARP-1 also acts in a DNA independent way within the Extracellular-Regulated-Kinase (ERK) signaling cascade, which regulates cell proliferation and differentiation. By western analysis and confocal laser scanning microscopy (LSM), we analyzed the effects of PJ-34 on PARP-1 expression, phospho-ERK and phospho-Elk-1 activation. The effect of MEK (mitogen-activated-protein-kinase-kinase) inhibitor PD98059 (2-(2-Amino-3-methoxyphenyl)-4 H-1-benzopyran-4-one) on PARP-1 expression in unstimulated and in CM-stimulated GP8.3 cells was analyzed by RT-PCR. PARP-1 expression and phospho-ERK activation were significantly reduced by treatment of GP8.3 cells with PJ-34 or PD98059. By LSM, we further demonstrated that PARP-1 and phospho-ERK are coexpressed and share the same subcellular localization in GP8.3 cells, in the cytoplasm as well as in nucleoplasm. Based on these data, we propose that PARP-1 and phospho-ERK interact in the cytosol and then translocate to the nucleus, where they trigger a proliferative response. We also propose that PARP-1 inhibition blocks CM-induced endothelial migration by interfering with ERK signal-transduction pathway.
Collapse
Affiliation(s)
- Carla Motta
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Floriana D'Angeli
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Marina Scalia
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Irina Naletova
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Vittoria Spina-Purrello
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy.
| |
Collapse
|
170
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
171
|
Ryu KW, Kim DS, Kraus WL. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 2015; 115:2453-81. [PMID: 25575290 PMCID: PMC4378458 DOI: 10.1021/cr5004248] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Keun Woo Ryu
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dae-Seok Kim
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - W. Lee Kraus
- Laboratory of Signaling and Gene
Regulation, Cecil H. and Ida Green
Center for Reproductive Biology Sciences, Division of Basic Research, Department
of Obstetrics and Gynecology, and Graduate School of Biomedical Sciences, Program
in Genetics and Development, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
172
|
Park S, Yoon SP, Kim J. Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells. Anat Cell Biol 2015; 48:66-74. [PMID: 25806124 PMCID: PMC4371183 DOI: 10.5115/acb.2015.48.1.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 11/30/2022] Open
Abstract
Treatment with cisplatin for cancer therapy has a major side effect such as nephrotoxicity; however, the role of poly (ADP-ribose) polymerase 1 (PARP1) in necrosis in response to cisplatin nephrotoxicity remains to be defined. Here we report that cisplatin induces primary necrosis through PARP1 activation in kidney proximal tubular cells derived from human, pig and mouse. Treatment with high dose of cisplatin for 4 and 8 hours induced primary necrosis, as represented by the percentage of propidium iodide-positive cells and lactate dehydrogenase release. The primary necrosis was correlated with PARP1 activation during cisplatin injury. Treatment with PJ34, a potent PARP1 inhibitor, at 2 hours after injury attenuated primary necrosis after 8 hours of cisplatin injury as well as PARP1 activation. PARP1 inhibition also reduced the release of lactate dehydrogenase and high mobility group box protein 1 from kidney proximal tubular cells at 8 hours after cisplatin injury. Oxidative stress was increased by treatment with cisplatin for 8 hours as shown by 8-hydroxy-2'-deoxyguanosine and lipid hydroperoxide assays, but PARP1 inhibition at 2 hours after injury reduced the oxidative damage. These data demonstrate that cisplatin-induced PARP1 activation contributes to primary necrosis through oxidative stress in kidney proximal tubular cells, resulting in the induction of cisplatin nephrotoxicity and inflammation.
Collapse
Affiliation(s)
- Seulgee Park
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang Pil Yoon
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju, Korea. ; Department of Biomedicine and Drug Development, Jeju National University, Jeju, Korea
| |
Collapse
|
173
|
van der Wijst MGP, Huisman C, Mposhi A, Roelfes G, Rots MG. Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol 2015; 9:1259-73. [PMID: 25841766 DOI: 10.1016/j.molonc.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
Risk factors indicate the importance of oxidative stress during ovarian carcinogenesis. To tolerate oxidative stress, cells activate the transcription factor Nrf2 (Nfe2l2), the master regulator of antioxidant and cytoprotective genes. Indeed, for most cancers, hyperactivity of Nrf2 is observed, and siRNA studies assigned Nrf2 as therapeutic target. However, the cancer-protective role of Nrf2 in healthy cells highlights the requirement for an adequate therapeutic window. We engineered artificial transcription factors to assess the role of Nrf2 in healthy (OSE-C2) and malignant ovarian cells (A2780). Successful NRF2 up- and downregulation correlated with decreased, respectively increased, sensitivity toward oxidative stress. Inhibition of NRF2 reduced the colony forming potential to the same extent in wild-type and BRCA1 knockdown A2780 cells. Only in BRCA1 knockdown A2780 cells, the effect of Nrf2 inhibition could be enhanced when combined with PARP inhibitors. Therefore, we propose that this combination therapy of PARP inhibitors and Nrf2 inhibition can further improve treatment efficacy specifically in BRCA1 mutant cancer cells without acquiring the side-effects associated with previously studied Nrf2 inhibition combinations with either chemotherapy or radiation. Our findings stress the dual role of Nrf2 in carcinogenesis, while offering approaches to exploit Nrf2 as a potent therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Monique G P van der Wijst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Christian Huisman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
174
|
Walko TD, Di Caro V, Piganelli J, Billiar TR, Clark RSB, Aneja RK. Poly(ADP-ribose) polymerase 1-sirtuin 1 functional interplay regulates LPS-mediated high mobility group box 1 secretion. Mol Med 2015; 20:612-24. [PMID: 25517228 DOI: 10.2119/molmed.2014.00156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD(+)) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD(+)-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis.
