151
|
Karasavvas N, Cárcamo JM, Stratis G, Golde DW. Vitamin C protects HL60 and U266 cells from arsenic toxicity. Blood 2005; 105:4004-12. [PMID: 15677571 PMCID: PMC1895087 DOI: 10.1182/blood-2003-03-0772] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although there is no compelling evidence that vitamin C has antitumor activity in humans, clinical trials are testing the hypothesis that ascorbic acid (AA) will enhance the efficacy of arsenic trioxide (As2O3) in myeloma. In vitro, AA cytotoxicity depends on its interaction with free transition metal ions in culture media leading to the generation of H2O2 and other reactive oxygen species (ROSs). Therefore, to circumvent the extracellular in vitro pro-oxidant effects of AA, we loaded HL60, U266, and RPMI-8226 cells with vitamin C by incubation with dehydroascorbic acid (DHA). Loading cells in this manner resulted in prominent, dose-dependent protection of As2O3-treated cells as measured by viability, colony formation, and apoptosis assays. Glutathione depletion enhanced cell sensitivity to the cytotoxic effects of As2O3 and vitamin C loading provided protection. AA was found to generate cytotoxic concentrations of H2O2 in culture medium without cells and copper/iron chelators inhibited this reaction. However, AA did not generate H2O2 in simple buffer or human plasma. Direct incubation with AA resulted in increased intracellular ROSs, whereas DHA incubation decreased it. These results clarify an apparent paradox and indicate that vitamin C loading in HL60, U266, and RPMI-8226 cells ameliorates As2O3 cytotoxicity.
Collapse
Affiliation(s)
- Nicos Karasavvas
- Memorial Sloan-Kettering Cancer Center, Box 451, 1275 York Ave, New York, NY 10021, USA
| | | | | | | |
Collapse
|
152
|
Fatouros DG, Piperoudi S, Gortzi O, Ioannou PV, Frederik P, Antimisiaris SG. Physical Stability of Sonicated Arsonoliposomes: Effect of Calcium Ions. J Pharm Sci 2005; 94:46-55. [PMID: 15761929 DOI: 10.1002/jps.20221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The physical stability of sonicated arsonoliposomes in the absence and presence of Ca(2+) ions is evaluated. Cholesterol-containing arsonoliposomes composed of arsonolipids [having different acyl chains (C(12)-C(18))], or mixtures of arsonolipids with phospholipids (phosphatidylcholine or distearoyl-phosphatidylcholine) were prepared, and physical stability was evaluated in the absence and presence of CaCl(2), by vesicle dispersions turbidity measurements and cryo-electron microscopy morphological assessment. In some cases, vesicle zeta-potential was measured, under identical conditions. Results demonstrate that self-aggregation of the vesicles studied is low and influenced by the acyl chain length of the arsonolipid used, whereas calcium-induced aggregation is higher, correlating well with the decreased values of vesicle zeta-potential in the presence of Ca(2+) ions (weaker electrostatic repulsion). Acyl chain length of arsonolipids used has a significant quantitative effect on Ca(2+)-induced vesicle aggregation mainly for arsonoliposomes that contain phospholipids (mixed), compared with the vesicles that consist of plain arsonolipids (significant effect only for initial aggregation at time 0). Another difference between plain and mixed arsonoliposomes is that for mixed arsonoliposomes Ca(2+)-induced increases in turbidity are irreversible by ethylenediaminotetraacetic acid, suggesting that vesicle fusion is taking place. This was confirmed by cryo-electron microscopy observations. Finally, when phosphatidylcholine is replaced by distearoyl-phosphatidylcholine, arsonoliposomes are more stable in terms of self-aggregation, but in the presence of calcium, the turbidity and morphology results are similar.
