151
|
Watkins NJ, Ségault V, Charpentier B, Nottrott S, Fabrizio P, Bachi A, Wilm M, Rosbash M, Branlant C, Lührmann R. A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 2000; 103:457-66. [PMID: 11081632 DOI: 10.1016/s0092-8674(00)00137-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Evolution, Molecular
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Deletion
- HeLa Cells
- Humans
- Molecular Weight
- Nucleic Acid Conformation
- Precipitin Tests
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/isolation & purification
- Ribonucleoproteins, Small Nucleolar/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Substrate Specificity
- Yeasts/genetics
- Yeasts/metabolism
Collapse
Affiliation(s)
- N J Watkins
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Zelluläre Biochemie, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Colley A, Beggs JD, Tollervey D, Lafontaine DL. Dhr1p, a putative DEAH-box RNA helicase, is associated with the box C+D snoRNP U3. Mol Cell Biol 2000; 20:7238-46. [PMID: 10982841 PMCID: PMC86278 DOI: 10.1128/mcb.20.19.7238-7246.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Putative RNA helicases are involved in most aspects of gene expression. All previously characterized members of the DEAH-box family of putative RNA helicases are involved in pre-mRNA splicing. Here we report the analysis of two novel DEAH-box RNA helicases, Dhr1p and Dhr2p, that were found to be predominantly nucleolar. Both genes are essential for viability, and MET-regulated alleles were therefore created. Depletion of Dhr1p or Dhr2p had no detectable effect on pre-mRNA splicing in vivo or in vitro. Both Dhr1p and Dhr2p were, however, required for 18S rRNA synthesis. Depletion of Dhr2p inhibited pre-rRNA cleavage at sites A(0), A(1), and A(2), while Dhr1p depletion inhibited cleavage at sites A(1) and A(2). No coprecipitation of snoRNAs was detected with ProtA-Dhr2p, but Dhr1p-ProtA was stably associated with the U3 snoRNA. Depletion of Dhr1p inhibited processing steps that require base pairing of U3 to the 5' end of the 18S rRNA. We speculate that Dhr1p is targeted to the preribosomal particles by the U3-18S rRNA interaction and is required for the structural reorganization of the rRNA during formation of the central pseudoknot.
Collapse
Affiliation(s)
- A Colley
- Institute of Cell and Molecular Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | | | | | | |
Collapse
|
153
|
Affiliation(s)
- I Dokal
- Department of Haematology, Imperial College School of Medicine, Du Cane Road, London, UK.
| |
Collapse
|
154
|
Spedaliere CJ, Hamilton CS, Mueller EG. Functional importance of motif I of pseudouridine synthases: mutagenesis of aligned lysine and proline residues. Biochemistry 2000; 39:9459-65. [PMID: 10924141 DOI: 10.1021/bi001079n] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of sequence alignments, the pseudouridine synthases were grouped into four families that share no statistically significant global sequence similarity, though some common sequence motifs were discovered [Koonin, E. V. (1996) Nucleic Acids. Res. 24, 2411-2415; Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762]. We have investigated the functional significance of these alignments by substituting the nearly invariant lysine and proline residues in Motif I of RluA and TruB, pseudouridine synthases belonging to different families. Contrary to our expectations, the altered enzymes display only very mild kinetic impairment. Substitution of the aligned lysine and proline residues does, however, reduce structural stability, consistent with a temperature sensitive phenotype that results from substitution of the cognate proline residue in Cbf5p, a yeast homologue of TruB [Zerbarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J. (1999) Mol. Cell. Biol. 19, 7461-7472]. Together, our data support a functional role for Motif I, as predicted by sequence alignments, though the effect of substituting the highly conserved residues was milder than we anticipated. By extrapolation, our findings also support the assignment of pseudouridine synthase function to certain physiologically important eukaryotic proteins that contain Motif I, including the human protein dyskerin, alteration of which leads to the disease dyskeratosis congenita.
Collapse
Affiliation(s)
- C J Spedaliere
- Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, USA
| | | | | |
Collapse
|
155
|
Watanabe Y, Gray MW. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria. Nucleic Acids Res 2000; 28:2342-52. [PMID: 10871366 PMCID: PMC102724 DOI: 10.1093/nar/28.12.2342] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A reverse transcription-polymerase chain reaction (RT-PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated 'PsuX' and 'PsuY') distantly related to the Cbf5p/TruB gene family.