Collapse
Affiliation(s)
- Thomas D Walko
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Valentina Di Caro
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jon Piganelli
- Department of Immunology, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S B Clark
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rajesh K Aneja
- Departments of Critical Care Medicine and Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
175
|
La Ferla M, Mercatanti A, Rocchi G, Lodovichi S, Cervelli T, Pignata L, Caligo MA, Galli A. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization. Mutat Res 2015; 774:14-24. [PMID: 25779917 DOI: 10.1016/j.mrfmmm.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 01/31/2023]
Abstract
The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.
Collapse
Affiliation(s)
- Marco La Ferla
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Alberto Mercatanti
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Giulia Rocchi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Samuele Lodovichi
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Luca Pignata
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy
| | - Maria Adelaide Caligo
- Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa, Italy
| | - Alvaro Galli
- Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa, Italy.
| |
Collapse
|
176
|
Maluchenko NV, Kulaeva OI, Kotova EY, Chupyrkina AA, Nikitin DV, Kirpichnikov MP, Studitsky VM. Molecular mechanisms of transcriptional regulation by Poly(ADP-ribose) polymerase 1. Mol Biol 2015. [DOI: 10.1134/s0026893315010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
177
|
Prozorovski T, Schneider R, Berndt C, Hartung HP, Aktas O. Redox-regulated fate of neural stem progenitor cells. Biochim Biophys Acta Gen Subj 2015; 1850:1543-54. [PMID: 25662818 DOI: 10.1016/j.bbagen.2015.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Accumulated data indicate that self-renewal, multipotency, and differentiation of neural stem cells are under an intrinsic control mediated by alterations in the redox homeostasis. These dynamic redox changes not only reflect and support the ongoing metabolic and energetic processes, but also serve to coordinate redox-signaling cascades. Controlling particular redox couples seems to have a relevant impact on cell fate decision during development, adult neurogenesis and regeneration. SCOPE OF REVIEW Our own research provided initial evidence for the importance of NAD+-dependent enzymes in neural stem cell fate decision. In this review, we summarize recent knowledge on the active role of reactive oxygen species, redox couples and redox-signaling mechanisms on plasticity and function of neural stem and progenitor cells focusing on NAD(P)+/NAD(P)H-mediated processes. MAJOR CONCLUSIONS The compartmentalized subcellular sources and availability of oxidizing/reducing molecules in particular microenvironment define the specificity of redox regulation in modulating the delicate balance between stemness and differentiation of neural progenitors. The generalization of "reactive oxygen species" as well as the ambiguity of their origin might explain the diametrically-opposed findings in the field of redox-dependent cell fate reflected by the literature. GENERAL SIGNIFICANCE Increasing knowledge of temporary and spatially defined redox regulation is of high relevance for the development of novel approaches in the field of cell-based regeneration of nervous tissue in various pathological states. This article is part of a special issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
178
|
Rodríguez MI, Majuelos-Melguizo J, Martí Martín-Consuegra JM, Ruiz de Almodóvar M, López-Rivas A, Javier Oliver F. Deciphering the insights of poly(ADP-ribosylation) in tumor progression. Med Res Rev 2015; 35:678-97. [PMID: 25604534 DOI: 10.1002/med.21339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are particularly efficient against tumors with defects in the homologous recombination repair pathway. Nonetheless poly(ADP-ribosylation) (PARylation) modulates prometastasic activities and adaptation of tumor to a hostile microenvironment. Modulation of metastasis-promoting traits is possible through the alteration of key transcription factors involved in the regulation of the hypoxic response, the recruitment of new vessels (or angiogenesis), and the stimulation of epithelial to mesenchymal transition (EMT). In this review, we summarized some of the findings that focalize on PARP-1's action on tumor aggressiveness, suggesting new therapeutic opportunities against an assembly of tumors not necessarily bearing DNA repair defects. Metastasis accounts for the vast majority of mortality derived from solid cancer. PARP-1 is an active player in tumor adaptation to metastasis and PARP inhibitors, recognized as promising therapeutic agents against homologous recombination deficient tumors, has novel properties responsible for the antimetastatic actions in different tumor settings.
