151
|
Khanaruksombat S, Srisomsap C, Chokchaichamnankit D, Punyarit P, Phiriyangkul P. Identification of a novel allergen from muscle and various organs in banana shrimp (Fenneropenaeus merguiensis). Ann Allergy Asthma Immunol 2014; 113:301-6. [PMID: 24996992 DOI: 10.1016/j.anai.2014.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/08/2014] [Accepted: 06/05/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND The increasing consumption of shellfish can cause an increase in allergic symptoms. Shrimp allergy can be species specific, but specific allergies in different organs have not been studied. Identification of allergens in muscle and others organs of banana shrimp is necessary for improved diagnostics of allergies for shrimp and food safety control. OBJECTIVE To identify the IgE-binding proteins in various organs of Fenneropenaeus merguiensis by immunoblotting and tandem mass spectrometry. METHODS Proteomic methods were used to investigate the allergenic proteins from banana shrimp. Proteins from muscle and various organs were separated by denaturing polyacrylamide gel electrophoresis. Allergens were analyzed by immunoblotting with pooled sera from shrimp allergic patients (n = 21) and tandem mass spectrometry. RESULTS The important allergens in banana shrimp are arginine kinase, sarcoplasmic calcium-binding protein, myosin heavy chain, hemocyanin, enolase, and glyceraldehyde-3-phosphate dehydrogenase, which can be demonstrated by immunoblotting in muscle and shell. Moreover, vitellogenin, ovarian peritrophin 1 precursor, β-actin, and 14-3-3 protein were suggested as allergens in the ovary at different stages of ovarian development. CONCLUSION Ten allergens were identified as allergens in various organs, and they are suggested as novel allergens in banana shrimp. The major allergen in muscle and shell from this shrimp is arginine kinase, whereas the major allergen in the ovary is vitellogenin.
Collapse
Affiliation(s)
- Suparada Khanaruksombat
- Division of Biochemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand; Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Chatuchak, Bangkok, Thailand; Bioproducts Science, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | | | | | - Phaibul Punyarit
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Pharima Phiriyangkul
- Division of Biochemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand; Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Chatuchak, Bangkok, Thailand; Bioproducts Science, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.
| |
Collapse
|
152
|
Tasaki Y, Sato R, Toyama S, Kasahara K, Ona Y, Sugawara M. Cloning of glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycete mushroom Pleurotus ostreatus and analysis of their expression during fruit-body development. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
153
|
Gao XY, Zhi XY, Li HW, Klenk HP, Li WJ. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One 2014; 9:e101229. [PMID: 24977706 PMCID: PMC4076318 DOI: 10.1371/journal.pone.0101229] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.
Collapse
Affiliation(s)
- Xiao-Yang Gao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (X-YG); (W-JL)
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Hong-Wei Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- The First Hospital of Qujing City, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hans-Peter Klenk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- * E-mail: (X-YG); (W-JL)
| |
Collapse
|
154
|
Takaoka Y, Goto S, Nakano T, Tseng HP, Yang SM, Kawamoto S, Ono K, Chen CL. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice. Sci Rep 2014; 4:5204. [PMID: 24902773 PMCID: PMC4047534 DOI: 10.1038/srep05204] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an energy metabolism-related enzyme in the glycolytic pathway. Recently, it has been reported that GAPDH has other physiological functions, such as apoptosis, DNA repair and autophagy. Some in vitro studies have indicated immunological aspects of GAPDH function, although there is no definite study discussing the advantage of GAPDH as a therapeutic target. Here, we show that GAPDH has an anti-inflammatory function by using a lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury (ALI) mouse model, which is referred to as acute respiratory distress syndrome (ARDS) in humans. GAPDH pre-injected mice were protected from septic death, and their serum levels of proinflammatory cytokines were significantly suppressed. In lung tissue, LPS-induced acute injury and neutrophil accumulation were strongly inhibited by GAPDH pre-injection. Pulmonary, proinflammatory cytokine gene expression and serum chemokine expression in GAPDH pre-injected mice were also reduced. These data suggest the therapeutic potential of GAPDH for sepsis-related ALI/ARDS.
Collapse
Affiliation(s)
- Yuki Takaoka
- 1] Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan [2] Center for Gene Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shigeru Goto
- 1] Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan [2] Iwao Hospital, Yufuin, Japan
| | - Toshiaki Nakano
- 1] Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan [2] Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Peng Tseng
- 1] Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan [2] Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- 1] Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan [2] Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Seiji Kawamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuhisa Ono
- 1] Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan [2] Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Chao-Long Chen
- Liver Transplantation Program and Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
155
|
Sanders R, Mason DJ, Foy CA, Huggett JF. Considerations for accurate gene expression measurement by reverse transcription quantitative PCR when analysing clinical samples. Anal Bioanal Chem 2014; 406:6471-83. [PMID: 24858468 PMCID: PMC4182594 DOI: 10.1007/s00216-014-7857-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 01/04/2023]
Abstract
Reverse transcription quantitative PCR is an established, simple and effective method for RNA measurement. However, technical standardisation challenges combined with frequent insufficient experimental detail render replication of many published findings challenging. Consequently, without adequate consideration of experimental standardisation, such findings may be sufficient for a given publication but cannot be translated to wider clinical application. This article builds on earlier standardisation work and the MIQE guidelines, discussing processes that need consideration for accurate, reproducible analysis when dealing with patient samples. By applying considerations common to the science of measurement (metrology), one can maximise the impact of gene expression studies, increasing the likelihood of their translation to clinical tools.
Collapse
Affiliation(s)
- Rebecca Sanders
- Molecular & Cell Biology, LGC, Queens Road, Teddington, TW11 0LY, UK,
| | | | | | | |
Collapse
|
156
|
Metabolomic and Transcriptomic Analysis for Rate-Limiting Metabolic Steps in Xylose Utilization by RecombinantCandida utilis. Biosci Biotechnol Biochem 2014; 77:1441-8. [DOI: 10.1271/bbb.130093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
157
|
Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis 2014; 5:e1255. [PMID: 24853433 PMCID: PMC4047910 DOI: 10.1038/cddis.2014.220] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/29/2014] [Accepted: 04/18/2014] [Indexed: 12/25/2022]
Abstract
Cellular senescence is a state of irreversible growth arrest; however, the metabolic processes of senescent cells remain active. Our previous studies have shown that radiation induces senescence of human breast cancer cells that display low expression of securin, a protein involved in control of the metaphase–anaphase transition and anaphase onset. In this study, the protein expression profile of senescent cells was resolved by two-dimensional gel electrophoresis to investigate associated metabolic alterations. We found that radiation induced the expression and activation of glyceraldehyde-3-phosphate dehydrogenase that has an important role in glycolysis. The activity of lactate dehydrogenase A, which is involved in the conversion of pyruvate to lactate, the release of lactate and the acidification of the extracellular environment, was also induced. Inhibition of glycolysis by dichloroacetate attenuated radiation-induced senescence. In addition, radiation also induced activation of the 5′-adenosine monophosphate-activated protein kinase (AMPK) and nuclear factor kappa B (NF-κB) pathways to promote senescence. We also found that radiation increased the expression of monocarboxylate transporter 1 (MCT1) that facilitates the export of lactate into the extracellular environment. Inhibition of glycolysis or the AMPK/NF-κB signalling pathways reduced MCT1 expression and rescued the acidification of the extracellular environment. Interestingly, these metabolic-altering signalling pathways were also involved in radiation-induced invasion of the surrounding, non-irradiated breast cancer and normal endothelial cells. Taken together, radiation can induce the senescence of human breast cancer cells through metabolic alterations.