Collapse
Affiliation(s)
- Y Watanabe
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
156
|
Bousquet-Antonelli C, Vanrobays E, Gélugne JP, Caizergues-Ferrer M, Henry Y. Rrp8p is a yeast nucleolar protein functionally linked to Gar1p and involved in pre-rRNA cleavage at site A2. RNA (NEW YORK, N.Y.) 2000; 6:826-43. [PMID: 10864042 PMCID: PMC1369961 DOI: 10.1017/s1355838200992288] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chemical modifications and processing of the 18S, 5.8S, and 25S ribosomal RNAs from the 35S pre-ribosomal RNA depend on an important set of small nucleolar ribonucleoprotein particles (snoRNPs). Genetic depletion of yeast Gar1p, an essential common component of H/ACA snoRNPs, leads to inhibition of uridine isomerizations to pseudo-uridines on the 35S pre-rRNA and of the early pre-rRNA cleavages at sites A1 and A2, resulting in a loss of mature 18S rRNA synthesis. To identify Gar1p functional partners, we screened for mutations that are synthetically lethal with a gar1 mutant allele encoding a Gar1p mutant protein lacking its two glycine/arginine-rich (GAR) domains. We identified a previously uncharacterized Saccharomyces cerevisiae open reading frame, YDR083W (now designated RRP8), that encodes a highly conserved protein containing motifs found in methyltransferases. Rrp8p localizes to the nucleolus. A yeast strain lacking this protein is viable at 30 degrees C but displays strong growth impairment at lower temperatures. In this strain, cleavage of the pre-rRNA at site A2 is strongly affected whereas cleavages at sites A0 and A1 are only slightly inhibited or delayed.
Collapse
Affiliation(s)
- C Bousquet-Antonelli
- Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | |
Collapse
|
157
|
Dragon F, Pogacić V, Filipowicz W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol Cell Biol 2000; 20:3037-48. [PMID: 10757788 PMCID: PMC85579 DOI: 10.1128/mcb.20.9.3037-3048.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. They usually fold into a two-domain hairpin-hinge-hairpin-tail structure, with the conserved motifs H and ACA located in the hinge and tail, respectively. Synthetic RNA transcripts and extracts from HeLa cells were used to reconstitute human U17 and other H/ACA ribonucleoproteins (RNPs) in vitro. Competition and UV cross-linking experiments showed that proteins of about 60, 29, 23, and 14 kDa interact specifically with U17 RNA. Except for U17, RNPs could be reconstituted only with full-length H/ACA snoRNAs. For U17, the 3'-terminal stem-loop followed by box ACA (U17/3'st) was sufficient to form an RNP, and U17/3'st could compete other full-length H/ACA snoRNAs for assembly. The H/ACA-like domain that constitutes the 3' moiety of human telomerase RNA (hTR), and its 3'-terminal stem-loop (hTR/3'st), also could form an RNP by binding H/ACA proteins. Hence, the 3'-terminal stem-loops of U17 and hTR have some specific features that distinguish them from other H/ACA RNAs. Antibodies that specifically recognize the human GAR1 (hGAR1) protein could immunoprecipitate H/ACA snoRNAs and hTR from HeLa cell extracts, which demonstrates that hGAR1 is a component of H/ACA snoRNPs and telomerase in vivo. Moreover, we show that in vitro-reconstituted RNPs contain hGAR1 and that binding of hGAR1 does not appear to be a prerequisite for the assembly of the other H/ACA proteins.