Collapse
Affiliation(s)
- María Isabel Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | - Jara Majuelos-Melguizo
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | | | | | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Sevilla, Spain, 41092
| | | |
Collapse
|
179
|
Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015; 72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
180
|
Feng B, Liu C, de Oliveira MVV, Intorne AC, Li B, Babilonia K, de Souza Filho GA, Shan L, He P. Protein poly(ADP-ribosyl)ation regulates arabidopsis immune gene expression and defense responses. PLoS Genet 2015; 11:e1004936. [PMID: 25569773 PMCID: PMC4287526 DOI: 10.1371/journal.pgen.1004936] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. Fine-tuning of gene expression is a key feature of successful immune responses. However, the underlying mechanisms are not fully understood. Through a genetic screen in model plant Arabidopsis, we reveal that protein poly(ADP-ribosyl)ation (PARylation) post-translational modification plays a pivotal role in controlling plant immune gene expression and defense to pathogen attacks. PARylation is primarily mediated by poly(ADP-ribose) polymerase (PARP), which transfers ADP-ribose moieties from NAD+ to acceptor proteins. The covalently attached poly(ADP-ribose) polymers on the accept proteins could be hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG). We further show that members of Arabidopsis PARPs and PARGs possess differential in vivo and in vitro enzymatic activities. Importantly, the Arabidopsis parp mutant displayed reduced, whereas parg mutant displayed enhanced, immune gene activation and immunity to pathogen infection. Moreover, Arabidopsis PARP2 activity is elevated upon pathogen signal perception. Compared to the lethality of their mammalian counterparts, the viability and normal growth of Arabidopsis parp and parg null mutants provide a unique genetic system to understand protein PARylation in diverse biological processes at the whole organism level.
Collapse
Affiliation(s)
- Baomin Feng
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Chenglong Liu
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Marcos V. V. de Oliveira
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Center of Biosciences and Biotechnology, Darcy Ribeiro State University of Northern of Rio de Janeiro, Brazil
| | - Aline C. Intorne
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Center of Biosciences and Biotechnology, Darcy Ribeiro State University of Northern of Rio de Janeiro, Brazil
| | - Bo Li
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Kevin Babilonia
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | | | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
181
|
Tang S, Nie Z, Li W, Li D, Huang Y, Yao S. A poly(ADP-ribose) polymerase-1 activity assay based on the FRET between a cationic conjugated polymer and supercharged green fluorescent protein. Chem Commun (Camb) 2015; 51:14389-92. [DOI: 10.1039/c5cc04170h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A label-free strategy for PARP-1 activity assay and inhibitors assessment has been developed based on the FRET between a cationic conjugated polymer (CCP) and supercharged green fluorescent protein (scGFP).
Collapse
Affiliation(s)
- Shiyun Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Daiqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
182
|
Poly(ADP-ribose) polymerase-1 inhibition in brain endothelium protects the blood-brain barrier under physiologic and neuroinflammatory conditions. J Cereb Blood Flow Metab 2015; 35:28-36. [PMID: 25248836 PMCID: PMC4294393 DOI: 10.1038/jcbfm.2014.167] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 01/26/2023]
Abstract
Blood-brain barrier (BBB) dysfunction seen in neuroinflammation contributes to mortality and morbidity in multiple sclerosis, encephalitis, traumatic brain injury, and stroke. Identification of molecular targets maintaining barrier function is of clinical relevance. We used a novel in vivo model of localized aseptic meningitis where tumor necrosis factor alpha (TNFα) was introduced intracerebrally and surveyed cerebral vascular changes and leukocyte-endothelium interactions by intravital videomicroscopy. Poly(ADP-ribose) polymerase-1 (PARP) inhibition significantly reduced leukocyte adhesion to and migration across brain endothelium in cortical microvessels. PARP inactivation diminished BBB permeability in an in vivo model of systemic inflammation. PARP suppression in primary human brain microvascular endothelial cells (BMVEC), an in vitro model of BBB, enhanced barrier integrity and augmented expression of tight junction proteins. PARP inhibition in BMVEC diminished human monocyte adhesion to TNFα-activated BMVEC (up to 65%) and migration (80-100%) across BBB models. PARP suppression decreased expression of adhesion molecules and decreased activity of GTPases (controlling BBB integrity and monocyte migration across the BBB). PARP inhibitors down-regulated expression of inflammatory genes and dampened secretion of pro-inflammatory factors increased by TNFα in BMVEC. These results point to PARP suppression as a novel approach to BBB protection in the setting of endothelial dysfunction caused by inflammation.