Collapse
|
158
|
Villarroel-Campos D, Gonzalez-Billault C. The MAP1B case: an old MAP that is new again. Dev Neurobiol 2014; 74:953-71. [PMID: 24700609 DOI: 10.1002/dneu.22178] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule-stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
159
|
Chen WT, Wu YL, Chen T, Cheng CS, Chan HL, Chou HC, Chen YW, Yin HS. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133. PLoS One 2014; 9:e92154. [PMID: 24667214 PMCID: PMC3965424 DOI: 10.1371/journal.pone.0092154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05) occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton, metabolism, redox regulation, and stress response. These proteomics data provide valuable information about host cell responses to ARV infection and will facilitate further studies of the molecular mechanisms underlying ARV pathogenesis.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Le Wu
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsien-Sheng Yin
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
160
|
Huang W, Wang Z, Lei QY. Acetylation control of metabolic enzymes in cancer: an updated version. Acta Biochim Biophys Sin (Shanghai) 2014; 46:204-13. [PMID: 24480802 DOI: 10.1093/abbs/gmt154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolic reprogramming is one of the critical features in cancer. Tumor cells preferentially utilize glycolysis instead of oxidative phosphorylation in the presence of oxygen, namely 'Warburg Effect'. Recent studies have provided new insights into the Warburg effect, elucidating metabolic-dependent and independent mechanisms of metabolic enzymes regulated by post-translational modifications and providing further evidence for the critical role of these tricks in cancer metabolism and tumorigenesis. Of particular interest, we summarized the latest advances in both the metabolic and the non-metabolic functions of metabolic enzymes via the acetylation regulation in the Warburg effect. In addition, their potential roles in cancer metabolism therapy will also be briefly discussed.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
161
|
Trung Cao T, Tsai MA, Yang CD, Wang PC, Kuo TY, Gabriel Chen HC, Chen SC. Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia. J GEN APPL MICROBIOL 2014; 60:241-50. [DOI: 10.2323/jgam.60.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Thanh Trung Cao
- Department of Tropical Agriculture and International Cooperation
| | | | - Chung-Da Yang
- Graduate Institute of Animal Vaccine, National Pingtung University of Science and Technology
| | | | - Tsun-Yung Kuo
- Institute of Biotechnology, National Ilan University
- Department of Animal Science, National Ilan University
| | | | | |
Collapse
|
162
|
Wang X, Su Y, Liu Y, Kim SC, Fanella B. Phosphatidic Acid as Lipid Messenger and Growth Regulators in Plants. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
163
|
Karmahapatra SK, Saha T, Adhikari S, Woodrick J, Roy R. Redox regulation of apurinic/apyrimidinic endonuclease 1 activity in Long-Evans Cinnamon rats during spontaneous hepatitis. Mol Cell Biochem 2013; 388:185-93. [PMID: 24337968 DOI: 10.1007/s11010-013-1909-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/15/2013] [Indexed: 10/25/2022]
Abstract
The Long-Evans Cinnamon (LEC) rat is an animal model for Wilson's disease. This animal is genetically predisposed to copper accumulation in the liver, increased oxidative stress, accumulation of DNA damage, and the spontaneous development of hepatocellular carcinoma. Thus, this animal model is useful for studying the relationship of endogenous DNA damage to spontaneous carcinogenesis. In this study, we have investigated the apurinic/apyrimidinic endonuclease 1 (APE1)-mediated excision repair of endogenous DNA damage, apurinic/apyrimidinic (AP)-sites, which is highly mutagenic and implicated in human cancer. We found that the activity was reduced in the liver extracts from the acute hepatitis period of LEC rats as compared with extracts from the age-matched Long-Evans Agouti rats. The acute hepatitis period had also a heightened oxidative stress condition as assessed by an increase in oxidized glutathione level and loss of enzyme activity of glyceraldehyde 3-phosphate dehydrogenase, a key redox-sensitive protein in cells. Interestingly, the activity reduction was not due to changes in protein expression but apparently by reversible protein oxidation as the addition of reducing agents to extracts of the liver from acute hepatitis period reactivated APE1 activity and thus, confirmed the oxidation-mediated loss of APE1 activity under increased oxidative stress. These findings show for the first time in an animal model that the repair mechanism of AP-sites is impaired by increased oxidative stress in acute hepatitis via redox regulation which contributed to the increased accumulation of mutagenic AP-sites in liver DNA.
Collapse
Affiliation(s)
- Soumendra Krishna Karmahapatra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Georgetown University Medical Center, LL level, S-122 3800 Reservoir Road, NW, Washington, DC, 20057, USA
| | | | | | | | | |
Collapse
|
164
|
Avenarius MR, Saylor KW, Lundeberg MR, Wilmarth PA, Shin JB, Spinelli KJ, Pagana JM, Andrade L, Kachar B, Choi D, David LL, Barr-Gillespie PG. Correlation of actin crosslinker and capper expression levels with stereocilia growth phases. Mol Cell Proteomics 2013; 13:606-20. [PMID: 24319057 DOI: 10.1074/mcp.m113.033704] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During development of the chick cochlea, actin crosslinkers and barbed-end cappers presumably influence growth and remodeling of the actin paracrystal of hair cell stereocilia. We used mass spectrometry to identify and quantify major actin-associated proteins of the cochlear sensory epithelium from E14 to E21, when stereocilia widen and lengthen. Tight actin crosslinkers (i.e. fascins, plastins, and espin) are expressed dynamically during cochlear epithelium development between E7 and E21, with FSCN2 replacing FSCN1 and plastins remaining low in abundance. Capping protein, a barbed-end actin capper, is located at stereocilia tips; it is abundant during growth phase II, when stereocilia have ceased elongating and are increasing in diameter. Capping protein levels then decline during growth phase III, when stereocilia reinitiate barbed-end elongation. Although actin crosslinkers are readily detected by electron microscopy in developing chick cochlea stereocilia, quantitative mass spectrometry of stereocilia isolated from E21 chick cochlea indicated that tight crosslinkers are present there in stoichiometric ratios relative to actin that are much lower than their ratios for vestibular stereocilia. These results demonstrate the value of quantitation of global protein expression in chick cochlea during stereocilia development.
