151
|
Zahra M, Chota A, Abrahamse H, George BP. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:10931. [PMID: 37446109 DOI: 10.3390/ijms241310931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is a complex and diverse disease characterized by the uncontrolled growth of abnormal cells in the body. It poses a significant global public health challenge and remains a leading cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT) has emerged as a potential treatment for various types of cancer, including skin, lung, bladder, and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents (PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic purposes has a long history dating back thousands of years and continues to be an integral part of healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species (ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future research. Nanotechnology has also played a pivotal role in medical advancements, particularly in the development of targeted drug delivery systems. Therefore, this review explores the potential of utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the scientific potential of plant-based compounds for PDT, we can pave the way for innovative and sustainable treatment strategies.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| |
Collapse
|
152
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
153
|
Saeed HK, Jarman PJ, Sreedharan S, Mowll R, Auty AJ, Chauvet AAP, Smythe CGW, de la Serna JB, Thomas JA. From Chemotherapy to Phototherapy - Changing the Therapeutic Action of a Metallo-Intercalating Ru II -Re I Luminescent System by Switching its Sub-Cellular Location. Chemistry 2023; 29:e202300617. [PMID: 37013945 PMCID: PMC10946911 DOI: 10.1002/chem.202300617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/05/2023]
Abstract
The synthesis of a new heterodinuclear ReI RuII metallointercalator containing RuII (dppz) and ReI (dppn) moieties is reported. Cell-free studies reveal that the complex has similar photophysical properties to its homoleptic M(dppz) analogue and it also binds to DNA with a similar affinity. However, the newly reported complex has very different in-cell properties to its parent. In complete contrast to the homoleptic system, the RuII (dppz)/ReI (dppn) complex is not intrinsically cytotoxic but displays appreciable phototoxic, despite both complexes displaying very similar quantum yields for singlet oxygen sensitization. Optical microscopy suggests that the reason for these contrasting biological effects is that whereas the homoleptic complex localises in the nuclei of cells, the RuII (dppz)/ReI (dppn) complex preferentially accumulates in mitochondria. These observations illustrate how even small structural changes in metal based therapeutic leads can modulate their mechanism of action.
Collapse
Affiliation(s)
- Hiwa K. Saeed
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Sreejesh Sreedharan
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
- School of Human ScienceUniversity of DerbyDerbyDE22 1GBUK
| | - Rachel Mowll
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | | | | | - Carl G. W. Smythe
- Department of Biomedical ScienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Jorge Bernardino de la Serna
- Faculty of MedicineNational Heart and Lung InstituteImperial CollegeLondonSW7 2AZUK
- Central Laser FacilityRutherford Appleton LaboratoryMRC-Research Complex at Harwell Science and Technology Facilities CouncilHarwellOX11 0FAUK
| | - Jim A. Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
154
|
Martin MI, Pham TN, Ward KN, Rice AT, Hertler PR, Yap GPA, Gilmartin PH, Rosenthal J. Mapping the influence of ligand electronics on the spectroscopic and 1O 2 sensitization characteristics of Pd(II) biladiene complexes bearing phenyl-alkynyl groups at the 2- and 18-positions. Dalton Trans 2023; 52:7512-7523. [PMID: 37199710 PMCID: PMC10263192 DOI: 10.1039/d3dt00691c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment for certain cancers that proceeds via sensitization of ground state 3O2 to generate reactive 1O2. Classic macrocyclic tetrapyrrole ligand scaffolds, such as porphyrins and phthalocyanines, have been studied in detail for their 1O2 photosensitization capabilities. Despite their compelling photophysics, these systems have been limited in PDT applications because of adverse biological side effects. Conversely, the development of non-traditional oligotetrapyrrole ligands metalated with palladium (Pd[DMBil1]) have established new candidates for PDT that display excellent biocompatibility. Herein, the synthesis, electrochemical, and photophysical characterization of a new family of 2,18-bis(phenylalkynyl)-substituted PdII 10,10-dimethyl-5,15-bis(pentafluorophenyl)-biladiene (Pd[DMBil2-R]) complexes is presented. These second generation biladienes feature extended conjugation relative to previously characterized PdII biladiene scaffolds (Pd[DMBil1]). We show that these new derivatives can be prepared in good yield and, that the electronic nature of the phenylalkynyl appendages dramatically influence the PdII biladiene photophysics. Extending the conjugation of the Pd[DMBil1] core through installation of phenylacetylene resulted in a ∼75 nm red-shift of the biladiene absorption spectrum into the phototherapeutic window (600-900 nm), while maintaining the PdII biladiene's steady-state spectroscopic 1O2 sensitization characteristics. Varying the electronics of the phenylalkyne groups via installation of electron donating or withdrawing groups dramatically influences the steady-state spectroscopic and photophysical properties of the resulting Pd[DMBil2-R] family of complexes. The most electron rich variants (Pd[DMBil2-N(CH3)2]) can absorb light as far red as ∼700 nm but suffer from significantly reduced ability to sensitize formation of 1O2. By contrast, Pd[DMBil2-R] derivatives bearing electron withdrawing functionalities (Pd[DMBil2-CN] and Pd[DMBil2-CF3]) display 1O2 quantum yields above 90%. The collection of results we report suggest that excited state charge transfer from more electron-rich phenyl-alkyne appendages to the electron deficient biladiene core circumvents triplet sensitization. The spectral and redox properties, as well as the triplet sensitization efficiency of each Pd[DMBil2-R] derivative is considered in relation to the Hammett value (σp) for each biladiene's R-group. More broadly, the results reported in this study clearly demonstrate that biladiene redox properties, spectral properties, and photophysics can be perturbed greatly by relatively minor alterations to biladiene structure.
Collapse
Affiliation(s)
- Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Kaytlin N Ward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Anthony T Rice
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Philip H Gilmartin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
155
|
Herrera-Ramírez P, Berger SA, Josa D, Aguilà D, Caballero AB, Fontova P, Soto-Cerrato V, Martínez M, Gamez P. Steric hindrance, ligand ejection and associated photocytotoxic properties of ruthenium(II) polypyridyl complexes. J Biol Inorg Chem 2023; 28:403-420. [PMID: 37059909 PMCID: PMC10149480 DOI: 10.1007/s00775-023-01998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
Two ruthenium(II) polypyridyl complexes were prepared with the {Ru(phen)2}2+ moiety and a third sterically non-hindering bidentate ligand, namely 2,2'-dipyridylamine (dpa) and N-benzyl-2,2'-dipyridylamine (Bndpa). Hence, complexes [Ru(phen)2(dpa)](PF6)2 (1) and [Ru(phen)2(Bndpa)](PF6)2 (2) were characterized and their photochemical behaviour in solution (acetonitrile and water) was subsequently investigated. Compounds 1 and 2, which do not exhibit notably distorted octahedral coordination environments, contrarily to the homoleptic "parent" compound [Ru(phen)3](PF6)2, experience two-step photoejection of the dpa and Bndpa ligand upon irradiation (1050-430 nm) for several hours. DNA-binding studies revealed that compounds 1 and 2 affect the biomolecule differently upon irradiation; while 2 solely modifies its electrophoretic mobility, complex 1 is also capable of cleaving it. In vitro cytotoxicity studies with two cancer-cell lines, namely A549 (lung adenocarcinoma) and A375 (melanoma), showed that both 1 and 2 are not toxic in the dark, while only 1 is significantly cytotoxic if irradiated, 2 remaining non-toxic under these conditions. Light irradiation of the complex cation [Ru(phen)2(dpa)]2+ leads to the generation of transient Ru species that is present in the solution medium for several hours, and that is significantly cytotoxic, ultimately producing non-toxic free dpa and [Ru(phen)(OH2)2]2+.
