151
|
Abstract
This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.
Collapse
|
152
|
Rosenzweig JA, Chromy B, Echeverry A, Yang J, Adkins B, Plano GV, McCutchen-Maloney S, Schesser K. Polynucleotide phosphorylase independently controls virulence factor expression levels and export in Yersinia spp. FEMS Microbiol Lett 2007; 270:255-64. [PMID: 17391372 DOI: 10.1111/j.1574-6968.2007.00689.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previously, it was shown that optimal functioning of the Yersinia type III secretion system (T3SS) in cell culture infection assays requires the exoribonuclease polynucleotide phosphorylase (PNPase) and that normal T3SS activity could be restored in the Deltapnp strains by expressing just the approximately 70-aa S1 RNA-binding domain of PNPase. Here, it is shown that the Yersinia Deltapnp strain is less virulent in the mouse compared with the isogenic wild-type strain. To begin to understand what could be limiting T3SS activity in the absence of PNPase, T3SS-encoding transcripts and proteins in the YersiniaDeltapnp strains were analyzed. Surprisingly, it was found that the Deltapnp Yersinia strains possessed enhanced levels of T3SS-encoding transcripts and proteins compared with the wild-type strains. We then found that an S1 variant containing a disruption in its RNA-binding subdomain was inactive in terms of restoring normal T3SS activity. However, T3SS expression levels did not differ between Deltapnp strains expressing active and inactive S1 proteins, further showing that T3SS activity and expression levels, at least as related to PNPase and its S1 domain, are not linked. The results suggest that PNPase affects the expression and activity of the T3SS by distinct mechanisms and that the S1-dependent effect on T3SS activity involves an RNA intermediate.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Marchi P, Longhi V, Zangrossi S, Gaetani E, Briani F, Dehò G. Autogenous regulation of Escherichia coli polynucleotide phosphorylase during cold acclimation by transcription termination and antitermination. Mol Genet Genomics 2007; 278:75-84. [PMID: 17384964 DOI: 10.1007/s00438-007-0231-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Adaptation of Escherichia coli at low temperature implicates a drastic reprogramming of gene expression patterns. Mechanisms operating downstream of transcription initiation, such as control of transcription termination, mRNA stability and translatability, play a major role in controlling gene expression in the cold acclimation phase. It was previously shown that Rho-dependent transcription termination within pnp, the gene encoding polynucleotide phosphorylase (PNPase), was suppressed in pnp nonsense mutants, whereas it was restored by complementation with wild type allele. Using a tRNA gene as a reporter and the strong Rho-dependent transcription terminator t ( imm ) of bacteriophage P4 as a tester, here we show that specific sites in the 5'-untranslated region of pnp mRNA are required for PNPase-sensitive cold-induced suppression of Rho-dependent transcription termination. We suggest that suppression of Rho-dependent transcription termination within pnp and its restoration by PNPase is an autogenous regulatory circuit that modulates pnp expression during cold acclimation.
Collapse
Affiliation(s)
- Paolo Marchi
- Dipartimento di Scienze biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | | | | | | | | | | |
Collapse
|
154
|
Lorentzen E, Dziembowski A, Lindner D, Seraphin B, Conti E. RNA channelling by the archaeal exosome. EMBO Rep 2007; 8:470-6. [PMID: 17380186 PMCID: PMC1866195 DOI: 10.1038/sj.embor.7400945] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/24/2007] [Accepted: 02/05/2007] [Indexed: 11/09/2022] Open
Abstract
Exosomes are complexes containing 3' --> 5' exoribonucleases that have important roles in processing, decay and quality control of various RNA molecules. Archaeal exosomes consist of a hexameric core of three active RNase PH subunits (ribosomal RNA processing factor (Rrp)41) and three inactive RNase PH subunits (Rrp42). A trimeric ring of subunits with putative RNA-binding domains (Rrp4/cep1 synthetic lethality (Csl)4) is positioned on top of the hexamer on the opposite side to the RNA degrading sites. Here, we present the 1.6 A resolution crystal structure of the nine-subunit exosome of Sulfolobus solfataricus and the 2.3 A structure of this complex bound to an RNA substrate designed to be partly trimmed rather than completely degraded. The RNA binds both at the active site on one side of the molecule and on the opposite side in the narrowest constriction of the central channel. Multiple substrate-binding sites and the entrapment of the substrate in the central channel provide a rationale for the processive degradation of extended RNAs and the stalling of structured RNAs.
Collapse
Affiliation(s)
- Esben Lorentzen
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117, Heidelberg, Germany
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
- Tel: +49 6221 3878537; Fax: +49 6221 387 8519; E-mail:
| | - Andrzej Dziembowski
- Equipe Labellisée La Ligue, CGM, CNRS UPR2167, Associée à l'Université Pierre et Marie Curie, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Doris Lindner
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | - Bertrand Seraphin
- Equipe Labellisée La Ligue, CGM, CNRS UPR2167, Associée à l'Université Pierre et Marie Curie, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Elena Conti
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117, Heidelberg, Germany
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
- Tel: +49 6221 3878537; Fax: +49 6221 387 8519; E-mail:
| |
Collapse
|
155
|
Amblar M, Barbas A, Gomez-Puertas P, Arraiano CM. The role of the S1 domain in exoribonucleolytic activity: substrate specificity and multimerization. RNA (NEW YORK, N.Y.) 2007; 13:317-27. [PMID: 17242308 PMCID: PMC1800512 DOI: 10.1261/rna.220407] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
RNase II is a 3'-5' exoribonuclease that processively hydrolyzes single-stranded RNA generating 5' mononucleotides. This enzyme contains a catalytic core that is surrounded by three RNA-binding domains. At its C terminus, there is a typical S1 domain that has been shown to be critical for RNA binding. The S1 domain is also present in the other major 3'-5' exoribonucleases from Escherichia coli: RNase R and polynucleotide phosphorylase (PNPase). In this report, we examined the involvement of the S1 domain in the different abilities of these three enzymes to overcome RNA secondary structures during degradation. Hybrid proteins were constructed by replacing the S1 domain of RNase II for the S1 from RNase R and PNPase, and their exonucleolytic activity and RNA-binding ability were examined. The results revealed that both the S1 domains of RNase R and PNPase are able to partially reverse the drop of RNA-binding ability and exonucleolytic activity resulting from removal of the S1 domain of RNase II. Moreover, the S1 domains investigated are not equivalent. Furthermore, we demonstrate that S1 is neither responsible for the ability to overcome secondary structures during RNA degradation, nor is it related to the size of the final product generated by each enzyme. In addition, we show that the S1 domain from PNPase is able to induce the trimerization of the RNaseII-PNP hybrid protein, indicating that this domain can have a role in the biogenesis of multimers.
Collapse
Affiliation(s)
- Mónica Amblar
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | |
Collapse
|
156
|
Matus-Ortega ME, Regonesi ME, Piña-Escobedo A, Tortora P, Dehò G, García-Mena J. The KH and S1 domains of Escherichia coli polynucleotide phosphorylase are necessary for autoregulation and growth at low temperature. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1769:194-203. [PMID: 17337072 DOI: 10.1016/j.bbaexp.2007.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 01/15/2007] [Accepted: 01/23/2007] [Indexed: 11/30/2022]
Abstract
PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (DeltaKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the DeltaKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-DeltaKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Deltapnp mutation at 18 degrees C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.
