151
|
Cheng Y, Cheng M, Hao J, Miao W, Zhou W, Jia G, Li C. Highly Selective Detection of K + Based on a Dimerized G-Quadruplex DNAzyme. Anal Chem 2021; 93:6907-6912. [PMID: 33929188 DOI: 10.1021/acs.analchem.1c00872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Potassium ion (K+) plays a crucial role in biological systems, such as maintaining cellular processes and causing diseases. However, specifically, the detection of K+ is extremely challenging because of the coexistence of the chemically similar ion of Na+ under physiological conditions. In this work, a K+ specific biosensor is constructed on the basis of a dimerized G-quadruplex (GQ) DNA, which is promoted by K+, and the enzymatic activity of the resulting DNAzyme depends on the concentration of the K+. The K+ in a 1-200 mM concentration range can be selectively detected by visual color, UV-Vis absorbance or fluorescence even if the concentration of the accompanying Na+ is up to 140 mM at an ambient condition up to 45 °C. In addition, this system can also be used to selectively detect NH4+ in a 5-200 mM concentration range. This dimerized DNAzyme offers a new type of biosensor with a potential application in the biological system.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wenhui Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wenqin Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| |
Collapse
|
152
|
Harpster C, Boyle E, Musier-Forsyth K, Kankia B. HIV-1 genomic RNA U3 region forms a stable quadruplex-hairpin structure. Biophys Chem 2021; 272:106567. [PMID: 33713997 PMCID: PMC8051326 DOI: 10.1016/j.bpc.2021.106567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 01/14/2023]
Abstract
The U3 promoter region of the HIV-1 long terminal repeat (LTR) has previously been shown to fold into a series of dynamic G-quadruplex structures. Among the G-quadruplexes identified in the LTR sequence, LTR-III was shown to be the most stable in vitro. NMR studies of this 28-nucleotide (nt) DNA revealed a unique quadruplex-hairpin structure. Whether the hairpin forms in RNA element is unknown and the role of the hairpin in the structure and stability of quadruplexes has not been characterized. Here, we used optical and thermodynamic studies to address these questions. The wild-type LTR-III RNA formed a monomolecular quadruplex with a parallel topology using only propeller loops, including the hairpin loop element. By comparison to the WT and variant RNAs, LTR-III DNA structures were more heterogeneous and less stable. Increased stability of the RNA suggests that the RNA quadruplex-hairpin structure may be a more attractive therapeutic target than the analogous DNA element.
Collapse
Affiliation(s)
- Chelsea Harpster
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Elaina Boyle
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Besik Kankia
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
153
|
Winnerdy FR, Bakalar B, Das P, Heddi B, Marchand A, Rosu F, Gabelica V, Phan AT. Unprecedented hour-long residence time of a cation in a left-handed G-quadruplex. Chem Sci 2021; 12:7151-7157. [PMID: 34123342 PMCID: PMC8153214 DOI: 10.1039/d1sc00515d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Cations are critical for the folding and assembly of nucleic acids. In G-quadruplex structures, cations can bind between stacked G-tetrads and coordinate with negatively charged guanine carbonyl oxygens. They usually exchange between binding sites and with the bulk in solution with time constants ranging from sub-millisecond to seconds. Here we report the first observation of extremely long-lived K+ and NH4 + ions, with an exchange time constant on the order of an hour, when coordinated at the center of a left-handed G-quadruplex DNA. A single-base mutation, that switched one half of the structure from left- to right-handed conformation resulting in a right-left hybrid G-quadruplex, was shown to remove this long-lived behaviour of the central cation.
Collapse
Affiliation(s)
- Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
- Laboratoire de Biologie et de Pharmacologie Appliquée, CNRS, Ecole Normale Supérieure Paris-Saclay Gif-sur-Yvette 91190 France
| | - Adrien Marchand
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB Pessac 33600 France
| | - Frédéric Rosu
- Institut Européen de Chimie et Biologie, Université de Bordeaux, CNRS & Inserm (IECB, UMS3033, US001) Pessac 33607 France
| | - Valérie Gabelica
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB Pessac 33600 France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
154
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny J. Thermal and pH Stabilities of i‐DNA: Confronting in vitro Experiments with Models and In‐Cell NMR Data. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Eva Ištvánková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Samir Amrane
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Aurore Guédin
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Laurent Lacroix
- IBENS Ecole Normale Supérieure CNRS INSERM PSL Research University 75005 Paris France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Lukáš Trantírek
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Aleksandr B. Sahakyan
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
155
|
Supramolecular Polymorphism of (G 4C 2) n Repeats Associated with ALS and FTD. Int J Mol Sci 2021; 22:ijms22094532. [PMID: 33926081 PMCID: PMC8123662 DOI: 10.3390/ijms22094532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Guanine-rich DNA sequences self-assemble into highly stable fourfold structures known as DNA-quadruplexes (or G-quadruplexes). G-quadruplexes have furthermore the tendency to associate into one-dimensional supramolecular aggregates termed G-wires. We studied the formation of G-wires in solutions of the sequences d(G4C2)n with n = 1, 2, and 4. The d(G4C2)n repeats, which are associated with some fatal neurological disorders, especially amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), represent a challenging research topic due to their extensive structural polymorphism. We used dynamic light scattering (DLS) to measure translational diffusion coefficients and consequently resolve the length of the larger aggregates formed in solution. We found that all three sequences assemble into longer structures than previously reported. The d(G4C2) formed extremely long G-wires with lengths beyond 80 nm. The d(G4C2)2 formed a relatively short stacked dimeric quadruplex, while d(G4C2)4 formed multimers corresponding to seven stacked intramolecular quadruplexes. Profound differences between the multimerization properties of the investigated sequences were also confirmed by the AFM imaging of surface films. We propose that π-π stacking of the basic G-quadruplex units plays a vital role in the multimerization mechanism, which might be relevant for transformation from the regular medium-length to disease-related long d(G4C2)n repeats.