Collapse
Affiliation(s)
- Matthew R Avenarius
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Xu Q, Feng CY, Hori TS, Plouffe DA, Buchanan JT, Rise ML. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:317-33. [PMID: 24145116 DOI: 10.1016/j.cbd.2013.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
Growth hormone transgenic (GHTg) Atlantic salmon (Salmo salar) have enhanced growth when compared to their non-transgenic counterparts, and this trait can be beneficial for aquaculture production. Biological confinement of GHTg Atlantic salmon may be achieved through the induction of triploidy (3N). The growth rates of triploid GH transgenic (3NGHTg) Atlantic salmon juveniles were found to significantly vary between families in the AquaBounty breeding program. In order to characterize gene expression associated with enhanced growth in juvenile 3NGHTg Atlantic salmon, a functional genomics approach (32K cDNA microarray hybridizations followed by QPCR) was used to identify and validate liver transcripts that were differentially expressed between two fast-growing 3NGHTg Atlantic salmon families (AS11, AS26) and a slow-growing 3NGHTg Atlantic salmon family (AS25); juvenile growth rate was evaluated over a 45-day period. Of 687 microarray-identified differentially expressed features, 143 (116 more highly expressed in fast-growing and 27 more highly expressed in slow-growing juveniles) were identified in the AS11 vs. AS25 microarray study, while 544 (442 more highly expressed in fast-growing and 102 more highly expressed in slow-growing juveniles) were identified in the AS26 vs. AS25 microarray study. Forty microarray features (39 putatively associated with fast growth and 1 putatively associated with slow growth) were present in both microarray experiment gene lists. The expression levels of 15 microarray-identified transcripts were studied using QPCR with individual RNA samples to validate microarray results and to study biological variability of transcript expression. The QPCR results agreed with the microarray results for 12 of 13 putative fast-growth associated transcripts, but QPCR did not validate the microarray results for 2 putative slow-growth associated transcripts. Many of the 39 microarray-identified genes putatively associated at the transcript expression level with fast-growing 3NGHTg salmon juveniles (including APOA1, APOA4, B2M, FADSD6, FTM, and GAPDH) are involved in metabolism, iron homeostasis and oxygen transport, and immune- or stress-related responses. The results of this study increase our knowledge of family-specific impacts on growth rate and hepatic gene expression in juvenile 3NGHTg Atlantic salmon. In addition, this study provides a suite of putative rapid growth rate-associated transcripts that may contribute to the development of molecular markers [e.g. intronic, exonic or regulatory region single nucleotide polymorphisms (SNPs)] for the selection of GHTg Atlantic salmon broodstock that can be utilized to produce sterile triploids of desired growth performance for future commercial applications.
Collapse
Affiliation(s)
- Qingheng Xu
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | | | | | | | | | | |
Collapse
|
166
|
Tan R, Li J, Peng X, Zhu L, Cai L, Wang T, Su Y, Irani K, Hu Q. GAPDH is critical for superior efficacy of female bone marrow-derived mesenchymal stem cells on pulmonary hypertension. Cardiovasc Res 2013; 100:19-27. [PMID: 23801767 DOI: 10.1093/cvr/cvt165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AIMS Pulmonary arterial hypertension, a chronic lung disease, remains an unacceptable prognosis despite significant advances in conventional therapies. Stem cell therapy represents a novel and effective modality. This study was aimed to add new insight in gender differences of bone marrow-derived mesenchymal stem cells on therapy against pulmonary arterial hypertension and the underlying mechanism. METHODS AND RESULTS By in vivo experiments, we showed for the first time female bone marrow-derived mesenchymal stem cells possessed a better therapeutic potential against monocrotaline-induced pulmonary arterial hypertension in C57BL/6J mice compared with male counterparts. In vitro experiments demonstrated superior function of female bone marrow-derived mesenchymal stem cells in cell proliferation, migration and [Ca(2+)]i kinetics. Moreover, we unexpectedly found that, compared with male ones, female bone marrow-derived mesenchymal stem cells had a higher expression level of glyceraldehyde-3-phosphate dehydrogenase and manipulations of its expression in female or male bone marrow-derived mesenchymal stem cells profoundly affected their cellular behaviours and therapeutic efficacies against pulmonary arterial hypertension. CONCLUSION Our results suggest that glyceraldehyde-3-phosphate dehydrogenase plays a critical role in determining the superior functions of female bone marrow-derived mesenchymal stem cells in cell therapy against pulmonary arterial hypertension by regulating [Ca(2+)]i signal-associated cellular behaviours.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Pathophysiology, Tongji Medical College, Huazhong Science and Technology University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Kolkova Z, Arakelyan A, Casslén B, Hansson S, Kriegova E. Normalizing to GADPH jeopardises correct quantification of gene expression in ovarian tumours - IPO8 and RPL4 are reliable reference genes. J Ovarian Res 2013; 6:60. [PMID: 24001041 PMCID: PMC3766134 DOI: 10.1186/1757-2215-6-60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/18/2013] [Indexed: 11/10/2022] Open
Abstract
Background To ensure a correct interpretation of results obtained with quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR), it is critical to normalize to a reference gene with stable mRNA expression in the tissue of interest. GADPH is widely used as a reference gene in ovarian tumour studies, although lacking tissue-specific stability. The aim of this study was to identify alternative suitable reference genes for RT-qPCR studies on benign, borderline, and malignant ovarian tumours. Methods We assayed mRNA levels for 13 potential reference genes – ABL1, ACTB, CDKN1A, GADPH, GUSB, HPRT1, HSP90AB, IPO8, PPIA, RPL30, RPL4, RPLPO, and TBP –with RT-qPCR in 42 primary ovarian tumours, using commercially pre-designed RT-qPCR probes. Expression stability was subsequently analysed with four different statistical programs (GeNorm, NormFinder, BestKeeper, and the Equivalence test). Results Expression of IPO8, RPL4, TBP, RPLPO, and ACTB had the least variation in expression across the tumour samples according to GeNorm, NormFinder, and BestKeeper. The Equivalence test found variation in expression within a 3-fold expression change between tumour groups for: IPO8, RPL40, RPL30, GUSB, TBP, RPLPO, ACTB, ABL1, and CDKN1A. However, only IPO8 satisfied at a 2-fold change as a cut-off. Overall, IPO8 and RPL4 had the highest, whereas GADPH and HPRT1 the lowest expression stability. Employment of suitable reference genes (IPO8, RPL4) in comparison with unsuitable ones (GADPH, HPRT1), demonstrated divergent influence on the mRNA expression pattern of our target genes − GPER and uPAR. Conclusions We found IPO8 and RPL4 to be suitable reference genes for normalization of target gene expression in benign, borderline, and malignant ovarian tumours. Moreover, IPO8 can be recommended as a single reference gene. Neither GADPH nor HPRT1 should be used as reference genes in studies on ovarian tumour tissue.
Collapse
Affiliation(s)
- Zuzana Kolkova
- Department of Obstetrics & Gynaecology, Lund University, Skåne University Hospital Lund, Lund, SE 221 85, Sweden.
| | | | | | | | | |
Collapse
|
168
|
Sirover MA. GAPDH: β-Amyloid Mediated Iron Accumulation in Alzheimer’s Disease: A New Paradigm for Oxidative Stress Induction in Neurodegenerative Disorders. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-62703-598-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
169
|
Food vacuole associated enolase in plasmodium undergoes multiple post-translational modifications: evidence for atypical ubiquitination. PLoS One 2013; 8:e72687. [PMID: 24009698 PMCID: PMC3751847 DOI: 10.1371/journal.pone.0072687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/18/2013] [Indexed: 01/05/2023] Open
Abstract
Plasmodium enolase localizes to several sub-cellular compartments viz. cytosol, nucleus, cell membrane, food vacuole (FV) and cytoskeleton, without having any organelle targeting signal sequences. This enzyme has been shown to undergo multiple post-translational modifications (PTMs) giving rise to several variants that show organelle specific localization. It is likely that these PTMs may be responsible for its diverse distribution and moonlighting functions. While most variants have a MW of ~50 kDa and are likely to arise due to changes in pI, food vacuole (FV) associated enolase showed three forms with MW~50, 65 and 75 kDa. Evidence from immuno-precipitation and western analysis indicates that the 65 and 75 kDa forms of FV associated enolase are ubiquitinated. Using mass spectrometry (MS), definitive evidence is obtained for the nature of PTMs in FV associated variants of enolase. Results showed several modifications, viz. ubiquitination at K147, phosphorylation at Y148 and acetylation at K142 and K384. MS data also revealed the conjugation of three ubiquitin (Ub) molecules to enolase through K147. Trimeric ubiquitin has a linear peptide linkage between the NH2-terminal methionine of the first ubiquitin (Ub1) and the C-terminal G76 of the second (Ub2). Ub2 and third ubiquitin (Ub3) were linked through an atypical isopeptide linkage between K6 of Ub2 and G76 of Ub3, respectively. Further, the tri-ubiquitinated form was found to be largely associated with hemozoin while the 50 and 65 kDa forms were present in the NP-40 soluble fraction of FV. Mass spectrometry results also showed phosphorylation of S42 in the cytosolic enolase from P. falciparum and T337 in the cytoskeleton associated enolase from P. yoelii. The composition of food vacuolar proteome and likely interactors of enolase are also being reported.