Collapse
Affiliation(s)
- Piedad Herrera-Ramírez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Sarah Alina Berger
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Dana Josa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Ana B Caballero
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Chemistry, Universidad de Burgos, 09001, Burgos, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
156
|
Linares IAP, Uría MS, Graminha MAS, Iglesias BA, Velásquez AMA. Antileishmanial activity of tetra-cationic porphyrins with peripheral Pt(II) and Pd(II) complexes mediated by photodynamic therapy approaches. Photodiagnosis Photodyn Ther 2023:103641. [PMID: 37268042 DOI: 10.1016/j.pdpdt.2023.103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Leishmaniasis is a seriously neglected disease that impacts more than one billion people in endemic areas of the globe. Several drawbacks are associated with the currently existing drugs for the treatment as low effectiveness, toxicity, and the emergence of resistant strains that demonstrates the importance of looking for novel therapeutic alternatives. Photodynamic therapy (PDT) is a promising novel alternative for cutaneous leishmaniasis treatment because its topical application avoids potential side effects generally associated with oral/parenteral application. A light-sensitive compound known as photosensitizer (PS) interacts with light and molecular oxygen to generate reactive oxygen species (ROS), which promote cell death by oxidative stress through PDT approaches. Here, for the first time, we demonstrate the antileishmanial effect of tetra-cationic porphyrins with peripheral Pt(II)- and Pd(II)-polypyridyl complexes using PDT. The isomeric tetra-cationic porphyrins in the meta positions, 3-PtTPyP, and 3-PdTPyP, exhibited the highest antiparasitic activity against promastigote (IC50-pro = 41.8 nM and 46.1 nM, respectively) and intracellular amastigote forms (IC50-ama = 27.6 nM and 38.8 nM, respectively) of L. amazonensis under white light irradiation (72 J cm-2) with high selectivity (SI > 50) for both forms of parasites regarding mammalian cells. In addition, these PS induced the cell death of parasites principally by a necrotic process in the presence of white light by mitochondrial and acidic compartments accumulation. This study showed that porphyrins 3-PtTPyP and 3-PdTPyP displayed a promising antileishmanial-PDT activity with potential application for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Irwin A P Linares
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Maricely Sánchez Uría
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marcia A S Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Angela M A Velásquez
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
157
|
Wang Z, Jin A, Yang Z, Huang W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS NANO 2023; 17:8935-8965. [PMID: 37126728 PMCID: PMC10395262 DOI: 10.1021/acsnano.3c02303] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.
Collapse
Affiliation(s)
- Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
158
|
Fu S, Wang M, Li B, Li X, Cheng J, Zhao H, Zhang H, Dong A, Lu W, Yang X. Bionic natural small molecule co-assemblies towards targeted and synergistic Chemo/PDT/CDT. Biomater Res 2023; 27:43. [PMID: 37161611 PMCID: PMC10169343 DOI: 10.1186/s40824-023-00380-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/15/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Multi-component nano-delivery systems based on chemotherapy (chemo)- photodynamic therapy (PDT)- chemodynamic therapy (CDT) have gained increased attention as a promising strategy to improve clinical outcomes in cancer treatment. However, there remains a challenge in developing biodegradable, biocompatible, less toxic, yet highly efficient multicomponent nanobased drug delivery systems (DDS). Here, our study presents the screening and development of a novel DDS based on co-assemblies natural small molecule (NSMs). These molecules (oleanolic acid, and betulinic acid) are combined with photosensitizers Chlorine6 (Ce6) and Cu2+ that are encapsulated by tumor cell membranes. This nanocarrier encapsulated in tumor cell membranes achieved good tumor targeting and a significant improvement in tumor accumulation. METHODS A reprecipitation method was used to prepare the co-assembled nanocarrier, followed by the introduction of Cu2 + into the DDS (OABACe6 NPs). Then, by wrapping the surface of NPs with the cell membranes of 4T1 which is a kind of mouse breast cancer cells (CM@OABACe6/Cu NPs). and analysis of its structure and size distribution with UV-Vis, XPS, FT-IR, SEM, TEM, and DLS. The synergistic effects of in vitro chemotherapy, CDT and PDT and targeting were also validated by cellular and animal studies. RESULTS It was shown that CM@OABACe6/Cu NPs achieved good tumor targeting and a significant improvement in tumor accumulation. In the composite nano-assembly, the NSMs work together with the Ce6 to provide effective and safe chemo and PDT. Moreover, the effect of reduced PDT due to the depletion of reactive oxygen species (ROS) by excess glutathione (GSH) in the tumor can be counteracted when Cu2 + is introduced. More importantly, it also confers CDT through a Fenton-like catalytic reaction with H2O overexpressed at the tumor site. CONCLUSIONS By constructing CM@OABACe6/Cu NPs with homologous targeting, we create a triple synergistic platform for cancer therapy using PDT, chemo, and CDT. We propose here a novel combinatorial strategy for designing more naturally co-assembled small molecules, especially for the development of multifunctional synergistic therapies that utilize NSMs.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Mingao Wang
- Department of Nephrology, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, 1088 Meiling Street, Wanli District, Nanchang, 330004, No, China
| | - Xu Li
- Department of Ophthalmology, the Second Hospital of Jilin University, Nanguan District, No. 4026 Yatai Street, Changchun, 130041, China
| | - Jianjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Yubei District, No. 188 Jihuayuan South Road, Chongqing, 401135, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Aijun Dong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Yubei District, No. 188 Jihuayuan South Road, Chongqing, 401135, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, 150001, China.
- Chongqing Research Institute, Harbin Institute of Technology, Yubei District, No. 188 Jihuayuan South Road, Chongqing, 401135, China.
| |
Collapse
|
159
|
Sarabando SN, Palmeira A, Sousa ME, Faustino MAF, Monteiro CJP. Photomodulation Approaches to Overcome Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:682. [PMID: 37242465 PMCID: PMC10221556 DOI: 10.3390/ph16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.
Collapse
Affiliation(s)
- Sofia N. Sarabando
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | | | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| |
Collapse
|
160
|
Sun X, Li M, Wang P, Bai Q, Cao X, Mao D. Recent Organic Photosensitizer Designs for Evoking Proinflammatory Regulated Cell Death in Antitumor Immunotherapy. SMALL METHODS 2023; 7:e2201614. [PMID: 36960933 DOI: 10.1002/smtd.202201614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/12/2023] [Indexed: 05/17/2023]
Abstract
In the past decades, immunotherapy has achieved a series of clinical successes in the field of cancer. However, existing therapeutic options usually show a low immune response to solid tumors caused by immunosuppressive "cold" tumor microenvironment (TME). Several types of proinflammatory regulated cell death (RCD), mainly including ferroptosis and pyroptosis, have been studied recently, which can provide proinflammatory signals and immunogenicity necessary for remodeling TME and activating an antitumor immune response. A variety of chemotherapeutic drugs are proven to be effective in the proinflammatory RCD induction of tumor cells, but several adverse effects and intrinsic drug resistance usually occur in the therapeutic process, greatly hindering their further clinical application. The emerging organic photosensitizer (PS)-based materials open new possibilities to effectively activate proinflammatory RCD through precise spatiotemporal regulation of intracellular reactive oxygen species-associated signaling pathways, which can overcome many challenges encountered in current proinflammatory RCD-mediated immunotherapy. In this review, the recent design strategies of PS probes are detailly summarized and their potential advantages for tumor-specific proinflammatory RCD induction are discussed. Moreover, the representative examples in cancer immunotherapy are highlighted and future perspectives in this emerging field are proposed.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Min Li
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qingqing Bai
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Duo Mao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
161
|
Fu S, Yang X. Recent advances in natural small molecules as drug delivery systems. J Mater Chem B 2023; 11:4584-4599. [PMID: 37084077 DOI: 10.1039/d3tb00070b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, No. 188 Jihuayuan South Road, Yubei District, Chongqing, 401135, China
| |
Collapse
|
162
|
Mušković M, Pokrajac R, Malatesti N. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals (Basel) 2023; 16:613. [PMID: 37111370 PMCID: PMC10143496 DOI: 10.3390/ph16040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.
Collapse
Affiliation(s)
| | | | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.M.); (R.P.)
| |
Collapse
|
163
|
Musib D, Upadhyay A, Pal M, Raza MK, Saha I, Kunwar A, Roy M. Red light-activable biotinylated copper(II) complex-functionalized gold nanocomposite (Biotin-Cu@AuNP) towards targeted photodynamic therapy. J Inorg Biochem 2023; 243:112183. [PMID: 36933341 DOI: 10.1016/j.jinorgbio.2023.112183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
We report the synthesis and characterization of red-light activable gold nanoparticle functionalized with biotinylated copper(II) complex of general molecular formula, [Cu(L3)(L6)]-AuNPs (Biotin-Cu@AuNP), where L3 = N-(3-((E)-3,5-di-tert-butyl-2-hydroxybenzylideneamino)-4-hydroxyphenyl)-5-((3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide, L6 = 5-(1,2-dithiolan-3-yl)-N-(1,10-phenanthrolin-5-yl)pentanamide, which was explored for their photophysical, theoretical and photo-cytotoxic potentials. The nanoconjugate exhibits differential uptake in biotin positive and biotin negative cancer cells as well as normal cells. The nanoconjugate also shows remarkable photodynamic activity against biotin positive A549 (IC50: 13 μg/mL in red light; >150 μg/mL in dark) and HaCaT (IC50: 23 μg/mL in red light; >150 μg/mL in dark) cells under red light (600-720 nm, 30 Jcm-2) irradiation, with significantly high photo-indices (PI>15). The nanoconjugate is less toxic to HEK293T (biotin negative) and HPL1D (normal) cells. Confocal microscopy confirms preferential mitochondrial and partly cytoplasmic localization of Biotin-Cu@AuNP in A549 cells. Several photo-physical and theoretical studies reveal the red light-assisted generation of singlet oxygen (1O2) (Ф (1O2) =0.68) as a reactive oxygen species (ROS) which results in remarkable oxidative stress and mitochondrial membrane damage, leading to caspase 3/7-dependent apoptosis of A549 cells. Overall, the nanocomposite (Biotin-Cu@AuNP) exhibiting red light-assisted targeted photodynamic activity has emerged as the ideal next generation PDT agents.
