151
|
Hilliard KA, Throm AA, Pingel JT, Saucier N, Zaher HS, French AR. Expansion of a novel population of NK cells with low ribosome expression in juvenile dermatomyositis. Front Immunol 2022; 13:1007022. [PMID: 36389718 PMCID: PMC9660249 DOI: 10.3389/fimmu.2022.1007022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM, peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle, while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-naïve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together, these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells, which correlates with decreased NK cell function and resolved with control of active disease.
Collapse
Affiliation(s)
- Kinsey A. Hilliard
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Allison A. Throm
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Jeanette T. Pingel
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nermina Saucier
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hani S. Zaher
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Anthony R. French
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
152
|
Choi Y, Lee HH, Park J, Kim S, Choi S, Moon H, Shin J, Kim JE, Choi GJ, Seo YS, Son H. Intron turnover is essential to the development and pathogenicity of the plant pathogenic fungus Fusarium graminearum. Commun Biol 2022; 5:1129. [PMID: 36289323 PMCID: PMC9606315 DOI: 10.1038/s42003-022-04111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Intron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi. Here, we characterized the molecular functions of Dbr1 in Fusarium graminearum, a major fungal plant pathogen. Deletion of FgDBR1 resulted in pleiotropic defects in hyphal growth, conidiation, sexual reproduction, and virulence. Through transcriptome analysis, we revealed that the deletion mutant exhibited global accumulation of intron lariats and upregulation of ribosome-related genes. Excessive accumulation of lariat RNA led to reduced overall protein synthesis, causing various phenotypic defects in the absence of FgDBR1. The results of this study demonstrate that a compromised intron turnover process affects development and pathogenesis in this fungus and that Dbr1 function is critical to plant pathogenic fungi. RNA lariat debranching enzyme Dbr1 is required for intron turnover in the fungal plant pathogen <i>Fusarium graminearum <i > , and accumulation of lariat RNA affects its development and pathogenesis.
Collapse
Affiliation(s)
- Yejin Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun-Hee Lee
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Jiyeun Park
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sieun Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Soyoung Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Heeji Moon
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jiyoung Shin
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jung-Eun Kim
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Gyung Ja Choi
- grid.29869.3c0000 0001 2296 8192Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114 Republic of Korea
| | - Young-Su Seo
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Hokyoung Son
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
153
|
Temaj G, Hadziselimovic R, Nefic H, Nuhii N. Ribosome biogenesis and ribosome therapy in cancer cells. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction: The process of protein synthesis is a vital process for all kingdoms of life. The ribosome is a ribonucleoprotein complex that reads the genetic code, from messenger RNA (mRNA) to produce proteins and to tightly regulate and ensure cells growth. The fact that numerous diseases are caused by defect during the ribosome biogenesis is important to understand this pathway.
Materials and methods: We have analyzed the literature for ribosome biogenesis and its links with different diseases which have been found.
Results and discussion: We have discussed the key aspect of human ribosome biogenesis and its links to diseases. We have also proposed the potential of applying this knowledge to the development of a ribosomal stress-based cancer therapy.
Conclusion: Major challenges in the future will be to determine factors which play a pivotal role during ribosome biogenesis. Therefore, more anti-cancer drugs and gene therapy for genetic diseases will be developed against ribosomal biogenesis in the coming years.
Graphical abstract:
Collapse
|
154
|
Hashemi M, Hasani S, Hajimazdarany S, Mirmazloomi SR, Makvandy S, Zabihi A, Goldoost Y, Gholinia N, Kakavand A, Tavakolpournegari A, Salimimoghadam S, Nabavi N, Zarrabi A, Taheriazam A, Entezari M, Hushmandi K. Non-coding RNAs targeting notch signaling pathway in cancer: From proliferation to cancer therapy resistance. Int J Biol Macromol 2022; 222:1151-1167. [DOI: 10.1016/j.ijbiomac.2022.09.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
|
155
|
Shen Y, Zeng X, Chen G, Wu X. Comparative transcriptome analysis reveals regional specialization of gene expression in larval silkworm (Bombyx mori) midgut. INSECT SCIENCE 2022; 29:1329-1345. [PMID: 34997945 DOI: 10.1111/1744-7917.13001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Insect midgut plays a central role in food digestion and nutrition absorption. Larval silkworm midgut could be divided into 3 distinct regions based on their morphological colors. However, it remains rudimentary of regional gene expression and physiological function in larval silkworm midgut. Through transcriptome sequencing of 3 midgut compartments, a comprehensive analysis of gene expression atlas along the anterior-posterior axis was conducted. Posterior midgut was found transcriptionally divergent from anterior and middle midgut. Differentially expressed gene analysis revealed the regional specialization of digestive enzyme production, transmembrane transport, chitin metabolism, and hormone regulation in different midgut regions. In addition, gene subsets of pan-midgut and region-specific transcription factors (TFs) along the length of midgut were also identified. The results suggested that homeobox TFs might play an essential role in transcriptional variations across the midgut. Altogether, our study provided the first fundamental resource to investigate physiological function and regulation mechanism in larval midgut compartmentalization.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaoqun Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
156
|
Liu H, Xiu Z, Yang H, Ma Z, Yang D, Wang H, Tan BC. Maize Shrek1 encodes a WD40 protein that regulates pre-rRNA processing in ribosome biogenesis. THE PLANT CELL 2022; 34:4028-4044. [PMID: 35867001 PMCID: PMC9516035 DOI: 10.1093/plcell/koac216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Ribosome biogenesis is a fundamental and highly orchestrated process that involves hundreds of ribosome biogenesis factors. Despite advances that have been made in yeast, the molecular mechanism of ribosome biogenesis remains largely unknown in plants. We uncovered a WD40 protein, Shrunken and Embryo Defective Kernel 1 (SHREK1), and showed that it plays a crucial role in ribosome biogenesis and kernel development in maize (Zea mays). The shrek1 mutant shows an aborted embryo and underdeveloped endosperm and embryo-lethal in maize. SHREK1 localizes mainly to the nucleolus and accumulates to high levels in the seed. Depleting SHREK1 perturbs pre-rRNA processing and causes imbalanced profiles of mature rRNA and ribosome. The expression pattern of ribosomal-related genes is significantly altered in shrek1. Like its yeast (Saccharomyces cerevisiae) ortholog Periodic tryptophan protein 1 (PWP1), SHREK1 physically interacts with ribosomal protein ZmRPL7a, a transient component of the PWP1-subcomplex involved in pre-rRNA processing in yeast. Additionally, SHREK1 may assist in the A3 cleavage of the pre-rRNA in maize by interacting with the nucleolar protein ZmPOP4, a maize homolog of the yeast RNase mitochondrial RNA-processing complex subunit. Overall, our work demonstrates a vital role of SHREK1 in pre-60S ribosome maturation, and reveals that impaired ribosome function accounts for the embryo lethality in shrek1.