Collapse
|
183
|
Cilli D, Mirasole C, Pennisi R, Pallotta V, D'Alessandro A, Antoccia A, Zolla L, Ascenzi P, di Masi A. Identification of the interactors of human nibrin (NBN) and of its 26 kDa and 70 kDa fragments arising from the NBN 657del5 founder mutation. PLoS One 2014; 9:e114651. [PMID: 25485873 PMCID: PMC4259352 DOI: 10.1371/journal.pone.0114651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/12/2014] [Indexed: 01/17/2023] Open
Abstract
Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN complex, which is involved in early steps of DNA double strand breaks sensing and repair. Mutations within the NBN gene are responsible for the Nijmegen breakage syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express either the full-length NBN protein or the p26 or p70 fragments, followed by affinity chromatography enrichment of the eluates. The application of an unsupervised proteomics approach, based upon SDS-PAGE separation and shotgun digestion of protein bands followed by MS/MS protein identification, indicates the occurrence of previously unreported protein interacting partners of the full-length NBN protein and the p26 fragment containing the FHA/BRCT1 domains, especially after cell irradiation. In particular, results obtained shed light on new possible roles of NBN and of the p26 fragment in ROS scavenging, in the DNA damage response, and in protein folding and degradation. In particular, here we show that p26 interacts with PARP1 after irradiation, and this interaction exerts an inhibitory effect on PARP1 activity as measured by NAD+ levels. Furthermore, the p26-PARP1 interaction seems to be responsible for the persistence of ROS, and in turn of DSBs, at 24 h from IR. Since some of the newly identified interactors of the p26 and p70 fragments have not been found to interact with the full-length NBN, these interactions may somehow contribute to the key biological phenomena underpinning NBS.
Collapse
Affiliation(s)
| | - Cristiana Mirasole
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Rosa Pennisi
- Department of Science, Roma Tre University, Rome, Italy
| | - Valeria Pallotta
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Antonio Antoccia
- Department of Science, Roma Tre University, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Paolo Ascenzi
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Rome, Italy
| | - Alessandra di Masi
- Department of Science, Roma Tre University, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
- * E-mail:
| |
Collapse
|
184
|
PARP inhibitor, olaparib ameliorates acute lung and kidney injury upon intratracheal administration of LPS in mice. Mol Cell Biochem 2014; 400:153-62. [PMID: 25404465 DOI: 10.1007/s11010-014-2271-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022]
Abstract
We have previously shown that PARP-1 inhibition provides protection against lung inflammation in the context of asthma and acute lung injury. Olaparib is a potent new generation PARP inhibitor that has been approved for human testing. The present work was designed to evaluate its beneficial potential against LPS-induced acute lung injury and acute kidney injury upon intratracheal administration of the endotoxin in mice. Administration of olaparib at different doses, 30 min after LPS treatment showed that single intraperitoneal injection of the drug at 5 mg/kg b.wt. reduced the total number of inflammatory cells particularly neutrophils in the lungs. This was associated with reduced pulmonary edema as the total protein content in the bronchoalveolar fluid was found to be decreased substantially. Olaparib provided strong protection against LPS-mediated secondary kidney injury as reflected by restoration of serum levels of urea, creatinine, and uric acid toward normal. The drug restored the LPS-mediated redox imbalance toward normal in lung and kidney tissues as assessed by measuring malondialdehyde and GSH levels. Finally, RT-PCR data revealed that olaparib downregulates the LPS-induced expression of NF-κB-dependent genes namely TNF-α, IL-1β, and VCAM-1 in the lungs without altering the expression of total p65NF-κB. Overall, the data suggest that olaparib has a strong potential to protect against LPS-induced lung injury and associated dysfunctioning of kidney in mice. Given the fact that olaparib is approved by FDA for human testing, our findings can pave the way for testing of the drug on humans inflicted with acute lung injury.
Collapse
|
185
|
Cavone L, Peruzzi B, Caporale R, Chiarugi A. Long-term suppression of EAE relapses by pharmacological impairment of epitope spreading. Br J Pharmacol 2014; 171:1501-9. [PMID: 24730062 DOI: 10.1111/bph.12525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Immune events sustaining dendritic cell (DC)-dependent epitope spreading (ES) are of key relevance to the development of relapses during multiple sclerosis (MS). Although no drugs are currently available to target ES, its inhibition would represent a major advancement in MS therapy. Inhibitors of the enzyme PARP-1 afford protection in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). These drugs epigenetically impair antigen presentation by DCs, but whether these drugs affect ES is unknown. Here, we investigated whether short-term treatments with these compounds would impair ES, thereby preventing EAE relapses. EXPERIMENTAL APPROACH We used a model of relapsing EAE in SJL mice and also adopted in vivo and ex vivo models of DC-dependent T-cell polarization. The effect of PARP-1 inhibitors on ES was evaluated at the humoral and cellular level. KEY RESULTS Short-term treatments with PARP-1 inhibitors during the acute phase of relapsing EAE of mice induced, at later times, more tolerogenic DCs, increased numbers of Treg cells and impairment of ES at the humoral and cellular level. These effects are followed by long-lasting reduction of relapse severity and incidence, although drug treatment had been discontinued for several weeks. PARP-1 inhibitors also induced tolerogenic DCs and increased Treg cells number and function in a model of ovalbumin immunization. CONCLUSIONS AND IMPLICATIONS Our data emphasize the therapeutic potential of PARP-1 inhibitors in the treatment of relapsing-remitting MS and additional ES-driven autoimmune disorders.