Collapse
Affiliation(s)
- D G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Patras, Greece
| | | | | | | | | | | |
Collapse
|
153
|
Simeonova DD, Micheva K, Muller DAE, Lagarde F, Lett MC, Groudeva VI, Lièvremont D. Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain. Biotechnol Bioeng 2005; 91:441-6. [PMID: 15981279 DOI: 10.1002/bit.20530] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arsenic is one of the major groundwater contaminants worldwide. It was previously demonstrated that the beta-proteobacterium Cenibacterium arsenoxidans has an efficient As[III] oxidation ability. The present study was conducted to evaluate the performance of alginate-immobilized ULPAs1 in the oxidation of As[III] to As[V] in batch reactors. A two-level full factorial experimental design was applied to investigate the influence of main parameters involved in the oxidation process, i.e., pH (7-8), temperature (4 degrees C-25 degrees C), kind of nutrient media (2%-20% sauerkraut brine), and arsenic concentration (10-100 mg/L). One hundred milligram per liter of As[III] was fully oxidized by calcium-alginate immobilized cells in 1 h. It was found that the temperature as well as the kind of nutrient media used were significant parameters at a 95% confidence interval whereas only temperature was a significant parameter at a 99% confidence interval. The immobilization of the As[III] oxidizing strain in alginate beads offers a promising way to implement new treatment processes in the remediation of arsenic contaminated waters.
Collapse
Affiliation(s)
- Diliana D Simeonova
- Laboratoire de Dynamique, Evolution et Expression de Génomes de Microorganismes, FRE 2326 Université Louis Pasteur-CNRS, 28 rue Goethe, 67083 Strasbourg Cédex, France
| | | | | | | | | | | | | |
Collapse
|
154
|
Bode AM, Dong Z. Signal transduction pathways in cancer development and as targets for cancer prevention. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:237-97. [PMID: 16096030 DOI: 10.1016/s0079-6603(04)79005-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
155
|
Antimisiaris SG, Klepetsanis P, Zachariou V, Giannopoulou E, Ioannou PV. In vivo distribution of arsenic after i.p. injection of arsonoliposomes in balb-c mice. Int J Pharm 2004; 289:151-8. [PMID: 15652207 DOI: 10.1016/j.ijpharm.2004.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 10/07/2004] [Accepted: 11/05/2004] [Indexed: 11/26/2022]
Abstract
We recently showed that arsonoliposomes (novel arsenic containg liposomes) demonstrate differential toxicity towards various types of cancer and normal cells, in cell culture studies, as well as anti-parasitic activity. In this study, the in-vivo distribution of the active moiety of these vesicles, As, is evaluated. Sonicated arsonoliposomes were prepared using the arsonolipid with palmitic acid acyl chain (C16) mixed with egg-phosphatidyl choline (PC) and cholesterol (Chol) [C16/PC/Chol at 8:12:10 mol/mol/mol]. A dose of arsonoliposomes, corresponding to 5 mg arsenate/kg was administered by intraperitoneal injection in balb-c mice. At various time points post-injection the mice were sacrificed and the distribution of As in the organs was measured, by atomic absorption spectroscopy. Results demonstrate that a high portion of the dose administered is rapidly excreted; since 1-h post-injection only about 30% of the dose administered was detected cumulatively in the animal tissues. After this the elimination of arsenic was a slow process with a total body elimination rate constant of 0.023 h(-1), corresponding to a half-life of 30 h. Tissues with the highest arsenic concentration during the study period are: spleen-kidneys-stomach, followed by lung, liver, intestines-heart, carcass+skin and finally blood. No acute toxicity, or effect on the body or organ weight of the mice was observed.
Collapse
|
156
|
Yang J, Li H, Chen YY, Wang XJ, Shi GY, Hu QS, Kang XL, Lu Y, Tang XM, Guo QS, Yi J. Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic Biol Med 2004; 37:2027-41. [PMID: 15544921 DOI: 10.1016/j.freeradbiomed.2004.09.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 09/17/2004] [Indexed: 01/03/2023]
Abstract