Collapse
Affiliation(s)
- Maura Epifanía Matus-Ortega
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico DF 07360 México, Mexico
| | | | | | | | | | | |
Collapse
|
157
|
Walter P, Klein F, Lorentzen E, Ilchmann A, Klug G, Evguenieva-Hackenberg E. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 2007; 62:1076-89. [PMID: 17078816 DOI: 10.1111/j.1365-2958.2006.05393.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic exosome is a protein complex with essential functions in processing and degradation of RNA. Exosome-like complexes were recently found in Archaea. Here we characterize the exosome of Sulfolobus solfataricus. Two exosome fractions can be discriminated by density gradient centrifugation. We show that the Cdc48 protein is associated with the exosome from the 30S-50S fraction but not with the exosome of the 11.3S fraction. While only some complexes contain Cdc48, the archaeal DnaG-like protein was found to be a core exosome subunit in addition to Rrp4, Rrp41, Rrp42 and Csl4. Assays with depleted extracts revealed that the exosome is responsible for major ribonucleolytic activity in S. solfataricus. Various complexes consisting of the Rrp41-Rrp42 hexameric ring and Rrp4, Csl4 and DnaG were reconstituted. Dependent on their composition, different complexes showed variations in RNase activity indicating functional interdependence of the subunits. The catalytic activity of these complexes and of the native exosome can be ascribed to the Rrp41-Rrp42 ring, which degrades RNA phosphorolytically. Rrp4 and Csl4 do not exhibit any hydrolytic RNase activity, either when assayed alone or in context of the complex, but influence the activity of the archaeal exosome.
Collapse
Affiliation(s)
- Pamela Walter
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
158
|
Liu Q, Greimann JC, Lima CD. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 2007; 127:1223-37. [PMID: 17174896 DOI: 10.1016/j.cell.2006.10.037] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/16/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
The RNA exosome is a multisubunit 3' to 5' exoribonuclease complex that participates in degradation and processing of cellular RNA. To determine the activities and structure of the eukaryotic exosome, we report the reconstitution of 9-subunit exosomes from yeast and human and reconstitution of 10- and 11-subunit exosomes from yeast. Comparative biochemical analysis between purified subunits and reconstituted exosomes using AU-rich, polyadenylated (poly[A]), generic, and structured RNA substrates reveals processive phosphorolytic activities for human Rrp41/Rrp45 and the 9-subunit human exosome, processive hydrolytic activities for yeast Rrp44 and the yeast 10-subunit exosome, distributive hydrolytic activities for Rrp6, and processive and distributive hydrolytic activities for the yeast 11-subunit exosome. To elucidate the architecture of a eukaryotic exosome, its conserved surfaces, and the structural basis for RNA decay, we report the X-ray structure determination for the 286 kDa nine-subunit human exosome at 3.35 A.
Collapse
Affiliation(s)
- Quansheng Liu
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
159
|
|
160
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
161
|
Worrall JAR, Luisi BF. Information available at cut rates: structure and mechanism of ribonucleases. Curr Opin Struct Biol 2006; 17:128-37. [PMID: 17189683 PMCID: PMC7125677 DOI: 10.1016/j.sbi.2006.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/14/2006] [Accepted: 12/13/2006] [Indexed: 01/09/2023]
Abstract
Ribonucleases are counterweights in the balance of gene expression and are also involved in the maturation of functional RNA. Recent structural data reveal how ribonucleases recognize and cleave targets, in most cases with the catalytic assistance of metal cofactors. Many of these enzymes are ‘processive’, in that they make multiple scissions following the binding of substrates; crystallographic data can account for this solution behaviour. These data not only explain how ribonucleases turn over transcripts, but also provide hints about how they often play dual roles in quality control checks on structured RNA.
Collapse
|
162
|
Dziembowski A, Lorentzen E, Conti E, Séraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2006; 14:15-22. [PMID: 17173052 DOI: 10.1038/nsmb1184] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 11/28/2006] [Indexed: 11/09/2022]
Abstract
The conserved core of the exosome, the major eukaryotic 3' --> 5' exonuclease, contains nine subunits that form a ring similar to the phosphorolytic bacterial PNPase and archaeal exosome, as well as Dis3. Dis3 is homologous to bacterial RNase II, a hydrolytic enzyme. Previous studies have suggested that all subunits are active 3' --> 5' exoRNases. We show here that Dis3 is responsible for exosome core activity. The purified exosome core has a hydrolytic, processive and Mg(2+)-dependent activity with characteristics similar to those of recombinant Dis3. Moreover, a catalytically inactive Dis3 mutant has no exosome core activity in vitro and shows in vivo RNA degradation phenotypes similar to those resulting from exosome depletion. In contrast, mutations in Rrp41, the only subunit carrying a conserved phosphorolytic site, appear phenotypically not different from wild-type yeast. We observed that the yeast exosome ring mediates interactions with protein partners, providing an explanation for its essential function.
Collapse
Affiliation(s)
- Andrzej Dziembowski
- Equipe labellisée La Ligue, Centre de Genetique Moleculaire, Centre National de la Recherche Scientifique UPR2167, associée à l'Université Pierre et Marie Curie, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France.
| | | | | | | |
Collapse
|
163
|
Abstract
The exosome, a large multisubunit complex with exoribonucleic activity, emerges as the central 3' RNA degradation and processing factor in eukaryotes and archaea. But how are the many RNA substrates of the exosome degraded in a processive, yet controlled manner? Recent functional and structural progress shows that the exosome is a macromolecular cage, where the nuclease active sites are situated in a central processing chamber. A narrow entry pore controls access to the active sites in the processing chamber and prevents uncontrolled RNA decay. The emerging mechanism of exosome function suggests a strikingly parallel architectural concept to protein degradation by proteasomes.
Collapse
Affiliation(s)
- Katharina Büttner
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | |
Collapse
|
164
|
Rainey RN, Glavin JD, Chen HW, French SW, Teitell MA, Koehler CM. A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol 2006; 26:8488-97. [PMID: 16966379 PMCID: PMC1636789 DOI: 10.1128/mcb.01006-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/27/2006] [Accepted: 08/30/2006] [Indexed: 12/20/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase) is an exoribonuclease and poly(A) polymerase postulated to function in the cytosol and mitochondrial matrix. Prior overexpression studies resulted in PNPase localization to both the cytosol and mitochondria, concurrent with cytosolic RNA degradation and pleiotropic cellular effects, including growth inhibition and apoptosis, that may not reflect a physiologic role for endogenous PNPase. We therefore conducted a mechanistic study of PNPase biogenesis in the mitochondrion. Interestingly, PNPase is localized to the intermembrane space by a novel import pathway. PNPase has a typical N-terminal targeting sequence that is cleaved by the matrix processing peptidase when PNPase engaged the TIM23 translocon at the inner membrane. The i-AAA protease Yme1 mediated translocation of PNPase into the intermembrane space but did not degrade PNPase. In a yeast strain deleted for Yme1 and expressing PNPase, nonimported PNPase accumulated in the cytosol, confirming an in vivo role for Yme1 in PNPase maturation. PNPase localization to the mitochondrial intermembrane space suggests a unique role distinct from its highly conserved function in RNA processing in chloroplasts and bacteria. Furthermore, Yme1 has a new function in protein translocation, indicating that the intermembrane space harbors diverse pathways for protein translocation.