Collapse
|
170
|
Wai I, Chong K, Ho WS. Influence of heavy metals on glyceraldehyde-3-phosphate dehydrogenase interactions in Chironomus riparius larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1882-1887. [PMID: 23633447 DOI: 10.1002/etc.2265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/13/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Some aquatic organisms can live in contaminated environment due to their adaptable defense mechanism related to their inducible detoxification and excretion. A recent study showed glyceraldehyde-3-phosphate dehydrogenase (GAPDH) can modulate different cellular activities including transcription activation and detoxification. In the present study, the authors report on experiments to test the GAPDH activity of Chironomus riparius toward heavy metals. Glyceraldehyde-3-phosphate dehydrogenase was isolated and purified from C. riparius. The kinetics of the enzyme was measured. The results showed that GAPDH was inhibited by heavy metals including Co(2+) , Cu(2+) , Fe(2+) , Ni(2+) , Pb(2+) , but was activated by zinc ions. The kinetics study of the enzyme showed maximum initial velocity (Vmax) of GAPDH increased by 50%. In addition, the substrate and cofactor affinity increased in the presence of zinc. The GAPDH from C. riparius had maximum activities at pH 8.5 and 37 °C. The protein sequence analysis shows that there are 2 additional cysteine and histidine residues in the conserved region of GAPDH from C. riparius, which is believed to play an important role in the interactions with heavy metals. The results suggest that exposure to zinc could modulate GAPDH, which could be related to response of antioxidant defense to other heavy metals.
Collapse
Affiliation(s)
- Isaac Wai
- School of Life Sciences, The Chinese University of Hong Kong, China
| | | | | |
Collapse
|
171
|
Chen G, Zhao L, Feng J, You G, Sun Q, Li P, Han D, Zhou H. Validation of reliable reference genes for real-time PCR in human umbilical vein endothelial cells on substrates with different stiffness. PLoS One 2013; 8:e67360. [PMID: 23840676 PMCID: PMC3696109 DOI: 10.1371/journal.pone.0067360] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mechanical properties of cellular microenvironments play important roles in regulating cellular functions. Studies of the molecular response of endothelial cells to alterations in substrate stiffness could shed new light on the development of cardiovascular disease. Quantitative real-time PCR is a current technique that is widely used in gene expression assessment, and its accuracy is highly dependent upon the selection of appropriate reference genes for gene expression normalization. This study aimed to evaluate and identify optimal reference genes for use in studies of the response of endothelial cells to alterations in substrate stiffness. METHODOLOGY/PRINCIPAL FINDINGS Four algorithms, GeNorm(PLUS), NormFinder, BestKeeper, and the Comparative ΔCt method, were employed to evaluate the expression of nine candidate genes. We observed that the stability of potential reference genes varied significantly in human umbilical vein endothelial cells on substrates with different stiffness. B2M, HPRT-1, and YWHAZ are suitable for normalization in this experimental setting. Meanwhile, we normalized the expression of YAP and CTGF using various reference genes and demonstrated that the relative quantification varied according to the reference genes. CONCLUSION/SIGNIFICANCE Consequently, our data show for the first time that B2M, HPRT-1, and YWHAZ are a set of stably expressed reference genes for accurate gene expression normalization in studies exploring the effect of subendothelial matrix stiffening on endothelial cell function. We furthermore caution against the use of GAPDH and ACTB for gene expression normalization in this experimental setting because of the low expression stability in this study.
Collapse
Affiliation(s)
- Gan Chen
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jiantao Feng
- National Center for Nanoscience and Technology, Beijing, China
| | - Guoxing You
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Quanmei Sun
- National Center for Nanoscience and Technology, Beijing, China
| | - Penglong Li
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
172
|
Protein recognition of the S23906-1-DNA adduct by nuclear proteins: direct involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem J 2013; 452:147-59. [PMID: 23409959 DOI: 10.1042/bj20120860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In a view to develop new DNA alkylating antitumour drugs, evaluating the precise mechanism of action and the molecular/cellular consequences of the alkylation is a point of major interest. The benzo-b-acronycine derivative S23906-1 alkylates guanine nucleobases in the minor groove of the DNA helix and presents an original ability to locally open the double helix of DNA, which appears to be associated with its cytotoxic activity. However, the molecular mechanism linking adduct formation to cellular consequences is not precisely known. The objective of the present study was to identify proteins involved in the recognition and mechanism of action of S23906-DNA adducts. We found that GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is a protein that binds to S23906-alkylated single-stranded, double-stranded and telomeric sequences in a drug-dependent and DNA sequence/structure-dependent manner. We used the CASTing (cyclic amplification of sequence targeting) method to identify GAPDH DNA-binding selectivity and then evaluated its binding to such selected S23906-alkylated sequences. At the cellular level, alkylation of S23906-1 results in an increase in the binding of GAPDH and its protein partner HMG (high-mobility group) B1 to the chromatin. Regarding the multiple roles of GAPDH in apoptosis and DNA repair, the cytotoxic and apoptotic activities of GAPDH were evaluated and present opposite effects in two different cellular models.
Collapse
|
173
|
Secreted glyceraldehye-3-phosphate dehydrogenase is a multifunctional autocrine transferrin receptor for cellular iron acquisition. Biochim Biophys Acta Gen Subj 2013; 1830:3816-27. [DOI: 10.1016/j.bbagen.2013.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 11/19/2022]
|
174
|
Glycoregulatory Enzymes as Early Diagnostic Markers during Premalignant Stage in Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2013. [DOI: 10.12691/ajcp-1-2-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
175
|
Liu X, Wu H, Ji C, Wei L, Zhao J, Yu J. An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS One 2013; 8:e64041. [PMID: 23696864 PMCID: PMC3655940 DOI: 10.1371/journal.pone.0064041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/09/2013] [Indexed: 12/05/2022] Open
Abstract
As an environmental contaminant, mercury is of great concern due to its high risk to environmental and human health. The halophyte Suaeda salsa is the dominant plant in the intertidal zones of the Yellow River Delta (YRD) where has been contaminated by mercury in some places. This study aimed at evaluating the chronic effects of mercury (Hg2+, 20 µg L−1) and the influence of an environmentally relevant salinity (NaCl, 500 mM) on mercury-induced effects in S. salsa. A total of 43 protein spots with significant changes were identified in response to Hg2+, salinity and combined Hg2+ and salinity. These proteins can be categorized into diverse functional classes, related to metabolic processes, photosynthesis, stress response, protein fate, energy metabolism, signaling pathways and immunosuppression. Metabolic responses demonstrated that Hg2+ could disturb protein and energy metabolisms in S. salsa co-exposed with or without salinity. In addition, both antagonistic and synergistic effects between Hg2+ and salinity were confirmed by differential levels of proteins (magnesium-chelatase and ribulose-l,5-bisphosphate carboxylase/oxygenase) and metabolites (valine, malonate, asparagine, glycine, fructose and glucose) in S. salsa. These findings suggest that a combination of proteomics and metabolomics can provide insightful information of environmental contaminant-induced effects in plants at molecular levels.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- The Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- * E-mail:
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- The Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lei Wei
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
- The Graduate School of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
| | - Junbao Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai Shandong, P. R. China
| |
Collapse
|
176
|
Wang DZ, Zhang YJ, Zhang SF, Lin L, Hong HS. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae). PLoS One 2013; 8:e63659. [PMID: 23691081 PMCID: PMC3655175 DOI: 10.1371/journal.pone.0063659] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/05/2013] [Indexed: 12/29/2022] Open
Abstract
Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M) showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China.