Cellular oxidation/reduction state affects the cytotoxicity of a number of chemotherapeutic agents, including arsenic trioxide. Reactive oxygen species (ROS), the major intracellular oxidants, may be a determinant of cellular susceptibility to arsenic. Our previous studies showed that a naphthoquinone and an anthraquinone (emodin) displayed the capability of producing ROS and facilitating arsenic cytotoxicity in both leukemia and solid tumor cell lines. We therefore attempted to test emodin and several other kinds of anthraquinone derivatives on EC/CUHK1, a cell line derived from esophageal carcinoma, and on a nude mouse model, with regard to their effects and mechanisms. Results showed that anthraquinones could produce ROS and sensitize tumor cells to arsenic both in vivo and in vitro. The combination of emodin and arsenic promoted the major apoptotic signaling events, i.e., the collapse of the mitochondrial transmembrane potential, the release of cytochrome c, and the activation of caspases 9 and 3. Meanwhile a combination of emodin and arsenic suppressed the activation of transcription factor NF-kappaB and downregulated the expression of a NF-kappaB-specific antiapoptotic protein, survivin. These two aspects could be antagonized by the antioxidant N-acetyl-L-cysteine. Therefore anthraquinones exert their effects via a ROS-mediated dual regulation, i.e., the enhancement of proapoptosis and the simultaneous inhibition of antiapoptosis. In vivo study showed that emodin made the EC/CUHK1 cell-derived tumors more sensitive to arsenic trioxide with no additional systemic toxicity and side effects. Taken together, these results suggest an innovative and safe chemotherapeutic strategy that uses natural anthraquinone derivatives as ROS generators to increase the susceptibility of tumor cells to cytotoxic therapeutic agents.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cell Biology, Shanghai Second Medical University, 280 Chongqing Road, Shanghai 200025, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Lin CJ, Wu MH, Hsueh YM, Sun SSM, Cheng AL. Tissue distribution of arsenic species in rabbits after single and multiple parenteral administration of arsenic trioxide: tissue accumulation and the reversibility after washout are tissue-selective. Cancer Chemother Pharmacol 2004; 55:170-8. [PMID: 15322825 DOI: 10.1007/s00280-004-0872-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/23/2004] [Indexed: 10/26/2022]
Abstract
Parenteral administration of arsenic trioxide has recently been recognized as an effective antineoplastic therapy, especially for the treatment of acute promyelocytic leukemia. Its efficacy and toxicity are concentration-dependent and are related to the fractions of different arsenic species and the degree of methylation. In this study, arsenic trioxide was given parenterally to rabbits as a single dose or as a daily dose (0.2, 0.6, and 1.5 mg/kg) for 30 days. The blood and organ concentrations of the arsenic species, including As(III), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA), were studied on day 1 (single-dose study), day 30 (multiple dosing study), and day 60 (reversibility study). As(III) was the major detectable arsenic species in the blood. The pharmacokinetic parameters (total clearance, area under the curve, etc.) for As(III) indicated a limit for the capacity to eliminate As(III) at the dose of 1.5 mg/kg, and were quite the same after a single dose or chronic multiple dosing. In tissues, DMA was found to be the major metabolite and the concentrations of DMA, As(III), and MMA in general increased with the dose, with the increase most significant at a dose of 1.5 mg/kg. However, normalized tissue distribution of As(III) in the kidney on day 1, but not on day 30, was nonlinear. Along with decreased levels of As(III) and increased levels of DMA, an inducible capacity for methylating As(III) to DMA after chronic dosing in kidney was suggested. The tissue concentration of DMA was highest in lung and liver, and the normalized tissue distributions in liver on day 30 were nonlinear, suggesting a limit in eliminating DMA after a chronic high load of As(III). Tissue concentrations of As(III), DMA, and MMA in bladder increased dramatically after chronic dosing. However, after washout for 30 days, As(III), DMA, and MMA were all undetectable in bladder and liver. However, As(III) in hair and low levels of DMA in lung, kidney, heart and hair were still detected. In conclusion, in rabbits we found a similar pharmacological profile after a single dose or chronic multiple dosing of parenteral arsenic trioxide, with a limiting metabolizing capacity at a dose of 1.5 mg/kg. Tissue accumulation of arsenic species, mainly DMA, and its reversibility after washout were tissue-selective. The potential for late toxicities of arsenic trioxide in organs with a significant tendency for arsenic accumulation with low reversibility should be closely monitored.