Collapse
|
156
|
Wan L, Yi J, Lam SL, Lee HK, Guo P. 5-Methylcytosine Substantially Enhances the Thermal Stability of DNA Minidumbbells. Chemistry 2021; 27:6740-6747. [PMID: 33501691 DOI: 10.1002/chem.202005410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 11/07/2022]
Abstract
Minidumbbell (MDB) is a recently identified non-B DNA structure that has been proposed to associate with genetic instabilities. It also serves as a functional structural motif in DNA nanotechnology. DNA molecular switches constructed using MDBs show instant and complete structural conversions with easy manipulations. The availability of stable MDBs can broaden their applications. In this work, we found that substitutions of cytosine with 5-methylcytosine could lead to a significant enhancement in the thermal stabilities of MDBs. Consecutive methylations of cytosine in MDBs brought about cumulative stabilization with a drastic increase in the melting temperature by 23 °C. NMR solution structures of two MDBs containing 5-methylcytosine residues have been successfully determined and revealed that the enhanced stabilities resulted primarily from favorable hydrophobic contacts, more stable base pairs and enhanced base-base stackings involving the methyl group of 5-methylcytosine.
Collapse
Affiliation(s)
- Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jie Yi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
157
|
Lat PK, Schultz CW, Yu H, Sen D. A Long and Reversibly Self‐Assembling 1D DNA Nanostructure Built from Triplex and Quadruplex Hybrid Tiles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prince Kumar Lat
- Dept. of Molecular Biology & Biochemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Clayton W. Schultz
- Dept. of Chemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Hua‐Zhong Yu
- Dept. of Molecular Biology & Biochemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
- Dept. of Chemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Dipankar Sen
- Dept. of Molecular Biology & Biochemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
- Dept. of Chemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
158
|
|
159
|
Zhang J, Song X, Xia M, Xue Y, Zhou M, Ruan L, Lu H, Chen J, Wang D, Chai Z, Hu Y. The proximity of the G-quadruplex to hemin impacts the intrinsic DNAzyme activity in mitochondria. Chem Commun (Camb) 2021; 57:3038-3041. [PMID: 33624637 DOI: 10.1039/d0cc08316j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DNAzyme activity of G-quadruplex/hemin in mitochondria has not been characterized. Herein, we report an unexpected difference in the DNAzyme activity between in vitro assays and in mitochondria. Molecular dynamic simulations illustrate how the interaction of the G-quadruplex with hemin may modulate the DNAzyme activity. These results might facilitate a better understanding of the catalytic mechanism of the DNAzyme and help the rational design of stable and active DNAzymes suitable for intracellular catalysis.
Collapse
Affiliation(s)
- Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew Chem Int Ed Engl 2021; 60:10286-10294. [PMID: 33605024 DOI: 10.1002/anie.202016801] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Samir Amrane
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
161
|
Zhou Z, Wang J, Levine RD, Remacle F, Willner I. DNA-based constitutional dynamic networks as functional modules for logic gates and computing circuit operations. Chem Sci 2021; 12:5473-5483. [PMID: 34168788 PMCID: PMC8179666 DOI: 10.1039/d1sc01098k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
A nucleic acid-based constitutional dynamic network (CDN) is introduced as a single computational module that, in the presence of different sets of inputs, operates a variety of logic gates including a half adder, 2 : 1 multiplexer and 1 : 2 demultiplexer, a ternary multiplication matrix and a cascaded logic circuit. The CDN-based computational module leads to four logically equivalent outputs for each of the logic operations. Beyond the significance of the four logically equivalent outputs in establishing reliable and robust readout signals of the computational module, each of the outputs may be fanned out, in the presence of different inputs, to a set of different logic circuits. In addition, the ability to intercommunicate constitutional dynamic networks (CDNs) and to construct DNA-based CDNs of higher complexity provides versatile means to design computing circuits of enhanced complexity.
Collapse
Affiliation(s)
- Zhixin Zhou
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Jianbang Wang
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - R D Levine
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Francoise Remacle
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liège B4000 Liège Belgium
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
162
|
Das P, Winnerdy FR, Maity A, Mechulam Y, Phan AT. A novel minimal motif for left-handed G-quadruplex formation. Chem Commun (Camb) 2021; 57:2527-2530. [PMID: 33690751 DOI: 10.1039/d0cc08146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent study on the left-handed G-quadruplex (LHG4) DNA revealed a 12-nt minimal motif GTGGTGGTGGTG with the ability to independently form an LHG4 and to drive an adjacent sequence to LHG4 formation. Here we have identified a second LHG4-forming motif, GGTGGTGGTGTG, and determined the X-ray crystal structure of an LHG4 involving this motif. Our structural analysis indicated the role of split guanines and single thymine loops in promoting LHG4 formation.
Collapse
Affiliation(s)
- Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. and NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. and NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
163
|
Lat PK, Schultz CW, Yu H, Sen D. A Long and Reversibly Self‐Assembling 1D DNA Nanostructure Built from Triplex and Quadruplex Hybrid Tiles. Angew Chem Int Ed Engl 2021; 60:8722-8727. [DOI: 10.1002/anie.202016668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Prince Kumar Lat
- Dept. of Molecular Biology & Biochemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Clayton W. Schultz
- Dept. of Chemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Hua‐Zhong Yu
- Dept. of Molecular Biology & Biochemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
- Dept. of Chemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Dipankar Sen
- Dept. of Molecular Biology & Biochemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
- Dept. of Chemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
164
|
Das P, Ngo KH, Winnerdy FR, Maity A, Bakalar B, Mechulam Y, Schmitt E, Phan AT. Bulges in left-handed G-quadruplexes. Nucleic Acids Res 2021; 49:1724-1736. [PMID: 33503265 PMCID: PMC7897477 DOI: 10.1093/nar/gkaa1259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022] Open
Abstract
G-quadruplex (G4) DNA structures with a left-handed backbone progression have unique and conserved structural features. Studies on sequence dependency of the structures revealed the prerequisites and some minimal motifs required for left-handed G4 formation. To extend the boundaries, we explore the adaptability of left-handed G4s towards the existence of bulges. Here we present two X-ray crystal structures and an NMR solution structure of left-handed G4s accommodating one, two and three bulges. Bulges in left-handed G4s show distinct characteristics as compared to those in right-handed G4s. The elucidation of intricate structural details will help in understanding the possible roles and limitations of these unique structures.