Collapse
Affiliation(s)
- Robert N Rainey
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
165
|
Comprehensive Alanine-scanning Mutagenesis of Escherichia coli CsrA Defines Two Subdomains of Critical Functional Importance. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84098-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
166
|
Zuo Y, Vincent HA, Zhang J, Wang Y, Deutscher MP, Malhotra A. Structural basis for processivity and single-strand specificity of RNase II. Mol Cell 2006; 24:149-56. [PMID: 16996291 DOI: 10.1016/j.molcel.2006.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/08/2006] [Accepted: 09/14/2006] [Indexed: 11/29/2022]
Abstract
RNase II is a member of the widely distributed RNR family of exoribonucleases, which are highly processive 3'-->5' hydrolytic enzymes that play an important role in mRNA decay. Here, we report the crystal structure of E. coli RNase II, which reveals an architecture reminiscent of the RNA exosome. Three RNA-binding domains come together to form a clamp-like assembly, which can only accommodate single-stranded RNA. This leads into a narrow, basic channel that ends at the putative catalytic center that is completely enclosed within the body of the protein. The putative path for RNA agrees well with biochemical data indicating that a 3' single strand overhang of 7-10 nt is necessary for binding and hydrolysis by RNase II. The presence of the clamp and the narrow channel provides an explanation for the processivity of RNase II and for why its action is limited to single-stranded RNA.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, P.O. Box 016129, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
167
|
Chen HW, Rainey RN, Balatoni CE, Dawson DW, Troke JJ, Wasiak S, Hong JS, McBride HM, Koehler CM, Teitell MA, French SW. Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 2006; 26:8475-87. [PMID: 16966381 PMCID: PMC1636764 DOI: 10.1128/mcb.01002-06] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We recently identified polynucleotide phosphorylase (PNPase) as a potential binding partner for the TCL1 oncoprotein. Mammalian PNPase exhibits exoribonuclease and poly(A) polymerase activities, and PNPase overexpression inhibits cell growth, induces apoptosis, and stimulates proinflammatory cytokine production. A physiologic connection for these anticancer effects and overexpression is difficult to reconcile with the presumed mitochondrial matrix localization for endogenous PNPase, prompting this study. Here we show that basal and interferon-beta-induced PNPase was efficiently imported into energized mitochondria with coupled processing of the N-terminal targeting sequence. Once imported, PNPase localized to the intermembrane space (IMS) as a peripheral membrane protein in a multimeric complex. Apoptotic stimuli caused PNPase mobilization following cytochrome c release, which supported an IMS localization and provided a potential route for interactions with cytosolic TCL1. Consistent with its IMS localization, PNPase knockdown with RNA interference did not affect mitochondrial RNA levels. However, PNPase reduction impaired mitochondrial electrochemical membrane potential, decreased respiratory chain activity, and was correlated with altered mitochondrial morphology. This resulted in FoF1-ATP synthase instability, impaired ATP generation, lactate accumulation, and AMP kinase phosphorylation with reduced cell proliferation. Combined, the data demonstrate an unexpected IMS localization and a key role for PNPase in maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Hsiao-Wen Chen
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
The exosome complex of 3'-->5' exonucleases is an important component of the RNA-processing machinery in eukaryotes. This complex functions in the accurate processing of nuclear RNA precursors and in the degradation of RNAs in both the nucleus and the cytoplasm. However, it has been unclear how different classes of substrate are distinguished from one another. Recent studies now provide insights into the regulation and structure of the exosome, and they reveal striking similarities between the process of RNA degradation in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Jonathan Houseley
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| | | | | |
Collapse
|
169
|
French SW, Dawson DW, Chen HW, Rainey RN, Sievers SA, Balatoni CE, Wong L, Troke JJ, Nguyen MTN, Koehler CM, Teitell MA. The TCL1 oncoprotein binds the RNase PH domains of the PNPase exoribonuclease without affecting its RNA degrading activity. Cancer Lett 2006; 248:198-210. [PMID: 16934922 DOI: 10.1016/j.canlet.2006.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 07/13/2006] [Indexed: 12/16/2022]
Abstract
TCL1 is an AKT kinase coactivator that, when dysregulated, initiates mature lymphocyte malignancies in humans and transgenic mice. While TCL1 augments AKT pathway signaling, additional TCL1 interacting proteins that may contribute to cellular homeostasis or transformation are lacking. Here, an exoribonuclease, PNPase, was identified in a complex with TCL1. The AKT interaction domain on TCL1 bound either RNase PH repeat domain of PNPase without influencing its RNA degrading activity, which was compatible with predicted docking models for a TCL1-PNPase complex. Our data provide a novel protein interaction for mammalian PNPase that may impact TCL1 mediated transformation.
Collapse
Affiliation(s)
- Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Mercante J, Suzuki K, Cheng X, Babitzke P, Romeo T. Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance. J Biol Chem 2006; 281:31832-42. [PMID: 16923806 DOI: 10.1074/jbc.m606057200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA-binding protein CsrA (carbon storage regulator) of Escherichia coli is a global regulator of gene expression and is representative of the CsrA/RsmA family of bacterial proteins. These proteins act by regulating mRNA translation and stability and are antagonized by binding to small noncoding RNAs. Although the RNA target sequence and structure for CsrA binding have been well defined, little information exists concerning the protein requirements for RNA recognition. The three-dimensional structures of three CsrA/RsmA proteins were recently solved, revealing a novel protein fold consisting of two interdigitated monomers. Here, we performed comprehensive alanine-scanning mutagenesis on csrA of E. coli and tested the 58 resulting mutants for regulation of glycogen accumulation, motility, and biofilm formation. Quantitative effects of these mutations on expression of glgCA'-'lacZ, flhDC'-'lacZ, and pgaA'-'lacZ translational fusions were also examined, and eight of the mutant proteins were purified and tested for RNA binding. These studies identified two regions of the amino acid sequence that were critical for regulation and RNA binding, located within the first (beta1, residues 2-7) and containing the last (beta5, residues 40-47) beta-strands of CsrA. The beta1 and beta5 strands of opposite monomers lie adjacent and parallel to each other in the three-dimensional structure of this protein. Given the symmetry of the CsrA dimer, these findings imply that two distinct RNA binding surfaces or functional subdomains lie on opposite sides of the protein.