Collapse
Affiliation(s)
- Chun-Jung Lin
- Graduate Institute of Clinical Pharmacy and School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
158
|
Yi J, Yang J, He R, Gao F, Sang H, Tang X, Ye RD. Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res 2004; 64:108-16. [PMID: 14729614 DOI: 10.1158/0008-5472.can-2820-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although arsenic trioxide (As(2)O(3)) induces apoptosis in a relatively wide spectrum of tumors, the sensitivity of different cell types to this treatment varies to a great extent. Because reactive oxygen species (ROS) are critically involved in As(2)O(3)-induced apoptosis, we attempted to explore the possibility that elevating the cellular ROS level might be an approach to facilitate As(2)O(3)-induced apoptosis. Emodin, a natural anthraquinone derivative, was selected because its semiquinone structure is likely to increase the generation of intracellular ROS. Its independent and synergistic effects with As(2)O(3) in cytotoxicity were studied, and the plausible signaling mechanism was investigated in HeLa cells. Cell Proliferation Assay and flow cytometry were used to assess cell viability and apoptosis. Electrophoretic mobility shift assay, luciferase reporter assay, and Western blotting were performed to analyze signaling alteration. The results demonstrated that coadministration of emodin, at low doses of 0.5-10 micro M, with As(2)O(3) enhanced As(2)O(3)-rendered cytotoxicity on tumor cells, whereas these treatments caused no detectable proproliferative or proapoptotic effects on nontumor cells. ROS generation was increased, and activation of nuclear factor kappaB and activator protein 1 was suppressed by coadministration. All enhancements by emodin could be abolished by the antioxidant N-acetyl-L-cysteine. Therefore, we concluded that emodin sensitized HeLa cells to As(2)O(3) via generation of ROS and ROS-mediated inhibition on two major prosurvival transcription factors, nuclear factor kappaB and activator protein 1. This result allows us to propose a novel strategy in chemotherapy that uses mild ROS generators to facilitate apoptosis-inducing drugs whose efficacy depends on ROS.
Collapse
Affiliation(s)
- Jing Yi
- Department of Cell Biology, Shanghai Second Medical University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
159
|
Hayakawa F, Privalsky ML. Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 2004; 5:389-401. [PMID: 15093545 DOI: 10.1016/s1535-6108(04)00082-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 02/05/2004] [Accepted: 03/01/2004] [Indexed: 12/13/2022]
Abstract
The promyelocytic leukemia (PML) protein is a potent growth suppressor and proapototic factor, whereas aberrant fusions of PML and retinoic acid receptor (RAR)-alpha are causal agents in human acute promyelocytic leukemia. Arsenic trioxide (As(2)O(3)) treatment induces apoptosis in acute promyelocytic leukemia cells through an incompletely understood mechanism. We report here that As(2)O(3) treatment induces phosphorylation of the PML protein through a mitogen-activated protein (MAP) kinase pathway. Increased PML phosphorylation is associated with increased sumoylation of PML and increased PML-mediated apoptosis. Conversely, MAP kinase cascade inhibitors, or the introduction of phosphorylation or sumoylation-defective mutations of PML, impair As(2)O(3)-mediated apoptosis by PML. We conclude that phosphorylation by MAP kinase cascades potentiates the antiproliferative functions of PML and helps mediate the proapoptotic effects of As(2)O(3).
Collapse
Affiliation(s)
- Fumihiko Hayakawa
- Section of Microbiology, Division of Biological Sciences, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
160
|
Ivanov VN, Hei TK. Arsenite sensitizes human melanomas to apoptosis via tumor necrosis factor alpha-mediated pathway. J Biol Chem 2004; 279:22747-58. [PMID: 15028728 PMCID: PMC4389905 DOI: 10.1074/jbc.m314131200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arsenic is a well established human carcinogen and is associated with a variety of cancers including those of the skin. Paradoxically, arsenic has also been used, amid at low doses, in the treatment of leukemia for over a century. Here we demonstrate that low to moderate concentrations of arsenite (2-10 microm) that has little or no effect on normal melanocytes may induce apoptosis of human melanomas including highly metastatic ones despite their low surface Fas levels. The two prerequisites that dictate apoptotic response of melanomas upon arsenite treatment are low nuclear NF-kappaB activity and an endogenous expression of tumor necrosis factor alpha. Under these conditions, melanoma cells acquired sensitivity to tumor necrosis factor alpha-mediated killing. On the other hand, signaling pathways including those of phosphatidylinositol 3-kinase-AKT, MEK-ERK, and JNK play a protective role against arsenite-induced oxidative stress and apoptosis in melanoma cells. Suppression of these pathways dramatically accelerates arsenite-induced apoptosis. Taken together, these data could provide potential approaches to sensitize melanomas to the cytotoxic effects of arsenite through modulating the signaling pathways.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Center for Radiological Research, College of Physicians and Surgeons, Mailman School of Public Health, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