Collapse
Affiliation(s)
- Hui Liu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhihui Xiu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Huanhuan Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhaoxing Ma
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Dalin Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | | |
Collapse
|
157
|
Zhang H, Gu B, Zhou Y, Ma X, Liu T, Xu H, Xie Z, Liu K, Wang D, Xia X. Multi-Omics Profiling Reveals Resource Allocation and Acclimation Strategies to Temperature Changes in a Marine Dinoflagellate. Appl Environ Microbiol 2022; 88:e0121322. [PMID: 35976001 PMCID: PMC9469709 DOI: 10.1128/aem.01213-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Temperature is a critical environmental factor that affects the cell growth of dinoflagellates and bloom formation. To date, the molecular mechanisms underlying the physiological responses to temperature variations are poorly understood. Here, we applied quantitative proteomic and untargeted metabolomic approaches to investigate protein and metabolite expression profiles of a bloom-forming dinoflagellate Prorocentrum shikokuense at different temperatures. Of the four temperatures (19, 22, 25, and 28°C) investigated, P. shikokuense at 25°C exhibited the maximal cell growth rate and maximum quantum efficiency of photosystem II (Fv/Fm) value. The levels of particulate organic carbon (POC) and nitrogen (PON) decreased with increasing temperature, while the POC/PON ratio increased and peaked at 25°C. Proteomic analysis showed proteins related to photoreaction, light harvesting, and protein homeostasis were highly expressed at 28°C when cells were under moderate heat stress. Metabolomic analysis further confirmed reallocated amino acids and soluble sugars at this temperature. Both omic analyses showed glutathione metabolism that scavenges the excess reactive oxygen species, and transcription and lipid biosynthesis that compensate for the low translation efficiency and plasma membrane fluidity were largely upregulated at suboptimal temperature. Higher accumulations of glutathione, glutarate semialdehyde, and 5-KETE at 19°C implied their important roles in low-temperature acclimation. The strikingly active nitrate reduction and nitrogen flux into asparagine, glutamine, and aspartic acid at 19°C indicated these three amino acids may serve as nitrogen storage pools and help cells cope with low temperature. Our study provides insights into the effects of temperature on dinoflagellate resource allocation and advances our knowledge of dinoflagellate bloom formation in marine environments. IMPORTANCE Marine phytoplankton is one of the most important nodes in global biogeochemical cycle. Deciphering temperature-associated marine phytoplankton cell stoichiometric changes and the underlying molecular mechanisms are therefore of great ecological concerns. However, knowledge of how phytoplankton adjust the cell stoichiometry to sustain growth under temperature changes is still lacking. This study investigates the variations of protein and metabolite profiles in a marine dinoflagellate across temperatures at which the field blooms usually occur and highlights the temperature-dependent molecular traits and key metabolites that may be associated with rapid cell growth and temperature stress acclimation.
Collapse
Affiliation(s)
- Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bowei Gu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youping Zhou
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
- Isotopoimics in Chemical Biology (ICB), School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Tianqi Liu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Kailin Liu
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiaomin Xia
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
158
|
Ba Q, Hei Y, Dighe A, Li W, Maziarz J, Pak I, Wang S, Wagner GP, Liu Y. Proteotype coevolution and quantitative diversity across 11 mammalian species. SCIENCE ADVANCES 2022; 8:eabn0756. [PMID: 36083897 PMCID: PMC9462687 DOI: 10.1126/sciadv.abn0756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary profiling has been largely limited to the nucleotide level. Using consistent proteomic methods, we quantified proteomic and phosphoproteomic layers in fibroblasts from 11 common mammalian species, with transcriptomes as reference. Covariation analysis indicates that transcript and protein expression levels and variabilities across mammals remarkably follow functional role, with extracellular matrix-associated expression being the most variable, demonstrating strong transcriptome-proteome coevolution. The biological variability of gene expression is universal at both interindividual and interspecies scales but to a different extent. RNA metabolic processes particularly show higher interspecies versus interindividual variation. Our results further indicate that while the ubiquitin-proteasome system is strongly conserved in mammals, lysosome-mediated protein degradation exhibits remarkable variation between mammalian lineages. In addition, the phosphosite profiles reveal a phosphorylation coevolution network independent of protein abundance.
Collapse
Affiliation(s)
- Qian Ba
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Yuanyuan Hei
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Anasuya Dighe
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Irene Pak
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Shisheng Wang
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Günter P. Wagner
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
159
|
Wang B, Gao J, Zhao Z, Zhong X, Cui H, Hou H, Zhang Y, Zheng J, Di J, Liu Y. Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Mol Med 2022; 28:109. [PMID: 36071402 PMCID: PMC9450376 DOI: 10.1186/s10020-022-00537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting ribosome biogenesis to activate p53 has recently emerged as a therapeutic strategy in human cancer. Among various ribosomal proteins, RPL11 centralizes the nucleolar stress-sensing pathway by binding MDM2, leading to MDM2 inactivation and p53 activation. Therefore, the identification of MDM2-binding RPL11-mimetics would be valuable for anti-cancer therapeutics. METHODS Based on the crystal structure of the interface between RPL11 and MDM2, we have identified 15 potential allosteric modulators of MDM2 through the virtual screening. RESULTS One of these compounds, named S9, directly binds MDM2 and competitively inhibits the interaction between RPL11 and MDM2, leading to p53 stabilization and activation. Moreover, S9 inhibits cancer cell proliferation in vitro and in vivo. Mechanistic study reveals that MDM2 is required for S9-induced G2 cell cycle arrest and apoptosis, whereas p53 contributes to S9-induced apoptosis. CONCLUSIONS Putting together, S9 may serve as a lead compound for the development of an anticancer drug that specifically targets RPL11-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Bingwu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jian Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hui Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yanping Zhang
- Department of Radiation and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, USA
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China. .,The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
160
|
Kwon JE, Jo SH, Song WS, Lee JS, Jeon HJ, Park JH, Kim YR, Baek JH, Kim MG, Kwon SY, Kim JS, Yang YH, Kim YG. Investigation of metabolic crosstalk between host and pathogenic Clostridioides difficile via multiomics approaches. Front Bioeng Biotechnol 2022; 10:971739. [PMID: 36118584 PMCID: PMC9478559 DOI: 10.3389/fbioe.2022.971739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridioides difficile is a gram-positive anaerobic bacterium that causes antibiotic-associated infections in the gut. C. difficile infection develops in the intestine of a host with an imbalance of the intestinal microbiota and, in severe cases, can lead to toxic megacolon, intestinal perforation, and even death. Despite its severity and importance, however, the lack of a model to understand host-pathogen interactions and the lack of research results on host cell effects and response mechanisms under C. difficile infection remain limited. Here, we developed an in vitro anaerobic-aerobic C. difficile infection model that enables direct interaction between human gut epithelial cells and C. difficile through the Mimetic Intestinal Host–Microbe Interaction Coculture System. Additionally, an integrative multiomics approach was applied to investigate the biological changes and response mechanisms of host cells caused by C. difficile in the early stage of infection. The C. difficile infection model was validated through the induction of disaggregation of the actin filaments and disruption of the intestinal epithelial barrier as the toxin-mediated phenotypes following infection progression. In addition, an upregulation of stress-induced chaperones and an increase in the ubiquitin proteasomal pathway were identified in response to protein stress that occurred in the early stage of infection, and downregulation of proteins contained in the electron transfer chain and ATP synthase was observed. It has been demonstrated that host cell energy metabolism is inhibited through the glycolysis of Caco-2 cells and the reduction of metabolites belonging to the TCA cycle. Taken together, our C. difficile infection model suggests a new biological response pathway in the host cell induced by C. difficile during the early stage of infection at the molecular level under anaerobic-aerobic conditions. Therefore, this study has the potential to be applied to the development of future therapeutics through basic metabolic studies of C. difficile infection.
Collapse
Affiliation(s)
- Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
- *Correspondence: Yun-Gon Kim,
| |
Collapse
|
161
|
Deliu LP, Turingan M, Jadir D, Lee B, Ghosh A, Grewal SS. Serotonergic neuron ribosomal proteins regulate the neuroendocrine control of Drosophila development. PLoS Genet 2022; 18:e1010371. [PMID: 36048889 PMCID: PMC9473637 DOI: 10.1371/journal.pgen.1010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
The regulation of ribosome function is a conserved mechanism of growth control. While studies in single cell systems have defined how ribosomes contribute to cell growth, the mechanisms that link ribosome function to organismal growth are less clear. Here we explore this issue using Drosophila Minutes, a class of heterozygous mutants for ribosomal proteins. These animals exhibit a delay in larval development caused by decreased production of the steroid hormone ecdysone, the main regulator of larval maturation. We found that this developmental delay is not caused by decreases in either global ribosome numbers or translation rates. Instead, we show that they are due in part to loss of Rp function specifically in a subset of serotonin (5-HT) neurons that innervate the prothoracic gland to control ecdysone production. We find that these effects do not occur due to altered protein synthesis or proteostasis, but that Minute animals have reduced expression of synaptotagmin, a synaptic vesicle protein, and that the Minute developmental delay can be partially reversed by overexpression of synaptic vesicle proteins in 5-HTergic cells. These results identify a 5-HT cell-specific role for ribosomal function in the neuroendocrine control of animal growth and development.