Collapse
Affiliation(s)
- Jeffrey Mercante
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
171
|
Marcaida MJ, DePristo MA, Chandran V, Carpousis AJ, Luisi BF. The RNA degradosome: life in the fast lane of adaptive molecular evolution. Trends Biochem Sci 2006; 31:359-65. [PMID: 16766188 DOI: 10.1016/j.tibs.2006.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/28/2006] [Accepted: 05/25/2006] [Indexed: 11/28/2022]
Abstract
In Escherichia coli, the multi-enzyme RNA degradosome contributes to the global, posttranscriptional regulation of gene expression. The degradosome components are recognized through natively unstructured "microdomains" comprising as few as 15-40 amino acids. Consequently, the degradosome might experience a comparatively smaller number of evolutionary constraints, because there is little requirement to maintain a folded state for the interaction sites. New regulatory properties of the degradosome could arise with relative rapidity, because partners that modify its function could be recruited by quickly evolving microdomains. The unusual combination of the centrality of RNA degradation in gene expression and the generality of natively unstructured microdomains in recognition can fortuitously confer a capacity for efficacious adaptive change to degradosome-like assemblies in eubacteria.
Collapse
Affiliation(s)
- Maria Jose Marcaida
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
172
|
Sarkar D, Fisher PB. Polynucleotide phosphorylase: an evolutionary conserved gene with an expanding repertoire of functions. Pharmacol Ther 2006; 112:243-63. [PMID: 16733069 DOI: 10.1016/j.pharmthera.2006.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 11/19/2022]
Abstract
RNA metabolism plays a seminal role in regulating diverse physiological processes. Polynucleotide phosphorylase (PNPase) is an evolutionary conserved 3',5' exoribonuclease, which plays a central role in RNA processing in bacteria and plants. Human polynucleotide phosphorylase (hPNPase old-35) was cloned using an inventive strategy designed to identify genes regulating the fundamental physiological processes of differentiation and senescence. Although hPNPase old-35 structurally and biochemically resembles PNPase of other species, targeted overexpression and inhibition studies reveal that hPNPase old-35 has evolved to serve more specialized functions in humans. The present review provides a global perspective on the structure and function of PNPase and then focuses on hPNPase old-35 in the contexts of differentiation and senescence.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
173
|
Durán-Figueroa NV, Piña-Escobedo A, Schroeder I, Simons RW, García-Mena J. Polynucleotide phosphorylase interacts with ribonuclease E through a betabetaalphabetabetaalpha domain. Biochimie 2006; 88:725-735. [PMID: 16483707 DOI: 10.1016/j.biochi.2006.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/04/2006] [Indexed: 11/30/2022]
Abstract
In the present work we have used a double-hybrid assay in bacteria to identify a putative domain in E. coli PNPase required for in vivo interaction with RNase E. We used a 202 aa fragment of RNase E previously reported as the PNPase binding domain in this enzyme and a collection of 13 different fragments of 105 aa, spanning the entire sequence of 734 aa PNPase (GenBank Accession number NP_417633). Our results indicate that two clones of PNPase including residues 158-262 and residues 473-577 contain interaction sites for RNase E within a betabetaalphabetabetaalpha domain configuration. Three-dimensional modeling of the E. coli PNPase based on the S. antibioticus protein structure indicates that the putative binding domain is located on the monomer surface, facing outward from the trimeric tertiary structure. Since a copy of the betabetaalphabetabetaalpha domain is also found in RNase PH, we investigated and found an interaction with RNase E in a pull-down assay. We suggest this interaction takes place through the similar betabetaalphabetabetaalpha domain present in the tertiary structure of this enzyme. Based on these results, we propose that RNase PH and RNase E could form functional assemblies in E. coli.
Collapse
Affiliation(s)
- Noé V Durán-Figueroa
- Departamento de Genética y Biología Molecular, CINVESTAV. Ap Post 14-740 Mexico DF 07360 Mexico
| | | | | | | | | |
Collapse
|
174
|
Abstract
Exosomes and proteasomes are macromolecular complexes that posttranscriptionally regulate gene expression by degrading mRNAs and proteins, respectively. Although the two complexes act on different substrates and are composed of different subunits, they share a similar barrel-like architecture that appears to have evolved to restrict substrate access and prevent indiscriminate degradation.
Collapse
Affiliation(s)
- Esben Lorentzen
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
175
|
Ygberg SE, Clements MO, Rytkönen A, Thompson A, Holden DW, Hinton JCD, Rhen M. Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica. Infect Immun 2006; 74:1243-54. [PMID: 16428774 PMCID: PMC1360324 DOI: 10.1128/iai.74.2.1243-1254.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/12/2005] [Accepted: 10/02/2005] [Indexed: 12/30/2022] Open
Abstract
Mutational inactivation of the cold-shock-associated exoribonuclease polynucleotide phosphorylase (PNPase; encoded by the pnp gene) in Salmonella enterica serovar Typhimurium was previously shown to enable the bacteria to cause chronic infection and to affect the bacterial replication in BALB/c mice (M. O. Clements et al., Proc. Natl. Acad. Sci. USA 99:8784-8789, 2002). Here, we report that PNPase deficiency results in increased expression of Salmonella plasmid virulence (spv) genes under in vitro growth conditions that allow induction of spv expression. Furthermore, whole-genome microarray-based transcriptome analyses of bacteria growing inside murine macrophage-like J774.A.1 cells revealed six genes as being significantly up-regulated in the PNPase-deficient background, which included spvABC, rtcB, entC, and STM2236. Mutational inactivation of the spvR regulator diminished the increased expression of spv observed in the pnp mutant background, implying that PNPase acts upstream of or at the level of SpvR. Finally, competition experiments revealed that the growth advantage of the pnp mutant in BALB/c mice was dependent on spvR as well. Combined, our results support the idea that in S. enterica PNPase, apart from being a regulator of the cold shock response, also functions in tuning the expression of virulence genes and bacterial fitness during infection.
Collapse
Affiliation(s)
- Sofia Eriksson Ygberg
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
176
|
Schilders G, van Dijk E, Raijmakers R, Pruijn GJM. Cell and Molecular Biology of the Exosome: How to Make or Break an RNA. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:159-208. [PMID: 16939780 DOI: 10.1016/s0074-7696(06)51005-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The identification and characterization of the exosome complex has shown that the exosome is a complex of 3' --> 5' exoribonucleases that plays a key role in the processing and degradation of a wide variety of RNA substrates. Advances in the understanding of exosome function have led to the identification of numerous cofactors that are required for a selective recruitment of the exosome to substrate RNAs, for their structural alterations to facilitate degradation, and to aid in their complete degradation/processing. Structural data obtained by two-hybrid interaction analyses and X-ray crystallography show that the core of the exosome adopts a doughnut-like structure and demonstrates that probably not all exosome subunits are active exoribonucleases. Despite all data obtained on the structure and function of the exosome during the last decade, there are still a lot of unanswered questions. What is the molecular mechanism by which cofactors select and target substrate RNAs to the exosome and modulate its function for correct processing or degradation? How can the exosome discriminate between processing or degradation of a specific substrate RNA? What is the precise structure of exosome subunits and how do they contribute to its function? Here we discuss studies that provide some insight to these questions and speculate on the mechanisms that control the exosome.