161
|
Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res 2003; 290:234-45. [PMID: 14567983 DOI: 10.1016/s0014-4827(03)00341-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inorganic arsenic is a well-documented human carcinogen that targets the skin. The induction of oxidative stress, as shown with arsenic, may have a bearing on the carcinogenic mechanism of this metalloid. The transcription factor Nrf2 is a key player in the regulation of genes encoding for many antioxidative response enzymes. Thus, the effect of inorganic arsenic (as sodium arsenite) on Nrf2 expression and localization was studied in HaCaT cells, an immortalized human keratinocyte cell line. We found, for the first time, that arsenic enhanced cellular expression of Nrf2 at the transcriptional and protein levels and activated expression of Nrf2-related genes in these cells. In addition, arsenic exposure caused nuclear accumulation of Nrf2 in association with downstream activation of Nrf2-mediated oxidative response genes. Arsenic simultaneously increased the expression of Keap1, a regulator of Nrf2 activity. The coordinated induction of Keap1 expression and nuclear Nrf2 accumulation induced by arsenic suggests that Keap1 is important to arsenic-induced Nrf2 activation. Furthermore, when cells were pretreated with scavengers of hydrogen peroxide (H(2)O(2)) such as catalase-polyethylene glycol (PEG-CAT) or Tiron, arsenic-induced nuclear Nrf2 accumulation was suppressed, whereas CuDIPSH, a cell-permeable superoxide dismutase (SOD) mimic compound that produces H(2)O(2) from superoxide (*O(2)(-)), enhanced Nrf2 nuclear accumulation. These results indicate that H(2)O(2), rather than *O(2)(-), is the mediator of nuclear Nrf2 accumulation. Additional study showed that arsenic causes increased cellular H(2)O(2) production and that H(2)O(2) itself has the ability to increase Nrf2 expression at both the transcription and protein levels in HaCaT cells. Taken together, these data clearly show that arsenic increases Nrf2 expression and activity at multiple levels and that H(2)O(2) is one of the mediators of this process.
Collapse
Affiliation(s)
- Jingbo Pi
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, NCI at NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
162
|
Lala MA, Ioannou PV. The reaction of allyl and benzylarsonic acids with thiols: mechanistic aspects and implications for dioxygen activation by trivalent arsenic compounds. J Inorg Biochem 2003; 97:331-9. [PMID: 14568237 DOI: 10.1016/s0162-0134(03)00264-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of allyl and benzylarsonic acids with thiophenol gives not only the expected diphenyl alkyldithioarsonites and diphenyl disulfide but also various other compounds arising from the decomposition at the arsenic(V) oxidation level (the arsonic acids) by thiophenol and at the arsenic(III) oxidation level (mainly the alkyldithioarsonites) by thiophenol and by dissolved dioxygen. The reaction of these arsonic acids with 4-nitrothiophenol, which is not oxidized by dioxygen, revealed that the arsenic(III) of these alkyldithioarsonites is the active atom towards dioxygen. However, the reaction of allyl, benzyl, and 2-picolylarsonic acids with DL-penicillamine gives the expected products with no or very small oxidative decomposition. The decomposition pathways of allyl and benzylarsonic acids were elucidated. The results are briefly discussed in the contexts of the use of arsonic acids in chemotherapy and the ability of arsenic(III) compounds to generate reactive oxygen species.
Collapse
Affiliation(s)
- Maria A Lala
- Department of Chemistry, University of Patras, 26500, Patras, Greece.
| | | |
Collapse
|
163
|
Abstract
Although the carcinogenicity of arsenic has been well established, the underlying molecular mechanisms have not yet been fully identified. Accumulating evidence indicates that the alteration of cellular signal transduction is directly related to the carcinogenesis of arsenic. This review focuses on recent advances in arsenic-induced signal transduction, including reactive oxygen species (ROS) production, tyrosine phosphorylation, MAPK signaling, NF-kappaB activation, cell cycle arrest, and apoptosis.
Collapse
Affiliation(s)
- Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
164
|
Abstract
Arsenic is a metalloid whose name conjures up images of murder. Nonetheless, certain prokaryotes use arsenic oxyanions for energy generation, either by oxidizing arsenite or by respiring arsenate. These microbes are phylogenetically diverse and occur in a wide range of habitats. Arsenic cycling may take place in the absence of oxygen and can contribute to organic matter oxidation. In aquifers, these microbial reactions may mobilize arsenic from the solid to the aqueous phase, resulting in contaminated drinking water. Here we review what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature.