Collapse
Affiliation(s)
- Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, CV Raman Avenue, Bangalore 560012, India
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, CV Raman Avenue, Bangalore 560012, India
| | - Indranil Saha
- Department of Physics, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Anushaktinagar, Mumbai 400085, India.
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, India.
| |
Collapse
|
164
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
165
|
Mund NK, Čellárová E. Recent advances in the identification of biosynthetic genes and gene clusters of the polyketide-derived pathways for anthraquinone biosynthesis and biotechnological applications. Biotechnol Adv 2023; 63:108104. [PMID: 36716800 DOI: 10.1016/j.biotechadv.2023.108104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.
Collapse
Affiliation(s)
- Nitesh Kumar Mund
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia
| | - Eva Čellárová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia.
| |
Collapse
|
166
|
Lamy L, François M, Bezdetnaya L, Yakavets I. Phototoxicity of temoporfin-loaded cyclodextrin nanosponges in stroma-rich three-dimensional models of head and neck cancer. Eur J Pharm Biopharm 2023; 184:1-6. [PMID: 36682510 DOI: 10.1016/j.ejpb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Photodynamic therapy is a multistage treatment, in which cancerous and precancerous cells are destroyed by light activation of a drug (photosensitizer). For a long time, high cellular uptake of the photosensitizer was an important indication of efficient PDT, while the role of photosensitizer penetration was unexplored. Recently, we have demonstrated that nanosponges based on hypercrosslinked β-cyclodextrin polymer (β-CDp) can increase drug penetration at the cost of their cellular uptake in multicellular spheroids, paving the way for studying the impact of penetration on PDT response. In the present work, we used β-CDp nanosponges to deliver temoporfin to the depth of stroma-rich head and neck cancer multicellular spheroids and then assess PDT response. Encapsulation of temoporfin in β-CDp nanosponges resulted in increased penetration and more uniform distribution of temoporfin in spheroids, however, was also associated with a two-fold reduction of cellular uptake compared to the free drug. Nevertheless, we demonstrated that β-CDp nanosponges possess similar PDT efficiency as the free drug in stroma-rich head and neck cancer multicellular spheroids. Overall, this study suggests that β-CDp nanosponges are a strong candidate for in vivo studies as they have fewer "off-target" effects while providing a similar therapeutic response.
Collapse
Affiliation(s)
- Laureline Lamy
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France; Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France
| | - Manon François
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France; Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
167
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
168
|
Zhou S, Tian H, Yan J, Zhang Z, Wang G, Yu X, Sang W, Li B, Mok GS, Song J, Dai Y. IR780/Gemcitabine-conjugated metal-phenolic network enhanced photodynamic cancer therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
169
|
Tekade M, Pingale P, Gupta R, Pawar B, Tekade RK, Sharma MC. Recent Advances in Polymer-Based Nanomaterials for Non-Invasive Photothermal Therapy of Arthritis. Pharmaceutics 2023; 15:pharmaceutics15030735. [PMID: 36986596 PMCID: PMC10058747 DOI: 10.3390/pharmaceutics15030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
To date, nanomaterials have been widely used for the treatment and diagnosis of rheumatoid arthritis. Amongst various nanomaterials, polymer-based nanomaterials are becoming increasingly popular in nanomedicine due to their functionalised fabrication and easy synthesis, making them biocompatible, cost-effective, biodegradable, and efficient nanocarriers for the delivery of drugs to a specific target cell. They act as photothermal reagents with high absorption in the near-infrared region that can transform near-infrared light into localised heat with fewer side effects, provide easier integration with existing therapies, and offer increased effectiveness. They have been combined with photothermal therapy to understand the chemical and physical activities behind the stimuli-responsiveness of polymer nanomaterials. In this review article, we provide detailed information regarding the recent advances in polymer nanomaterials for the non-invasive photothermal treatment of arthritis. The synergistic effect of polymer nanomaterials and photothermal therapy has enhanced the treatment and diagnosis of arthritis and reduced the side effects of drugs in the joint cavity. In addition, further novel challenges and future perspectives must be resolved to advance polymer nanomaterials for the photothermal therapy of arthritis.
Collapse
Affiliation(s)
- Muktika Tekade
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Khandwa Road, Indore 452001, Madhya Pradesh, India
- Correspondence: (M.T.); (R.K.T.)
| | - Prashant Pingale
- Department of Pharmaceutics, Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Rachna Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
- Correspondence: (M.T.); (R.K.T.)
| | - Mukesh Chandra Sharma
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Khandwa Road, Indore 452001, Madhya Pradesh, India
| |
Collapse
|
170
|
Gonçalves IS, Lima LR, Berretta AA, Amorim NA, Pratavieira S, Corrêa TQ, Nogueira FAR, Barud HS. Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications. Polymers (Basel) 2023; 15:polym15040987. [PMID: 36850271 PMCID: PMC9968145 DOI: 10.3390/polym15040987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
With the aim of contributing to the development of more efficient materials for wound care, new topical formulations based on bacterial nanocellulose (BNC) hydrogels containing propolis were produced. Characterizations confirmed the incorporation of propolis into the BNC matrix, maintaining its structure and properties. Rheological analysis confirmed that the hydrogels showed thixotropic behavior appropriate for topical application. Chromatographic profiles showed sustained release of propolis biomarkers for at least 20 h. The formulations did not present mutagenicity. For application in photodynamic inactivation (PDI), BNC/propolis hydrogels were prepared with the photosensitizers methylene blue (MB). Spectroscopy and confocal fluorescence microscopy confirmed the interaction of MB and propolis in BNC hydrogels, as well as the formation of a new composite material. In the antibacterial assays, formulations containing MB and propolis significantly reduced Staphylococcus aureus growth. In the presence of light, BNC/MB hydrogels completely inhibited the microorganism. Therefore, the results suggest potential materials for the prevention or treatment of Staphylococcus aureus infections in wounds.
Collapse
Affiliation(s)
- Isabella Salgado Gonçalves
- Laboratório de Biopolímeros e Biomateriais—BioPolMat, University of Araraquara, Araraquara 14801-320, SP, Brazil
- Exact Sciences and Technology Center, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
- Physics Institute of São Carlos, University of São Paulo, São Carlos 05508-060, SP, Brazil
| | - Lais Roncalho Lima
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
- Chemistry Department, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Correspondence: (L.R.L.); (H.S.B.); Tel.: +55-(16)-988-144-338 (L.R.L.); +55-(16)-981-233-935 (H.S.B.)
| | - Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ribeirão, Preto 14020-670, SP, Brazil
| | - Nathaly Alcazar Amorim
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ribeirão, Preto 14020-670, SP, Brazil
| | - Sebastião Pratavieira
- Physics Institute of São Carlos, University of São Paulo, São Carlos 05508-060, SP, Brazil
| | - Thaila Quatrini Corrêa
- Physics Institute of São Carlos, University of São Paulo, São Carlos 05508-060, SP, Brazil
| | | | - Hernane Silva Barud
- Laboratório de Biopolímeros e Biomateriais—BioPolMat, University of Araraquara, Araraquara 14801-320, SP, Brazil
- Correspondence: (L.R.L.); (H.S.B.); Tel.: +55-(16)-988-144-338 (L.R.L.); +55-(16)-981-233-935 (H.S.B.)
| |
Collapse
|
171
|
Kah G, Chandran R, Abrahamse H. Curcumin a Natural Phenol and Its Therapeutic Role in Cancer and Photodynamic Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020639. [PMID: 36839961 PMCID: PMC9962422 DOI: 10.3390/pharmaceutics15020639] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer continues to cause an alarming number of deaths globally, and its burden on the health system is significant. Though different conventional therapeutic procedures are exploited for cancer treatment, the prevalence and death rates remain elevated. These, therefore, insinuate that novel and more efficient treatment procedures are needed for cancer. Curcumin, a bioactive, natural, phenolic compound isolated from the rhizome of the herbaceous plant turmeric, is receiving great interest for its exciting and broad pharmacological properties. Curcumin presents anticancer therapeutic capacities and can be utilized as a photosensitizing drug in cancer photodynamic therapy (PDT). Nonetheless, curcumin's poor bioavailability and related pharmacokinetics limit its clinical utility in cancer treatment. This review looks at the physical and chemical properties, bioavailability, and safety of curcumin, while focusing on curcumin as an agent in cancer therapy and as a photosensitizer in cancer PDT. The possible mechanisms and cellular targets of curcumin in cancer therapy and PDT are highlighted. Furthermore, recent improvements in curcumin's bioavailability in cancer therapy using nanoformulations and delivery systems are presented.