Collapse
Affiliation(s)
- Geurt Schilders
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
177
|
Ramos CRR, Oliveira CLP, Torriani IL, Oliveira CC. The Pyrococcus exosome complex: structural and functional characterization. J Biol Chem 2005; 281:6751-9. [PMID: 16407194 DOI: 10.1074/jbc.m512495200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exosome is a conserved eukaryotic enzymatic complex that plays an essential role in many pathways of RNA processing and degradation. Here, we describe the structural characterization of the predicted archaeal exosome in solution using small angle x-ray scattering. The structure model calculated from the small angle x-ray scattering pattern provides an indication of the existence of a disk-shaped structure, corresponding to the "RNases PH ring" complex formed by the proteins aRrp41 and aRrp42. The RNases PH ring complex corresponds to the core of the exosome, binds RNA, and has phosphorolytic and polymerization activities. Three additional molecules of the RNA-binding protein aRrp4 are attached to the core as extended and flexible arms that may direct the substrates to the active sites of the exosome. In the presence of aRrp4, the activity of the core complex is enhanced, suggesting a regulatory role for this protein. The results shown here also indicate the participation of the exosome in RNA metabolism in Archaea, as was established in Eukarya.
Collapse
Affiliation(s)
- Celso Raul Romero Ramos
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
178
|
Lorentzen E, Conti E. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell 2005; 20:473-81. [PMID: 16285928 DOI: 10.1016/j.molcel.2005.10.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/06/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
The exosome is a macromolecular complex that plays fundamental roles in the biogenesis and turnover of a large number of RNA species. Here we report the crystal structures of the Rrp41-Rrp42 core complex of the S. solfataricus exosome bound to short single-stranded RNAs and to ADP. The RNA binding cleft recognizes four nucleotides in a sequence-unspecific manner, mainly by electrostatic interactions with the phosphate groups. Interactions at the 2' hydroxyls of the sugars provide specificity for RNA over DNA. The structures show both the bound substrate and the cleaved product of the reaction, suggesting a catalytic mechanism for the 3'-5' phosphorolytic activity of the exosome.
Collapse
Affiliation(s)
- Esben Lorentzen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
179
|
Stickney LM, Hankins JS, Miao X, Mackie GA. Function of the conserved S1 and KH domains in polynucleotide phosphorylase. J Bacteriol 2005; 187:7214-21. [PMID: 16237005 PMCID: PMC1272994 DOI: 10.1128/jb.187.21.7214-7221.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the roles of the conserved S1 and KH RNA binding motifs in the widely dispersed prokaryotic exoribonuclease polynucleotide phosphorylase (PNPase). These domains can be released from the enzyme by mild proteolysis or by truncation of the gene. Using purified recombinant enzymes, we have assessed the effects of specific deletions on RNA binding, on activity against a synthetic substrate under multiple-turnover conditions, and on the ability of truncated forms of PNPase to form a minimal RNA degradosome with RNase E and RhlB. Deletion of the S1 domain reduces the apparent activity of the enzyme by almost 70-fold under low-ionic-strength conditions and limits the enzyme to digest a single substrate molecule. Activity and product release are substantially regained at higher ionic strengths. This deletion also reduces the affinity of the enzyme for RNA, without affecting the enzyme's ability to bind to RNase E. Deletion of the KH domain produces similar, but less severe, effects, while deletion of both the S1 and KH domains accentuates the loss of activity, product release, and RNA binding but has no effect on binding to RNase E. We propose that the S1 domain, possibly arrayed with the KH domain, forms an RNA binding surface that facilitates substrate recognition and thus indirectly potentiates product release. The present data as well as prior observations can be rationalized by a two-step model for substrate binding.
Collapse
Affiliation(s)
- Leigh M Stickney
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
180
|
Guarino LA, Bhardwaj K, Dong W, Sun J, Holzenburg A, Kao C. Mutational analysis of the SARS virus Nsp15 endoribonuclease: identification of residues affecting hexamer formation. J Mol Biol 2005; 353:1106-17. [PMID: 16216269 PMCID: PMC7094243 DOI: 10.1016/j.jmb.2005.09.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/30/2005] [Accepted: 09/03/2005] [Indexed: 11/29/2022]
Abstract
The severe acute respiratory syndrome (SARS) coronavirus virus non-structural protein 15 is a Mn2+-dependent endoribonuclease with specificity for cleavage at uridylate residues. To better understand structural and functional characteristics of Nsp15, 22 mutant versions of Nsp15 were produced in Escherichia coli as His-tagged proteins and purified by metal-affinity and ion-exchange chromatography. Nineteen of the mutants were soluble and were analyzed for enzymatic activity. Six mutants, including four at the putative active site, were significantly reduced in endoribonuclease activity. Two of the inactive mutants had unusual secondary structures compared to the wild-type protein, as measured by circular dichroism spectroscopy. Gel-filtration analysis, velocity sedimentation ultracentrifugation, and native gradient pore electrophoresis all showed that the wild-type protein exists in an equilibrium between hexamers and monomers in solution, with hexamers dominating at micromolar protein concentration, while native gradient pore electrophoresis also revealed the presence of trimers. A mutant in the N terminus of Nsp15 was impaired in hexamer formation and had low endoribonuclease activity, suggesting that oligomerization is required for endoribonuclease activity. This idea was supported by titration experiments showing that enzyme activity was strongly concentration-dependent, indicating that oligomeric Nsp15 is the active form. Three-dimensional reconstruction of negatively stained single particles of Nsp15 viewed by transmission electron microscopic analysis suggested that the six subunits were arranged as a dimer of trimers with a number of cavities or channels that may constitute RNA binding sites.
Collapse
Affiliation(s)
- Linda A Guarino
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.
| | | | | | | | | | | |
Collapse
|
181
|
Affiliation(s)
- Uriel Z Littauer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
182
|
Büttner K, Wenig K, Hopfner KP. Structural Framework for the Mechanism of Archaeal Exosomes in RNA Processing. Mol Cell 2005; 20:461-71. [PMID: 16285927 DOI: 10.1016/j.molcel.2005.10.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/26/2005] [Accepted: 10/21/2005] [Indexed: 11/24/2022]
Abstract
Exosomes emerge as central 3'-->5' RNA processing and degradation machineries in eukaryotes and archaea. We determined crystal structures of two 230 kDa nine subunit archaeal exosome isoforms. Both exosome isoforms contain a hexameric ring of RNase phosphorolytic (PH) domain subunits with a central chamber. Tungstate soaks identified three phosphorolytic active sites in this processing chamber. A trimer of Csl4 or Rrp4 subunits forms a multidomain macromolecular interaction surface on the RNase-PH domain ring with central S1 domains and peripheral KH and zinc-ribbon domains. Structural and mutational analyses suggest that the S1 domains and a subsequent neck in the RNase-PH domain ring form an RNA entry pore to the processing chamber that only allows access of unstructured RNA. This structural framework can mechanistically unify observed features of exosomes, including processive degradation of unstructured RNA, the requirement for regulatory factors to degrade structured RNA, and left-over tails in rRNA trimming.