Collapse
Affiliation(s)
- Lisa Patricia Deliu
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Michael Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Deeshpaul Jadir
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Ghosh
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj Singh Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
162
|
Prattes M, Grishkovskaya I, Hodirnau VV, Hetzmannseder C, Zisser G, Sailer C, Kargas V, Loibl M, Gerhalter M, Kofler L, Warren AJ, Stengel F, Haselbach D, Bergler H. Visualizing maturation factor extraction from the nascent ribosome by the AAA-ATPase Drg1. Nat Struct Mol Biol 2022; 29:942-953. [PMID: 36097293 PMCID: PMC9507969 DOI: 10.1038/s41594-022-00832-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | | | | | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Carolin Sailer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Vasileios Kargas
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Mathias Loibl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
163
|
Lucas BA, Zhang K, Loerch S, Grigorieff N. In situ single particle classification reveals distinct 60S maturation intermediates in cells. eLife 2022; 11:e79272. [PMID: 36005291 PMCID: PMC9444246 DOI: 10.7554/elife.79272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that high-resolution template matching can localize ribosomes in two-dimensional electron cryo-microscopy (cryo-EM) images of untilted Mycoplasma pneumoniae cells with high precision (Lucas et al., 2021). Here, we show that comparing the signal-to-noise ratio (SNR) observed with 2DTM using different templates relative to the same cellular target can correct for local variation in noise and differentiate related complexes in focused ion beam (FIB)-milled cell sections. We use a maximum likelihood approach to define the probability of each particle belonging to each class, thereby establishing a statistic to describe the confidence of our classification. We apply this method in two contexts to locate and classify related intermediate states of 60S ribosome biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-60S population from the cytoplasmic mature 60S population, using the subcellular localization to validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate mixed populations of nuclear pre-60S that are not visually separable. 2DTM can distinguish related molecular populations without the need to generate 3D reconstructions from the data to be classified, permitting classification even when only a few target particles exist in a cell.
Collapse
Affiliation(s)
- Bronwyn A Lucas
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Kexin Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Sarah Loerch
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|
164
|
Duplicated ribosomal protein paralogs promote alternative translation and drug resistance. Nat Commun 2022; 13:4938. [PMID: 35999447 PMCID: PMC9399092 DOI: 10.1038/s41467-022-32717-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Ribosomes are often seen as monolithic machines produced from uniformly regulated genes. However, in yeast most ribosomal proteins come from duplicated genes. Here, we demonstrate that gene duplication may serve as a stress-adaptation mechanism modulating the global proteome through the differential expression of ribosomal protein paralogs. Our data indicate that the yeast paralog pair of the ribosomal protein L7/uL30 produces two differentially acetylated proteins. Under normal conditions most ribosomes incorporate the hypo-acetylated major form favoring the translation of genes with short open reading frames. Exposure to drugs, on the other hand, increases the production of ribosomes carrying the hyper-acetylated minor paralog that increases translation of long open reading frames. Many of these paralog-dependent genes encode cell wall proteins that could promote tolerance to drugs as their translation increases after exposure to drugs. Together our data suggest a mechanism of translation control that functions through a differential use of near-identical ribosomal protein isoforms. Most yeast ribosomal protein genes are duplicated but the functional significance of this duplication remains unclear. This study identifies a natural program where changing the ratio of proteins produced from duplicated genes modifies translation in response to drugs regardless of ribosome number.
Collapse
|
165
|
Guerra P, Vuillemenot LAPE, van Oppen YB, Been M, Milias-Argeitis A. TORC1 and PKA activity towards ribosome biogenesis oscillates in synchrony with the budding yeast cell cycle. J Cell Sci 2022; 135:276358. [PMID: 35975715 DOI: 10.1242/jcs.260378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
Recent studies have revealed that the growth rate of budding yeast and mammalian cells varies during the cell cycle. By linking a multitude of signals to cell growth, the highly conserved Target of Rapamycin Complex 1 (TORC1) and Protein Kinase A (PKA) pathways are prime candidates for mediating the dynamic coupling between growth and division. However, measurements of TORC1 and PKA activity during the cell cycle are still lacking. Following the localization dynamics of two TORC1 and PKA targets via time-lapse microscopy in hundreds of yeast cells, we found that the activity of these pathways towards ribosome biogenesis fluctuates in synchrony with the cell cycle even under constant external conditions. Mutations of upstream TORC1 and PKA regulators suggested that internal metabolic signals partially mediate these activity changes. Our study reveals a new aspect of TORC1 and PKA signaling, which will be important for understanding growth regulation during the cell cycle.
Collapse
Affiliation(s)
- Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Luc-Alban P E Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Yulan B van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Marije Been
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| |
Collapse
|
166
|
Hayashi S, Matsui M, Ikeda A, Yoshihisa T. Six identical tRNATrpCCA genes express a similar amount of mature tRNATrpCCA but unequally contribute to yeast cell growth. Biosci Biotechnol Biochem 2022; 86:1398-1404. [PMID: 35948278 DOI: 10.1093/bbb/zbac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022]
Abstract
Saccharomyces cerevisiae has six synonymous tRNATrpCCA genes encoding the identical sequence, including their intronic region. They are supposed to express tRNATrpCCA in the same quality and quantity. Here, we generated single to quintuple deletion strains with all the possible combinations of the synonymous tRNATrpCCA genes to analyze whether those individual genes equally contribute cell viability and tRNA production. The quintuple deletion strains that only harbor tW(CCA)J, tW(CCA)M, or tW(CCA)P were viable but almost lethal while the other quintuple deletions showed moderately impaired growth. Theses growth differences were not obvious among the quadruple deletion strains, which expressed almost one third of mature tRNATrpCCA in the wild type. Therefore, no dosage compensation operates for tRNATrpCCA amount, and growth variations among the quintuple deletion strains may not simply reflect differences in tRNATrpCCA shortage. Yeast may retain the redundancy of tRNATrpCCA genes for a noncanonical function(s) beyond supply of the tRNA to translation.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Japan
| | | | | | - Tohru Yoshihisa
- Graduate School of Science, University of Hyogo, Ako-gun, Japan.,Faculty of Science, University of Hyogo
| |
Collapse
|
167
|
Falcon KT, Watt KEN, Dash S, Zhao R, Sakai D, Moore EL, Fitriasari S, Childers M, Sardiu ME, Swanson S, Tsuchiya D, Unruh J, Bugarinovic G, Li L, Shiang R, Achilleos A, Dixon J, Dixon MJ, Trainor PA. Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. Proc Natl Acad Sci U S A 2022; 119:e2116974119. [PMID: 35881792 PMCID: PMC9351356 DOI: 10.1073/pnas.2116974119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.
Collapse
Affiliation(s)
- Karla T. Falcon
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | - Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Daisuke Sakai
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | - Mihaela E. Sardiu
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160
| | - Selene Swanson
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - George Bugarinovic
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305
| | - Lin Li
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23284
| | - Rita Shiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23284
| | - Annita Achilleos
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2408, Cyprus
| | - Jill Dixon
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Michael J. Dixon
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
168
|
Farooq Z, Kusuma F, Burke P, Dufour CR, Lee D, Tabatabaei N, Toboz P, Radovani E, Greenblatt J, Rehman J, Class J, Khoutorsky A, Fonseca BD, Richner JM, Mercier E, Bourque G, Giguère V, Subramaniam AR, Han J, Tahmasebi S. The amino acid sensor GCN2 suppresses Terminal Oligopyrimidine (TOP) mRNA translation via La-related Protein 1 (LARP1). J Biol Chem 2022; 298:102277. [PMID: 35863436 PMCID: PMC9396407 DOI: 10.1016/j.jbc.2022.102277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
La-related protein 1 (LARP1) has been identified as a key translational inhibitor of terminal oligopyrimidine (TOP) mRNAs downstream of the nutrient sensing protein kinase complex, mTORC1. LARP1 exerts this inhibitory effect on TOP mRNA translation by binding to the mRNA cap and the adjacent 5′TOP motif, resulting in the displacement of the cap-binding protein eIF4E from TOP mRNAs. However, the involvement of additional signaling pathway in regulating LARP1-mediated inhibition of TOP mRNA translation is largely unexplored. In the present study, we identify a second nutrient sensing kinase GCN2 that converges on LARP1 to control TOP mRNA translation. Using chromatin-immunoprecipitation followed by massive parallel sequencing (ChIP-seq) analysis of activating transcription factor 4 (ATF4), an effector of GCN2 in nutrient stress conditions, in WT and GCN2 KO mouse embryonic fibroblasts, we determined that LARP1 is a GCN2-dependent transcriptional target of ATF4. Moreover, we identified GCN1, a GCN2 activator, participates in a complex with LARP1 on stalled ribosomes, suggesting a role for GCN1 in LARP1-mediated translation inhibition in response to ribosome stalling. Therefore, our data suggest that the GCN2 pathway controls LARP1 activity via two mechanisms: ATF4-dependent transcriptional induction of LARP1 mRNA and GCN1-mediated recruitment of LARP1 to stalled ribosomes.