Collapse
|
172
|
Souris JS, Leoni L, Zhang HJ, Pan A, Tanios E, Tsai HM, Balyasnikova IV, Bissonnette M, Chen CT. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:673. [PMID: 36839041 PMCID: PMC9962876 DOI: 10.3390/nano13040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.
Collapse
Affiliation(s)
- Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Ariel Pan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Eve Tanios
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
173
|
Kim J, Park S, Yang H. Wash-free photoelectrochemical DNA detection based on photoredox catalysis combined with electroreduction and light blocking by magnetic microparticles. Talanta 2023; 253:123872. [PMID: 36113336 DOI: 10.1016/j.talanta.2022.123872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
To obtain a sensitive, wash-free photoelectrochemical biosensor based on electron mediation between an electrode and a photoredox catalyst (PC) label, unavoidable O2-related reactions should have no effect or be beneficial, and the rate of electron mediation should depend on the distance between the PC label and electrode. A wash-free photoelectrochemical biosensor that (i) combines photoredox catalysis of a PC label with electrochemical reduction of an electron mediator, and (ii) uses a light-blocking multilayer of magnetic microparticles was developed. O2 participates as an electron acceptor in photoredox catalysis; thus, increasing rather than decreasing the electrochemical signal. Upon photoirradiation from the opposite side of a transparent indium tin oxide (ITO) electrode in contact with the solution, the light intensity in the solution is sharply decreased by the light-blocking multilayer, which increases the contribution of affinity-bound PC labels on the ITO electrode to the electrochemical signal compared to that of unbound PC labels in solution. Utilizing eosin Y (EY2-) and Fe(CN)64- as the PC and electron mediator (i.e., electron donor), respectively, enabled rapid redox cycling based on photoredox catalysis combined with electroreduction. The cathodic charge is mainly related to electron transfer from Fe(CN)64- to excited EY2- (Type I photosensitization), rather than energy transfer from excited EY2- to O2, which generates 1O2 (Type II photosensitization). The developed detection scheme was applied to wash-free detection of a model target DNA. Detection limits of ∼200 pM were obtained in both phosphate-buffered saline and serum without washing. The developed scheme enables simple photoelectrochemical detection.
Collapse
Affiliation(s)
- Jihyeon Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
174
|
Toluidine blue O directly and photodynamically impairs the bioenergetics of liver mitochondria: a potential mechanism of hepatotoxicity. Photochem Photobiol Sci 2023; 22:279-302. [PMID: 36152272 DOI: 10.1007/s43630-022-00312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Toluidine blue O (TBO) is a phenothiazine dye that, due to its photochemical characteristics and high affinity for biomembranes, has been revealed as a new photosensitizer (PS) option for antimicrobial photodynamic therapy (PDT). This points to a possible association with membranous organelles like mitochondrion. Therefore, here we investigated its effects on mitochondrial bioenergetic functions both in the dark and under photostimulation. Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. Our data revealed that, independently of photostimulation, TBO presented affinity for mitochondria. Under photostimulation, TBO increased the protein carbonylation and lipid peroxidation levels (up to 109.40 and 119.87%, respectively) and decreased the reduced glutathione levels (59.72%) in mitochondria. TBO also uncoupled oxidative phosphorylation and photoinactivated the respiratory chain complexes I, II, and IV, as well as the FoF1-ATP synthase complex. Without photostimulation, TBO caused uncoupling of oxidative phosphorylation and loss of inner mitochondrial membrane integrity and inhibited very strongly succinate oxidase activity. TBO's uncoupling effect was clearly seen in intact livers where it stimulated oxygen consumption at concentrations of 20 and 40 μM. Additionally, TBO (40 μM) reduced cellular ATP levels (52.46%) and ATP/ADP (45.98%) and ATP/AMP (74.17%) ratios. Consequently, TBO inhibited gluconeogenesis and ureagenesis whereas it stimulated glycogenolysis and glycolysis. In conclusion, we have revealed for the first time that the efficiency of TBO as a PS may be linked to its ability to photodynamically inhibit oxidative phosphorylation. In contrast, TBO is harmful to mitochondrial energy metabolism even without photostimulation, which may lead to adverse effects when used in PDT.
Collapse
|
175
|
Zhang S, Li Y, Dong R, Li W, Qian Z, Yang Y. All-in-one device for mapping the interactive effects of photodynamic therapy dosimetry in tumor gaseous microenvironment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112645. [PMID: 36608400 DOI: 10.1016/j.jphotobiol.2022.112645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) elicits cell death, vascular damage, or/and anti-tumor host immune response upon activating the administered photosensitive drug by an appropriate light source. Because PDT is heavily dependent on tissue oxygen (O2) in essence, the concentration-dependent impact of O2 on tailoring cellular response to PDT remains an in-depth investigation. As a multifaceted modality, optimal combinations of photosensitizer (PS) concentration, light dose, and O2 delivery are critical to achieve ideal therapeutic outcomes. We herein present a fully integrated all-in-one device for the in vitro assessment of PDT efficacy synchronizing the quantitative control of three PDT disciplines simultaneously, aiming at 1) identifying the influence of varying gaseous microenvironments on PDT; and 2) determining the contribution of each PDT factor and estimating the strength of their synergic effect. The gas-gradient-generating unit for contactless headspace O2 delivery and spatial light control filtering layer in our device could either work as a stand-alone module or combine to screen a range of experimental PDT parameters. By sweeping a total of 128 conditions over four 5-aminolevulinic acid (5-ALA) concentrations, four light dosages, and eight O2 levels in one single experiment, we determined the main effects of the three key PDT agents and highlighted the interactive effect between 5-ALA and light after full-factorial statistical analysis. Our device is not only a versatile tool for predicting PDT efficacy during the translational study but also provides valuable multidimensional information for the interrelation between key PDT factors, which may expedite clinical PDT dosimetry and furnish new insights for the fundamental understanding of photobiological processes.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuewu Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Rui Dong
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
176
|
Rodriguez L, Di Venosa G, Rivas MA, Juarranz A, Sanz-Rodriguez F, Casas A. Ras-transfected human mammary tumour cells are resistant to photodynamic therapy by mechanisms related to cell adhesion. Life Sci 2023; 314:121287. [PMID: 36526044 DOI: 10.1016/j.lfs.2022.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
AIMS Photodynamic therapy (PDT) is a treatment modality for several cancers involving the administration of a tumour-localising photosensitiser (PS) and its subsequent activation by light, resulting in tumour damage. Ras oncogenes have been strongly associated with chemo- and radio-resistance. Based on the described roles of adhesion and cell morphology on drug resistance, we studied if the differences in shape, cell-extracellular matrix and cell-cell adhesion induced by Ras transfection, play a role in the resistance to PDT. MATERIALS AND METHODS We employed the human normal breast HB4a cells transfected with H-RAS and a panel of five PSs. KEY FINDINGS We found that resistance to PDT of the HB4a-Ras cells employing all the PSs, increased between 1.3 and 2.5-fold as compared to the parental cells. There was no correlation between resistance and intracellular PS levels or PS intracellular localisation. Even when Ras-transfected cells present lower adherence to the ECM proteins, this does not make them more sensitive to PDT or chemotherapy. On the contrary, a marked gain of resistance to PDT was observed in floating cells as compared to adhesive cells, accounting for the higher ability conferred by Ras to survive in conditions of decreased cell-extracellular matrix interactions. HB4a-Ras cells displayed disorganisation of actin fibres, mislocalised E-cadherin and vinculin and lower expression of E-cadherin and β1-integrin as compared to HB4a cells. SIGNIFICANCE Knowledge of the mechanisms of resistance to photodamage in Ras-overexpressing cells may lead to the optimization of the combination of PDT with other treatments.