Collapse
Affiliation(s)
- Katharina Büttner
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
183
|
Sarkar D, Park ES, Emdad L, Randolph A, Valerie K, Fisher PB. Defining the domains of human polynucleotide phosphorylase (hPNPaseOLD-35) mediating cellular senescence. Mol Cell Biol 2005; 25:7333-43. [PMID: 16055741 PMCID: PMC1190265 DOI: 10.1128/mcb.25.16.7333-7343.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To fully comprehend cellular senescence, identification of relevant genes involved in this process is mandatory. Human polynucleotide phosphorylase (hPNPase(OLD-35)), an evolutionarily conserved 3', 5' exoribonuclease mediating mRNA degradation, was first identified as a predominantly mitochondrial protein overexpressed during terminal differentiation and senescence. Overexpression of hPNPase(OLD-35) in human melanoma cells and melanocytes induces distinctive changes associated with senescence, potentially mediated by direct degradation of c-myc mRNA by this enzyme. hPNPase(OLD-35) contains two RNase PH (RPH) domains, one PNPase domain, and two RNA binding domains. Using deletion mutation analysis in combination with biochemical and molecular analyses we now demonstrate that the presence of either one of the two RPH domains conferred similar functional activity as the full-length protein, whereas a deletion mutant containing only the RNA binding domains was devoid of activity. Moreover, either one of the two RPH domains induced the morphological, biochemical, and gene expression changes associated with senescence, including degradation of c-myc mRNA. Subcellular distribution confirmed hPNPase(OLD-35) to be localized both in mitochondria and the cytoplasm. The present study elucidates how a predominantly mitochondrial protein, via its localization in both mitochondria and cytoplasm, is able to target a specific cytoplasmic mRNA, c-myc, for degradation and through this process induce cellular senescence.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
184
|
|
185
|
Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 2005; 12:575-81. [PMID: 15951817 DOI: 10.1038/nsmb952] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/18/2005] [Indexed: 11/08/2022]
Abstract
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.
Collapse
|
186
|
Meyer S, Temme C, Wahle E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 2005; 39:197-216. [PMID: 15596551 DOI: 10.1080/10409230490513991] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The control of mRNA degradation is an important component of the regulation of gene expression since the steady-state concentration of mRNA is determined both by the rates of synthesis and of decay. Two general pathways of mRNA decay have been described in eukaryotes. Both pathways share the exonucleolytic removal of the poly(A) tail (deadenylation) as the first step. In one pathway, deadenylation is followed by the hydrolysis of the cap and processive degradation of the mRNA body by a 5' exonuclease. In the second pathway, the mRNA body is degraded by a complex of 3' exonucleases before the remaining cap structure is hydrolyzed. This review discusses the proteins involved in the catalysis and control of both decay pathways.
Collapse
Affiliation(s)
- Sylke Meyer
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
187
|
Denessiouk KA, Johnson MS, Denesyuk AI. Novel CalphaNN structural motif for protein recognition of phosphate ions. J Mol Biol 2005; 345:611-29. [PMID: 15581902 DOI: 10.1016/j.jmb.2004.10.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/14/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
Phosphate is one of the most frequently exploited chemical moieties in nature, present in a wide range of naturally occurring and critically important small molecules. Several phosphate group recognition motifs have been found for a few narrow groups of proteins, but for many protein families and folds the mode of phosphate recognition remains unclear. Here, we have analyzed the structures of all fold-representative protein-ligand complexes listed in the FSSP database, regardless of whether the bound ligand included a phosphate group. Based on a phosphate-binding motif that we identified in pyridoxal phosphate binding proteins, we have identified a new anion-binding structural motif, CalphaNN, common to 104 fold-representative protein structures that belong to 62 different folds, of which 86% of the fold-representative structures (51 folds) bind phosphate or lone sulfate ions. This motif leads to a precise mode for phosphate group recognition forming a structure where atoms of the phosphate group occupy the most favorable stabilizing positions. The anion-binding CalphaNN motif is based only on main-chain atoms from three adjacent residues, has a conservative betaalphaalpha or betaalphabeta geometry, and recognizes the free phosphate (sulfate) ion as well as one or more phosphate groups in nucleotides and in a variety of cofactors. Moreover, the CalphaNN motif is positioned in functionally important regions of protein structures and often residues of the motif directly participate in the function of the protein.
Collapse
Affiliation(s)
- Konstantin A Denessiouk
- Department of Biochemistry and Pharmacy, Abo Akademi University, Artillerigatan 6, PO Box 66, FIN-20521 Turku, Finland
| | | | | |
Collapse
|
188
|
Folichon M, Allemand F, Régnier P, Hajnsdorf E. Stimulation of poly(A) synthesis by Escherichia coli poly(A)polymerase I is correlated with Hfq binding to poly(A) tails. FEBS J 2005; 272:454-63. [PMID: 15654883 DOI: 10.1111/j.1742-4658.2004.04485.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial Lsm protein, host factor I (Hfq), is an RNA chaperone involved in many types of RNA transactions such as replication and stability, control of small RNA activity and polyadenylation. In this latter case, Hfq stimulates poly(A) synthesis and binds poly(A) tails that it protects from exonucleolytic degradation. We show here, that there is a correlation between Hfq binding to the 3' end of an RNA molecule and its ability to stimulate RNA elongation catalyzed by poly(A)polymerase I. In contrast, formation of the Hfq-RNA complex inhibits elongation of the RNA by polynucleotide phosphorylase. We demonstrate also that Hfq binding is not affected by the phosphorylation status of the RNA molecule and occurs equally well at terminal or internal stretches of poly(A).
Collapse
Affiliation(s)
- Marc Folichon
- UPR CNRS 9073, conventionnée avec l'Université Paris 7 - Denis Diderot, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
189
|
Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf M, Sali A. A structural perspective on protein-protein interactions. Curr Opin Struct Biol 2004; 14:313-24. [PMID: 15193311 DOI: 10.1016/j.sbi.2004.04.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structures of macromolecular complexes are necessary for a mechanistic description of biochemical and cellular processes. They can be solved by experimental methods, such as X-ray crystallography, NMR spectroscopy and electron microscopy, as well as by computational protein structure prediction, docking and bioinformatics. Recent advances and applications of these methods emphasize the need for hybrid approaches that combine a variety of data to achieve better efficiency, accuracy, resolution and completeness.
Collapse
|
190
|
Leszczyniecka M, DeSalle R, Kang DC, Fisher PB. The origin of polynucleotide phosphorylase domains. Mol Phylogenet Evol 2004; 31:123-30. [PMID: 15019613 DOI: 10.1016/j.ympev.2003.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 07/07/2003] [Indexed: 10/27/2022]
Abstract
In this report, we document the presence of polynucleotide phosphorylase (PNPase) in the animal eukaryotes. These proteins contain several domains, including 2 RNase PH domains (PNPase 1 and PNPase 2) which are closely related functionally and in sequence similarity to ribonuclease PH (RPH) protein. Phylogenetic analysis of the gene genealogy of these three domains suggests that PNPase was formed via a duplication event that also produced the RNase PH protein. Given the current distribution of these domains in the tree of life, these duplication events most likely occurred in the common ancestor of the three organismal superkingdoms, Archaea, Eukarya, and Bacteria. In particular, PNPase 2 and RPH are more closely related to each other than either one is to PNPase 1, suggesting a deeper differentiation of PNPase 1 in the common organismal ancestor. In addition, while PNPase 1 and PNPase 2 appear to have the same evolutionary signal as determined by the incongruence length difference (ILD) test, RPH appears to have an incongruent signal with both of the PNPase domains. This result suggests that RPH experienced different evolutionary divergence patterns than the PNPase domains, consistent with the linked nature of the two PNPase domains.