Collapse
Affiliation(s)
- Zeenat Farooq
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Fedho Kusuma
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea
| | - Phillip Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catherine R Dufour
- Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Duckgue Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Phoenix Toboz
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ernest Radovani
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jacob Class
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | | | - Justin M Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Eloi Mercier
- Canadian Centre for Computational Genomics, and McGill University and Genome Québec Innovation Center, Montréal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, and McGill University and Genome Québec Innovation Center, Montréal, QC H3A 0G1, Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Arvind R Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
169
|
TAUPELET F, DONNIO LM, MAGNANI C, MARI PO, GIGLIA-MARI G. A stable XPG protein is required for proper ribosome biogenesis: Insights on the phenotype of combinate Xeroderma Pigmentosum/Cockayne Syndrome patients. PLoS One 2022; 17:e0271246. [PMID: 35802638 PMCID: PMC9269744 DOI: 10.1371/journal.pone.0271246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide Excision Repair is one of the five DNA repair systems. More than 30 proteins are involved in this process, including the seven XP proteins. When mutated, the genes coding for these proteins are provoking the rare disease Xeroderma Pigmentosum, which causes cutaneous defects and a high prevalence of skin cancers in patients. The CSA and CSB proteins are also involved in Nucleotide Excision Repair, and their mutation leads to Cockayne Syndrome, another rare disease, causing dwarfism, neurodegeneration, and ultimately early death, but without high skin cancer incidence. Some mutations of ERCC5, the gene coding for XPG, may give rise to a combined Xeroderma Pigmentosum and Cockayne Syndrome. A defect in Nucleotide Excision Repair alone cannot explain all these phenotypes. XPG has been located in the nucleolus, where ribosome biogenesis happens. This energy-consuming process starts with the transcription of the ribosomal DNA in a long ribosomal RNA, the pre-rRNA 47S, by RNA Polymerase 1. 47S pre-rRNA undergoes several cleavages and modifications to form three mature products: the ribosomal RNAs 18S, 5.8S and 28S. In the cytoplasm, these three products will enter the ribosomes’ composition, the producers of protein in our cells. Our work aimed to observe ribosome biogenesis in presence of an unstable XPG protein. By working on Xeroderma Pigmentosum/Cockayne Syndrome cell lines, meaning in the absence of XPG, we uncovered that the binding of UBF, as well as the number of unresolved R-loops, is increased along the ribosomal DNA gene body and flanking regions. Furthermore, ribosomal RNA maturation is impaired, with increased use of alternative pathways of maturation as well as an increase of immature precursors. These defective processes may explain the neurodegeneration observed when the XPG protein is heavily truncated, as ribosomal homeostasis and R-loops resolution are critical for proper neuronal development.
Collapse
Affiliation(s)
- Florent TAUPELET
- Institut NeuroMyoGène–Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine et de Pharmacie Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Lise-Marie DONNIO
- Institut NeuroMyoGène–Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine et de Pharmacie Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Charlène MAGNANI
- Institut NeuroMyoGène–Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine et de Pharmacie Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Olivier MARI
- Institut NeuroMyoGène–Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine et de Pharmacie Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
| | - Giuseppina GIGLIA-MARI
- Institut NeuroMyoGène–Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, INSERM U1315, Faculté de Médecine et de Pharmacie Rockefeller, Université Claude Bernard Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
170
|
Chen H, Zheng Y, Wang M, Wu Y, Yao M. Gene-Regulated Release of Distinctive Volatile Organic Compounds from Stressed Living Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9546-9555. [PMID: 35729728 DOI: 10.1021/acs.est.2c01774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breath-borne volatile organic compounds (VOCs) have been increasingly studied as non-invasive biomarkers in both medical diagnosis and environmental health research. Recently, changes in breath-borne VOC fingerprints were demonstrated in rats and humans following pollutant exposures. In this study, the eukaryotic model Saccharomyces cerevisiae was used to study the release of cellular VOCs resulting from toxicant exposures (i.e., O3, H2O2, and CO2) and its underlying biological mechanism. Our results showed that different toxicant exposures caused the release of distinctive VOC profiles of yeast cells. The levels of ethyl acetate and ethyl n-propionate were altered in response to all the toxicants used in this study and could thus be targeted for future environmental toxicity monitoring. The RNA-seq results revealed significant changes in the metabolic or signaling pathways related to the ribosome, carbohydrate, and amino acid metabolisms after exposures. Notably, the shift from glycolysis to the pentose phosphate pathway of carbohydrate metabolism and the inhabitation of the aspartate pathway in the lysine synthesis was essential to the cellular antioxidation by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH). The reprogrammed metabolisms could have resulted in the observed changes of VOCs released, e.g., the production of ethyl acetate for detoxification from yeast cells. This study provides further evidence that VOCs released from living organisms could be used to monitor and guard against toxic exposures while providing better mechanistic insights of the changes in breath-borne VOCs previously observed in rats and humans exposed to air toxicants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
171
|
Lin S, Rajan S, Lemberg S, Altawil M, Anderson K, Bryant R, Cappeta S, Chin B, Hamdan I, Hamer A, Hyzny R, Karp A, Lee D, Lim A, Nayak M, Palaniappan V, Park S, Satishkumar S, Seth A, Sri Dasari U, Toppari E, Vyas A, Walker J, Weston E, Zafar A, Zielke C, Mahabeleshwar GH, Tartakoff AM. Production of nascent ribosome precursors within the nucleolar microenvironment of Saccharomyces cerevisiae. Genetics 2022; 221:iyac070. [PMID: 35657327 PMCID: PMC9252279 DOI: 10.1093/genetics/iyac070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
35S rRNA transcripts include a 5'-external transcribed spacer followed by rRNAs of the small and large ribosomal subunits. Their processing yields massive precursors that include dozens of assembly factor proteins. In Saccharomyces cerevisiae, nucleolar assembly factors form 2 coaxial layers/volumes around ribosomal DNA. Most of these factors are cyclically recruited from a latent state to an operative state, and are extensively conserved. The layers match, at least approximately, known subcompartments found in higher eukaryotic cells. ∼80% of assembly factors are essential. The number of copies of these assembly factors is comparable to the number of nascent transcripts. Moreover, they exhibit "isoelectric balance," with RNA-binding candidate "nucleator" assembly factors being notably basic. The physical properties of pre-small subunit and pre-large subunit assembly factors are similar, as are their 19 motif signatures detected by hierarchical clustering, unlike motif signatures of the 5'-external transcribed spacer rRNP. Additionally, many assembly factors lack shared motifs. Taken together with the progression of rRNP composition during subunit maturation, and the realization that the ribosomal DNA cable is initially bathed in a subunit-nonspecific assembly factor reservoir/microenvironment, we propose a "3-step subdomain assembly model": Step (1): predominantly basic assembly factors sequentially nucleate sites along nascent rRNA; Step (2): the resulting rRNPs recruit numerous less basic assembly factors along with notably basic ribosomal proteins; Step (3): rRNPs in nearby subdomains consolidate. Cleavages of rRNA then promote release of rRNPs to the nucleoplasm, likely facilitated by the persistence of assembly factors that were already associated with nucleolar precursors.