| | | | | | | | | |
Collapse
|
177
|
Wang C, Han C, Li T, Yang D, Shen X, Fan Y, Xu Y, Zheng W, Fei C, Zhang L, Xue F. Nuclear translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). Vet Res 2013; 44:29. [PMID: 23651214 PMCID: PMC3655105 DOI: 10.1186/1297-9716-44-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 04/18/2013] [Indexed: 01/09/2023] Open
Abstract
In mammalian cells, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has recently been shown to be implicated in numerous apoptotic paradigms, especially in neuronal apoptosis, and has been demonstrated to play a vital role in some neurodegenerative disorders. However, this phenomenon has not been reported in protists. In the present study, we report for the first time that such a mechanism is involved in diclazuril-induced apoptosis in Eimeria tenella (E. tenella). We found that upon treatment of parasites with diclazuril, the expression levels of GAPDH transcript and protein were significantly increased in second-generation merozoites. Then, we examined the subcellular localization of GAPDH by fluorescence microscopy and Western blot analysis. The results show that a considerable amount of GAPDH protein appeared in the nucleus within diclazuril-treated second-generation merozoites; in contrast, the control group had very low levels of GAPDH in the nucleus. The glycolytic activity of GAPDH was kinetically analyzed in different subcellular fractions. A substantial decrease (48.5%) in glycolytic activity of GAPDH in the nucleus was displayed. Moreover, the activities of caspases-3, -9, and −8 were measured in cell extracts using specific caspase substrates. The data show significant increases in caspase-3 and caspase-9 activities in the diclazuril-treated group.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, CAAS, Shanghai, 200241, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Clingman CC, Ryder SP. Metabolite sensing in eukaryotic mRNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:387-96. [PMID: 23653333 DOI: 10.1002/wrna.1167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 01/16/2023]
Abstract
All living creatures change their gene expression program in response to nutrient availability and metabolic demands. Nutrients and metabolites can directly control transcription and activate second-messenger systems. More recent studies reveal that metabolites also affect post-transcriptional regulatory mechanisms. Here, we review the increasing number of connections between metabolism and post-transcriptional regulation in eukaryotic organisms. First, we present evidence that riboswitches, a common mechanism of metabolite sensing in bacteria, also function in eukaryotes. Next, we review an example of a double stranded RNA modifying enzyme that directly interacts with a metabolite, suggesting a link between RNA editing and metabolic state. Finally, we discuss work that shows some metabolic enzymes bind directly to RNA to affect mRNA stability or translation efficiency. These examples were discovered through gene-specific genetic, biochemical, and structural studies. A directed systems level approach will be necessary to determine whether they are anomalies of evolution or pioneer discoveries in what may be a broadly connected network of metabolism and post-transcriptional regulation.
Collapse
Affiliation(s)
- Carina C Clingman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
179
|
Wang D, Moothart DR, Lowy DR, Qian X. The expression of glyceraldehyde-3-phosphate dehydrogenase associated cell cycle (GACC) genes correlates with cancer stage and poor survival in patients with solid tumors. PLoS One 2013; 8:e61262. [PMID: 23620736 PMCID: PMC3631177 DOI: 10.1371/journal.pone.0061262] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis.
Collapse
|
180
|
Roselló-Lletí E, Alonso J, Cortés R, Almenar L, Martínez-Dolz L, Sánchez-Lázaro I, Lago F, Azorín I, Juanatey JRG, Portolés M, Rivera M. Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue. J Cell Mol Med 2013; 16:2471-86. [PMID: 22435364 PMCID: PMC3823441 DOI: 10.1111/j.1582-4934.2012.01565.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The development of heart failure (HF) is characterized by progressive alteration of left ventricle structure and function. Previous works on proteomic analysis in cardiac tissue from patients with HF remain scant. The purpose of our study was to use a proteomic approach to investigate variations in protein expression of left ventricle tissue from patients with ischaemic (ICM) and dilated cardiomyopathy (DCM). Twenty-four explanted human hearts, 12 from patients with ICM and 12 with DCM undergoing cardiac transplantation and six non-diseased donor hearts (CNT) were analysed by 2DE. Proteins of interest were identified by mass spectrometry and validated by Western blotting and immunofluorescence. We encountered 35 differentially regulated spots in the comparison CNT versus ICM, 33 in CNT versus DCM, and 34 in ICM versus DCM. We identified glyceraldehyde 3-phophate dehydrogenase up-regulation in both ICM and DCM, and alpha-crystallin B down-regulation in both ICM and DCM. Heat shock 70 protein 1 was up-regulated only in ICM. Ten of the eleven differentially regulated proteins common to both aetiologies are interconnected as a part of a same network. In summary, we have shown by proteomics analysis that HF is associated with changes in proteins involved in the cellular stress response, respiratory chain and cardiac metabolism. Although we found altered expression of eleven proteins common to both ischaemic and dilated aetiology, we also observed different proteins altered in both groups. Furthermore, we obtained that seven of these eleven proteins are involved in cell death and apoptosis processes, and therefore in HF progression.
Collapse
Affiliation(s)
- Esther Roselló-Lletí
- Cardiocirculatory Unit, Research Center, Hospital Universitario La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Elkhalfi B, Araya-Garay JM, Rodríguez-Castro J, Rey-Méndez M, Soukri A, Serrano Delgado A. Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Protein Expr Purif 2013; 89:146-55. [PMID: 23507306 DOI: 10.1016/j.pep.2013.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The gammaproteobacterium Pseudomonas syringae pv. tomato DC3000 is the causal agent of bacterial speck, a common disease of tomato. The mode of infection of this pathogen is not well understood, but according to molecular biological, genomic and proteomic data it produces a number of proteins that may promote infection and draw nutrients from the plant. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major enzyme of carbon metabolism that was reported to be a surface antigen and virulence factor in other pathogenic microorganisms, but its possible role in the infection process of P. syringae has so far not been studied. Whole-genome sequence analyses revealed the occurrence in this phytopathogenic bacterium of three paralogous gap genes encoding distinct GAPDHs, namely two class I enzymes having different molecular mass subunits and one class III bifunctional D-erythrose-4-phosphate dehydrogenase/GAPDH enzyme. By using genome bioinformatics data, as well as alignments of both DNA and deduced protein sequences, the three gap genes of P. syringae were one-step cloned with a His-Tag in pET21a vector using a PCR-based strategy, and its expression optimized in Escherichia coli BL21 to achieve high yield of the heterologous proteins. In accordance with their distinct molecular phylogenies, these bacterial gap genes encode functional GAPDHs of diverse molecular masses and nicotinamide-coenzyme specificities, suggesting specific metabolic and/or cellular roles.