Collapse
|
186
|
Tchurikov NA, Fedoseeva DM, Sosin DV, Snezhkina AV, Melnikova NV, Kudryavtseva AV, Kravatsky YV, Kretova OV. Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation. J Mol Cell Biol 2014; 7:366-82. [PMID: 25280477 PMCID: PMC4524424 DOI: 10.1093/jmcb/mju038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/23/2014] [Indexed: 12/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are involved in many cellular mechanisms, including replication, transcription, and genome rearrangements. The recent observation that hot spots of DSBs in human chromosomes delimit DNA domains that possess coordinately expressed genes suggests a strong relationship between the organization of transcription patterns and hot spots of DSBs. In this study, we performed mapping of hot spots of DSBs in a human 43-kb ribosomal DNA (rDNA) repeated unit. We observed that rDNA units corresponded to the most fragile sites in human chromosomes and that these units possessed at least nine specific regions containing clusters of extremely frequently occurring DSBs, which were located exclusively in non-coding intergenic spacer (IGS) regions. The hot spots of DSBs corresponded to only a specific subset of DNase-hypersensitive sites, and coincided with CTCF, PARP1, and HNRNPA2B1 binding sites, and H3K4me3 marks. Our rDNA-4C data indicate that the regions of IGS containing the hot spots of DSBs often form contacts with specific regions in different chromosomes, including the pericentromeric regions, as well as regions that are characterized by H3K27ac and H3K4me3 marks, CTCF binding sites, ChIA-PET and RIP signals, and high levels of DSBs. The data suggest a strong link between chromosome breakage and several different mechanisms of epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Daria M Fedoseeva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Dmitri V Sosin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Anastasia V Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Nataliya V Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Anna V Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Yuri V Kravatsky
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Olga V Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| |
Collapse
|
187
|
Hegedűs C, Virág L. Inputs and outputs of poly(ADP-ribosyl)ation: Relevance to oxidative stress. Redox Biol 2014; 2:978-82. [PMID: 25460733 PMCID: PMC4215470 DOI: 10.1016/j.redox.2014.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/10/2014] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress can cause DNA breaks which induce activation of the DNA nick sensor enzyme poly(ADP-ribose) polymerase-1 (PARP-1), part of the 17 member PARP enzyme family. PARP-1 modifies target proteins by attaching to them several NAD-derived ADP-ribose units forming poly(ADP-ribose) (PAR) polymers. PARylation controls many cellular processes while intense PARylation may also lead to cell death by various mechanisms. Here we summarize the modes of activation, inhibitors and modulators of PARP-1 and review the cellular functions regulated by the enzyme.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., H-4032 Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., H-4032 Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
188
|
PARP1-driven apoptosis in chronic lymphocytic leukemia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:106713. [PMID: 25161998 PMCID: PMC4137605 DOI: 10.1155/2014/106713] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/19/2014] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is considered a malignancy resulting from defects in apoptosis. For this reason, targeting apoptotic pathways in CLL may be valuable for its management. Poly [ADP-ribose] polymerase 1 (PARP1) is the main member of a family of nuclear enzymes that act as DNA damage sensors. Through binding on DNA damaged structures, PARP1 recruits repair enzymes and serves as a survival factor, but if the damage is severe enough, its action may lead the cell to apoptosis through caspase activation, or necrosis. We measured the PARP1 mRNA and protein pretreatment levels in 26 patients with CLL and the corresponding posttreatment levels in 15 patients after 3 cycles of immunochemotherapy, as well as in 15 healthy blood donors. No difference was found between the pre- and posttreatment levels of PARP1, but we found a statistically significant relative increase of the 89 kDa fragment of PARP1 that is cleaved by caspases in the posttreatment samples, indicating PARP1-related apoptosis in CLL patients after treatment. Our findings constitute an important step in the field, especially in the era of PARP1 inhibitors, and may serve as a base for future clinical trials with these agents in CLL.