Collapse
Affiliation(s)
- Samantha Lin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suchita Rajan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sofia Lemberg
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark Altawil
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine Anderson
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth Bryant
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sebastian Cappeta
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brandon Chin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabella Hamdan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Annelise Hamer
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Hyzny
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Karp
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Lee
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alexandria Lim
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Medha Nayak
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vishnu Palaniappan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Soomin Park
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sarika Satishkumar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anika Seth
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uva Sri Dasari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emili Toppari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ayush Vyas
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julianne Walker
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evan Weston
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Atif Zafar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cecelia Zielke
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ganapati H Mahabeleshwar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan M Tartakoff
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
172
|
circRNA circ_0055724 Inhibits Trophoblastic Cell Line HTR-8/SVneo’s Invasive and Migratory Abilities via the miR-136/N-Cadherin Axis. DISEASE MARKERS 2022; 2022:9390731. [PMID: 35783018 PMCID: PMC9242821 DOI: 10.1155/2022/9390731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Preeclampsia (PE) is one of the major causes of morbidity and mortality in pregnancy. According to recent research, circular RNAs (circRNA) may act as sponges for microRNAs (miRNAs) and modulate gene expression. Low expression of hsa_circ_0055724 (circ_0055724) in PE tissues was recently reported in literatures. However, its mechanism and function have not been reported. Therefore, we were committed to investigating the role and mechanism of circ_0055724 in PE. Our study first verified the low expression of circ_0055724 in PE tissues. Overexpression or knockdown of circ_0055724 enhances/weakens the trophoblast cell survival, migration, and invasion. Furthermore, CircInteractome predicted the binding sites of circ_0055724 and miR-136, while Starbase predicted miR-136 targeted N-cadherin. Luciferase reporter gene assay confirmed that circ_0055724 directly interacts with miR-136 and miR-136 directly interacts with N-cadherin. More results indicated that high expression of miR-136 and low expression of N-cadherin appeared in PE. Increased expression of circ_0055724 resulted in decreased miR-136 but increased N-cadherin expression. Hence, circ_0055724 and N-cadherin were positively correlated, while circ_0055724 and miR-136 had a negative correlation. In terms of mechanism, circ_0055724 may induce the expression of N-cadherin and regulate the proliferation, migration, and invasion of trophoblast cells through decreasing miR-136, which can be a promising biomarker for early diagnosis and prognosis of patients with PE.
Collapse
|
173
|
Abstract
Cell growth relies upon the ability to produce new proteins, which requires energy and chemical precursors, and an adequate supply of the molecular machines for protein synthesis - ribosomes. Although not widely appreciated, ribosomes are remarkably abundant in all cells. For example, in a rapidly growing yeast cell there are ∼2-4 x 105 ribosomes, produced and exported to the cytoplasm at a rate of ∼2,000-4,000 per minute, with ribosomal proteins making up ∼50% of total cellular protein number and ∼30% of cellular protein mass. Even in a typical human cell ribosomal proteins constitute ∼4-6% of total protein mass, and ribosomes are present at ∼107 per cell. We begin this primer by exploring the tight relationship between ribosome production and cell growth, which has important implications not just for the cell's global protein expression profile and maximum growth rate, but also for the molecular composition of the ribosome itself. We then discuss how and to what extent the expression of the RNA and protein components of ribosomes is fine-tuned to match the cell's needs and minimise waste. Finally, we highlight the importance of coordinated ribosomal RNA (rRNA) and ribosomal protein expression in eukaryotes and explore how defects in this process are associated with proteotoxicity and disease. A central underlying question addressed throughout is whether regulation of ribosome biogenesis has evolved to optimise energy efficiency or is instead (or in addition) driven by other goals, such as maximising cell growth rate, promoting adaptation to changing environmental conditions, or maintaining the stability of the cellular proteome.
Collapse
|
174
|
Oxe KC, Larsen DH. Treacle is Upregulated in Cancer and Correlates With Poor Prognosis. Front Cell Dev Biol 2022; 10:918544. [PMID: 35794866 PMCID: PMC9251355 DOI: 10.3389/fcell.2022.918544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Treacle/TCOF1 is an adaptor protein specifically associated with nucleolar chromatin. In the nucleolus it stimulates ribosome biogenesis, thereby promoting growth and proliferation. A second role of Treacle has emerged as a coordinator of the nucleolar responses to DNA damage, where it facilitates nucleolar DNA repair and cellular survival after genotoxic insults. The involvement of Treacle in multiple fundamental processes such as growth, proliferation, and genome stability, which are tightly linked to cancer, raises the question of Treacle’s role in the development of this disease. On one hand, overexpression of Treacle could stimulate nucleolar transcription and ribosome biogenesis providing a growth advantage in cancer cells. On the other hand, the function of Treacle as a gatekeeper in response to nucleolar DNA damage could favor mutations that would impair its function. In this perspective, we analyze paired Treacle expression data from the Cancer Genome Atlas (TCGA) and correlate expression with patient survival in different cancer types. We also discuss other recently published observations of relevance to the role of Treacle in cancer. In light of these new observations, we propose possible roles of Treacle in carcinogenesis and discuss its potential as a therapeutic target.
Collapse
|
175
|
Abstract
Maintaining nutrient and energy homeostasis is crucial for the survival and function of cells and organisms in response to environmental stress. Cells have evolved a stress-induced catabolic pathway, termed autophagy, to adapt to stress conditions such as starvation. During autophagy, damaged or non-essential cellular structures are broken down in lysosomes, and the resulting metabolites are reused for core biosynthetic processes or energy production. Recent studies have revealed that autophagy can target and degrade different types of nutrient stores and produce a variety of metabolites and fuels, including amino acids, nucleotides, lipids and carbohydrates. Here, we will focus on how autophagy functions to balance cellular nutrient and energy demand and supply - specifically, how energy deprivation switches on autophagic catabolism, how autophagy halts anabolism by degrading the protein synthesis machinery, and how bulk and selective autophagy-derived metabolites recycle and feed into a variety of bioenergetic and anabolic pathways during stress conditions. Recent new insights and progress in these areas provide a better understanding of how resource mobilization and reallocation sustain essential metabolic and anabolic activities under unfavorable conditions.
Collapse
|
176
|
Transcriptomic analysis of ribosome biogenesis and pre-rRNA processing during growth stress in Entamoeba histolytica. Exp Parasitol 2022; 239:108308. [PMID: 35718007 DOI: 10.1016/j.exppara.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Ribosome biogenesis, a multi-step process involving transcription, modification, folding and processing of rRNA, is the major consumer of cellular energy. It involves sequential assembly of ribosomal proteins (RP)s via more than 200 ribogenesis factors. Unlike model organisms where transcription of rRNA and RP genes slows down during stress, in Entamoeba histolytica, pre-rRNA synthesis continues, and unprocessed pre-rRNA accumulates. Northern hybridization from different spacer regions depicted the accumulation of unprocessed intermediates during stress. To gain insight into the vast repertoire of ribosome biogenesis factors and understand the major components playing role during stress we computationally identified ribosome biogenesis factors in E. histolytica. Of the ∼279 Saccharomyces cerevisiae proteins, we could only find 188 proteins in E. histolytica. Some of the proteins missing in E. histolytica were also missing in humans. A number of proteins represented by multiple genes in S. cerevisiae had a single copy in E. histolytica. Interestingly E. histolytica lacked mitochondrial ribosome biogenesis factors and had far less RNase components compared to S. cerevisiae. Transcriptomic studies revealed the differential regulation of ribosomal factors both in serum starved and RRP6 down-regulation conditions. These included the NEP1 and TSR3 proteins that chemically modify 18S-rRNA. Pre-rRNA precursors accumulate upon downregulation of the latter proteins in S. cerevisiae and humans. These data reveal the major factors that regulate pre-rRNA processing during stress in E. histolytica and provide the first complete repertoire of ribosome biogenesis factors in this early-branching protist.
Collapse
|
177
|
Hall AN, Morton E, Queitsch C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet 2022; 38:587-597. [PMID: 35272860 PMCID: PMC10132741 DOI: 10.1016/j.tig.2022.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.