Collapse
Affiliation(s)
- F Dragon
- Friedrich Miescher-Institut, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
158
|
Ansmant I, Massenet S, Grosjean H, Motorin Y, Branlant C. Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Nucleic Acids Res 2000; 28:1941-6. [PMID: 10756195 PMCID: PMC103309 DOI: 10.1093/nar/28.9.1941] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
So far, four RNA:pseudouridine (Psi)-synthases have been identified in yeast Saccharomyces cerevisiae. Together, they act on cytoplasmic and mitochondrial tRNAs, U2 snRNA and rRNAs from cytoplasmic ribosomes. However, RNA:Psi-synthases responsible for several U-->Psi conversions in tRNAs and UsnRNAs remained to be identified. Based on conserved amino-acid motifs in already characterised RNA:Psi-synthases, four additional open reading frames (ORFs) encoding putative RNA:Psi-synthases were identified in S.cerevisiae. Upon disruption of one of them, the YLR165c ORF, we found that the unique Psi residue normally present in the fully matured mitochondrial rRNAs (Psi(2819)in 21S rRNA) was missing, while Psi residues at all the tested pseudo-uridylation sites in cytoplasmic and mitochondrial tRNAs and in nuclear UsnRNAs were retained. The selective U-->Psi conversion at position 2819 in mitochondrial 21S rRNA was restored when the deleted yeast strain was transformed by a plasmid expressing the wild-type YLR165c ORF. Complementation was lost after point mutation (D71-->A) in the postulated active site of the YLR165c-encoded protein, indicating the direct role of the YLR165c protein in Psi(2819)synthesis in mitochondrial 21S rRNA. Hence, for nomenclature homogeneity the YLR165c ORF was renamed PUS5 and the corresponding RNA:Psi-synthase Pus5p. As already noticed for other mitochondrial RNA modification enzymes, no canonical mitochondrial targeting signal was identified in Pus5p. Our results also show that Psi(2819)in mitochondrial 21S rRNA is not essential for cell viability.
Collapse
Affiliation(s)
- I Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
159
|
Fath S, Milkereit P, Podtelejnikov AV, Bischler N, Schultz P, Bier M, Mann M, Tschochner H. Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol 2000; 149:575-90. [PMID: 10791972 PMCID: PMC2174860 DOI: 10.1083/jcb.149.3.575] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel ribonucleoprotein complex enriched in nucleolar proteins was purified from yeast extracts and constituents were identified by mass spectrometry. When isolated from rapidly growing cells, the assembly contained ribonucleic acid (RNA) polymerase (pol) I, and some of its transcription factors like TATA-binding protein (TBP), Rrn3p, Rrn5p, Rrn7p, and Reb1p along with rRNA processing factors, like Nop1p, Cbf5p, Nhp2p, and Rrp5p. The small nucleolar RNAs (snoRNAs) U3, U14, and MRP were also found to be associated with the complex, which supports accurate transcription, termination, and pseudouridylation of rRNA. Formation of the complex did not depend on pol I, and the complex could efficiently recruit exogenous pol I into active ribosomal DNA (rDNA) transcription units. Visualization of the complex by electron microscopy and immunogold labeling revealed a characteristic cluster-forming network of nonuniform size containing nucleolar proteins like Nop1p and Fpr3p and attached pol I. Our results support the idea that a functional nucleolar subdomain formed independently of the state of rDNA transcription may serve as a scaffold for coordinated rRNA synthesis and processing.
Collapse
Affiliation(s)
- S Fath
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
Two core small nucleolar RNP (snoRNP) proteins, Nop1p (fibrillarin in vertebrates) and Nop58p (also known as Nop5p) have previously been reported to be specifically associated with the box C+D class of small nucleolar RNAs (snoRNAs). Here we report that Nop56p, a protein related in sequence to Nop58p, is a bona fide box C+D snoRNP component; all tested box C+D snoRNAs were coprecipitated with protein A-tagged Nop56p. Analysis of in vivo snoRNP assembly indicated that Nop56p was stably associated with the snoRNAs only in the presence of Nop1p. In contrast, Nop58p and Nop1p associate independently with the snoRNAs. Genetic depletion of Nop56p resulted in inhibition of early pre-rRNA processing events at sites A(0), A(1), and A(2) and mild depletion of 18S rRNA. However, Nop56p depletion did not lead to codepletion of the box C+D snoRNAs. This is in contrast to Nop58p, which was required for the accumulation of all tested box C+D snoRNAs. Unexpectedly, we found that Nop1p was specifically required for the synthesis and accumulation of box C+D snoRNAs processed from pre-mRNA introns and polycistronic transcripts.