Collapse
|
189
|
Lage SL, Longo C, Branco LM, da Costa TB, Buzzo CDL, Bortoluci KR. Emerging Concepts about NAIP/NLRC4 Inflammasomes. Front Immunol 2014; 5:309. [PMID: 25071770 PMCID: PMC4078251 DOI: 10.3389/fimmu.2014.00309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
Neuronal apoptosis inhibitory protein (NAIP)/NOD-like receptor (NLR) containing a caspase activating and recruitment domain (CARD) 4 (NLRC4) inflammasome complexes are activated in response to proteins from virulent bacteria that reach the cell cytosol. Specific NAIP proteins bind to the agonists and then physically associate with NLRC4 to form an inflammasome complex able to recruit and activate pro-caspase-1. NAIP5 and NAIP6 sense flagellin, component of flagella from motile bacteria, whereas NAIP1 and NAIP2 detect needle and rod components from bacterial type III secretion systems, respectively. Active caspase-1 mediates the maturation and secretion of the pro-inflammatory cytokines, IL-1β and IL-18, and is responsible for the induction of pyroptosis, a pro-inflammatory form of cell death. In addition to these well-known effector mechanisms, novel roles have been described for NAIP/NLRC4 inflammasomes, such as phagosomal maturation, activation of inducible nitric oxide synthase, regulation of autophagy, secretion of inflammatory mediators, antibody production, activation of T cells, among others. These effector mechanisms mediated by NAIP/NLRC4 inflammasomes have been extensively studied in the context of resistance of infections and the potential of their agonists has been exploited in therapeutic strategies to non-infectious pathologies, such as tumor protection. Thus, this review will discuss current knowledge about the activation of NAIP/NLRC4 inflammasomes and their effector mechanisms.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Carla Longo
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil ; Departamento de Ciências Biológicas, Universidade Federal de São Paulo , São Paulo , Brazil
| | - Laura Migliari Branco
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Thaís Boccia da Costa
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Carina de Lima Buzzo
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil
| | - Karina Ramalho Bortoluci
- Centro de Terapia Celular e Molecular (CTC-Mol), Universidade Federal de São Paulo , São Paulo , Brazil ; Departamento de Ciências Biológicas, Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
190
|
Felici R, Cavone L, Lapucci A, Guasti D, Bani D, Chiarugi A. PARP inhibition delays progression of mitochondrial encephalopathy in mice. Neurotherapeutics 2014; 11:651-64. [PMID: 24935635 PMCID: PMC4121448 DOI: 10.1007/s13311-014-0285-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial disorders are deadly childhood diseases for which therapeutic remedies are an unmet need. Given that genetic suppression of the nuclear enzyme poly (adenine diphosphate-ribose) polymerase(PARP)-1 improves mitochondrial functioning, we investigated whether pharmacological inhibition of the enzyme affords protection in a mouse model of a mitochondrial disorder. We used mice lacking the Ndufs4 subunit of the respiratory complex I (Ndufs4 knockout [ KO] mice); these mice undergo progressive encephalopathy and die around postnatal day 50. Mice were treated daily with the potent PARP inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride (PJ34); neurological parameters, PARP activity, and mitochondrial homeostasis were evaluated. We found that mice receiving N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride from postnatal day 30 to postnatal day 50 show reduced neurological impairment, and increased exploratory activity and motor skills compared with vehicle-treated animals. However, drug treatment did not delay or reduce death. We found no evidence of increased PARP activity within the brain of KO mice compared with heterozygous, healthy controls. Conversely, a 10-day treatment with the PARP inhibitor significantly reduced basal poly(ADP-ribosyl)ation in different organs of the KO mice, including brain, skeletal muscle, liver, pancreas, and spleen. In keeping with the epigenetic role of PARP-1, its inhibition correlated with increased expression of mitochondrial respiratory complex subunits and organelle number. Remarkably, pharmacological targeting of PARP reduced astrogliosis in olfactory bulb and motor cortex, but did not affect neuronal loss of KO mice. In light of the advanced clinical development of PARP inhibitors, these data emphasize their relevance to treatment of mitochondrial respiratory defects.
Collapse
Affiliation(s)
- Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy,
| | | | | | | | | | | |
Collapse
|
191
|
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is an abundant, ubiquitously expressed NAD(+)-dependent nuclear enzyme that has prognostic value for a multitude of human cancers. PARP1 activity serves to poly (ADP-ribose)-ylate the vast majority of known client proteins and affects a number of cellular and biologic outcomes, by mediating the DNA damage response (DDR), base-excision repair (BER), and DNA strand break (DSB) pathways. PARP1 is also critically important for the maintenance of genomic integrity, as well as chromatin dynamics and transcriptional regulation. Evidence also indicates that PARP-directed therapeutics are "synthetic lethal" in BRCA1/2-deficient model systems. Strikingly, recent studies have unearthed exciting new transcriptional-regulatory roles for PARP1, which has profound implications for human malignancies and will be reviewed herein.
Collapse
Affiliation(s)
| | - Karen E Knudsen
- Kimmel Cancer Center, Departments of Cancer Biology, Urology, and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
192
|
Kim BK, Im JY, Han G, Lee WJ, Won KJ, Chung KS, Lee K, Ban HS, Song K, Won M. p300 cooperates with c-Jun and PARP-1 at the p300 binding site to activate RhoB transcription in NSC126188-mediated apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:364-73. [DOI: 10.1016/j.bbagrm.2014.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 11/27/2022]
|
193
|
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171:2000-16. [PMID: 24684389 PMCID: PMC3976618 DOI: 10.1111/bph.12416] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents.