Collapse
Affiliation(s)
- Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Morton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
178
|
Yanagi S, Iida T, Kobayashi T. RPS12 and UBC4 Are Related to Senescence Signal Production in the Ribosomal RNA Gene Cluster. Mol Cell Biol 2022; 42:e0002822. [PMID: 35384721 PMCID: PMC9119118 DOI: 10.1128/mcb.00028-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Genome instability causes cellular senescence in many organisms. The rRNA gene cluster (rDNA) is one of the most unstable regions in the genome and this instability might convey a signal that induces senescence in the budding yeast. The instability of rDNA mostly depends on replication fork blocking (RFB) activity which induces recombination and gene amplification. By overexpression of Fob1, responsible for the RFB activity, we found that unstable rDNA induces cell cycle arrest and restricts replicative life span. We isolated yeast mutants that grew normally while Fob1 was overexpressed, expecting that some of the mutated genes would be related to the production of a "senescence signal" that elongates cell cycle, stops cell division and finally restricts replicative life span. Our screen identified three suppressor genes, RPS12, UBC4, and CCR4. Replicative life spans of the rps12 and ubc4 mutants were longer than that of wild-type cells. An increase in the levels of extrachromosomal rDNA circles and noncoding transcripts, known to shorten replicative life span, was observed in ubc4 and rps12 respectively, while DNA double strand-breaks at the RFB that are triggers of rDNA instability were reduced in the rps12 mutant. Overall, our observations indicate that Rps12 and Ubc4 contribute to the connection between rDNA instability and replicative life span.
Collapse
Affiliation(s)
- Shuichi Yanagi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsushi Iida
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
179
|
Chen J, Huang Y, Zhang K. The DEAD-Box Protein Rok1 Coordinates Ribosomal RNA Processing in Association with Rrp5 in Drosophila. Int J Mol Sci 2022; 23:ijms23105685. [PMID: 35628496 PMCID: PMC9146779 DOI: 10.3390/ijms23105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Ribosome biogenesis and processing involve the coordinated action of many components. The DEAD-box RNA helicase (Rok1) is essential for cell viability, and the depletion of Rok1 inhibits pre-rRNA processing. Previous research on Rok1 and its cofactor Rrp5 has been performed primarily in yeast. Few functional studies have been performed in complex multicellular eukaryotes. Here, we used a combination of genetics and developmental experiments to show that Rok1 and Rrp5, which localize to the nucleolus, play key roles in the pre-rRNA processing and ribosome assembly in D. melanogaster. The accumulation of pre-rRNAs caused by Rok1 depletion can result in developmental defects. The loss of Rok1 enlarged the nucleolus and led to stalled ribosome assembly and pre-rRNA processing in the nucleolus, thereby blocking rRNA maturation and exacerbating the inhibition of mitosis in the brain. We also discovered that rrp54-2/4-2 displayed significantly increased ITS1 signaling by fluorescence in situ hybridization, and a reduction in ITS2. Rrp5 signal was highly enriched in the core of the nucleolus in the rok1167/167 mutant, suggesting that Rok1 is required for the accurate cellular localization of Rrp5 in the nucleolus. We have thus uncovered functions of Rok1 that reveal important implications for ribosome processing in eukaryotes.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Correspondence: (J.C.); (Y.H.); Tel.: +86-20-87597440 (J.C.)
| | - Yuantai Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Correspondence: (J.C.); (Y.H.); Tel.: +86-20-87597440 (J.C.)
| | - Kang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
180
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
181
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
182
|
Gál Z, Nieto B, Boukoura S, Rasmussen AV, Larsen DH. Treacle Sticks the Nucleolar Responses to DNA Damage Together. Front Cell Dev Biol 2022; 10:892006. [PMID: 35646927 PMCID: PMC9133508 DOI: 10.3389/fcell.2022.892006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023] Open
Abstract
The importance of chromatin environment for DNA repair has gained increasing recognition in recent years. The nucleolus is the largest sub-compartment within the nucleus: it has distinct biophysical properties, selective protein retention, and houses the specialized ribosomal RNA genes (collectively referred to as rDNA) with a unique chromatin composition. These genes have high transcriptional activity and a repetitive nature, making them susceptible to DNA damage and resulting in the highest frequency of rearrangements across the genome. A distinct DNA damage response (DDR) secures the fidelity of this genomic region, the so-called nucleolar DDR (n-DDR). The composition of the n-DDR reflects the characteristics of nucleolar chromatin with the nucleolar protein Treacle (also referred to as TCOF1) as a central coordinator retaining several well-characterized DDR proteins in the nucleolus. In this review, we bring together data on the structure of Treacle, its known functions in ribosome biogenesis, and its involvement in multiple branches of the n-DDR to discuss their interconnection. Furthermore, we discuss how the functions of Treacle in ribosome biogenesis and in the n-DDR may contribute to Treacher Collins Syndrome, a disease caused by mutations in Treacle. Finally, we outline outstanding questions that need to be addressed for a more comprehensive understanding of Treacle, the n-DDR, and the coordination of ribosome biogenesis and DNA repair.
Collapse
|
183
|
Lukačišin M, Espinosa-Cantú A, Bollenbach T. Intron-mediated induction of phenotypic heterogeneity. Nature 2022; 605:113-118. [PMID: 35444278 PMCID: PMC9068511 DOI: 10.1038/s41586-022-04633-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/11/2022] [Indexed: 11/12/2022]
Abstract
Intragenic regions that are removed during maturation of the RNA transcript-introns-are universally present in the nuclear genomes of eukaryotes1. The budding yeast, an otherwise intron-poor species, preserves two sets of ribosomal protein genes that differ primarily in their introns2,3. Although studies have shed light on the role of ribosomal protein introns under stress and starvation4-6, understanding the contribution of introns to ribosome regulation remains challenging. Here, by combining isogrowth profiling7 with single-cell protein measurements8, we show that introns can mediate inducible phenotypic heterogeneity that confers a clear fitness advantage. Osmotic stress leads to bimodal expression of the small ribosomal subunit protein Rps22B, which is mediated by an intron in the 5' untranslated region of its transcript. The two resulting yeast subpopulations differ in their ability to cope with starvation. Low levels of Rps22B protein result in prolonged survival under sustained starvation, whereas high levels of Rps22B enable cells to grow faster after transient starvation. Furthermore, yeasts growing at high concentrations of sugar, similar to those in ripe grapes, exhibit bimodal expression of Rps22B when approaching the stationary phase. Differential intron-mediated regulation of ribosomal protein genes thus provides a way to diversify the population when starvation threatens in natural environments. Our findings reveal a role for introns in inducing phenotypic heterogeneity in changing environments, and suggest that duplicated ribosomal protein genes in yeast contribute to resolving the evolutionary conflict between precise expression control and environmental responsiveness9.
Collapse
Affiliation(s)
- Martin Lukačišin
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- IST Austria, Klosterneuburg, Austria
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, Cologne, Germany.
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| |
Collapse
|
184
|
Hammarström D, Øfsteng SJ, Jacobsen NB, Flobergseter KB, Rønnestad BR, Ellefsen S. Ribosome accumulation during early phase resistance training in humans. Acta Physiol (Oxf) 2022; 235:e13806. [PMID: 35213791 PMCID: PMC9540306 DOI: 10.1111/apha.13806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Aim To describe ribosome biogenesis during resistance training, its relation to training volume and muscle growth. Methods A training group (n = 11) performed 12 sessions (3‐4 sessions per week) of unilateral knee extension with constant and variable volume (6 and 3‐9 sets per session respectively) allocated to either leg. Ribosome abundance and biogenesis markers were assessed from vastus lateralis biopsies obtained at baseline, 48 hours after sessions 1, 4, 5, 8, 9 and 12, and after eight days of de‐training, and from a control group (n = 8). Muscle thickness was measured before and after the intervention. Results Training led to muscle growth (3.9% over baseline values, 95% CrI: [0.2, 7.5] vs. control) with concomitant increases in total RNA, ribosomal RNA, upstream binding factor (UBF) and ribosomal protein S6 with no differences between volume conditions. Total RNA increased rapidly in response to the first four sessions (8.6% [5.6, 11.7] per session), followed by a plateau and peak values after session 8 (49.5% [34.5, 66.5] above baseline). Total RNA abundance was associated with UBF protein levels (5.0% [0.2, 10.2] per unit UBF), and the rate of increase in total RNA levels predicted hypertrophy (0.3 mm [0.1, 0.4] per %‐point increase in total RNA per session). After de‐training, total RNA decreased (−19.3% [−29.0, −8.1]) without muscle mass changes indicating halted biosynthesis of ribosomes. Conclusion Ribosomes accumulate in the initial phase of resistance training with abundances sensitive to training cessation and associated with UBF protein levels. The average accumulation rate predicts muscle training‐induced hypertrophy.