Collapse
Affiliation(s)
- Poulomi Das
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Khac Huy Ngo
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Arijit Maity
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Blaž Bakalar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (BIOC), Ecole Polytechnique, CNRS-UMR7654, Institut Polytechnique de Paris, Palaiseau 91128, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
165
|
Switzer C. A DNA tetraplex composed of two continuously hydrogen-bonded helical arrays of isoguanine (isoG). Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
166
|
Ghosh A, Largy E, Gabelica V. DNA G-quadruplexes for native mass spectrometry in potassium: a database of validated structures in electrospray-compatible conditions. Nucleic Acids Res 2021; 49:2333-2345. [PMID: 33555347 PMCID: PMC7913678 DOI: 10.1093/nar/gkab039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplex DNA structures have become attractive drug targets, and native mass spectrometry can provide detailed characterization of drug binding stoichiometry and affinity, potentially at high throughput. However, the G-quadruplex DNA polymorphism poses problems for interpreting ligand screening assays. In order to establish standardized MS-based screening assays, we studied 28 sequences with documented NMR structures in (usually ∼100 mM) potassium, and report here their circular dichroism (CD), melting temperature (Tm), NMR spectra and electrospray mass spectra in 1 mM KCl/100 mM trimethylammonium acetate. Based on these results, we make a short-list of sequences that adopt the same structure in the MS assay as reported by NMR, and provide recommendations on using them for MS-based assays. We also built an R-based open-source application to build and consult a database, wherein further sequences can be incorporated in the future. The application handles automatically most of the data processing, and allows generating custom figures and reports. The database is included in the g4dbr package (https://github.com/EricLarG4/g4dbr) and can be explored online (https://ericlarg4.github.io/G4_database.html).
Collapse
Affiliation(s)
- Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| | - Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000 Bordeaux, France
| |
Collapse
|
167
|
New insight into G-quadruplexes; diagnosis application in cancer. Anal Biochem 2021; 620:114149. [PMID: 33636157 DOI: 10.1016/j.ab.2021.114149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Biochemical properties and flexibility of nitrogenous bases allow DNA to fold into higher-order structures. Among different DNA secondary structure, G-quadruplexes (tetrapelexes-G4) - which are formed in guanine rich sequences - have gained more attention because of their biological significance, therapeutic intervention, and application in molecular device and biosensor. G4-quadruplex studies categorize into three main fields, in vivo, in vitro, and in silico. The in vitro field includes G4 synthetic oligonucleotides. This review focuses on the G-quadruplex synthetic aptamers structure features and considers the applicability of G4-aptamers for cancer biomarkers detection. Various biosensing methods will be reviewed based on G-quadruplex aptamers for cancer detection.
Collapse
|
168
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Precise Distance Measurements in DNA G-Quadruplex Dimers and Sandwich Complexes by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:4939-4947. [PMID: 33063395 PMCID: PMC7984025 DOI: 10.1002/anie.202008618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/12/2020] [Indexed: 12/20/2022]
Abstract
DNA G-quadruplexes show a pronounced tendency to form higher-order structures, such as π-stacked dimers and aggregates with aromatic binding partners. Reliable methods for determining the structure of these non-covalent adducts are scarce. Here, we use artificial square-planar Cu(pyridine)4 complexes, covalently incorporated into tetramolecular G-quadruplexes, as rigid spin labels for detecting dimeric structures and measuring intermolecular Cu2+ -Cu2+ distances via pulsed dipolar EPR spectroscopy. A series of G-quadruplex dimers of different spatial dimensions, formed in tail-to-tail or head-to-head stacking mode, were unambiguously distinguished. Measured distances are in full agreement with results of molecular dynamics simulations. Furthermore, intercalation of two well-known G-quadruplex binders, PIPER and telomestatin, into G-quadruplex dimers resulting in sandwich complexes was investigated, and previously unknown binding modes were discovered. Additionally, we present evidence that free G-tetrads also intercalate into dimers. Our transition metal labeling approach, combined with pulsed EPR spectroscopy, opens new possibilities for examining structures of non-covalent DNA aggregates.
Collapse
Affiliation(s)
- Lukas M. Stratmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Yury Kutin
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Müge Kasanmascheff
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
169
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
170
|
Stadlbauer P, Islam B, Otyepka M, Chen J, Monchaud D, Zhou J, Mergny JL, Šponer J. Insights into G-Quadruplex-Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. J Chem Theory Comput 2021; 17:1883-1899. [PMID: 33533244 DOI: 10.1021/acs.jctc.0c01176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine quadruplex nucleic acids (G4s) are involved in key biological processes such as replication or transcription. Beyond their biological relevance, G4s find applications as biotechnological tools since they readily bind hemin and enhance its peroxidase activity, creating a G4-DNAzyme. The biocatalytic properties of G4-DNAzymes have been thoroughly studied and used for biosensing purposes. Despite hundreds of applications and massive experimental efforts, the atomistic details of the reaction mechanism remain unclear. To help select between the different hypotheses currently under investigation, we use extended explicit-solvent molecular dynamics (MD) simulations to scrutinize the G4/hemin interaction. We find that besides the dominant conformation in which hemin is stacked atop the external G-quartets, hemin can also transiently bind to the loops and be brought to the external G-quartets through diverse delivery mechanisms. The simulations do not support the catalytic mechanism relying on a wobbling guanine. Similarly, the catalytic role of the iron-bound water molecule is not in line with our results; however, given the simulation limitations, this observation should be considered with some caution. The simulations rather suggest tentative mechanisms in which the external G-quartet itself could be responsible for the unique H2O2-promoted biocatalytic properties of the G4/hemin complexes. Once stacked atop a terminal G-quartet, hemin rotates about its vertical axis while readily sampling shifted geometries where the iron transiently contacts oxygen atoms of the adjacent G-quartet. This dynamics is not apparent from the ensemble-averaged structure. We also visualize transient interactions between the stacked hemin and the G4 loops. Finally, we investigated interactions between hemin and on-pathway folding intermediates of the parallel-stranded G4 fold. The simulations suggest that hemin drives the folding of parallel-stranded G4s from slip-stranded intermediates, acting as a G4 chaperone. Limitations of the MD technique are briefly discussed.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, Dijon 21078, France
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
171
|
Tang J, Wu J, Zhu R, Wang Z, Zhao C, Tang P, Xie W, Wang D, Liang L. Reversible photo-regulation on the folding/unfolding of telomere G-quadruplexes with solid-state nanopores. Analyst 2021; 146:655-663. [PMID: 33206065 DOI: 10.1039/d0an01930e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The formation of G-quadruplexes (G4) in human telomere and other important biological regions inhibits the replication and transcription of DNA, thereby influencing further cell proliferation. The investigation of G4 formation and unfolding is vital for understanding their modulation in biological processes and life science. Photo regulation is a facile and sensitive approach for monitoring the structures of biomacromolecules and material surface properties. The nanopore-based technique is also prevalent for label-free single-molecule characterization with high accuracy. This study provides a combination of solid-state nanopore technology with light-switch as a platform for the modulation of human telomere G4 formation and splitting under switchable light exposure. The introduction of molecular switch, namely azobenzene moiety at different positions of the DNA sequence influences the formation and stability of G4. Three azobenzenes immobilized on each of the G-quartet plane (hTelo-3azo-p) or four azobenzenes on the same plane (hTelo-4azo-4p) of the human telomere G4 sequence realized the reversible control of G4 folding/unfolding at the temporal scale upon photo regulation, and the formation and splitting of G4 with hTelo-4azo-4p is slower and not thorough compared to that with hTelo-3azo-p due to the coplanar steric hindrance. Moreover, the G4 formation recorded with the combined nanopore and photo-responsive approach was also characterized with fluorescence, and the variation in the fluorescence intensity of the NMM and G4 complex exhibited a different tendency under reverse light irradiation due to the distinct interactions of NMM with the azobenzene-modified G4. Our study demonstrated a controllable and sensitive way for the manipulation of G4 structures, which will be inspiring for the intervention of G4-related cell senescence, cancer diagnosis and drug exploration.