Collapse
Affiliation(s)
- Amos A Fatokun
- Institute of Cell Signalling, School of Biomedical Sciences, University of NottinghamNottingham, UK
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
194
|
Xia Q, Deliard S, Yuan CX, Johnson ME, Grant SFA. Characterization of the transcriptional machinery bound across the widely presumed type 2 diabetes causal variant, rs7903146, within TCF7L2. Eur J Hum Genet 2014; 23:103-9. [PMID: 24667787 DOI: 10.1038/ejhg.2014.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/29/2022] Open
Abstract
Resolving the underlying functional mechanism to a given genetic association has proven extremely challenging. However, the strongest associated type 2 diabetes (T2D) locus reported to date, TCF7L2, presents an opportunity for translational analyses, as many studies in multiple ethnicities strongly point to SNP rs7903146 in intron 3 as being the causal variant within this gene. We carried out oligo pull-down combined with mass spectrophotometry (MS) to elucidate the specific transcriptional machinery across this SNP using protein extracts from HCT116 cells. We observed that poly (ADP-ribose) polymerase 1 (PARP-1) is by far the most abundant binding factor. Pursuing the possibility of a feedback mechanism, we observed that PARP-1, along with the next most abundant binding proteins, DNA topoisomerase I and ATP-dependent RNA helicase A, dimerize with the TCF7L2 protein and with each other. We uncovered further evidence of a feedback mechanism using a luciferase reporter approach, including observing expression differences between alleles for rs7903146. We also found that there was an allelic difference in the MS results for proteins with less abundant binding, namely X-ray repair cross-complementing 5 and RPA/p70. Our results point to a protein complex binding across rs7903146 within TCF7L2 and suggests a possible mechanism by which this locus confers its T2D risk.
Collapse
Affiliation(s)
- Qianghua Xia
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sandra Deliard
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chao-Xing Yuan
- Department of Proteomics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- 1] Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA [2] Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA [3] Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
195
|
Mansoorabadi SO, Wu M, Tao Z, Gao P, Pingali SV, Guo L, Liu HW. Conformational activation of poly(ADP-ribose) polymerase-1 upon DNA binding revealed by small-angle X-ray scattering. Biochemistry 2014; 53:1779-88. [PMID: 24588584 PMCID: PMC3971956 DOI: 10.1021/bi401439n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein that plays key roles in several fundamental cellular processes. PARP-1 catalyzes the polymerization of nicotinamide adenine dinucleotide on itself and other acceptor proteins, forming long branched poly(ADP-ribose) polymers. The catalytic activity of PARP-1 is stimulated upon binding to damaged DNA, but how this signal is transmitted from the N-terminal DNA binding domain to the C-terminal catalytic domain in the context of the full-length enzyme is unknown. In this paper, small-angle X-ray scattering experiments and molecular dynamics simulations were used to gain insight into the conformational changes that occur during the catalytic activation of PARP-1 by an 8-mer DNA ligand. The data are consistent with a model in which binding of the DNA ligand establishes interdomain interactions between the DNA binding and catalytic domains, which induces an allosteric change in the active site that promotes catalysis. Moreover, the PARP-1-8-mer complex is seen to adopt a conformation that is poised to recruit DNA repair factors to the site of DNA damage. This study provides the first structural information about the DNA-induced conformational activation of full-length PARP-1.
Collapse
Affiliation(s)
- Steven O Mansoorabadi
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry, and Institute of Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
196
|
Wu T, Wang XJ, Tian W, Jaramillo MC, Lau A, Zhang DD. Poly(ADP-ribose) polymerase-1 modulates Nrf2-dependent transcription. Free Radic Biol Med 2014; 67:69-80. [PMID: 24140708 PMCID: PMC3945083 DOI: 10.1016/j.freeradbiomed.2013.10.806] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/29/2013] [Accepted: 10/14/2013] [Indexed: 12/18/2022]
Abstract
The basic leucine zipper transcription factor Nrf2 has emerged as a master regulator of intracellular redox homeostasis by controlling the expression of a battery of redox-balancing antioxidants and phase II detoxification enzymes. Under oxidative stress conditions, Nrf2 is induced at the protein level through redox-sensitive modifications on critical cysteine residues in Keap1, a component of an E3 ubiquitin ligase complex that targets Nrf2 for proteasomal degradation. Poly(ADP-ribose) polymerase-1 (PARP-1) is historically known to function in DNA damage detection and repair; however, recently PARP-1 has been shown to play an important role in other biochemical activities, such as DNA methylation and imprinting, insulator activity, chromosome organization, and transcriptional regulation. The exact role of PARP-1 in transcription modulation and the underlying mechanisms remain poorly defined. In this study, we report that PARP-1 forms complexes with the antioxidant response element (ARE) within the promoter region of Nrf2 target genes and upregulates the transcriptional activity of Nrf2. Interestingly, PARP-1 neither physically interacts with Nrf2 nor promotes the expression of Nrf2. In addition, PARP-1 does not target Nrf2 for poly(ADP-ribosyl)ation. Instead, PARP-1 interacts directly with small Maf proteins and the ARE of Nrf2 target genes, which augments ARE-specific DNA-binding of Nrf2 and enhances the transcription of Nrf2 target genes. Collectively, these results suggest that PARP-1 serves as a transcriptional coactivator, upregulating the transcriptional activity of Nrf2 by enhancing the interaction among Nrf2, MafG, and the ARE.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Xiao-Jun Wang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Wang Tian
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Melba C Jaramillo
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Alexandria Lau
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
197
|
Abstract
Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1--important for synaptic connections during development--as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.