Collapse
|
191
|
Rosenzweig JA, Weltman G, Plano GV, Schesser K. Modulation of yersinia type three secretion system by the S1 domain of polynucleotide phosphorylase. J Biol Chem 2004; 280:156-63. [PMID: 15509583 DOI: 10.1074/jbc.m405662200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both low temperatures and encounters with host phagocytes are two stresses that have been relatively well studied in many species of bacteria. Previous work has shown that the exoribonuclease polynucleotide phosphorylase (PNPase) is required for Yersiniae to grow at low temperatures. Here, we show that PNPase also enhances the ability of Yersinia pseudotuberculosis and Yersinia pestis to withstand the killing activities of murine macrophages. PNPase is required for the optimal functioning of the Yersinia type three secretion system (TTSS), an organelle that injects effector proteins directly into host cells. Unexpectedly, the effect of PNPase on the TTSS is independent of its ribonuclease activity and instead requires its S1 RNA binding domain. In contrast, catalytically inactive enzyme does not enhance the low temperature growth effect of PNPase. Surprisingly, wild-type-like TTSS functioning was restored to the pnp mutant strain by expressing just the approximately 70 amino acid S1 domains from either PNPase, RNase R, RNase II, or RpsA. Our findings suggest that PNPase plays multifaceted roles in enhancing Yersinia survival in response to stressful conditions.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | |
Collapse
|
192
|
Callaghan AJ, Aurikko JP, Ilag LL, Günter Grossmann J, Chandran V, Kühnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF, Luisi BF. Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 2004; 340:965-79. [PMID: 15236960 DOI: 10.1016/j.jmb.2004.05.046] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 05/21/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The hydrolytic endoribonuclease RNase E, which is widely distributed in bacteria and plants, plays key roles in mRNA degradation and RNA processing in Escherichia coli. The enzymatic activity of RNase E is contained within the conserved amino-terminal half of the 118 kDa protein, and the carboxy-terminal half organizes the RNA degradosome, a multi-enzyme complex that degrades mRNA co-operatively and processes ribosomal and other RNA. The study described herein demonstrates that the carboxy-terminal domain of RNase E has little structure under native conditions and is unlikely to be extensively folded within the degradosome. However, three isolated segments of 10-40 residues, and a larger fourth segment of 80 residues, are predicted to be regions of increased structural propensity. The larger of these segments appears to be a protein-RNA interaction site while the other segments possibly correspond to sites of self-recognition and interaction with the other degradosome proteins. The carboxy-terminal domain of RNase E may thus act as a flexible tether of the degradosome components. The implications of these and other observations for the organization of the RNA degradosome are discussed.
Collapse
Affiliation(s)
- Anastasia J Callaghan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Bralley P, Jones GH. Organization and expression of the polynucleotide phosphorylase gene (pnp) of Streptomyces: Processing of pnp transcripts in Streptomyces antibioticus. J Bacteriol 2004; 186:3160-72. [PMID: 15126478 PMCID: PMC400608 DOI: 10.1128/jb.186.10.3160-3172.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the expression of pnp encoding the 3'-5'-exoribonuclease, polynucleotide phosphorylase, in Streptomyces antibioticus. We show that the rpsO-pnp operon is transcribed from at least two promoters, the first producing a readthrough transcript that includes both pnp and the gene for ribosomal protein S15 (rpsO) and a second, Ppnp, located in the rpsO-pnp intergenic region. Unlike the situation in Escherichia coli, where observation of the readthrough transcript requires mutants lacking RNase III, we detect readthrough transcripts in wild-type S. antibioticus mycelia. The Ppnp transcriptional start point was mapped by primer extension and confirmed by RNA ligase-mediated reverse transcription-PCR, a technique which discriminates between 5' ends created by transcription initiation and those produced by posttranscriptional processing. Promoter probe analysis demonstrated the presence of a functional promoter in the intergenic region. The Ppnp sequence is similar to a group of promoters recognized by the extracytoplasmic function sigma factors, sigma-R and sigma-E. We note a number of other differences in rspO-pnp structure and function between S. antibioticus and E. coli. In E. coli, pnp autoregulation and cold shock adaptation are dependent upon RNase III cleavage of an rpsO-pnp intergenic hairpin. Computer modeling of the secondary structure of the S. antibioticus readthrough transcript predicts a stem-loop structure analogous to that in E. coli. However, our analysis suggests that while the readthrough transcript observed in S. antibioticus may be processed by an RNase III-like activity, transcripts originating from Ppnp are not. Furthermore, the S. antibioticus rpsO-pnp intergenic region contains two open reading frames. The larger of these, orfA, may be a pseudogene. The smaller open reading frame, orfX, also observed in Streptomyces coelicolor and Streptomyces avermitilis, may be translationally coupled to pnp and the gene downstream from pnp, a putative protease.
Collapse
Affiliation(s)
- Patricia Bralley
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
194
|
Venclovas C, Ginalski K, Kang C. Sequence-structure mapping errors in the PDB: OB-fold domains. Protein Sci 2004; 13:1594-602. [PMID: 15133161 PMCID: PMC2279972 DOI: 10.1110/ps.04634604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Protein Data Bank (PDB) is the single most important repository of structural data for proteins and other biologically relevant molecules. Therefore, it is critically important to keep the PDB data, as much as possible, error-free. In this study, we have analyzed PDB crystal structures possessing oligonucleotide/oligosaccharide binding (OB)-fold, one of the highly populated folds, for the presence of sequence-structure mapping errors. Using energy-based structure quality assessment coupled with sequence analyses, we have found that there are at least five OB-structures in the PDB that have regions where sequences have been incorrectly mapped onto the structure. We have demonstrated that the combination of these computation techniques is effective not only in detecting sequence-structure mapping errors, but also in providing guidance to correct them. Namely, we have used results of computational analysis to direct a revision of X-ray data for one of the PDB entries containing a fairly inconspicuous sequence-structure mapping error. The revised structure has been deposited with the PDB. We suggest use of computational energy assessment and sequence analysis techniques to facilitate structure determination when homologs having known structure are available to use as a reference. Such computational analysis may be useful in either guiding the sequence-structure assignment process or verifying the sequence mapping within poorly defined regions.
Collapse
Affiliation(s)
- Ceslovas Venclovas
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, L-448, PO Box 808, Livermore, CA 94551, USA.
| | | | | |
Collapse
|
195
|
Jones GH, Symmons MF, Hankins JS, Mackie GA. Overexpression and purification of untagged polynucleotide phosphorylases. Protein Expr Purif 2004; 32:202-9. [PMID: 14965765 DOI: 10.1016/j.pep.2003.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 08/11/2003] [Indexed: 10/27/2022]
Abstract
We report here the development of new, straightforward procedures for the purification of bacterial polynucleotide phosphorylases (PNPases). The pnp genes from Streptomyces antibioticus, Streptomyces coelicolor, and Escherichia coli were overexpressed using the vectors pET11 and pET11A in E. coli BL21(DE3)pLysS. The enzymes were purified to apparent homogeneity after phosphorolysis in crude extracts followed by anion exchange and hydrophobic interaction chromatography. Yields of 5-15mg per liter of culture were obtained and the enzymes contained only small amounts of contaminating RNA as estimated from the A(280/260) ratios of purified preparations. All three enzymes were active in both the polymerization and phosphorolysis reactions normally catalyzed by PNPases. Incubation under phosphorolysis conditions but in the absence of potassium phosphate indicated that the enzymes were free of phosphate-independent nuclease activity. We suggest that the approaches described here may be applied generally to the overexpression and purification of eubacterial polynucleotide phosphorylases.