Collapse
Affiliation(s)
- Jing Tang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Zhou L, Li CL, Gao RT, Kang SM, Xu L, Xu XH, Liu N, Wu ZQ. Highly Regioselective and Helix-Sense Selective Living Polymerization of Phenyl and Alkoxyallene Using Chiral Nickel(II) Catalysts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02198] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Chong-Long Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021 Ningxia Hui Autonomous Region, China
| | - Run-Tan Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| |
Collapse
|
173
|
Abstract
In this review, DNA and nanomaterial based catalysts for porphyrin metalation reactions are summarized, including the selection of DNAzymes, choice of nanomaterials, their catalytic mechanisms, and applications of the reactions.
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science
- Yangtze University
- Jingzhou
- China
- Department of Chemistry
| | - Yu Zhou
- College of Life Science
- Yangtze University
- Jingzhou
- China
- College of Animal Science
| | - Juewen Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
174
|
Chaudhuri R, Bhattacharya S, Dash J, Bhattacharya S. Recent Update on Targeting c-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. J Med Chem 2020; 64:42-70. [PMID: 33355454 DOI: 10.1021/acs.jmedchem.0c01145] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Guanine-rich DNA sequences have the propensity to adopt four-stranded tetrahelical G-quadruplex (G4) structures that are overrepresented in gene promoters. The structural polymorphism and physicochemical properties of these non-Watson-Crick G4 structures make them important targets for drug development. The guanine-rich nuclease hypersensitivity element III1 present in the upstream of P1 promoter of c-MYC oncogene has the ability to form an intramolecular parallel G4 structure. The G4 structure that forms transiently in the c-MYC promoter functions as a transcriptional repressor element. The c-MYC oncogene is overexpressed in a wide variety of cancers and plays a key role in cancer progression. Till now, a large number of compounds that are capable of interacting and stabilizing thec-MYC G4 have been reported. In this review, we summarize various c-MYC G4 specific molecules and discuss their effects on c-MYC gene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
175
|
Miglietta G, Russo M, Capranico G. G-quadruplex-R-loop interactions and the mechanism of anticancer G-quadruplex binders. Nucleic Acids Res 2020; 48:11942-11957. [PMID: 33137181 PMCID: PMC7708042 DOI: 10.1093/nar/gkaa944] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.
Collapse
Affiliation(s)
- Giulia Miglietta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
176
|
Ariga K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| |
Collapse
|
177
|
Reddy Sannapureddi RK, Mohanty MK, Gautam AK, Sathyamoorthy B. Characterization of DNA G-quadruplex Topologies with NMR Chemical Shifts. J Phys Chem Lett 2020; 11:10016-10022. [PMID: 33179931 DOI: 10.1021/acs.jpclett.0c02969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
G-quadruplexes are nucleic acid motifs formed by stacking of guanosine-tetrad pseudoplanes. They perform varied biological roles, and their distinctive structural features enable diverse applications. High-resolution structural characterization of G-quadruplexes is often time-consuming and expensive, calling for effective methods. Herein, we develop NMR chemical shifts and machine learning-based methodology that allows direct, rapid, and reliable analysis of canonical three-plane DNA G-quadruplexes sans isotopic enrichment. We show, for the first time, that each unique topology enforces a specific distribution of glycosidic torsion angles. Newly acquired carbon chemical shifts are exquisite probes for the dihedral angle distribution and provide immediate and unambiguous backbone topology assignment. The support vector machine learning methodology aids resonance assignment by providing plane indices for tetrad-forming guanosines. We further demonstrate the robustness by successful application of the methodology to a sequence that folds in two dissimilar topologies under different ionic conditions, providing its first atomic-level characterization.
Collapse
Affiliation(s)
| | - Manish Kumar Mohanty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Anoop Kumar Gautam
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
178
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Präzise Abstandsmessungen in DNA‐G‐Quadruplex‐Dimeren und Sandwichkomplexen über gepulste dipolare EPR‐Spektroskopie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lukas M. Stratmann
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Yury Kutin
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Müge Kasanmascheff
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
179
|
Deore PS, Manderville RA. Ratiometric fluorescent sensing of the parallel G-quadruplex produced by PS2.M: implications for K + detection. Analyst 2020; 145:1288-1293. [PMID: 31895357 DOI: 10.1039/c9an02122a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent ligands that selectively bind to a specific G-quadruplex (GQ) topology (antiparallel, hybrid or parallel) are highly sought after for aptasensor development and nanodevice construction. The coumarin-benzothiazole hybrid (BnBtC) is an internal charge transfer (ICT) ratiometric fluorescent probe, which displays two well-resolved emission bands at ∼450 nm for the coumarin component and ∼650 nm for the ICT band. The red ICT emission of BnBtC displays turn-on responses to protic solvent polarity and upon binding GQ structures, especially those produced by the hemin binding aptamer (PS2.M). In the present work, BnBtC was found to exhibit enhanced ICT emission upon binding the parallel GQ topology of PS2.M that is selectively produced in the presence of K+. This ability to discriminate K+ from other cationic metal ions through a turn-on ratiometric fluorescent response demonstrates the potential utility of the BnBtC probe for biosensor applications.
