151
|
Hamulakova S, Imrich J, Janovec L, Kristian P, Danihel I, Holas O, Pohanka M, Böhm S, Kozurkova M, Kuca K. Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers. Int J Biol Macromol 2014; 70:435-9. [DOI: 10.1016/j.ijbiomac.2014.06.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
152
|
Synthesis and characterization of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for treatment of Alzheimer's disease. Biochim Biophys Acta Gen Subj 2014; 1840:2886-903. [DOI: 10.1016/j.bbagen.2014.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/25/2014] [Accepted: 05/05/2014] [Indexed: 01/12/2023]
|
153
|
Hamulakova S, Janovec L, Hrabinova M, Spilovska K, Korabecny J, Kristian P, Kuca K, Imrich J. Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine–Coumarin Hybrids as Cholinesterase Inhibitors. J Med Chem 2014; 57:7073-84. [DOI: 10.1021/jm5008648] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Slavka Hamulakova
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| | - Ladislav Janovec
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| | - Martina Hrabinova
- Center
for Advanced Studies, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
| | - Katarina Spilovska
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
- Department
of Toxicology, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Center
for Biomedical Research, University Hospital, CZ-500 05 Hradec
Kralove, Czech Republic
- Department
of Toxicology, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
| | - Pavol Kristian
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| | - Kamil Kuca
- Center
for Advanced Studies, Faculty of Military Health Sciences, University of Defence, CZ-500 01 Hradec Kralove, Czech Republic
- Center
for Biomedical Research, University Hospital, CZ-500 05 Hradec
Kralove, Czech Republic
| | - Jan Imrich
- Institute
of Chemistry, Faculty of Science, P. J. Safarik University, SK-041
67 Kosice, Slovak Republic
| |
Collapse
|
154
|
Di Matteo L, Christodoulakis O, Filosa R, De Caprariis P, Di Mola A, Vasca E, Massa A. New chelating agents for Cu(II), Fe(III), Al(III), and Zn(II) based on β-diketonate-3-substituted phthalide (isobenzofuranone) and isoindolinone. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.939075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luana Di Matteo
- Dipartimento di Chimica e Biologia, Università di Salerno , Fisciano, Italy
| | | | - Rosanna Filosa
- Department of Experimental Medicine, University of Naples , Naples, Italy
| | - Paolo De Caprariis
- Dipartimento di Farmacia/DIFARMA, Università di Salerno , Fisciano, Italy
| | - Antonia Di Mola
- Dipartimento di Chimica e Biologia, Università di Salerno , Fisciano, Italy
| | - Ermanno Vasca
- Dipartimento di Chimica e Biologia, Università di Salerno , Fisciano, Italy
| | - Antonio Massa
- Dipartimento di Chimica e Biologia, Università di Salerno , Fisciano, Italy
| |
Collapse
|
155
|
Mao F, Yan J, Li J, Jia X, Miao H, Sun Y, Huang L, Li X. New multi-target-directed small molecules against Alzheimer's disease: a combination of resveratrol and clioquinol. Org Biomol Chem 2014; 12:5936-44. [DOI: 10.1039/c4ob00998c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
156
|
Dibenzo[1,4,5]thiadiazepine: A hardly-known heterocyclic system with neuroprotective properties of potential usefulness in the treatment of neurodegenerative diseases. Eur J Med Chem 2014; 81:350-8. [DOI: 10.1016/j.ejmech.2014.04.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
|
157
|
Oliveri V, Attanasio F, Puglisi A, Spencer J, Sgarlata C, Vecchio G. Multifunctional 8-hydroxyquinoline-appended cyclodextrins as new inhibitors of metal-induced protein aggregation. Chemistry 2014; 20:8954-64. [PMID: 24863958 DOI: 10.1002/chem.201402690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 11/09/2022]
Abstract
Mounting evidence suggests a pivotal role of metal imbalances in protein misfolding and amyloid diseases. As such, metal ions represent a promising therapeutic target. In this context, the synthesis of chelators that also contain complementary functionalities to combat the multifactorial nature of neurodegenerative diseases is a highly topical issue. We report two new 8-hydroxyquinoline-appended cyclodextrins and highlight their multifunctional properties, including their Cu(II) and Zn(II) binding abilities, and capacity to act as antioxidants and metal-induced antiaggregants. In particular, the latter property has been applied in the development of an effective assay that exploits the formation of amyloid fibrils when β-lactoglobulin A is heated in the presence of metal ions.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95125 Catania (Italy); Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ (UK)
| | | | | | | | | | | |