Collapse
Affiliation(s)
- Daniel Hammarström
- Section for Health and Exercise Physiology Department of Public Health and Sport Sciences Inland Norway University of Applied Sciences Lillehammer Norway
- Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Sjur J. Øfsteng
- Section for Health and Exercise Physiology Department of Public Health and Sport Sciences Inland Norway University of Applied Sciences Lillehammer Norway
| | - Nicolai B. Jacobsen
- Section for Health and Exercise Physiology Department of Public Health and Sport Sciences Inland Norway University of Applied Sciences Lillehammer Norway
| | - Krister B. Flobergseter
- Section for Health and Exercise Physiology Department of Public Health and Sport Sciences Inland Norway University of Applied Sciences Lillehammer Norway
| | - Bent R. Rønnestad
- Section for Health and Exercise Physiology Department of Public Health and Sport Sciences Inland Norway University of Applied Sciences Lillehammer Norway
| | - Stian Ellefsen
- Section for Health and Exercise Physiology Department of Public Health and Sport Sciences Inland Norway University of Applied Sciences Lillehammer Norway
- Innlandet Hospital Trust Lillehammer Norway
| |
Collapse
|
185
|
Hurtig JE, van Hoof A. Yeast Dxo1 is required for 25S rRNA maturation and acts as a transcriptome-wide distributive exonuclease. RNA (NEW YORK, N.Y.) 2022; 28:657-667. [PMID: 35140172 PMCID: PMC9014881 DOI: 10.1261/rna.078952.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
The Dxo1/Rai1/DXO family of decapping and exonuclease enzymes can catalyze the in vitro removal of chemically diverse 5' ends from RNA. Specifically, these enzymes act poorly on RNAs with a canonical 7mGpppN cap, but instead prefer RNAs with a triphosphate, monophosphate, hydroxyl, or nonconventional cap. In each case, these enzymes generate an RNA with a 5' monophosphate, which is then thought to be further degraded by Rat1/Xrn1 5' exoribonucleases. For most Dxo1/Rai1/DXO family members, it is not known which of these activities is most important in vivo. Here we describe the in vivo function of the poorly characterized cytoplasmic family member, yeast Dxo1. Using RNA-seq of 5' monophosphate ends, we show that Dxo1 can act as a distributive exonuclease, removing a few nucleotides from endonuclease or decapping products. We also show that Dxo1 is required for the final 5' end processing of 25S rRNA, and that this is the primary role of Dxo1. While Dxo1/Rai1/DXO members were expected to act upstream of Rat1/Xrn1, this order is reversed in 25S rRNA processing, with Dxo1 acting downstream from Rat1. Such a hand-off from a processive to a distributive exonuclease may be a general phenomenon in the precise maturation of RNA ends.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
186
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
187
|
Alamdari-Palangi V, Jaberi KR, Jaberi AR, Gheibihayat SM, Akbarzadeh M, Tajbakhsh A, Savardashtaki A. The role of miR-153 and related upstream/downstream pathways in cancers: from a potential biomarker to treatment of tumor resistance and a therapeutic target. Med Oncol 2022; 39:62. [PMID: 35477802 DOI: 10.1007/s12032-022-01653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs that have a multifunction and play essential roles in gene regulation. Their dysregulation is associated with several human cancers. MiR-153 has a critical role in many biological processes, such as suppressing tumor growth (mostly), responses to treatment, and drug resistance. However, miR-153 in some cancers shows a different role as an oncogene, such as prostate. The miR-153 expression can be regulated by several regulators, such as lncRNAs and circular RNAs. By discovering the target factors for miR-153, it may be possible to approach early diagnosis, reversing drug resistance, and treatment of cancers. This will help choose the precise treatment for the patient and not incur additional costs in treatment. Thus, we attempt to summarize the current situation and potential development prospects about the role of miR-153 in cancers. The miR-153 paly an important role in cancers and can be used for diagnosis and prognosis.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Akbarzadeh
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, P.O. Box 71345-1583, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71362 81407, Iran. .,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
188
|
Jüttner M, Ferreira-Cerca S. Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Mol Biol Evol 2022; 39:msac054. [PMID: 35275997 PMCID: PMC8997704 DOI: 10.1093/molbev/msac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Michael Jüttner
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
189
|
Rocha MA, Gowda BS, Fleischmann J. RNAP II produces capped 18S and 25S ribosomal RNAs resistant to 5′-monophosphate dependent processive 5′ to 3′ exonuclease in polymerase switched Saccharomyces cerevisiae. BMC Mol Cell Biol 2022; 23:17. [PMID: 35399070 PMCID: PMC8994892 DOI: 10.1186/s12860-022-00417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
We have previously found that, in the pathogenic yeast Candida albicans, 18S and 25S ribosomal RNA components, containing more than one phosphate on their 5′-end were resistant to 5′-monophosphate requiring 5′ → 3″ exonuclease. Several lines of evidence pointed to RNAP II as the enzyme producing them.
Results
We now show the production of such 18S and 25S rRNAs in Saccharomyces cerevisiae that have been permanently switched to RNAP II (due to deletion of part of RNAP I upstream activator alone, or in combination with deletion of one component of RNAP I itself). They contain more than one phosphate at their 5′-end and an anti-cap specific antibody binds to them indicating capping of these molecules. These molecules are found in RNA isolated from nuclei, therefore are unlikely to have been modified in the cytoplasm.
Conclusions
Our data confirm the existence of such molecules and firmly establish RNAP II playing a role in their production. The fact that we see these molecules in wild type Saccharomyces cerevisiae indicates that they are not only a result of mutations but are part of the cells physiology. This adds another way RNAP II is involved in ribosome production in addition to their role in the production of ribosome associated proteins.
Collapse
|
190
|
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs vital for ribosomal RNA (rRNA) maturation. The U8 snoRNA, encoded by the SNORD118 gene in humans, is an atypical C/D box snoRNA as it promotes rRNA cleavage rather than 2′–O–methylation and is unique to vertebrates. The U8 snoRNA is critical for cleavage events that produce the mature 5.8S and 28S rRNAs of the large ribosomal subunit. Unexpectedly, single nucleotide polymorphisms (SNPs) in the SNORD118 gene were recently found causal to the neurodegenerative disease leukoencephalopathy, brain calcifications, and cysts (LCC; aka Labrune syndrome), but its molecular pathogenesis is unclear. Here, we will review current knowledge on the function of the U8 snoRNA in ribosome biogenesis, and connect it to the preservation of brain function in humans as well as to its dysregulation in inherited white matter disease.
Collapse
Affiliation(s)
- Emily J McFadden
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
191
|
Altas B, Romanowski AJ, Bunce GW, Poulopoulos A. Neuronal mTOR Outposts: Implications for Translation, Signaling, and Plasticity. Front Cell Neurosci 2022; 16:853634. [PMID: 35465614 PMCID: PMC9021820 DOI: 10.3389/fncel.2022.853634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The kinase mTOR is a signaling hub for pathways that regulate cellular growth. In neurons, the subcellular localization of mTOR takes on increased significance. Here, we review findings on the localization of mTOR in axons and offer a perspective on how these may impact our understanding of nervous system development, function, and disease. We propose a model where mTOR accumulates in local foci we term mTOR outposts, which can be found in processes distant from a neuron’s cell body. In this model, pathways that funnel through mTOR are gated by local outposts to spatially select and amplify local signaling. The presence or absence of mTOR outposts in a segment of axon or dendrite may determine whether regional mTOR-dependent signals, such as nutrient and growth factor signaling, register toward neuron-wide responses. In this perspective, we present the emerging evidence for mTOR outposts in neurons, their putative roles as spatial gatekeepers of signaling inputs, and the implications of the mTOR outpost model for neuronal protein synthesis, signal transduction, and synaptic plasticity.