Collapse
Affiliation(s)
- D L Lafontaine
- ICMB, The University of Edinburgh, Edinburgh EH9 3JR, Scotland.
| | | |
Collapse
|
161
|
Abstract
The synthesis of ribosomes is one of the major metabolic pathways in all cells. In addition to around 75 individual ribosomal proteins and 4 ribosomal RNAs, synthesis of a functional eukaryotic ribosome requires a remarkable number of trans-acting factors. Here, we will discuss the recent, and often surprising, advances in our understanding of ribosome synthesis in the yeast Saccharomyces cerevisiae. These will underscore the unexpected complexity of eukaryotic ribosome synthesis.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry and Molecular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
162
|
Pintard L, Kressler D, Lapeyre B. Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-L-methionine in vitro. Mol Cell Biol 2000; 20:1370-81. [PMID: 10648622 PMCID: PMC85287 DOI: 10.1128/mcb.20.4.1370-1381.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/1999] [Accepted: 11/10/1999] [Indexed: 11/20/2022] Open
Abstract
We present here the characterization of SPB1, an essential yeast gene that is required for ribosome synthesis. A cold-sensitive allele for that gene (referred to here as spb1-1) had been previously isolated as a suppressor of a mutation affecting the poly(A)-binding protein gene (PAB1) and a thermosensitive allele (referred to here as spb1-2) was isolated in a search for essential genes required for gene silencing in Saccharomyces cerevisiae. The two mutants are able to suppress the deletion of PAB1, and they both present a strong reduction in their 60S ribosomal subunit content. In an spb1-2 strain grown at the restrictive temperature, processing of the 27S pre-rRNA into mature 25S rRNA and 5.8S is completely abolished and production of mature 18S is reduced, while the abnormal 23S species is accumulated. Spb1p is a 96.5-kDa protein that is localized to the nucleolus. Coimmunoprecipitation experiments show that Spb1p is associated in vivo with the nucleolar proteins Nop1p and Nop5/58p. Protein sequence analysis reveals that Spb1p possesses a putative S-adenosyl-L-methionine (AdoMet)-binding domain, which is common to the AdoMet-dependent methyltransferases. We show here that Spb1p is able to bind [(3)H]AdoMet in vitro, suggesting that it is a novel methylase, whose possible substrates will be discussed.
Collapse
Affiliation(s)
- L Pintard
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 34293 Montpellier, France
| | | | | |
Collapse
|
163
|
Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol Biol Cell 2000; 11:567-77. [PMID: 10679015 PMCID: PMC14794 DOI: 10.1091/mbc.11.2.567] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.
Collapse
Affiliation(s)
- Y Yang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
164
|
Fatica A, Galardi S, Altieri F, Bozzoni I. Fibrillarin binds directly and specifically to U16 box C/D snoRNA. RNA (NEW YORK, N.Y.) 2000; 6:88-95. [PMID: 10668801 PMCID: PMC1369896 DOI: 10.1017/s1355838200991623] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Eukaryotic nucleoli contain a large family of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs) that are involved in processing and site-specific methylation of pre-rRNA. Several proteins have been reported to be common factors of box C/D snoRNPs in lower and higher eukaryotes; nevertheless none of them has been clearly shown to directly interact with RNA. We previously identified in Xenopus laevis, by means of UV crosslinking in vivo, two proteins associated with box C/D snoRNAs, fibrillarin and p68. Here we show that fibrillarin interacts directly and specifically with the U16 box C/D snoRNA in a X. laevis oocyte nuclear extract and that it does not require p68 for binding. Specific binding is also obtained with a recombinant fibrillarin demonstrating that the protein is able to bind directly and specifically to U16 snoRNA by itself.
Collapse
Affiliation(s)
- A Fatica
- Centro Acidi Nucleici of Consiglio Nazionale delle Richerche, Rome, Italy
| | | | | | | |
Collapse
|
165
|
Abstract
Eukaryotic nucleoli contain a large and diverse population of small nucleolar ribonucleoprotein particles (snoRNPs) that play diverse and essential roles in ribosome biogenesis. We previously demonstrated that U8 snoRNP is essential for processing of both 5.8 and 28 S rRNA. The RNA component of the U8 RNP particle is necessary but not sufficient for processing. Using an electrophoretic mobility sift assay, we enriched for U8-specific binding proteins from Xenopus ovary extracts. UV cross-linking reactions with partially purified fractions implicated a 29-kDa protein directly binding to U8 RNA. This protein interacted specifically and with high affinity with U8 snoRNA; it did not bind other snoRNAs and is probably not a common component of all snoRNPs. This is the first report of a protein component specific to an snoRNP essential for processing of the large ribosomal subunit in vertebrates.