Collapse
Affiliation(s)
- Lorena Rodriguez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Universidad de Buenos Aires, Hospital de Clínicas José de San Martín and CONICET, Ciudad de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Universidad de Buenos Aires, Hospital de Clínicas José de San Martín and CONICET, Ciudad de Buenos Aires, Argentina
| | - Martín A Rivas
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Angeles Juarranz
- Photocarcinogenesis Group, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid e Instituto Ramón y Cajal de Investigación Santitaria (IRYCIS), Madrid, Spain
| | - Francisco Sanz-Rodriguez
- Nanomaterials for Bioimaging Group (NanoBIG), Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Universidad de Buenos Aires, Hospital de Clínicas José de San Martín and CONICET, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
177
|
Boscencu R, Radulea N, Manda G, Machado IF, Socoteanu RP, Lupuliasa D, Burloiu AM, Mihai DP, Ferreira LFV. Porphyrin Macrocycles: General Properties and Theranostic Potential. Molecules 2023; 28:molecules28031149. [PMID: 36770816 PMCID: PMC9919320 DOI: 10.3390/molecules28031149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Despite specialists' efforts to find the best solutions for cancer diagnosis and therapy, this pathology remains the biggest health threat in the world. Global statistics concerning deaths associated with cancer are alarming; therefore, it is necessary to intensify interdisciplinary research in order to identify efficient strategies for cancer diagnosis and therapy, by using new molecules with optimal therapeutic potential and minimal adverse effects. This review focuses on studies of porphyrin macrocycles with regard to their structural and spectral profiles relevant to their applicability in efficient cancer diagnosis and therapy. Furthermore, we present a critical overview of the main commercial formulations, followed by short descriptions of some strategies approached in the development of third-generation photosensitizers.
Collapse
Affiliation(s)
- Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Natalia Radulea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Gina Manda
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania
| | - Isabel Ferreira Machado
- Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Radu Petre Socoteanu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Andreea Mihaela Burloiu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Luis Filipe Vieira Ferreira
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| |
Collapse
|
178
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
179
|
An Overview of Potential Natural Photosensitizers in Cancer Photodynamic Therapy. Biomedicines 2023; 11:biomedicines11010224. [PMID: 36672732 PMCID: PMC9855789 DOI: 10.3390/biomedicines11010224] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. There are several different types of cancer recognized thus far, which can be treated by different approaches including surgery, radiotherapy, chemotherapy or a combination thereof. However, these approaches have certain drawbacks and limitations. Photodynamic therapy (PDT) is regarded as an alternative noninvasive approach for cancer treatment based on the generation of toxic oxygen (known as reactive oxygen species (ROS)) at the treatment site. PDT requires photoactivation by a photosensitizer (PS) at a specific wavelength (λ) of light in the vicinity of molecular oxygen (singlet oxygen). The cell death mechanisms adopted in PDT upon PS photoactivation are necrosis, apoptosis and stimulation of the immune system. Over the past few decades, the use of natural compounds as a photoactive agent for the selective eradication of neoplastic lesions has attracted researchers' attention. Many reviews have focused on the PS cell death mode of action and photonanomedicine approaches for PDT, while limited attention has been paid to the photoactivation of phytocompounds. Photoactivation is ever-present in nature and also found in natural plant compounds. The availability of various laser light setups can play a vital role in the discovery of photoactive phytocompounds that can be used as a natural PS. Exploring phytocompounds for their photoactive properties could reveal novel natural compounds that can be used as a PS in future pharmaceutical research. In this review, we highlight the current research regarding several photoactive phytocompound classes (furanocoumarins, alkaloids, poly-acetylenes and thiophenes, curcumins, flavonoids, anthraquinones, and natural extracts) and their photoactive potential to encourage researchers to focus on studies of natural agents and their use as a potent PS to enhance the efficiency of PDT.
Collapse
|
180
|
Pardo A, Butera A, Giordano A, Gallo S, Pascadopoli M, Scribante A, Albanese M. Photodynamic Therapy in Non-Surgical Treatment of Periodontitis: A Systematic Review and Meta-Analysis. APPLIED SCIENCES 2023; 13:1086. [DOI: 10.3390/app13021086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Aim: to evaluate the adjunctive effects of photodynamic therapy (aPDT) on nonsurgical mechanical treatment in patients with periodontitis. Materials and methods: The search strategy was conducted according to the PRISMA guidelines to answer research questions regarding the effectiveness of aPDT in association with non-surgical periodontal therapy. The mean values and standard deviations were collected by data extraction. A descriptive comparison between aPDT in association with periodontal treatment and periodontal treatment alone was performed, and meta-analyses of PPD were also performed. Both randomized controlled clinical trials (RCTs) and controlled clinical trials (CCTs) were included. Results: Out of 2059 records, 14 articles on adjunctive photodynamic therapy were included because they met the eligibility criteria. A comparison between the aPDT data and the control group showed improved PPD for photodynamic therapy (SMD −0.76, p = 0.003; I2 = 88%). Statistical analysis was then applied to the three PPD subgroups. The first group included studies that used indocyanine green in association with a wavelength of 810 nm (SMD −1.79, p < 0.00001, I2 = 88%). The second group included studies that used phenothiazine chloride at a wavelength of 660 nm (SMD −0.03, p = 0.84, I2 = 0%). The last group included studies that used methylene blue photosensitizers treated with a wavelength 628–670 nm were included (SMD −0.13, p = 0.38; I2 = 0%). Conclusions: despite the limited number of RCTs and the great heterogeneity between them, it can be concluded that aPDT in association with nonsurgical periodontal treatment improved the clinical parameters at 3 months.
Collapse
Affiliation(s)
- Alessia Pardo
- Dentistry and Maxillofacial Surgery Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37121 Verona, Italy
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angela Giordano
- Dentistry and Maxillofacial Surgery Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37121 Verona, Italy
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Massimo Albanese
- Dentistry and Maxillofacial Surgery Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37121 Verona, Italy
| |
Collapse
|
181
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
182
|
de Santana WMO, Pochapski DJ, Pulcinelli SH, Fontana CR, Santilli CV. Polymeric micelles–mediated photodynamic therapy. NANOMATERIALS FOR PHOTODYNAMIC THERAPY 2023:105-139. [DOI: 10.1016/b978-0-323-85595-2.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
183
|
Ndlovu KS, Moloto MJ, Sekhosana KE, Nkambule TTI, Managa M. Porphyrins developed for photoinactivation of microbes in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11210-11225. [PMID: 36515881 DOI: 10.1007/s11356-022-24644-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) is extensively studied as a strategic method to inactivate pathogenic microbes in wastewater for addressing the limitations associated with chlorination, ozonation, and ultraviolet irradiation as disinfection methods, which generally promote the development of resistant genes and harmful by-products such as trihalomethanes. PACT is dependent on photons, oxygen, and a photosensitizer to induce cytotoxic effects on various microbes by generating reactive oxygen species. Photosensitizers such as porphyrins have demonstrated significant microbial inactivation through PACT, hence now explored for wastewater phototreatment. This review aims to evaluate the efficacy of porphyrins and porphyrin-conjugates as photosensitizers for wastewater photoinactivation. Concerns relating to the application of photosensitizers in water treatment are also evaluated. This includes recovery and reuse of the photosensitizer when immobilized on solid supports.