Collapse
|
198
|
Luo Y, Leverson JD. New opportunities in chemosensitization and radiosensitization: modulating the DNA-damage response. Expert Rev Anticancer Ther 2014; 5:333-42. [PMID: 15877529 DOI: 10.1586/14737140.5.2.333] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many current cancer treatments, including certain classes of chemotherapeutics and radiation, induce cytotoxicity by damaging DNA. However, many cancers are resistant to these therapies, which represents a significant challenge in the clinic. Thus, modulating DNA-damage responses to selectively enhance the sensitivity of cancer cells to these therapies is highly desirable. When DNA damage is detected, DNA checkpoint mechanisms are activated to halt cells at various phases of the cell cycle. Simultaneously, DNA-damage sensors transduce signals to activate DNA-repair mechanisms via de novo expression or post-translational modification of enzymes required for DNA repair. p53 is the major player in a checkpoint that arrests cells at the G1/S boundary, while checkpoint kinase (Chk)1 is critical for the G2/M checkpoint and also the S checkpoint that prevents cell cycle progression after replication defects (intra-S-phase checkpoint) or S/M uncoupling (S/M checkpoint). Poly(ADP-ribose) polymerase is involved in sensing DNA single-strand breaks and inducing DNA repair via poly(ADP-ribosyl)ating various DNA-binding and DNA-repair proteins. In this review, strategies for implementing small-molecule inhibitors of poly(ADP-ribose) polymerase and Chk1, which are emerging as potential adjuncts to current therapies, are discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department R47S, Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | |
Collapse
|
199
|
Aprile-Garcia F, Antunica-Noguerol M, Budziñski ML, Liberman AC, Arzt E. Novel insights into the neuroendocrine control of inflammation: the role of GR and PARP1. Endocr Connect 2014; 3:R1-R12. [PMID: 24243533 PMCID: PMC3869961 DOI: 10.1530/ec-13-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inflammatory responses are elicited after injury, involving release of inflammatory mediators that ultimately lead, at the molecular level, to the activation of specific transcription factors (TFs; mainly activator protein 1 and nuclear factor-κB). These TFs propagate inflammation by inducing the expression of cytokines and chemokines. The neuroendocrine system has a determinant role in the maintenance of homeostasis, to avoid exacerbated inflammatory responses. Glucocorticoids (GCs) are the key neuroendocrine regulators of the inflammatory response. In this study, we describe the molecular mechanisms involved in the interplay between inflammatory cytokines, the neuroendocrine axis and GCs necessary for the control of inflammation. Targeting and modulation of the glucocorticoid receptor (GR) and its activity is a common therapeutic strategy to reduce pathological signaling. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that catalyzes the addition of PAR on target proteins, a post-translational modification termed PARylation. PARP1 has a central role in transcriptional regulation of inflammatory mediators, both in neuroendocrine tumors and in CNS cells. It is also involved in modulation of several nuclear receptors. Therefore, PARP1 and GR share common inflammatory pathways with antagonic roles in the control of inflammatory processes, which are crucial for the effective maintenance of homeostasis.
Collapse
Affiliation(s)
- Fernando Aprile-Garcia
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - María Antunica-Noguerol
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Maia Ludmila Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Ana C Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET, Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Correspondence should be addressed to E Arzt
| |
Collapse
|
200
|
Abstract
Although all neurons carry the same genetic information, they vary considerably in morphology and functions and respond differently to environmental conditions. Such variability results mostly from differences in gene expression. Among the processes that regulate gene activity, epigenetic mechanisms play a key role and provide an additional layer of complexity to the genome. They allow the dynamic modulation of gene expression in a locus- and cell-specific manner. These mechanisms primarily involve DNA methylation, posttranslational modifications (PTMs) of histones and noncoding RNAs that together remodel chromatin and facilitate or suppress gene expression. Through these mechanisms, the brain gains high plasticity in response to experience and can integrate and store new information to shape future neuronal and behavioral responses. Dynamic epigenetic footprints underlying the plasticity of brain cells and circuits contribute to the persistent impact of life experiences on an individual's behavior and physiology ranging from the formation of long-term memory to the sequelae of traumatic events or of drug addiction. They also contribute to the way lifestyle, life events, or exposure to environmental toxins can predispose an individual to disease. This chapter describes the most prominent examples of epigenetic marks associated with long-lasting changes in the brain induced by experience. It discusses the role of epigenetic processes in behavioral plasticity triggered by environmental experiences. A particular focus is placed on learning and memory where the importance of epigenetic modifications in brain circuits is best understood. The relevance of epigenetics in memory disorders such as dementia and Alzheimer's disease is also addressed, and promising perspectives for potential epigenetic drug treatment discussed.
Collapse
|