Collapse
Affiliation(s)
- N Tomasevic
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1766, USA
| | | |
Collapse
|
166
|
Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 1999; 402:551-5. [PMID: 10591218 DOI: 10.1038/990141] [Citation(s) in RCA: 809] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The X-linked form of the human disease dyskeratosis congenita (DKC) is caused by mutations in the gene encoding dyskerin. Sufferers have defects in highly regenerative tissues such as skin and bone marrow, chromosome instability and a predisposition to develop certain types of malignancy. Dyskerin is a putative pseudouridine synthase, and it has been suggested that DKC may be caused by a defect in ribosomal RNA processing. Here we show that dyskerin is associated not only with H/ACA small nucleolar RNAs, but also with human telomerase RNA, which contains an H/ACA RNA motif. Telomerase adds simple sequence repeats to chromosome ends using an internal region of its RNA as a template, and is required for the indefinite proliferation of primary human cells. We find that primary fibroblasts and lymphoblasts from DKC-affected males are not detectably deficient in conventional H/ACA small nucleolar RNA accumulation or function; however, DKC cells have a lower level of telomerase RNA, produce lower levels of telomerase activity and have shorter telomeres than matched normal cells. The pathology of DKC is consistent with compromised telomerase function leading to a defect in telomere maintenance, which may limit the proliferative capacity of human somatic cells in epithelia and blood.
Collapse
Affiliation(s)
- J R Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA.
| | | | | |
Collapse
|
167
|
Kressler D, Linder P, de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7897-912. [PMID: 10567516 PMCID: PMC84875 DOI: 10.1128/mcb.19.12.7897] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- D Kressler
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
168
|
Massenet S, Ansmant I, Motorin Y, Branlant C. The first determination of pseudouridine residues in 23S ribosomal RNA from hyperthermophilic Archaea Sulfolobus acidocaldarius. FEBS Lett 1999; 462:94-100. [PMID: 10580099 DOI: 10.1016/s0014-5793(99)01524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe the first identification of pseudouridine (Psi) residues in ribosomal RNA (23S rRNA) of an hyperthermophilic Archaea Sulfolobus acidocaldarius. In contrast to Eucarya rRNA, only six Psi residues were detected, which is rather close to the situation in Bacteria. However, three modified positions (Psi(2479), Psi(2535) and Psi(2550)) are unique for S. acidocaldarius. Two Psi residues at positions 2060 and 2594 are universally conserved, while one other Psi (position 2066) is also common to Eucarya. Taken together the results argue against the conservation of Psi-synthases between Archaea and Bacteria and provide a basis for the search of snoRNA-like guides for Psi formation in Archaea.
Collapse
Affiliation(s)
- S Massenet
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, P.O. Box 239, 54506, Vandoeuvre-les-Nancy, France
| | | | | | | |
Collapse
|
169
|
Lange TS, Ezrokhi M, Amaldi F, Gerbi SA. Box H and box ACA are nucleolar localization elements of U17 small nucleolar RNA. Mol Biol Cell 1999; 10:3877-90. [PMID: 10564278 PMCID: PMC25686 DOI: 10.1091/mbc.10.11.3877] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nucleolar localization elements (NoLEs) of U17 small nucleolar RNA (snoRNA), which is essential for rRNA processing and belongs to the box H/ACA snoRNA family, were analyzed by fluorescence microscopy. Injection of mutant U17 transcripts into Xenopus laevis oocyte nuclei revealed that deletion of stems 1, 2, and 4 of U17 snoRNA reduced but did not prevent nucleolar localization. The deletion of stem 3 had no adverse effect. Therefore, the hairpins of the hairpin-hinge-hairpin-tail structure formed by these stems are not absolutely critical for nucleolar localization of U17, nor are sequences within stems 1, 3, and 4, which may tether U17 to the rRNA precursor by base pairing. In contrast, box H and box ACA are major NoLEs; their combined substitution or deletion abolished nucleolar localization of U17 snoRNA. Mutation of just box H or just the box ACA region alone did not fully abolish the nucleolar localization of U17. This indicates that the NoLEs of the box H/ACA snoRNA family function differently from the bipartite NoLEs (conserved boxes C and D) of box C/D snoRNAs, where mutation of either box alone prevents nucleolar localization.