Collapse
Affiliation(s)
- Knowledge Siyabonga Ndlovu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Makwena Justice Moloto
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Kutloano Edward Sekhosana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Thabo Thokozani Innocent Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa.
| |
Collapse
|
184
|
Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
185
|
Kaushik N, Mitra S, Baek EJ, Nguyen LN, Bhartiya P, Kim JH, Choi EH, Kaushik NK. The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives. J Adv Res 2023; 43:59-71. [PMID: 36585115 PMCID: PMC8905887 DOI: 10.1016/j.jare.2022.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Outbreaks of airborne viral infections, such as COVID-19, can cause panic regarding other severe respiratory syndrome diseases that may develop and affect public health. It is therefore necessary to develop control methods that offer protection against such viruses. AIM OF REVIEW To identify a feasible solution for virus deactivation, we critically reviewed methods of generating reactive oxygen species (ROS), which can attack a wide range of molecular targets to induce antiviral activity, accounting for their flexibility in facilitating host defense mechanisms against a comprehensive range of pathogens. Recently, the role of ROS in microbial decontamination has been critically investigated as a major topic in infectious diseases. ROS can eradicate pathogens directly by inducing oxidative stress or indirectly by promoting pathogen removal through numerous non-oxidative mechanisms, including autophagy, T-cell responses, and pattern recognition receptor signaling. KEY SCIENTIFIC CONCEPTS OF REVIEW In this article, we reviewed possible methods for the in vitro generation of ROS with antiviral activity. Furthermore, we discuss, in detail, the novel and environmentally friendly cold plasma delivery system in the destruction of viruses. This review highlights the potential of ROS as therapeutic mediators to modernize current techniques and improvement on the efficiency of inactivating SARS-CoV2 and other viruses.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Linh Nhat Nguyen
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Viet Nam
| | - Pradeep Bhartiya
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Corresponding author
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea,Corresponding author
| |
Collapse
|
186
|
Garapati C, HS. Boddu S, Jacob S, Ranch KM, Patel C, Jayachandra Babu R, Tiwari AK, Yasin H. Photodynamic Therapy: A Special Emphasis on Nanocarrier-mediated Delivery of Photosensitizers in Antimicrobial Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
187
|
Hisa M, Murayama M, Yasui M, Tokuoka Y. Preparation and In Vitro Evaluation of W/O Nanoemulsions for the Skin Permeation of 5-Aminolevulinic Acid. J Oleo Sci 2023; 72:295-301. [PMID: 36878583 DOI: 10.5650/jos.ess22260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
We investigated the skin permeation of 5-aminolevulinic acid (ALA) through Yucatan micropig full-thickness skin by using ALA-loaded W/O nanoemulsions composed of Span/Tween/ethanol (EtOH)/isopropyl palmitate (IPP)/10 wt% aqueous ALA solution. The nanoemulsions were prepared using Span 20/Tween 20 (S20/T20), Span 80/Tween 80 (S80/T80), and Span 20/Tween 80 (S20/T80) mixed surfactant systems. Based on the results of the phase diagram study and hydrodynamic diameter measurement of the nanoemulsions, we decided that the optimal weight ratio of Span/Tween/EtOH/IPP/10 wt% aqueous ALA solution in the nanoemulsion was 0.8/0.2/14/19/1.4. The permeability coefficient of ALA in the S20/T80 system was approximately five times larger than those in the S20/T20 and S80/T80 systems. The high skin permeation of ALA afforded by the ALA-loaded W/O nanoemulsion in the S20/T80 system is attributable to a significant enhancement in the partitioning of ALA to the stratum corneum.
Collapse
Affiliation(s)
- Masahiro Hisa
- Faculty of Biomedical Engineering, Toin University of Yokohama
| | - Megumi Murayama
- Faculty of Biomedical Engineering, Toin University of Yokohama
| | - Mao Yasui
- Faculty of Biomedical Engineering, Toin University of Yokohama
| | | |
Collapse
|
188
|
Multifunctional Photoactive Nanomaterials for Photodynamic Therapy against Tumor: Recent Advancements and Perspectives. Pharmaceutics 2022; 15:pharmaceutics15010109. [PMID: 36678738 PMCID: PMC9866498 DOI: 10.3390/pharmaceutics15010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous treatments are available for cancer, including chemotherapy, immunotherapy, radiation therapy, hormone therapy, biomarker testing, surgery, photodynamic therapy, etc. Photodynamic therapy (PDT) is an effective, non-invasive, novel, and clinically approved strategy to treat cancer. In PDT, three main agents are utilized, i.e., photosensitizer (PS) drug, oxygen, and light. At first, the photosensitizer is injected into blood circulation or applied topically, where it quickly becomes absorbed or accumulated at the tumor site passively or actively. Afterward, the tumor is irradiated with light which leads to the activation of the photosensitizing molecule. PS produces the reactive oxygen species (ROS), resulting in the death of the tumor cell. However, the effectiveness of PDT for tumor destruction is mainly dependent on the cellular uptake and water solubility of photosensitizer molecules. Therefore, the delivery of photosensitizer molecules to the tumor cell is essential in PDT against cancer. The non-specific distribution of photosensitizer results in unwanted side effects and unsuccessful therapeutic outcomes. Therefore, to improve PDT clinical outcomes, the current research is mostly focused on developing actively targeted photosensitizer molecules, which provide a high cellular uptake and high absorption capacity to the tumor site by overcoming the problem associated with conventional PDT. Therefore, this review aims to provide current knowledge on various types of actively and passively targeted organic and inorganic nanocarriers for different cancers.
Collapse
|
189
|
Li M, Cheng G, Zhang R, Li J. Simple Multifunctional PTX@Ce6 Nanomedicine for Eradicating Tumor in the Combination of Photodynamic Therapy and Metronomic Chemotherapy. ACS OMEGA 2022; 7:48372-48382. [PMID: 36591126 PMCID: PMC9798521 DOI: 10.1021/acsomega.2c06578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Photodynamic therapy (PDT) is an effective treatment modality for various cancer types. However, tumor recurrence and metastasis stemming from residual cancer cells after PDT pose serious problems. In this study, a simple multifunctional PTX@Ce6 nanomedicine is prepared using a two-step reprecipitation method. In this core-shell nanostructure, the toxic paclitaxel (PTX) core is embedded into a nontoxic Ce6 shell. An ultralow dose of PTX (1 mg/kg) stimulates the differentiation of marrow-derived suppressor cells (MDSCs) into mature dendritic cells (DCs), resulting in the restoration of functions of tumor-specific CD8+ T cells and promotion of antitumor immune responses in vivo. Hence, the tumors in mice are eradicated with 100% tumor inhibition rate via combination therapy. Tumor recurrence and metastasis are also effectively inhibited. In addition, the combination therapy with PDT and metronomic chemotherapy based on core-shell PTX@Ce6 nanostructures shows high biosafety in treated mice. This study can aid in developing new cancer treatment modalities for eradicating tumors, preventing tumor recurrence and metastasis, and reducing the systemic side effects of therapy.
Collapse
|
190
|
Digby EM, Ayan S, Shrestha P, Gehrmann EJ, Winter AH, Beharry AA. Photocaged DNA-Binding Photosensitizer Enables Photocontrol of Nuclear Entry for Dual-Targeted Photodynamic Therapy. J Med Chem 2022; 65:16679-16694. [PMID: 36480920 DOI: 10.1021/acs.jmedchem.2c01504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer treatment that requires a photosensitizer (PS), light, and molecular oxygen─a combination which produces reactive oxygen species (ROS) that can induce cancer cell death. To enhance the efficacy of PDT, dual-targeted strategies have been explored where two photosensitizers are administered and localize to different subcellular organelles. To date, a single small-molecule conjugate for dual-targeted PDT with light-controlled nuclear localization has not been achieved. We designed a probe composed of a DNA-binding PS (Br-DAPI) and a photosensitizing photocage (WinterGreen). Illumination with 480 nm light removes WinterGreen from the conjugate and produces singlet oxygen mainly in the cytosol, while Br-DAPI localizes to nuclei, binds DNA, and produces ROS using one- or two-photon illumination. We observe synergistic photocytotoxicity in MCF7 breast cancer cells, and a reduction in size of three-dimensional (3D) tumor spheroids, demonstrating that nuclear/cytosolic photosensitization using a single agent can enhance PDT efficacy.
Collapse
Affiliation(s)
- Elyse M Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Seylan Ayan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa50011, United States
| | | | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa50011, United States
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
191
|
Effect of Photodynamic Therapy with Chlorin e6 on Canine Tumors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122102. [PMID: 36556469 PMCID: PMC9782963 DOI: 10.3390/life12122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
This work aims to prepare pure Chlorin e6 (Ce6) and establish Ce6-mediated photodynamic therapy (Ce6-PDT) as a better therapy option for canine tumors as well as mouse tumor models. Five dogs suffering from various cancers were treated with Ce6-PDT from one to several times. After receiving the Ce6 (2.5 mg/kg) for 3 h, tumors were illuminated superficially or interstitially with 660 nm light. Two dogs underwent Ce6-guided fluorescence imaging by photodynamic diagnosis (PDD). Cell proliferation and apoptosis were detected by the 4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and western blot assay, respectively. Ce6-PDT efficacy was also determined using melanoma and pancreatic cancer mouse models. Two veterinary patients with mammary carcinoma and histiocytic sarcoma had their tumors significantly diminished and showed improved health after receiving Ce6-PDT. Moreover, in the cases of canine tumors, the adjunctive use of Ce6-PDD revealed cancers that were not visible with white light viewing and provided a visual contrast from surrounding tissues. Also, in vivo, Ce6-PDT remarkably reduced melanoma and pancreatic tumors in the mouse model. These findings could pave the way for a better understanding of the underlying processes of Ce6-PDT, making it an effective and safe candidate for use in human and veterinary applications to abolish various cancers.