Collapse
Affiliation(s)
- George H Jones
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | | | | | |
Collapse
|
196
|
Abstract
The degradation of eukaryotic mRNAs plays important roles in the modulation of gene expression, quality control of mRNA biogenesis and antiviral defenses. In the past five years, many of the enzymes involved in this process have been identified and mechanisms that modulate their activities have begun to be identified. In this review, we describe the enzymes of mRNA degradation and their properties. We highlight that there are a variety of enzymes with different specificities, suggesting that individual nucleases act on distinct subpopulations of transcripts within the cell. In several cases, translation factors that bind mRNA inhibit these nucleases. In addition, recent work has begun to identify distinct mRNP complexes that recruit the nucleases to transcripts through different mRNA-interacting proteins. These properties and complexes suggest multiple mechanisms by which mRNA degradation could be regulated.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721-0106, USA.
| | | |
Collapse
|
197
|
Sinha SC, Chaudhuri BN, Burgner JW, Yakovleva G, Davisson VJ, Smith JL. Crystal Structure of Imidazole Glycerol-phosphate Dehydratase. J Biol Chem 2004; 279:15491-8. [PMID: 14724278 DOI: 10.1074/jbc.m312733200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Imidazole glycerol-phosphate dehydratase (IGPD) catalyzes the sixth step of histidine biosynthesis. The enzyme is of fundamental biochemical interest, because it catalyzes removal of a non-acidic hydrogen atom in the dehydration reaction. It is also a potential target for development of herbicides. IGPD is a metalloenzyme in which transition metals induce aggregation and are required for catalysis. Addition of 1 equivalent of Mn(2+)/subunit is shown by analytical ultracentrifugation to induce the formation of 24-mers from trimeric IGPD. Two histidine-rich motifs may participate in metal binding and aggregation. The 2.3-A crystal structure of metal-free trimeric IGPD from the fungus Filobasidiella neoformans reveals a novel fold containing an internal repeat, apparently the result of gene duplication. The 95-residue alpha/beta half-domain occurs in a few other proteins, including the GHMP kinase superfamily (galacto-homoserine-mevalonate-phosphomevalonate), but duplication to form a compact domain has not been seen elsewhere. Conserved residues cluster at two types of sites in the trimer, each site containing a conserved histidine-rich motif. A model is proposed for the intact, active 24-mer in which all highly conserved residues, including the histidine-rich motifs in both the N- and C-terminal halves of the polypeptide, cluster at a common site between trimers. This site is a candidate for the active site and also for metal binding leading to aggregation of trimers. The structure provides a basis for further studies of enzyme function and mechanism and for development of more potent and specific herbicides.
Collapse
Affiliation(s)
- Sangita C Sinha
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
198
|
Aloy P, Böttcher B, Ceulemans H, Leutwein C, Mellwig C, Fischer S, Gavin AC, Bork P, Superti-Furga G, Serrano L, Russell RB. Structure-Based Assembly of Protein Complexes in Yeast. Science 2004; 303:2026-9. [PMID: 15044803 DOI: 10.1126/science.1092645] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Images of entire cells are preceding atomic structures of the separate molecular machines that they contain. The resulting gap in knowledge can be partly bridged by protein-protein interactions, bioinformatics, and electron microscopy. Here we use interactions of known three-dimensional structure to model a large set of yeast complexes, which we also screen by electron microscopy. For 54 of 102 complexes, we obtain at least partial models of interacting subunits. For 29, including the exosome, the chaperonin containing TCP-1, a 3'-messenger RNA degradation complex, and RNA polymerase II, the process suggests atomic details not easily seen by homology, involving the combination of two or more known structures. We also consider interactions between complexes (cross-talk) and use these to construct a structure-based network of molecular machines in the cell.
Collapse
Affiliation(s)
- Patrick Aloy
- European Molecular Biology Laboratory, Structural and Computational Biology Programme, 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Regonesi ME, Briani F, Ghetta A, Zangrossi S, Ghisotti D, Tortora P, Dehò G. A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Res 2004; 32:1006-17. [PMID: 14963263 PMCID: PMC373403 DOI: 10.1093/nar/gkh268] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase), a 3' to 5' exonuclease encoded by pnp, plays a key role in Escherichia coli RNA decay. The enzyme, made of three identical 711 amino acid subunits, may also be assembled in the RNA degradosome, a heteromultimeric complex involved in RNA degradation. PNPase autogenously regulates its expression by promoting the decay of pnp mRNA, supposedly by binding at the 5'-untranslated leader region of an RNase III-processed form of this transcript. The KH and S1 RNA-binding domains at the C-terminus of the protein (amino acids 552-711) are thought to be involved in pnp mRNA recognition. Here we show that a G454D substitution in E.coli PNPase impairs autogenous regulation whereas it does not affect the catalytic activities of the enzyme. Although the mutation maps outside of the KH and S1 RNA-binding domains, analysis of the mutant protein revealed a defective RNA binding, thus suggesting that other determinants may be involved in PNPase-RNA interactions. The mutation also caused a looser association with the degradosome and an abnormal electrophoretic mobility in native gels. The latter feature suggests an altered structural conformation of PNPase, which may account for the properties of the mutant protein.
Collapse
Affiliation(s)
- Maria Elena Regonesi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
200
|
Harlow LS, Kadziola A, Jensen KF, Larsen S. Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci 2004; 13:668-77. [PMID: 14767080 PMCID: PMC2286726 DOI: 10.1110/ps.03477004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RNase PH is a member of the family of phosphorolytic 3' --> 5' exoribonucleases that also includes polynucleotide phosphorylase (PNPase). RNase PH is involved in the maturation of tRNA precursors and especially important for removal of nucleotide residues near the CCA acceptor end of the mature tRNAs. Wild-type and triple mutant R68Q-R73Q-R76Q RNase PH from Bacillus subtilis have been crystallized and the structures determined by X-ray diffraction to medium resolution. Wild-type and triple mutant RNase PH crystallize as a hexamer and dimer, respectively. The structures contain a rare left-handed beta alpha beta-motif in the N-terminal portion of the protein. This motif has also been identified in other enzymes involved in RNA metabolism. The RNase PH structure and active site can, despite low sequence similarity, be overlayed with the N-terminal core of the structure and active site of Streptomyces antibioticus PNPase. The surface of the RNase PH dimer fit the shape of a tRNA molecule.
Collapse
Affiliation(s)
- Lene S Harlow
- Department of Biological Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|