Collapse
|
192
|
Bailey AD, Talkish J, Ding H, Igel H, Duran A, Mantripragada S, Paten B, Ares M. Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling. eLife 2022; 11:e76562. [PMID: 35384842 PMCID: PMC9045821 DOI: 10.7554/elife.76562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Nucleotides in RNA and DNA are chemically modified by numerous enzymes that alter their function. Eukaryotic ribosomal RNA (rRNA) is modified at more than 100 locations, particularly at highly conserved and functionally important nucleotides. During ribosome biogenesis, modifications are added at various stages of assembly. The existence of differently modified classes of ribosomes in normal cells is unknown because no method exists to simultaneously evaluate the modification status at all sites within a single rRNA molecule. Using a combination of yeast genetics and nanopore direct RNA sequencing, we developed a reliable method to track the modification status of single rRNA molecules at 37 sites in 18 S rRNA and 73 sites in 25 S rRNA. We use our method to characterize patterns of modification heterogeneity and identify concerted modification of nucleotides found near functional centers of the ribosome. Distinct, undermodified subpopulations of rRNAs accumulate upon loss of Dbp3 or Prp43 RNA helicases, suggesting overlapping roles in ribosome biogenesis. Modification profiles are surprisingly resistant to change in response to many genetic and acute environmental conditions that affect translation, ribosome biogenesis, and pre-mRNA splicing. The ability to capture single-molecule RNA modification profiles provides new insights into the roles of nucleotide modifications in RNA function.
Collapse
Affiliation(s)
- Andrew D Bailey
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Jason Talkish
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Hongxu Ding
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
- Department of Pharmacy Practice & Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Haller Igel
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | | | | | - Benedict Paten
- Department of Biomolecular Engineering and Santa Cruz Genomics Institute, University of California, Santa CruzSanta CruzUnited States
| | - Manuel Ares
- RNA Center and Department of Molecular, Cell & Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
193
|
Cotter SC, Al Shareefi E. Nutritional ecology, infection and immune defence - exploring the mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100862. [PMID: 34952240 DOI: 10.1016/j.cois.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by changing the physiological environment of the host, such as the availability of key nutritional resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by enhancing the immune response and 3) by altering the presence of host microbiota, which help to digest nutrients and are a potential source of antibiotics. We show that there are no clear patterns in the effects of diet across taxa and that good evidence for the mechanisms by which diet exerts its effects are often lacking. More studies are required to understand the mechanisms of action if we are to discern patterns that can be generalised across host and parasite taxa.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Ekhlas Al Shareefi
- Dept of Biology, College of Science for Women, University of Babylon, Hillah-Babil, Iraq
| |
Collapse
|
194
|
Abstract
The complete, ungapped sequence of the short arms of human acrocentric chromosomes (SAACs) is still unknown almost 20 years after the near completion of the Human Genome Project. Yet these short arms of Chromosomes 13, 14, 15, 21, and 22 contain the ribosomal DNA (rDNA) genes, which are of paramount importance for human biology. The sequences of SAACs show an extensive variation in the copy number of the various repetitive elements, the full extent of which is currently unknown. In addition, the full spectrum of repeated sequences, their organization, and the low copy number functional elements are also unknown. The Telomere-to-Telomere (T2T) Project using mainly long-read sequence technology has recently completed the assembly of the genome from a hydatidiform mole, CHM13, and has thus established a baseline reference for further studies on the organization, variation, functional annotation, and impact in human disorders of all the previously unknown genomic segments, including the SAACs. The publication of the initial results of the T2T Project will update and improve the reference genome for a better understanding of the evolution and function of the human genome.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, 1211 Geneva, Switzerland
- Foundation Campus Biotech, 1202 Geneva, Switzerland
- Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| |
Collapse
|
195
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
196
|
Guan X, Iyaswamy A, Sreenivasmurthy SG, Su C, Zhu Z, Liu J, Kan Y, Cheung KH, Lu J, Tan J, Li M. Mechanistic Insights into Selective Autophagy Subtypes in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073609. [PMID: 35408965 PMCID: PMC8998506 DOI: 10.3390/ijms23073609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.
Collapse
Affiliation(s)
- Xinjie Guan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Chengfu Su
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jia Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Yuxuan Kan
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
| | - King-Ho Cheung
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Jiahong Lu
- State Key Lab of Quality Research in Chinese Medicine, University of Macau, Macao, China;
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Correspondence: (J.T.); (M.L.)
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (X.G.); (A.I.); (S.G.S.); (C.S.); (Z.Z.); (J.L.); (Y.K.); (K.-H.C.)
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
- Correspondence: (J.T.); (M.L.)
| |
Collapse
|
197
|
How to save a bacterial ribosome in times of stress. Semin Cell Dev Biol 2022; 136:3-12. [PMID: 35331628 DOI: 10.1016/j.semcdb.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.
Collapse
|
198
|
Dörner K, Badertscher L, Horváth B, Hollandi R, Molnár C, Fuhrer T, Meier R, Sárazová M, van den Heuvel J, Zamboni N, Horvath P, Kutay U. Genome-wide RNAi screen identifies novel players in human 60S subunit biogenesis including key enzymes of polyamine metabolism. Nucleic Acids Res 2022; 50:2872-2888. [PMID: 35150276 PMCID: PMC8934630 DOI: 10.1093/nar/gkac072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.
Collapse
Affiliation(s)
- Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Bianka Horváth
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
- Molecular Life Sciences Ph.D. Program, 8057 Zurich, Switzerland
| | - Réka Hollandi
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Csaba Molnár
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger Meier
- ScopeM, ETH Zürich, 8093 Zürich, Switzerland
| | - Marie Sárazová
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter Horvath
- Synthetic and Systems Biology Unit, Biological Research Center, 6726 Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
199
|
Wang M, Ogé L, Pérez Garcia MD, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S. Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:830840. [PMID: 35392520 PMCID: PMC8982072 DOI: 10.3389/fpls.2022.830840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching is crucial for successful plant development and plant response to environmental factors. Extensive investigations have revealed the involvement of an intricate regulatory network including hormones and sugars. Recent studies have demonstrated that two major systemic regulators-auxin and sugar-antagonistically regulate plant branching. However, little is known regarding the molecular mechanisms involved in this crosstalk. We carried out two complementary untargeted approaches-RNA-seq and metabolomics-on explant stem buds fed with different concentrations of auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the combined effect of auxin and sugar by massive reprogramming of the transcriptome and metabolome. The antagonistic effect of sucrose and auxin targeted several important physiological processes, including sink strength, the amino acid metabolism, the sulfate metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). These new findings represent a cornerstone to further investigate the diverse molecular mechanisms that drive the integration of endogenous factors during shoot branching.
Collapse
Affiliation(s)
- Ming Wang
- Dryland-Technology Key Laboratory of Shandong Province, College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Laurent Ogé
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Alexandra Launay-Avon
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Jose Le Gourrierec
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Latifa Hamama
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| | - Soulaiman Sakr
- Institut Agro, University of Angers INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
200
|
Synergy of Venetoclax and 8-Chloro-Adenosine in AML: The Interplay of rRNA Inhibition and Fatty Acid Metabolism. Cancers (Basel) 2022; 14:cancers14061446. [PMID: 35326597 PMCID: PMC8946614 DOI: 10.3390/cancers14061446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
It is known that 8-chloro-adenosine (8-Cl-Ado) is a novel RNA-directed nucleoside analog that targets leukemic stem cells (LSCs). In a phase I clinical trial with 8-Cl-Ado in patients with refractory or relapsed (R/R) AML, we observed encouraging but short-lived clinical responses, likely due to intrinsic mechanisms of LSC resistance. LSC homeostasis depends on amino acid-driven and/or fatty acid oxidation (FAO)-driven oxidative phosphorylation (OXPHOS) for survival. We recently reported that 8-Cl-Ado and the BCL-2-selective inhibitor venetoclax (VEN) synergistically inhibit FAO and OXPHOS in LSCs, thereby suppressing acute myeloid leukemia (AML) growth in vitro and in vivo. Herein, we report that 8-Cl-Ado inhibits ribosomal RNA (rRNA) synthesis through the downregulation of transcription initiation factor TIF-IA that is associated with increasing levels of p53. Paradoxically, 8-Cl-Ado-induced p53 increased FAO and OXPHOS, thereby self-limiting the activity of 8-Cl-Ado on LSCs. Since VEN inhibits amino acid-driven OXPHOS, the addition of VEN significantly enhanced the activity of 8-Cl-Ado by counteracting the self-limiting effect of p53 on FAO and OXPHOS. Overall, our results indicate that VEN and 8-Cl-Ado can cooperate in targeting rRNA synthesis and OXPHOS and in decreasing the survival of the LSC-enriched cell population, suggesting the VEN/8-Cl-Ado regimen as a promising therapeutic approach for patients with R/R AML.
Collapse
|