Collapse
|
192
|
Effect of nanomicelle curcumin-based photodynamic therapy on the dynamics of white spot lesions and virulence of Streptococcus mutans in patients undergoing fixed orthodontic treatment: A randomized double-blind clinical trial. Photodiagnosis Photodyn Ther 2022; 40:103183. [PMID: 36602066 DOI: 10.1016/j.pdpdt.2022.103183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/10/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND/PURPOSE The formation of white spot lesions (WSLs) around fixed orthodontic appliances is a major complication during treatment. The current double-blind, randomized clinical trial (RCT) study aims to investigate the varying effects of nanomicelle curcumin-based photodynamic therapy (NMCur-aPDT) on microbial count and virulence of Streptococcus mutans as well as the number and dynamics of WSLs. MATERIALS AND METHODS Double-blind prospective RCT, comprised of 48 patients with fixed orthodontic appliances, were recruited for the current study. The patients were divided into four groups according to the type of the treatment (NMCur, LED, NMCur-aPDT or VITIS® anti-caries mouthwash), using block randomization. Antimicrobial and anti-virulence activities of the treatments against isolated S. mutans were assessed via colony counting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The visual inspection using the International Caries Detection and Assessment System (ICDAS II) score and laser fluorescence (LF) detection using a DIAGNOdent device were used for the detection and assessment of the dynamics of WSLs, respectively, on the labial surface in four areas (i.e., gingival, incisal, mesial, and distal) of the upper and lower anterior teeth at 30-, 60-, 90-, and 120-days follow-up after bonding of the lower and upper arches. RESULTS The antimicrobial properties of NMCur, VITIS®, and NMCur-aPDT were time-dependent so the highest reduction in S. mutans population was observed following NMCur-aPDT (99.98%) on day 120 of the study. The gtfB gene expression levels in S. mutans isolates from the NMCur-aPDT group on days 60, 90, and 120 decreased by 2.07-, 2.32-, and 3.01-fold more than in S. mutans isolates from the VITIS® group, respectively (all P < 0.05), while NMCur and LED treatments could not significantly reduce gtfB gene expression up to 120 days of follow-up (P > 0.05). In patients who were treated with LED, an increase in the mean number of WSLs per patient (mean increase, 1.8; P < 0.05) was found, while in NMCur-aPDT and VITIS® groups, not only no increases were observed, but the mean number of WSLs per patient decreased (mean reductions, 0.5 and 0.9, respectively; not significant). LED treatment caused significant increases (P < 0.05) in the mean LF values at 90-and 120-days of follow-up in comparison with the baseline (mean increases, 5.1 and 6.5, respectively) while, in NMCur-aPDT, VITIS®, and NMCur groups 11.8-, 7.1-, and 4.4-reductions in the mean LF values were observed, respectively (all, P < 0.05). CONCLUSIONS The antimicrobial and anti-virulence activities of NMCur-aPDT against S. mutans were higher than the other treatment groups. In patients who were treated with NMCur-aPDT, the mean number and LF values of WSLs per patient were significantly lower than the other groups in 90-and 120-days of follow-up.
Collapse
|
193
|
Ihata T, Nonoguchi N, Fujishiro T, Omura N, Kawabata S, Kajimoto Y, Wanibuchi M. The effect of hypoxia on photodynamic therapy with 5-aminolevulinic acid in malignant gliomas. Photodiagnosis Photodyn Ther 2022; 40:103056. [PMID: 35944845 DOI: 10.1016/j.pdpdt.2022.103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a high-grade, poor prognosis tumor that is resistant to standard treatment. The presence of a small number of glioma stem cells (GSCs) surviving in the harsh microenvironment is responsible for their refractoriness. This study aimed to investigate the effect of a hypoxic environment on the sensitivity of GSCs to photodynamic therapy with 5-aminolevulinic acid (ALA-PDT). MATERIALS AND METHODS Six human GSC lines, Mesenchymal types HGG13, HGG30, HGG1123, and Proneural types HGG146, HGG157, HGG528, were divided into two groups: normoxia (O2 21%)-cultured cells (Normoxia-GSCs), and hypoxia (O2 5%)-cultured cells (Hypoxia-GSCs). To compare the effects of different oxygen partial pressures on photoporphyrin Ⅸ (PpⅨ) biosynthetic activity, PpⅨ biosynthetic enzyme and transporter expression levels were examined by qRT-PCR; the intracellular PpⅨ concentration was determined using flow cytometry. Additionally, the sensitivity of these two groups of cells to ALA-PDT was evaluated in vitro. RESULTS Hypoxia-GSCs showed higher mRNA levels of FECH (ferrochelatase), which is required for iron synthesis to convert PpⅨ to heme, compared with Normoxia-GSCs. Flow cytometry revealed that the accumulation of PpⅨ in Hypoxia-GSCs reduced upon incubation with ALA. However, Hypoxia-GSCs showed less reduction in sensitivity to ALA-PDT than Normoxia-GSCs. CONCLUSION Hypoxia-GSCs had lower intracellular PpⅨ accumulation than Normoxia-GSCs due to increased gene expression of FECH, and that their sensitivity to ALA-PDT was reduced less, despite accumulating lower concentrations of PpⅨ. ALA-PDT is a potentially effective therapy for hypoxia-tolerant GSCs that exist in hypoxia at 5% oxygen concentration.
Collapse
Affiliation(s)
- Tomohiro Ihata
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Takahiro Fujishiro
- Department of Neurosurgery, Tanabe Neurosurgical Hospital, Fujiidera, Osaka, Japan
| | - Naoki Omura
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Kawabata
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Yoshinaga Kajimoto
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery and Endovascular Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
194
|
do Amaral SR, Amantino CF, De Annunzio SR, de Paula AV, Fontana CR, Primo FL. Advanced methylene blue - nanoemulsions for in vitro photodynamic therapy on oral and cervical human carcinoma. Lasers Med Sci 2022; 37:3443-3450. [PMID: 35819661 DOI: 10.1007/s10103-022-03603-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality with high contributions in the treatment of cancer. This approach is based on photophysical principles, which presents as a less invasive strategy than conventional therapies. Combined with nanotechnology, the therapy becomes more efficient because nanoparticles (NPs) have advantageous characteristics such as biocompatibility, controlled, and targeted release, promoting solubility and decreasing the toxicity and side effects involved. In this work were developed nanoemulsions containing the methylene blue photosensitizer (MB) (MB/NE) and in the empty form (unloaded/NE). Subsequently, the mentioned nanomaterials were characterized by the measurement of dynamic light scattering (DLS). The MB/NE and unloaded/NE showed appropriate physical and chemical characteristics, with particle size ≤ 200 nm, polydispersity index close to 0.3, and zeta potential exhibiting negative charge, showing stable values during the analysis. The incorporation of the MB did not cause changes in the photophysical profile of the photosensitizer. The quantification performed showed an incorporation rate of 81.9%. Viability studies showed an absence of cytotoxicity for MB/NE in the concentrations of 10-75 µmol·L-1, free MB at the concentration of 75 µmol·L-1, and unloaded NE 47.5% (v/v), presenting viability close to 90%, respectively. PDT in vitro protocols applied to OSCC and HeLa cells showed a decrease in cell viability through only one irradiation, evidencing the photodynamic activity of the formulation when applied to cancer cells. The results obtained were superior to those found in the literature where they use free MB, showing that the association between nanotechnology and PDT optimizes the proposed protocol. From the results obtained, it is possible to indicate that the NE have high stability, with satisfactory physical-chemical parameters, in addition to not presenting cytotoxicity in the tested concentrations, showing their in vitro biocompatibility, in addition to presenting satisfactory effects when combined MB/NE with PDT, showing the potential of MB/NE as a very promising nanostructured photosensitizer for the treatment of some types of cancer.