Collapse
Affiliation(s)
- Prashant S Deore
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
180
|
Gray MD, Deore PS, Chung AJ, Van Riesen AJ, Manderville RA, Prabhakar PS, Wetmore SD. Lighting Up the Thrombin-Binding Aptamer G-Quadruplex with an Internal Cyanine-Indole-Quinolinium Nucleobase Surrogate. Direct Fluorescent Intensity Readout for Thrombin Binding without Topology Switching. Bioconjug Chem 2020; 31:2596-2606. [PMID: 33156614 DOI: 10.1021/acs.bioconjchem.0c00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent nucleobases represent an important class of molecular reporters of nucleic acid interactions. In this work, the advantages of utilizing a noncanonical fluorescent nucleobase surrogate for monitoring thrombin binding by the 15-mer thrombin binding aptamer (TBA) is presented. TBA folds into an antiparallel G-quadruplex (GQ) with loop thymidine (T) residues interacting directly with the protein in the thrombin-TBA complex. In the free GQ, T3 is solvent-exposed and does not form canonical base-pairs within the antiparallel GQ motif. Upon thrombin binding, T3 interacts directly with a hydrophobic protein binding pocket. Replacing T3 with a cyanine-indole-quinolinium (4QI) hemicyanine dye tethered to an acyclic 1,2-propanediol linker is shown to have minimal impact on GQ stability and structure with the internal 4QI displaying a 40-fold increase in emission intensity at 586 nm (excitation 508 nm) compared to the free dye in solution. Molecular dynamics (MD) simulations demonstrate that the 4QI label π-stacks with T4 and T13 within the antiparallel GQ fold, which is supported by strong energy transfer (ET) fluorescence from the GQ (donor) to the 4QI label (acceptor). Thrombin binding to 4QI-TBA diminishes π-stacking interactions between 4QI and the GQ structure to cause a turn-off emission intensity response with an apparent dissociation constant (Kd) of 650 nM and a limit of detection (LoD) of 150 nM. These features highlight the utility of internal noncanonical fluorescent surrogates for monitoring protein binding by GQ-folding aptamers in the absence of DNA topology switching.
Collapse
Affiliation(s)
- Micaela D Gray
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Prashant S Deore
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Andrew J Chung
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Abigail J Van Riesen
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Preethi Seelam Prabhakar
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
181
|
Tian T, Xiao D, Zhang T, Li Y, Shi S, Zhong W, Gong P, Liu Z, Li Q, Lin Y. A Framework Nucleic Acid Based Robotic Nanobee for Active Targeting Therapy. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007342] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Wenyu Zhong
- Key Lab for Biomechanical Engineering of Sichuan Province Sichuan University Chengdu Sichuan 610065 China
| | - Ping Gong
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Zhan Liu
- Key Lab for Biomechanical Engineering of Sichuan Province Sichuan University Chengdu Sichuan 610065 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
- College of Biomedical Engineering Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
182
|
Cao Y, Yang L, Ding P, Li W, Pei R. Ligand Selectivity by Inserting GCGC‐Tetrads into G‐Quadruplex Structures. Chemistry 2020; 26:14730-14737. [DOI: 10.1002/chem.202003004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/22/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface Division of Nanobiomedicine Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 P. R. China
| |
Collapse
|
183
|
Cheng Y, Zhang Y, Gong Z, Zhang X, Li Y, Shi X, Pei Y, You H. High Mechanical Stability and Slow Unfolding Rates Are Prevalent in Parallel-Stranded DNA G-Quadruplexes. J Phys Chem Lett 2020; 11:7966-7971. [PMID: 32885976 DOI: 10.1021/acs.jpclett.0c02229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Guanine-rich repeat sequences are known to adopt diverse G-quadruplex (G4) topologies. Determining the unfolding rates of individual G4 species is challenging due to the coexistence of multiple G4 conformations in a solution. Here, using single-molecule magnetic tweezers, we systematically measured the unfolding force distributions of 4 oncogene promoter G4s, 12 model sequences with two 1-nucleotide (nt) thymine loops that predominantly adopt parallel-stranded G4 structures, and 6 sequences forming multiple G4 structures. All parallel-stranded G4s reveal an unfolding force peak at 40-60 pN, which is associated with extremely slow unfolding rates on the order of 10-5-10-7 s-1. In contrast, nonparallel G4s and partially folded intermediate states reveal an unfolding force peak <40 pN. These results suggest a strong correlation between the parallel-stranded G4s folding topology and the slow unfolding rates and provide important insights into the mechanism that govern the stability and the transition kinetics of G4s.
Collapse
Affiliation(s)
- Yuanlei Cheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yashuo Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, 430071 Wuhan, China
| | - Xinghua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, 430072 Wuhan, China
| | - Yutong Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xiangqian Shi
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yufeng Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| |
Collapse
|
184
|
Luteran EM, Kahn JD, Paukstelis PJ. Stability of the pH-Dependent Parallel-Stranded d(CGA) Motif. Biophys J 2020; 119:1580-1589. [PMID: 32966760 DOI: 10.1016/j.bpj.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Noncanonical DNA structures that retain programmability and structural predictability are increasingly being used in DNA nanotechnology applications, in which they offer versatility beyond traditional Watson-Crick interactions. The d(CGA) triplet repeat motif is structurally dynamic and can transition between parallel-stranded homo-base paired duplex and antiparallel unimolecular hairpin in a pH-dependent manner. Here, we evaluate the thermodynamic stability and nuclease sensitivity of oligonucleotides composed of the d(CGA) motif and several structurally related sequence variants. These results show that the structural transition resulting from decreasing the pH is accompanied by both a significant energetic stabilization and decreased nuclease sensitivity as unimolecular hairpin structures are converted to parallel-stranded homo-base paired duplexes. Furthermore, the stability of the parallel-stranded duplex form can be altered by changing the 5'-nucleobase of the d(CGA) triplet and the frequency and position of the altered triplets within long stretches of d(CGA) triplets. This work offers insight into the stability and versatility of the d(CGA) triplet repeat motif and provides constraints for using this pH-adaptive structural motif for creating DNA-based nanomaterials.