Collapse
Affiliation(s)
- Bouchra Elkhalfi
- Laboratory of Physiology & Genetics Molecular, Faculty of Sciences Ain Chock, Casablanca, Morocco
| | | | | | | | | | | |
Collapse
|
182
|
Ronquist KG, Ek B, Stavreus-Evers A, Larsson A, Ronquist G. Human prostasomes express glycolytic enzymes with capacity for ATP production. Am J Physiol Endocrinol Metab 2013; 304:E576-82. [PMID: 23341497 DOI: 10.1152/ajpendo.00511.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostasomes are prostate-derived, exosome-like microvesicles that transmit signaling complexes between the acinar epithelial cells of the prostate and sperm cells. The vast majority of prostasomes have a diameter of 30-200 nm, and they are generally surrounded by a classical membrane bilayer. Using a selected proteomic approach, it became increasingly clear that prostasomes harbor distinct subsets of proteins that may be linked to adenosine triphosphate (ATP) metabolic turnover that in turn might be of importance in the role of prostasomes as auxiliary instruments in the fertilization process. Among the 21 proteins identified, most of the enzymes of anaerobic glycolysis were represented, and three of the glycolytic enzymes present are among the top 10 proteins found in most exosomes, once again linking prostasomes to the exosome family. Other prostasomal enzymes involved in ATP turnover were adenylate kinase, ATPase, 5'-nucleotidase, and hexose transporters. The identified enzymes in their prostasomal context were operational for ATP formation when supplied with substrates. The net ATP production was low due to a high prostasomal ATPase activity that could be partially inhibited by vanadate that was utilized to profile the ATP-forming ability of prostasomes. Glucose and fructose were equivalent as glycolytic substrates for prostasomal ATP formation, and the enzymes involved were apparently surface located on prostasomes, since an alternative substrate not being membrane permeable (glyceraldehyde 3-phosphate) was operative, too. There is no clear-cut function linked to this subset of prostasomal proteins, but some possible roles are discussed.
Collapse
Affiliation(s)
- K Göran Ronquist
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
183
|
Kim SC, Guo L, Wang X. Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis. J Biol Chem 2013; 288:11834-44. [PMID: 23504314 DOI: 10.1074/jbc.m112.427229] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatidic acid (PA) is a class of lipid messengers involved in a variety of physiological processes. To understand how PA mediates cell functions in plants, we used a PA affinity membrane assay to isolate PA-binding proteins from Camelina sativa followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was identified to bind to PA, and detailed analysis was carried out subsequently using GAPC1 and GAPC1 from Arabidopsis. The PA and GAPC binding was abolished by the cation zinc whereas oxidation of GAPCs promoted the PA binding. PA had little impact on the GAPC catalytic activity in vitro, but the PA treatment of Arabidopsis seedlings induced proteolytic cleavage of GAPC2 and inhibited Arabidopsis seedling growth. The extent of PA inhibition was greater in GAPC-overexpressing than wild-type seedlings, but the greater PA inhibition was abolished by application of zinc to the seedling. The PA treatment also reduced the expression of genes involved in PA synthesis and utilization, and the PA-reduced gene expression was partially recovered by zinc treatment. These data suggest that PA binds to oxidized GAPDH and promotes its cleavage and that the PA and GAPC interaction may provide a signaling link coordinating carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Department of Biology, University of Missouri, St Louis, Missouri 63121, USA
| | | | | |
Collapse
|
184
|
Petit FM, Serres C, Bourgeon F, Pineau C, Auer J. Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod 2013; 28:852-65. [DOI: 10.1093/humrep/des452] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
185
|
Matsuda T, Sakaguchi M, Tanaka S, Yoshimoto T, Takaoka M. Prolyl oligopeptidase is a glyceraldehyde-3-phosphate dehydrogenase-binding protein that regulates genotoxic stress-induced cell death. Int J Biochem Cell Biol 2013; 45:850-7. [PMID: 23348613 DOI: 10.1016/j.biocel.2013.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/24/2012] [Accepted: 01/14/2013] [Indexed: 01/08/2023]
Abstract
Prolyl oligopeptidase is a serine protease that cleaves peptides shorter 30-mer at carboxyl side of an internal proline. This enzyme has been proposed to be involved in the maturation and degradation of peptide hormones and neuropeptides. However, conclusive results have not yet been reported, and the primary physiological role remains to be elucidated. Here, we describe the identification of a novel protein that interacts with prolyl oligopeptidase in a human neuroblastoma cell line NB-1. Using an affinity column with immobilized recombinant human prolyl oligopeptidase as ligand, we identified glyceraldehyde-3-phosphate dehydrogenase as a novel prolyl oligopeptidase binding protein in NB-1 cell extracts. The interaction between prolyl oligopeptidase and glyceraldehyde-3-phosphate dehydrogenase was confirmed by immunoprecipitation both in vitro and in vivo. To study the functional relevance of prolyl oligopeptidase-glyceraldehyde-3-phosphate dehydrogenase interactions, we investigated whether this interaction was involved in cytosine arabinoside-induced glyceraldehyde-3-phosphate dehydrogenase nuclear translocation and cell death. Prolyl oligopeptidase inhibitor, SUAM-14746, and prolyl oligopeptidase knockdown successfully inhibited glyceraldehyde-3-phosphate dehydrogenase translocation and promoted the survival of cytosine arabinoside-treated NB-1 cells. We also found that the interactions between prolyl oligopeptidase and glyceraldehyde-3-phosphate dehydrogenase in the cytoplasm but not in nuclei of NB-1 cell treated with cytosine arabinoside using an in situ proximity ligation assay. These results indicate that the interaction between prolyl oligopeptidase and glyceraldehyde-3-phosphate dehydrogenase is required for cytosine arabinoside-induced glyceraldehyde-3-phosphate dehydrogenase nuclear translocation and cell death. Therefore, the results of the present study demonstrate a novel function for prolyl oligopeptidase in cell death.
Collapse
Affiliation(s)
- Takashi Matsuda
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | |
Collapse
|
186
|
Abstract
There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of 'gene sharing' proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell's unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH's role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH's involvement may not be finite) and mediates intracellular signaling.
Collapse
|
187
|
|
188
|
Identification and characterization of Porphyromonas gingivalis client proteins that bind to Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 2012; 81:753-63. [PMID: 23264054 DOI: 10.1128/iai.00875-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coaggregation of Porphyromonas gingivalis and oral streptococci is thought to play an important role in P. gingivalis colonization. Previously, we reported that P. gingivalis major fimbriae interacted with Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and that amino acid residues 166 to 183 of GAPDH exhibited strong binding activity toward P. gingivalis fimbriae (H. Nagata, M. Iwasaki, K. Maeda, M. Kuboniwa, E. Hashino, M. Toe, N. Minamino, H. Kuwahara, and S. Shizukuishi, Infect. Immun. 77:5130-5138, 2009). The present study aimed to identify and characterize P. gingivalis components other than fimbriae that interact with S. oralis GAPDH. A pulldown assay was performed to detect potential interactions between P. gingivalis client proteins and S. oralis recombinant GAPDH with amino acid residues 166 to 183 deleted by site-directed mutagenesis. Seven proteins, namely, tonB-dependent receptor protein (RagA4), arginine-specific proteinase B, 4-hydroxybutyryl-coenzyme A dehydratase (AbfD), lysine-specific proteinase, GAPDH, NAD-dependent glutamate dehydrogenase (GDH), and malate dehydrogenase (MDH), were identified by two-dimensional gel electrophoresis followed by proteomic analysis using tandem mass spectrometry. Interactions between these client proteins and S. oralis GAPDH were analyzed with a biomolecular interaction analysis system. S. oralis GAPDH showed high affinity for five of the seven client proteins (RagA4, AbfD, GAPDH, GDH, and MDH). Interactions between P. gingivalis and S. oralis were measured by a turbidimetric method and fluorescence microscopy. RagA4, AbfD, and GDH enhanced coaggregation, whereas GAPDH and MDH inhibited coaggregation. Furthermore, the expression of luxS in P. gingivalis was upregulated by RagA4, AbfD, and GDH but was downregulated by MDH. These results indicate that the five P. gingivalis client proteins function as regulators in P. gingivalis biofilm formation with oral streptococci.