Collapse
Affiliation(s)
- Ronald S Oremland
- U.S. Geological Survey, Mailstop 480, 345 Middlefield Road, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
165
|
He Z, Ma WY, Liu G, Zhang Y, Bode AM, Dong Z. Arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2, and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. J Biol Chem 2003; 278:10588-93. [PMID: 12529330 DOI: 10.1074/jbc.m208581200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arsenite is known to be an environmental human carcinogen. However, the mechanism of action of this compound in skin carcinogenesis is not completely clear. Here, we provide evidence that arsenite can induce phosphorylation of histone H3 at serine 10 in a time- and dose-dependent manner in JB6 Cl 41 cells. Arsenite induces phosphorylation of Akt1 at serine 473 and increases Akt1 activity. A dominant-negative mutant of Akt1 inhibits the arsenite-induced phosphorylation of histone H3 at serine 10. Additionally, active Akt1 kinase strongly phosphorylates histone H3 at serine 10 in vitro. The arsenite-induced phosphorylation of histone H3 at serine 10 was almost completely blocked by a dominant-negative mutant of extracellular signal-regulated kinase 2 and the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD98059. N- or C-terminal mutant mitogen- and stress-activated protein kinase 1 or its inhibitor H89 had no effect on arsenite-induced phosphorylation of histone H3 at serine 10 in JB6 Cl 41 cells. However, cells deficient in p90 ribosomal S6 kinase 2 (Rsk2(-/-)) totally block this phosphorylation in a dose- and time-dependent manner. Taken together, these results suggested that arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2 and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1.
Collapse
Affiliation(s)
- Zhiwei He
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | | | | | | | |
Collapse
|
166
|
Gortzi O, Antimisiaris SG, Klepetsanis P, Papadimitriou E, Ioannou PV. Arsonoliposomes: effect of arsonolipid acyl chain length and vesicle composition on their toxicity towards cancer and normal cells in culture. Eur J Pharm Sci 2003; 18:175-83. [PMID: 12594011 DOI: 10.1016/s0928-0987(02)00259-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Arsonolipid-containing liposomes were investigated in order to characterize the influence of the lipid acyl-chain length and liposome composition on cytotoxicity. Three types of cancer cells (HL-60, C6 and GH3), and two types of normal cells (HUVEC and RAME) were used. Liposomes containing the lauroyl, myristoyl and stearoyl side chain arsonolipids (with different lipid compositions) were incubated with a given number of cells and cell viability was estimated (MTT assay and trypan blue exclusion). Morphological studies were also performed in some cases. In addition, the interaction between some of the prepared arsonoliposomes and HUVEC cells was assessed. Results reveal that all the studied arsonoliposomes cause a dose dependent inhibition of survival in all three malignant cell lines studied (initiated at 10(-6) M). The corresponding toxicity against normal cells (HUVEC and RAME) is much lower for all arsonoliposomes, except for the lauroyl side chain arsonoliposomes which were demonstrated to be relatively toxic towards normal cells, especially RAME. The microscopic observations that these vesicles possibly cause apoptosis of most cell types studied, as well as the different speed of their cytotoxic activity, imply a different mechanism of action for this arsonoliposome type. Taking the results of this study in conjunction with our previous results on arsonoliposome physical stability and cytotoxicity, it is recommended that palmitoyl-arsonolipid arsonoliposomes be used for further investigations in vivo towards the development of an anticancer product.
Collapse
Affiliation(s)
- Olga Gortzi
- Department of Pharmacy, University of Patras, Rio 26500, Patras, Greece
| | | | | | | | | |
Collapse
|
167
|
Abstract
Despite its many therapeutic qualities, arsenic trioxide has been more commonly remembered as Madame Bovary's poison than as an anticancer drug. The ability of arsenic trioxide to treat acute promyelocytic leukaemia has radically changed this view, providing new insights into the pathogenesis of this malignancy and raising hopes that arsenicals might be useful in treating other cancers.
Collapse
MESH Headings
- Animals
- Arsenic Trioxide
- Arsenicals/history
- Arsenicals/therapeutic use
- Cell Differentiation
- China
- Europe
- Gene Expression Regulation, Neoplastic
- History, 15th Century
- History, 16th Century
- History, 18th Century
- History, 20th Century
- History, 21st Century
- History, Ancient
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Oxides/history
- Oxides/therapeutic use
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/metabolism
- Transcription Factors/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Jun Zhu
- CNRS UPR 9051, Laboratoire associé du comité de Paris de la ligue contre le cancer, affilié à l'université de Paris VII, Hôpital St Louis, 1 avenue C. Vellefaux, 75475 Paris cedex 10, France
| | | | | | | |
Collapse
|