Collapse
Affiliation(s)
- Emily M Luteran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Jason D Kahn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland
| | - Paul J Paukstelis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
185
|
Zhang C, Zhang H, Wu P, Zhang X, Liu J. Suppressing the background activity of hemin for boosting the sensitivity of DNAzyme-based biosensors by SYBR Green I. Biosens Bioelectron 2020; 169:112603. [PMID: 32947082 DOI: 10.1016/j.bios.2020.112603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
Peroxidase-like DNAzymes have been extensively used to replace horseradish peroxidase (HRP) for developing biosensors for signal amplification. However, the background activity from the cofactor (i.e., free hemin) has limited the sensitivity of such sensors. Herein, we aim to find an inhibitor for hemin to suppress the background signal, and a classic split DNAzyme-based sensor was used to detect a complementary DNA oligonucleotide. After screening a series of dyes, SYBR Green I (SG, one of the DNA stanning dyes) was selected for suppressing the background. Simply by adding 0.84 μM SG, the background from 50 nM hemin was suppressed over 30-fold. The suppression was caused by the interaction between SG and hemin. In the presence of the target DNA, the formed duplex region and G-quadruplex structure can better bind SG and hemin respectively, thus preventing the interaction between them and showing a high activity of the DNAzyme. The optimized sensor showed a detection limit of 3.8 pM for the target DNA (p53 gene). In addition, the backgrounds from chemiluminescence, colorimetric and fluorescence sensing modes can all be reduced by adding SG to the split DNAzyme system. The suppression of the background of peroxidase DNAzymes is a critical step towards practical use of related biosensors.
Collapse
Affiliation(s)
- Chi Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Houchun Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Peng Wu
- Key Laboratory of Green Chemistry and Technology, Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
186
|
Tassinari M, Zuffo M, Nadai M, Pirota V, Sevilla Montalvo AC, Doria F, Freccero M, Richter SN. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res 2020; 48:4627-4642. [PMID: 32282912 PMCID: PMC7229848 DOI: 10.1093/nar/gkaa186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting of G-quadruplexes, non-canonical conformations that form in G-rich regions of nucleic acids, has been proposed as a novel therapeutic strategy toward several diseases, including cancer and infections. The unavailability of highly selective molecules targeting a G-quadruplex of choice has hampered relevant applications. Herein, we describe a novel approach, based on naphthalene diimide (NDI)-peptide nucleic acid (PNA) conjugates, taking advantage of the cooperative interaction of the NDI with the G-quadruplex structure and hybridization of the PNA with the flanking region upstream or downstream the targeted G-quadruplex. By biophysical and biomolecular assays, we show that the NDI-PNA conjugates are able to specifically recognize the G-quadruplex of choice within the HIV-1 LTR region, consisting of overlapping and therefore mutually exclusive G-quadruplexes. Additionally, the conjugates can induce and stabilize the least populated G-quadruplex at the expenses of the more stable ones. The general and straightforward design and synthesis, which readily apply to any G4 target of choice, together with both the red-fluorescent emission and the possibility to introduce cellular localization signals, make the novel conjugates available to selectively control G-quadruplex folding over a wide range of applications.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Michela Zuffo
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | | | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100, Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
187
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
188
|
Školáková P, Badri Z, Foldynová-Trantírková S, Ryneš J, Šponer J, Fojtová M, Fajkus J, Marek R, Vorlíčková M, Mergny JL, Trantírek L. Composite 5-methylations of cytosines modulate i-motif stability in a sequence-specific manner: Implications for DNA nanotechnology and epigenetic regulation of plant telomeric DNA. Biochim Biophys Acta Gen Subj 2020; 1864:129651. [DOI: 10.1016/j.bbagen.2020.129651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
|
189
|
Bian Y, Song F, Zhang J, Yu J, Wang J, Wang W. Insights into the Kinetic Partitioning Folding Dynamics of the Human Telomeric G-Quadruplex from Molecular Simulations and Machine Learning. J Chem Theory Comput 2020; 16:5936-5947. [PMID: 32794754 DOI: 10.1021/acs.jctc.0c00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human telomeric DNA G-quadruplex follows a kinetic partitioning folding mechanism. The underlying folding landscape potentially has many minima separated by high free-energy barriers. However, using current theoretical models to characterize this complex folding landscape has remained a challenging problem. In this study, by developing a hybrid atomistic structure-based model that merges structural information on the hybrid-1, hybrid-2, and chair-type G-quadruplex topologies, we investigated a kinetic partitioning folding process of human telomeric DNA involving three native folds. The model was validated as it reproduced the experimental observation that the hybrid-1 conformation is the major fold and the hybrid-2 conformation is kinetically more accessible. A three-step mechanism was revealed for the formation of the hybrid-1 conformation, while a two-step mechanism was demonstrated for the formation of hybrid-2 and chair-type conformations. Likewise, a class of state in which structures adopted inappropriate combinations of syn/anti guanine nucleotides was found to greatly slow down the folding process. In addition, by employing the XGBoost machine learning algorithm, three interatom distances and six dihedral angles were identified as essential internal coordinates to represent the low-dimensional folding landscape. The strategy of coupling the multibasin model and the machine learning algorithm may be useful to investigate the conformational dynamics of other multistate biomolecules.