Collapse
Affiliation(s)
- Stéphanie R do Amaral
- School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology Engineering, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Camila F Amantino
- School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology Engineering, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Sarah R De Annunzio
- School of Pharmaceutical Sciences, Clinical Analysis Department, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Ariela V de Paula
- School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology Engineering, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Carla R Fontana
- School of Pharmaceutical Sciences, Clinical Analysis Department, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Fernando L Primo
- School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology Engineering, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil.
| |
Collapse
|
195
|
Development of novel porphyrin/combretastatin A-4 conjugates for bimodal chemo and photodynamic therapy: Synthesis, photophysical and TDDFT computational studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
196
|
Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 2022; 291:121875. [PMID: 36335717 DOI: 10.1016/j.biomaterials.2022.121875] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2022]
Abstract
Photodynamic therapy (PDT) is a promising localized cancer treatment modality. It has been used successfully to treat a range of dermatological conditions with comparable efficacy to conventional treatments. However, some drawbacks limit the clinical utility of PDT in treating deep-seated tumors. Notably, the penetration limitation of UV and visible light, commonly applied to activate photosensitizers, makes PDT incompetent in treating deep-seated tumors. Development in light delivery technologies, especially fiber optics, led to improved clinical strategies for accessing deep tissues for irradiation. However, PDT efficacy issues remained partly due to light penetration limitations. In this review, we first summarized the current PDT applications for deep-seated tumor treatment. Then, the most recent progress in advanced techniques to overcome the light penetration limitation in PDT, including using functional nanomaterials that can either self-illuminate or be activated by near-infrared (NIR) light and X-rays as transducers, and implantable light delivery devices were discussed. Finally, current challenges and future opportunities of these technologies were discussed, which we hope may inspire the development of more effective techniques to enhance PDT efficacy against deep-seated tumors.
Collapse
|
197
|
Kundeková B, Máčajová M, Meta M, Čavarga I, Huntošová V, Datta S, Miškovský P, Kronek J, Bilčík B. The Japanese quail chorioallantoic membrane as a model to study an amphiphilic gradient copoly(2-oxazoline)s- based drug delivery system for photodynamic diagnosis and therapy research. Photodiagnosis Photodyn Ther 2022; 40:103046. [PMID: 35917905 DOI: 10.1016/j.pdpdt.2022.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Amphiphilic gradient copoly(2-oxazoline)s are widely researched in the field of drug delivery. They could be used as a transport system for hydrophobic drugs such as hypericin (HYP). We prepared six gradient copolymers (EtOx)-grad-(ROPhOx) by living cationic ring-opening polymerization of a hydrophilic comonomer 2-ethyl-2-oxazoline (EtOx) and a hydrophobic comonomer 2-(4-alkyloxyphenyl)-2-oxazoline (ROPhOx), with different composition ratio (88:12 and 85:15) and three different alkyl chain lengths of alkyl (R) substituents. As an experimental model, Japanese quail chorioallantoic membrane (CAM) was used. The effect of nanoparticles loaded with HYP was evaluated by the changes of fluorescence intensity during photodynamic diagnosis (PDD) monitored under 405 nm LED light before administration, and 0,1,3 and 24 h after topical administration. The effectiveness of photodynamic therapy (PDT) (405 nm, 285 mW/cm2) applied 1h after the administration of HYP-loaded nanoparticles was evaluated using vascular damage score and histological sections. Molecular analysis was done by measuring angiogenesis-related gene expression by qPCR. The application of nanoparticles unloaded or loaded with HYP proved to be biocompatible, non-toxic, and undamaging to the CAM tissue, while they successfully altered the HYP fluorescence. We observed a possible anti-angiogenic potential of prepared nanoparticles, which could present an advantage for PDT used for tumour treatment.
Collapse
Affiliation(s)
- Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Majlinda Meta
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia
| | - Shubhashis Datta
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia
| | - Pavol Miškovský
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenná 5, Košice 04154, Slovakia; SAFTRA Photonics s r o., Moldavská cesta 51, Košice 04011, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84541, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84005, Slovakia.
| |
Collapse
|
198
|
Shestakova LN, Lyubova TS, Lermontova SA, Belotelov AO, Peskova NN, Klapshina LG, Balalaeva IV, Shilyagina NY. Comparative Analysis of Tetra(2-naphthyl)tetracyano-porphyrazine and Its Iron Complex as Photosensitizers for Anticancer Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14122655. [PMID: 36559148 PMCID: PMC9786040 DOI: 10.3390/pharmaceutics14122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) is a rapidly developing modality of primary and adjuvant anticancer treatment. The main trends today are the search for new effective photodynamic agents and the creation of targeted delivery systems with the function of controlling the release of the agent in the tumor. Recently, the new group of cyanoarylporphyrazine dyes was reported, which combine the properties of photosensitizers and sensors of the local microenvironment. Such unique characteristics allow the release of the photosensitizer from the transport carrier to be assessed in real time in vivo. The aim of the present work was to compare the photophysical and photobiological properties of tetra(2-naphthyl)tetracyanoporphyrazine and its newly synthesized Fe(II) complex. We have shown that the chelation of the Fe(II) cation with the porphyrazine macrocycle leads to a decrease in molar extinction and an increase in the quantum yield of fluorescence and photostability. We demonstrate that the iron cation significantly affects the rate of dye accumulation in cells, the dark toxicity and photodynamic activity, and the direction of the changes depends on the particular cell line. However, in all the cases, the photodynamic index of a metal complex was higher than that of a metal-free base. In general, both of the compounds were found to be very promising for PDT, including for the use with transport delivery systems, and can be recommended for further in vivo studies.
Collapse
Affiliation(s)
- Lydia N. Shestakova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Tatyana S. Lyubova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Svetlana A. Lermontova
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Artem O. Belotelov
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Nina N. Peskova
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Larisa G. Klapshina
- Razuvaev Institute of Organomettalic Chemistry, Russian Academy of Sciences, St. Tropinina, 49, 603137 Nizhny Novgorod, Russia
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
| | - Natalia Y. Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University, Gagarin Ave., 23, 603950 Nizhny Novgorod, Russia
- Correspondence:
| |
Collapse
|
199
|
Wang K, Jalil AT, Saleh MM, Talaei S, Wang L. Glutathione (GSH) conjugated Bi2S3 NPs as a promising radiosensitizer against glioblastoma cancer cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
200
|
Wei X, Guo XH, Guo JF, He TF, Qin GY, Zou LY, Ren AM. Photophysical Exploration of Zn(II) Polypyridine Photosensitizers in Two-Photon Photodynamic Therapy: Insights from Theory. Inorg Chem 2022; 61:18729-18742. [PMID: 36351263 DOI: 10.1021/acs.inorgchem.2c03232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The high incidence and difficulties of treatment of cancer have always been a challenge for mankind. Two-photon photodynamic therapy (TP-PDT) as a less invasive technique provides a new perspective for tumor treatment due to its low-energy near-infrared excitation, high targeting, and minor damage. At present, the emerging metal complexes used as the photosensitizers (PSs) in TP-PDT have aroused great interest. However, most metal complexes as PSs in TP-PDT still face some problems, such as slow clearance, unsatisfactory two-photon absorption (TPA) characteristics, high price, low reactivity, and poor solubility. In this work, density functional theory and time-dependent density functional theory were used to characterize the one/two-photon response, solvation free energy, and lipophilicity of a series of novel PSs applied in TP-PDT. The results suggest that based on complex 1, replacing Ru(II) center with Zn(II) (complex 2) can effectively prolong the triplet excited state lifetime while reducing the cost and environmental pollution, and the azetidine heterospirocycles were introduced into the ligand scaffold (complex 3), which effectively reduced the vibration relaxation of the ligand group and improved the water solubility; further, the addition of acetylenyl groups subtly enhanced the light absorption and significantly improved the two-photon response (complex 4). In addition, all complexes met the requirement of a PS and could be used as potential candidates for TP-PDT. In particular, complex 4 has the advantages of high solvation free energy, a large TPA cross-section (1413 GM), a long triplet state lifetime (671 μs), good chemical reactivity, and low cost, and it is easy to be scavenged by organisms. Overall, this contribution may provide an important clue to formulate clear design principles for type I/II PSs and rational design of PSs with high intersystem crossing rates, a long lifetime, and therapeutic excitation wavelengths.
Collapse
Affiliation(s)
- Xue Wei
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun130061, P. R. China
| | - Xue-Hui Guo
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun130061, P. R. China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun130024, P. R. China
| | - Teng-Fei He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin300071, China
| | - Gui-Ya Qin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun130061, P. R. China
| | - Lu-Yi Zou
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun130061, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Liutiao Road #2, Changchun130061, P. R. China
| |
Collapse
|