Collapse
|
189
|
Kishimoto N, Onitsuka A, Kido K, Takamune N, Shoji S, Misumi S. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection. Retrovirology 2012; 9:107. [PMID: 23237566 PMCID: PMC3531276 DOI: 10.1186/1742-4690-9-107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host proteins are incorporated inside human immunodeficiency virus type 1 (HIV-1) virions during assembly and can either positively or negatively regulate HIV-1 infection. Although the identification efficiency of host proteins is improved by mass spectrometry, how those host proteins affect HIV-1 replication has not yet been fully clarified. RESULTS In this study, we show that virion-associated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) does not allosterically inactivate HIV-1 reverse transcriptase (RT) but decreases the efficiency of reverse transcription reactions by decreasing the packaging efficiency of lysyl-tRNA synthetase (LysRS) and tRNA(Lys3) into HIV-1 virions. Two-dimensional (2D) gel electrophoresis demonstrated that some isozymes of GAPDH with different isoelectric points were expressed in HIV-1-producing CEM/LAV-1 cells, and a proportion of GAPDH was selectively incorporated into the virions. Suppression of GAPDH expression by RNA interference in CEM/LAV-1 cells resulted in decreased GAPDH packaging inside the virions, and the GAPDH-packaging-defective virus maintained at least control levels of viral production but increased the infectivity. Quantitative analysis of reverse transcription products indicated that the levels of early cDNA products of the GAPDH-packaging-defective virus were higher than those of the control virus owing to the higher packaging efficiencies of LysRS and tRNA(Lys3) into the virions rather than the GAPDH-dependent negative allosteric modulation for RT. Furthermore, immunoprecipitation assay using an anti-GAPDH antibody showed that GAPDH directly interacted with Pr55(gag) and p160(gag)-pol and the overexpression of LysRS in HIV-1-producing cells resulted in a decrease in the efficiency of GAPDH packaging in HIV particles. In contrast, the viruses produced from cells expressing a high level of GAPDH showed decreased infectivity in TZM-bl cells and reverse transcription efficiency in TZM-bl cells and peripheral blood mononuclear cells (PBMCs). CONCLUSIONS These findings indicate that GAPDH negatively regulates HIV-1 infection and provide insights into a novel function of GAPDH in the HIV-1 life cycle and a new host defense mechanism against HIV-1 infection.
Collapse
Affiliation(s)
- Naoki Kishimoto
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
190
|
Ellis KE, Frato KE, Elliott SJ. Impact of quaternary structure upon bacterial cytochrome c peroxidases: does homodimerization matter? Biochemistry 2012. [PMID: 23189923 DOI: 10.1021/bi301150n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All known active forms of diheme bacterial cytochrome c peroxidase (bCcP) enzymes are described by a homodimeric state. Further, the majority of bCcPs reported display activity only when the high-potential electron transfer heme of the protein (Fe(H)) is reduced to the ferrous oxidation state. Reduction of Fe(H) results in a set of conformational changes allowing for the low-potential peroxidatic heme (Fe(L)) to adopt a high-spin, five-coordinate state that is capable of binding substrate. Here we examine the impact of dimerization upon the activity of the Shewanella oneidensis (So) bCcP by the preparation of single charge-reversal mutants at the dimer interface and use the resulting constructs to illustrate why dimerization is likely a requirement for activity in bCcPs. The E258K mutant is found to form a monomeric state in solution as characterized by size exclusion chromatography and analytical ultracentrifugation analyses. The resulting E258K monomer has an unfolding stability comparable to that of wild-type So bCcP and an activity that is only slightly diminished (k(cat)/K(m) = 23 × 10(6) M(-1) s(-1)). Spectroscopic and potentiometric analyses reveal that while the thermodynamic stability of the activated form of the enzyme is unchanged (characterized by the E(m) value of the Fe(H)(II)/Fe(H)(III) couple), the kinetic stability of the activated form of the enzyme has been greatly diminished upon generation of the monomer. Together, these data suggest a model in which dimerization of bCcP enzymes is required to stabilize the lifetime of the activated form of the enzyme against reoxidation of Fe(H) and deactivation of Fe(L).
Collapse
Affiliation(s)
- Katie E Ellis
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | | | | |
Collapse
|
191
|
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as an important enzyme for energy metabolism and the production of ATP and pyruvate through anaerobic glycolysis in the cytoplasm. Recent studies have shown that GAPDH has multiple functions independent of its role in energy metabolism. Although increased GAPDH gene expression and enzymatic function is associated with cell proliferation and tumourigenesis, conditions such as oxidative stress impair GAPDH catalytic activity and lead to cellular aging and apoptosis. The mechanism(s) underlying the effects of GAPDH on cellular proliferation remains unclear, yet much evidence has been accrued that demonstrates a variety of interacting partners for GAPDH, including proteins, various RNA species and telomeric DNA. The present mini review summarizes recent findings relating to the extraglycolytic functions of GAPDH and highlights the significant role this enzyme plays in regulating both cell survival and apoptotic death.
Collapse
Affiliation(s)
- Craig Nicholls
- Molecular Signalling Laboratory, Murdoch Childrens Research Institute, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
192
|
Durrenberger PF, Fernando FS, Magliozzi R, Kashefi SN, Bonnert TP, Ferrer I, Seilhean D, Nait-Oumesmar B, Schmitt A, Gebicke-Haerter PJ, Falkai P, Grünblatt E, Palkovits M, Parchi P, Capellari S, Arzberger T, Kretzschmar H, Roncaroli F, Dexter DT, Reynolds R. Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe Study. Acta Neuropathol 2012; 124:893-903. [PMID: 22864814 DOI: 10.1007/s00401-012-1027-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/15/2012] [Accepted: 07/24/2012] [Indexed: 01/17/2023]
Abstract
The use of an appropriate reference gene to ensure accurate normalisation is crucial for the correct quantification of gene expression using qPCR assays and RNA arrays. The main criterion for a gene to qualify as a reference gene is a stable expression across various cell types and experimental settings. Several reference genes are commonly in use but more and more evidence reveals variations in their expression due to the presence of on-going neuropathological disease processes, raising doubts concerning their use. We conducted an analysis of genome-wide changes of gene expression in the human central nervous system (CNS) covering several neurological disorders and regions, including the spinal cord, and were able to identify a number of novel stable reference genes. We tested the stability of expression of eight novel (ATP5E, AARS, GAPVD1, CSNK2B, XPNPEP1, OSBP, NAT5 and DCTN2) and four more commonly used (BECN1, GAPDH, QARS and TUBB) reference genes in a smaller cohort using RT-qPCR. The most stable genes out of the 12 reference genes were tested as normaliser to validate increased levels of a target gene in CNS disease. We found that in human post-mortem tissue the novel reference genes, XPNPEP1 and AARS, were efficient in replicating microarray target gene expression levels and that XPNPEP1 was more efficient as a normaliser than BECN1, which has been shown to change in expression as a consequence of neuronal cell loss. We provide herein one more suitable novel reference gene, XPNPEP1, with no current neuroinflammatory or neurodegenerative associations that can be used for gene quantitative gene expression studies with human CNS post-mortem tissue and also suggest a list of potential other candidates. These data also emphasise the importance of organ/tissue-specific stably expressed genes as reference genes for RNA studies.