Collapse
Affiliation(s)
- Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.,National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Feng Song
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Zhang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
190
|
Balanikas E, Banyasz A, Douki T, Baldacchino G, Markovitsi D. Guanine Radicals Induced in DNA by Low-Energy Photoionization. Acc Chem Res 2020; 53:1511-1519. [PMID: 32786340 DOI: 10.1021/acs.accounts.0c00245] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Guanine (G) radicals are precursors to DNA oxidative damage, correlated with carcinogenesis and aging. During the past few years, we demonstrated clearly an intriguing effect: G radicals can be generated upon direct absorption of UV radiation with energy significantly lower than the G ionization potential. Using nanosecond transient absorption spectroscopy, we studied the primary species, ejected electrons and guanine radicals, which result from photoionization of various DNA systems in aqueous solution.The DNA propensity to undergo electron detachment at low photon energies greatly depends on its secondary structure. Undetected for monomers or unstacked oligomers, this propensity may be 1 order of magnitude higher for G-quadruplexes than for duplexes. The experimental results suggest nonvertical processes, associated with the relaxation of electronic excited states. Theoretical studies are required to validate the mechanism and determine the factors that come into play. Such a mechanism, which may be operative over a broad excitation wavelength range, explains the occurrence of oxidative damage observed upon UVB and UVA irradiation.Quantification of G radical populations and their time evolution questions some widespread views. It appears that G radicals may be generated with the same probability as pyrimidine dimers, which are considered to be the major lesions induced upon absorption of low-energy UV radiation by DNA. As most radical cations undergo deprotonation, the vast majority of the final reaction products is expected to stem from long-lived deprotonated radicals. Consequently, when G radical cations are involved, the widely used oxidation marker 8-oxodG is not representative of the oxidative damage.Beyond the biological consequences, photogeneration of electron holes in G-quadruplexes may inspire applications in nanoelectronics; although four-stranded structures are currently studied as molecular wires, their behavior as photoconductors has not been explored so far.In the present Account, after highlighting some key experimental issues, we first describe the photoionization process, and then, we focus on radicals. We use as show-cases new results obtained for genomic DNA and Oxytricha G-quadruplexes. Generation and reaction dynamics of G radicals in these systems provide a representative picture of the phenomena reported previously for duplexes and G-quadruplexes, respectively.
Collapse
Affiliation(s)
| | - Akos Banyasz
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble France
| | - Gérard Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
191
|
Cheng Y, Cheng M, Hao J, Jia G, Monchaud D, Li C. The noncovalent dimerization of a G-quadruplex/hemin DNAzyme improves its biocatalytic properties. Chem Sci 2020; 11:8846-8853. [PMID: 34123138 PMCID: PMC8163442 DOI: 10.1039/d0sc02907f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
While many protein enzymes exert their functions through multimerization, which improves both selectivity and activity, this has not yet been demonstrated for other naturally occurring catalysts. Here, we report a multimerization effect applied to catalytic DNAs (or DNAzymes) and demonstrate that the enzymatic efficiency of G-quadruplexes (GQs) in interaction with the hemin cofactor is remarkably enhanced by homodimerization. The resulting non-covalent dimeric GQ-DNAzyme system provides hemin with a structurally defined active site in which both the cofactor (hemin) and the oxidant (H2O2) are activated. This new biocatalytic system efficiently performs peroxidase- and peroxygenase-type biotransformations of a broad range of substrates, thus providing new perspectives for biotechnological application of GQs.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - David Monchaud
- Institut de Chimie Moléculaire de l' Université de Bourgogne (ICMUB), CNRS UMR 6302, UBFC Dijon 21078 Dijon France
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
192
|
Lat PK, Liu K, Kumar DN, Wong KKL, Verheyen EM, Sen D. High specificity and tight spatial restriction of self-biotinylation by DNA and RNA G-Quadruplexes complexed in vitro and in vivo with Heme. Nucleic Acids Res 2020; 48:5254-5267. [PMID: 32329781 PMCID: PMC7261162 DOI: 10.1093/nar/gkaa281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Guanine-rich, single-stranded DNAs and RNAs that fold to G-quadruplexes (GQs) are able to complex tightly with heme and display strongly enhanced peroxidase activity. Phenolic compounds are particularly good substrates for these oxidative DNAzymes and ribozymes; we recently showed that the use of biotin-tyramide as substrate can lead to efficient GQ self-biotinylation. Such biotinylated GQs are amenable to polymerase chain reaction amplification and should be useful for a relatively non-perturbative investigation of GQs as well as GQ-heme complexes within living cells. Here, we report that in mixed solutions of GQ and duplex DNA in vitro, GQ biotinylation is specifically >104-fold that of the duplex, even in highly concentrated DNA gels; that a three-quartet GQ is tagged by up to four biotins, whose attachment occurs more or less uniformly along the GQ but doesn't extend significantly into a duplex appended to the GQ. This self-biotinylation can be modulated or even abolished in the presence of strong GQ ligands that compete with heme. Finally, we report strong evidence for the successful use of this methodology for labeling DNA and RNA within live, freshly dissected Drosophila larval salivary glands.