Collapse
Affiliation(s)
- T S Lange
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
170
|
Zebarjadian Y, King T, Fournier MJ, Clarke L, Carbon J. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol Cell Biol 1999; 19:7461-72. [PMID: 10523634 PMCID: PMC84741 DOI: 10.1128/mcb.19.11.7461] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Psi) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Psi synthase, and shares the "KP" and "XLD" conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Psi synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Psi synthase domain of Cbf5p. Yeast strains expressing these mutated cbf5 genes in a cbf5Delta null background are viable at 25 degrees C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Psi in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutant cbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Psi in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutant cbf5D95A, which lacks Psi in rRNA. A subset of mutations in the Psi synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Psi synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.
Collapse
Affiliation(s)
- Y Zebarjadian
- Department of Molecular Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
171
|
Maiorano D, Brimage LJ, Leroy D, Kearsey SE. Functional conservation and cell cycle localization of the Nhp2 core component of H + ACA snoRNPs in fission and budding yeasts. Exp Cell Res 1999; 252:165-74. [PMID: 10502409 DOI: 10.1006/excr.1999.4607] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the identification of a novel nucleolar protein from fission yeast, p17(nhp2), which is homologous to the recently identified Nhp2p core component of H+ACA snoRNPs in Saccharomyces cerevisiae. We show that the fission yeast p17(nhp2) localizes to the nucleolus in live S. cerevisiae or Schizosaccharomyces pombe cells and is functionally conserved since the fission yeast gene can complement a deletion of the NHP2 gene in budding yeast. Analysis of p17(nhp2) during the mitotic cell cycles of living fission and budding yeast cells shows that this protein, and by implication H+ACA snoRNPs, remains localized with nucleolar material during mitosis, although the gross organization of partitioning of p17(nhp2) during anaphase is different in a comparison of the two yeasts. During anaphase in S. pombe p17(nhp2) trails segregating chromatin, while in S. cerevisiae the protein segregates alongside bulk chromatin. The pattern of segregation comparing haploid and diploid S. cerevisiae cells suggests that p17(nhp2) is closely associated with the rDNA during nuclear division.
Collapse
Affiliation(s)
- D Maiorano
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| | | | | | | |
Collapse
|
172
|
Ramamurthy V, Swann SL, Paulson JL, Spedaliere CJ, Mueller EG. Critical aspartic acid residues in pseudouridine synthases. J Biol Chem 1999; 274:22225-30. [PMID: 10428788 DOI: 10.1074/jbc.274.32.22225] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.
Collapse
Affiliation(s)
- V Ramamurthy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
173
|
Conrad J, Niu L, Rudd K, Lane BG, Ofengand J. 16S ribosomal RNA pseudouridine synthase RsuA of Escherichia coli: deletion, mutation of the conserved Asp102 residue, and sequence comparison among all other pseudouridine synthases. RNA (NEW YORK, N.Y.) 1999; 5:751-63. [PMID: 10376875 PMCID: PMC1369802 DOI: 10.1017/s1355838299990167] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The gene for RsuA, the pseudouridine synthase that converts U516 to pseudouridine in 16S ribosomal RNA of Escherichia coli, has been deleted in strains MG1655 and BL21/DE3. Deletion of this gene resulted in the specific loss of pseudouridine516 in both cell lines, and replacement of the gene in trans on a plasmid restored the pseudouridine. Therefore, rsuA is the only gene in E. coli with the ability to produce a protein capable of forming pseudouridine516. There was no effect on the growth rate of rsuA- MG1655 either in rich or minimal medium at either 24, 37, or 42 degrees C. Plasmid rescue of the BL21/DE3 rsuA- strain using pET15b containing an rsuA gene with aspartate102 replaced by asparagine or threonine demonstrated that neither mutant was active in vivo. This result supports a role for this aspartate, located in a unique GRLD sequence in this gene, at the catalytic center of the synthase. Induction of wild-type and the two mutant synthases in strain BL21/DE3 from genes in pET15b yielded a strong overexpression of all three proteins in approximately equal amounts showing that the mutations did not affect production of the protein in vivo and thus that the lack of activity was not due to a failure to produce a gene product. Aspartate102 is found in a conserved motif present in many pseudouridine synthases. The conservation and distribution of this motif in nature was assessed.
Collapse
Affiliation(s)
- J Conrad
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|