Collapse
Affiliation(s)
- Pascal F Durrenberger
- Wolfson Neuroscience Laboratories, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Unusual roles of host metabolic enzymes and housekeeping proteins in plant virus replication. Curr Opin Virol 2012; 2:676-82. [DOI: 10.1016/j.coviro.2012.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 11/20/2022]
|
194
|
Ferreira E, Giménez R, Aguilera L, Guzmán K, Aguilar J, Badia J, Baldomà L. Protein interaction studies point to new functions for Escherichia coli glyceraldehyde-3-phosphate dehydrogenase. Res Microbiol 2012. [PMID: 23195894 DOI: 10.1016/j.resmic.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a multifunctional protein with defined functions in numerous mammalian cellular processes. GAPDH functional diversity depends on various factors such as covalent modifications, subcellular localization, oligomeric state and intracellular concentration of substrates or ligands, as well as protein-protein interactions. In bacteria, alternative GAPDH functions have been associated with its extracellular location in pathogens or probiotics. In this study, new intracellular functions of Escherichia coli GAPDH were investigated following a proteomic approach aimed at identifying interacting partners using in vivo formaldehyde cross-linking followed by mass spectrometry. The identified proteins were involved in metabolic processes, protein synthesis and folding or DNA repair. Some interacting proteins were also identified in immunopurification experiments in the absence of cross-linking. Pull-down experiments and overlay immunoblotting were performed to further characterize the interaction with phosphoglycolate phosphatase (Gph). This enzyme is involved in the metabolism of 2-phosphoglycolate formed in the DNA repair of 3'-phosphoglycolate ends generated by bleomycin damage. We show that interaction between Gph and GAPDH increases in cells challenged with bleomycin, suggesting involvement of GAPDH in cellular processes linked to DNA repair mechanisms.
Collapse
Affiliation(s)
- Elaine Ferreira
- Departament de Bioquímica i Biología Molecular, Facultat de Farmàcia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Av. Diagonal, 643, E-08028 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
195
|
Sirover MA. Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J Cell Biochem 2012; 113:2193-200. [PMID: 22388977 DOI: 10.1002/jcb.24113] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multidimensional proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibit distinct activities unrelated to their originally identified functions. Apart from glycolysis, GAPDH participates in iron metabolism, membrane trafficking, histone biosynthesis, the maintenance of DNA integrity and receptor mediated cell signaling. Further, multifunctional proteins exhibit distinct changes in their subcellular localization reflecting their new activities. As such, GAPDH is not only a cytosolic protein but is localized in the membrane, the nucleus, polysomes, the ER and the Golgi. In addition, although the initial subcellular localizations of multifunctional proteins may be of significance, dynamic changes in intracellular distribution may occur as a consequence of those new activities. As such, regulatory mechanisms may exist through which cells control multifunctional protein expression as a function of their subcellular localization. The temporal sequence through which subcellular translocation and the acquisition of new GAPDH functions is considered as well as post-translational modification as a basis for its intracellular transport.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
196
|
Gendelman M, Roth Z. In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression. Anim Reprod Sci 2012; 134:125-34. [DOI: 10.1016/j.anireprosci.2012.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/12/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
197
|
Gu XM, Huang HC, Jiang ZF. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease. Neurosci Bull 2012; 28:631-40. [PMID: 22968595 PMCID: PMC5561922 DOI: 10.1007/s12264-012-1270-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/14/2012] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xue-Mei Gu
- Beijing Military General Hospital, Beijing, 100700 China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhao-Feng Jiang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
| |
Collapse
|
198
|
Glyceraldehyde-3-phosphate dehydrogenase regulates cyclooxygenase-2 expression by targeting mRNA stability. Arch Biochem Biophys 2012; 528:141-7. [PMID: 23000033 DOI: 10.1016/j.abb.2012.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/23/2012] [Accepted: 09/11/2012] [Indexed: 11/24/2022]
Abstract
Cyclooxygenase (COX)-2 is an inducible inflammatory protein whose expression is partially regulated at the post-transcriptional level. We investigated whether glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds to the AU-rich element (ARE) of COX-2 mRNA for its degradation. Knockdown of GAPDH in hepa1c1c7 cells significantly enhanced COX-2 expressions. Recombinant GAPDH bound to the COX-2 ARE within the first 60 nucleotides of the 3'-UTR via the NAD(+) binding domain. Interestingly, a C151S GAPDH mutant retained binding activity. Confocal microscopy observation revealed that LPS exposure reduced the localization of GAPDH in nuclei. Our results indicate that GAPDH negatively regulates COX-2 by binding to its ARE.
Collapse
|
199
|
Lao YM, Lu Y, Jiang JG, Luo LX. Six regulatory elements lying in the promoter region imply the functional diversity of chloroplast GAPDH in Duanliella bardawil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9211-9220. [PMID: 22906227 DOI: 10.1021/jf302659z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-known proverbial protein involved in various functions in vivo. The functional diversity of GAPDH from Dunaliella bardawil (DbGAPDH) may relate to the regulatory elements lying in the promoter at the transcriptional level. Using RT-PCR and RACE reactions, gapdh cDNA was isolated, and the full-length genomic sequence was obtained by LA-PCR-based genome walking. The full-length cDNA sequence was 1645 bp containing an 1128 bp putative open reading frame (ORF), which coded a 375 amino acids-deduced polypeptide whose molecular weight was 40.27 kDa computationally. Protein conserved domain search and structural computation found that DbGAPDH consists of two structural conserved domains highly homologous in most species; multiple sequence alignment discovered two positive charge residues (Lys164 and Arg 233), which play a critical role in the protein-protein interaction between GAPDH, phosphoribulokinase (PRK), and CP12. Phylogenetic analysis demonstrated that DbGAPDH has a closer relationship with analogues from algae and higher plants than with those from other species. In silico analysis of the promoter region revealed six potential regulatory elements might be involved in four hypothesized functions characterized by chloroplast GAPDH: oxygen-, light-, pathogen-, and cold-induced regulation. These results might supply some hints for the functional diversity mechanisms of DbGAPDH, and fresh information for further research to bridge the gap between our knowledge of DNA and protein structure and our understanding of functional biology in GAPDH regulation.
Collapse
Affiliation(s)
- Yong-Min Lao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | |
Collapse
|
200
|
Guo C, Liu S, Sun MZ. Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol 2012; 15:167-72. [PMID: 22911551 DOI: 10.1007/s12094-012-0924-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/24/2012] [Indexed: 01/01/2023]
Abstract
The role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) being consistently regarded as the main housekeeping gene and reference gene/protein for expression quantification in tumors has been gradually questioned and challenged by accumulated experiment evidence. The current review notified that the GAPDH expression was deregulated in lung cancer, renal cancer, breast cancer, gastric cancer, glioma, liver cancer, colorectal cancer, melanoma, prostatic cancer, pancreatic cancer and bladder cancer. Interestingly, GAPDH was commonly up-regulated in a variety of types of cancer, which was revealed to be potentially required for the cancer cell growth and tumor formation. The relevant mechanisms were also discussed in current review. This work might provide useful insights for future studies on GAPDH in tumors.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian, 116044, China
| | | | | |
Collapse
|