Collapse
Affiliation(s)
- Prince Kumar Lat
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kun Liu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dev N Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kenneth K L Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dipankar Sen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
193
|
Abstract
DNA is now well-established as a nanoscale building material with applications in fields such as biosensing and molecular computation. Molecular processes such as logic gates, nucleic acid circuits, and multiplexed detection have used different readout strategies to measure the output signal. In biosensing, this output can be the diagnosis of a disease biomarker, whereas in molecular computation, the output can be the result of a mathematical operation carried out using DNA. Recent developments have shown that the output of such processes can be displayed graphically as a macroscopic symbol or an alphanumeric character on multiwell plates, microarray chips, gels, lateral flow devices, and DNA origami surfaces. This review discusses the concepts behind such graphical readouts of molecular events, available display platforms, and the advantages and challenges in adapting such methods for practical use. Graphical display systems have the potential to be used in the creation of intelligent computing and sensing devices by which nanoscale binding events are translated into macroscopic visual readouts.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
194
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
195
|
Cao Y, Li W, Ding P, Pei R. Acid-facilitated G-quadruplex/hemin DNAzymes: accompanied by the assembly of quadruplex supramolecules. Chem Commun (Camb) 2020; 56:8667-8670. [PMID: 32608405 DOI: 10.1039/d0cc03082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Four types of quadruplex supramolecules containing G-quadruplex (G4)-I-motif interfaces were assembled under slightly acidic conditions, which can interact with hemin to form I-motif-linked G4/hemin DNAzymes. Our data demonstrated that some I-motif-linked DNAzymes are highly acid-dependent due to the stabilization of hemiprotonated cytosine-cytosine (C˙CH+) pairs for the G4 units.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | |
Collapse
|
196
|
Nakanishi W, Hayashi S, Nishide T. Intrinsic dynamic and static nature of each HB in the multi-HBs between nucleobase pairs and its behavior, elucidated with QTAIM dual functional analysis and QC calculations. RSC Adv 2020; 10:24730-24742. [PMID: 35516213 PMCID: PMC9055173 DOI: 10.1039/d0ra01357a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
The intrinsic dynamic and static nature of each HB in the multi-HBs between nucleobase pairs (Nu-Nu') is elucidated with QTAIM dual functional analysis (QTAIM-DFA). Perturbed structures generated using coordinates derived from the compliance constants (C ii ) are employed for QTAIM-DFA. The method is called CIV. Two, three, or four HBs are detected for Nu-Nu'. Each HB in Nu-Nu' is predicted to have the nature of CT-TBP (trigonal bipyramidal adduct formation through charge transfer (CT)), CT-MC (molecular complex formation through CT), or t-HBwc (typical HB with covalency), while the vdW nature is predicted for the C-H⋯X interactions, for example. Energies for the formation of the pairs (ΔE) are linearly correlated with the total values of C ii -1 in Nu-Nu'. The total C ii -1 values are obtained by summing each C ii -1 value, similarly to the case of Ohm's law for the parallel connection in the electric resistance. The total ΔE value for a nucleobase pair could be fractionalized to each HB, based on each C ii -1 value. The perturbed structures generated with CIV are very close to those generated with the partial optimization method, when the changes in the interaction distances are very small. The results provide useful insights for better understanding DNA processes, although they are highly enzymatic.
Collapse
Affiliation(s)
- Waro Nakanishi
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan +81 73 457 8252
| | - Satoko Hayashi
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan +81 73 457 8252
| | - Taro Nishide
- Faculty of Systems Engineering, Wakayama University 930 Sakaedani Wakayama 640-8510 Japan +81 73 457 8252
| |
Collapse
|
197
|
Cao Y, Li W, Gao T, Ding P, Pei R. One Terminal Guanosine Flip of Intramolecular Parallel G-Quadruplex: Catalytic Enhancement of G-Quadruplex/Hemin DNAzymes. Chemistry 2020; 26:8631-8638. [PMID: 32428287 DOI: 10.1002/chem.202001462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
198
|
Liao W, Tan M, Kusamori K, Takakura Y, Nishikawa M. Construction of Monomeric and Dimeric G-Quadruplex-Structured CpG Oligodeoxynucleotides for Enhanced Uptake and Activation in TLR9-Positive Macrophages. Nucleic Acid Ther 2020; 30:299-311. [PMID: 32559406 DOI: 10.1089/nat.2019.0843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The G-quadruplex (GQ) structure has potential applications in nucleic acid drug delivery because of its superior stability. In this study, we added one G-tract (five guanines) to an unmethylated phosphodiester-linked cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), a potential immune adjuvant, to construct a GQ-structured CpG ODN with precise structural properties, increased biological stability, and efficient delivery to Toll-like receptor 9 (TLR9)-positive immune cells. A G-tract was added to phosphodiester-backboned CpG1668 at the 5'-end [1668(5'-G5)], 3'-end [1668(3'-G5)], or within the sequence [1668(mid-G5)]. Circular dichroism analysis showed that all CpG ODNs with a G-tract formed parallel GQ structures, irrespective of its position. Electrophoresis showed that 1668(5'-G5) formed a GQ dimer, whereas others remained GQ monomers. GQ-structured CpG ODNs induced greater tumor necrosis factor-α and interleukin-6 secretion from TLR9-positive mouse macrophage-like RAW264.7 cells than single-stranded CpG ODNs, with the highest for 1668(3'-G5). GQ structuration increased CpG ODN uptake by RAW264.7 cells, and 1668(3'-G5) decomposed more slowly in serum than 1668(5'-G5). Thus, GQ formation with one G-tract is a simple and efficient strategy for CpG ODN delivery to TLR9-positive cells, and addition of a G-tract to the 3'-end is effective in obtaining monomeric GQ-structured CpG ODN with high biological stability and immunostimulatory activity.
Collapse
Affiliation(s)
- Wenqing Liao
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Mengmeng Tan
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
199
|
Jara-Espejo M, Fleming AM, Burrows CJ. Potential G-Quadruplex Forming Sequences and N6-Methyladenosine Colocalize at Human Pre-mRNA Intron Splice Sites. ACS Chem Biol 2020; 15:1292-1300. [PMID: 32396327 PMCID: PMC7309266 DOI: 10.1021/acschembio.0c00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maturation of mRNA in humans involves modifying the 5' and 3' ends, splicing introns, and installing epitranscriptomic modifications that are essential for mRNA biogenesis. With respect to epitranscriptomic modifications, they are usually installed in specific consensus motifs, although not all sequences are modified suggesting a secondary structural component to site selection. Using bioinformatic analysis of published data, we identify in human mature-mRNA that potential RNA G-quadruplex (rG4) sequences colocalize with the epitranscriptomic modifications N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). Using the only available pre-mRNA data sets from the literature, we demonstrate colocalization of potential rG4s and m6A was greatest overall and occurred in introns near 5' and 3' splice sites. The loop lengths and sequence context of the m6A-bearing potential rG4s exhibited short loops most commonly comprised of single A nucleotides. This observation is consistent with a literature report of intronic m6A found in SAG (S = C or G) consensus motifs that are also recognized by splicing factors. The localization of m6A and potential rG4s in pre-mRNA at intron splice junctions suggests that these features could function together in alternative splicing. A similar analysis for potential rG4s around sites of Ψ installation or A-to-I editing in mRNA also found a colocalization; however, the frequency was less than that observed with m6A. These bioinformatic analyses guide a discussion of future experiments to understand how noncanonical rG4 structures may collaborate with epitranscriptomic modifications in the human cellular context to impact cellular phenotype.
Collapse
Affiliation(s)
- Manuel Jara-Espejo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
- Department of Morphology, Piracicaba Dental School, University of Campinas-UNICAMP, Av. Limeira 901, Piracicaba, CEP 13414-018 Sao Paulo, Brazil
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
200
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|