Collapse
|
158
|
Qin XY, Liu YN, Yu QQ, Yang LC, Liu Y, Zhou YH, Liu J. Mixed-ligand mononuclear copper(II) complex: crystal structure and anticancer activity. ChemMedChem 2014; 9:1665-71. [PMID: 24839939 DOI: 10.1002/cmdc.201402060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 12/12/2022]
Abstract
A novel copper(II) complex with mixed ligands including β-[(3-formyl-5-methyl-2-hydroxy-benzylidene)amino]propionic acid anion and 1,10'-phenanthroline was synthesized, and its crystal structure was thoroughly characterized. It exerted excellent inducing apoptosis, anti-angiogenesis and antiproliferative properties in vitro. The complex can bind human serum albumin (HSA) at physiological pH conditions. Remarkably, it can induce formation of the mixed parallel/antiparallel G-quadruplex structures in the G-rich sequence of the proximal vascular endothelial growth factor (VEGF) promoter, and stabilize these G-quadruplex structures, which provide an opportunity for anti-angiogenesis chemotherapeutics. Furthermore, the complex showed a strong uptake, and exhibited multiple anticancer functions by inhibiting the expression of p-Akt and p-Erk1/2 proteins and by upregulating the levels of reactive oxygen species (ROS). Because of the reported results, this new copper(II) complex qualifies itself as a potential anticancer drug candidate.
Collapse
Affiliation(s)
- Xiu-Ying Qin
- Department of Chemistry, Jinan University, Guangzhou 510632, China; College of Pharmacy, Guilin Medical University, Guilin 541004 (China)
| | | | | | | | | | | | | |
Collapse
|
159
|
Dias KST, Viegas C. Multi-Target Directed Drugs: A Modern Approach for Design of New Drugs for the treatment of Alzheimer's Disease. Curr Neuropharmacol 2014; 12:239-55. [PMID: 24851088 PMCID: PMC4023454 DOI: 10.2174/1570159x1203140511153200] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 08/30/2013] [Accepted: 10/21/2014] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multi-faceted pathogenesis. So far, the therapeutic paradigm "one-compound-one-target" has failed and despite enormous efforts to elucidate the pathophysiology of AD, the disease is still incurable. The multiple factors involved in AD include amyloid aggregation to form insoluble neurotoxic plaques of Aβ, hyperphosphorylation of tau protein, oxidative stress, calcium imbalance, mitochondrial dysfunction and deterioration of synaptic transmission. These factors together, accentuate changes in the CNS homeostasis, starting a complex process of interconnected physiological damage, leading to cognitive and memory impairment and neuronal death. A recent approach for the rational design of new drug candidates, also called multitarget-directed ligand (MTDL) approach, has gained increasing attention by many research groups, which have developed a variety of hybrid compounds acting simultaneously on diverse biological targets. This review aims to show some recent advances and examples of the exploitation of MTDL approach in the rational design of novel drug candidate prototypes for the treatment of AD.
Collapse
Affiliation(s)
- Kris Simone Tranches Dias
- LFQM - Laboratório de Fitoquímica e Química Medicinal, Institute of Chemistry, Federal University of Alfenas, 37130-000, Brazil; ; Programa de Pós-Graduação em Química, Federal University of Alfenas, 37130-000, Brazil
| | - Claudio Viegas
- LFQM - Laboratório de Fitoquímica e Química Medicinal, Institute of Chemistry, Federal University of Alfenas, 37130-000, Brazil; ; Programa de Pós-Graduação em Química, Federal University of Alfenas, 37130-000, Brazil
| |
Collapse
|
160
|
López-Iglesias B, Pérez C, Morales-García JA, Alonso-Gil S, Pérez-Castillo A, Romero A, López MG, Villarroya M, Conde S, Rodríguez-Franco MI. New Melatonin–N,N-Dibenzyl(N-methyl)amine Hybrids: Potent Neurogenic Agents with Antioxidant, Cholinergic, and Neuroprotective Properties as Innovative Drugs for Alzheimer’s Disease. J Med Chem 2014; 57:3773-85. [DOI: 10.1021/jm5000613] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Beatriz López-Iglesias
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - José A. Morales-García
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031 Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031 Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/ Valderrebollo 5, 28031 Madrid, Spain
| | - Alejandro Romero
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Mercedes Villarroya
- Instituto Teófilo Hernando and Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Santiago Conde
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
161
|
de Sousa J, Brown RCD, Baati R. Buchwald-Hartwig Amination Approach for the Synthesis of Functionalized 1,2,3,4-Tetrahydroacridine Derivatives. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
162
|
Xu ZC, Wang XB, Yu WY, Xie SS, Li SY, Kong LY. Design, synthesis and biological evaluation of benzylisoquinoline derivatives as multifunctional agents against Alzheimer's disease. Bioorg Med Chem Lett 2014; 24:2368-73. [PMID: 24726809 DOI: 10.1016/j.bmcl.2014.03.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/01/2014] [Accepted: 03/18/2014] [Indexed: 11/17/2022]
Abstract
A novel series of benzylisoquinoline derivatives were designed, synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). The screening results showed that most of the compounds significantly inhibited cholinesterases (ChEs), human cholinesterases (h-ChEs) and self-induced β-amyloid (Aβ) aggregation. In particular, compound 9k showed the strongest acetylcholinesterase (AChE) inhibitory activity, being 1000-fold and 3-fold more potent than its precursor benzylisoquinoline (10) and the positive control galanthamine, respectively. In addition, 9k was a moderately potent inhibitor for h-ChEs. Compared with precursor benzylisoquinoline (36.0% at 20μМ), 9k (78.4% at 20μМ) could further inhibit Aβ aggregation. Moreover, 9k showed low cell toxicity in human SH-SY5Y neuroblastoma cells. Therefore, compound 9k might be a promising lead compound for AD treatment.
Collapse
Affiliation(s)
- Zi-Chen Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wen-Ying Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Sai-Sai Xie
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Su-Yi Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
163
|
Pudlo M, Luzet V, Ismaïli L, Tomassoli I, Iutzeler A, Refouvelet B. Quinolone–benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer Disease. Bioorg Med Chem 2014; 22:2496-507. [DOI: 10.1016/j.bmc.2014.02.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
164
|
Bicker J, Alves G, Fortuna A, Falcão A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014; 87:409-32. [PMID: 24686194 DOI: 10.1016/j.ejpb.2014.03.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 02/05/2023]
Abstract
During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
165
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer’s disease. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0931-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
167
|
Bansal Y, Silakari O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur J Med Chem 2014; 76:31-42. [PMID: 24565571 DOI: 10.1016/j.ejmech.2014.01.060] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/28/2014] [Indexed: 01/12/2023]
Abstract
Multifunctional compounds (MFCs) are designed broadly as hybrid or conjugated drugs or as chimeric drugs from two or more pharmacophores/drugs having specific pharmacological activities. These are capable of eliciting multiple pharmacological actions and have emerged as magic bullets in treatment of multifactorial diseases. Many research articles disclosing the development of such compounds for treatment of multifactorial diseases are published during last 7 years. Some successful MFC candidates for multifactorial CNS disorders include ziprasidone, duloxetine, ladostigil and M-30 whereas sunitinib, lapatinib and synthetic oleandane triterpinoids are the successful MFC candidates for various cancers. Many more compounds derived from berberine, tacrine, artemisnin, quinine, NSAIDs, pralidoxine, donepezil, rivastigmine, curcumin and various antioxidants are under investigations for exploration of their multifunctional potential. In general, MFCs possess the advantages of reduced molecularity, no drug-drug interactions and improved pharmacokinetics and pharmacodynamics. A MFC derived from two or more different pharmacophores exerts its activities by interacting with respective receptors of its constituent pharmacophores. It may also exhibit additional binding interactions with the receptor sites that may be responsible for significantly improved or additional activities. The present review discusses various MFCs developed for specific class of disorders with an aim to provide an insight into the strategies in medicinal chemistry for development of such compounds.
Collapse
Affiliation(s)
- Yogita Bansal
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
168
|
Li SY, Jiang N, Xie SS, Wang KDG, Wang XB, Kong LY. Design, synthesis and evaluation of novel tacrine–rhein hybrids as multifunctional agents for the treatment of Alzheimer's disease. Org Biomol Chem 2014; 12:801-14. [DOI: 10.1039/c3ob42010h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
169
|
Mao F, Chen J, Zhou Q, Luo Z, Huang L, Li X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg Med Chem Lett 2013; 23:6737-42. [DOI: 10.1016/j.bmcl.2013.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/05/2013] [Accepted: 10/18/2013] [Indexed: 01/14/2023]
|
170
|
Luo Z, Sheng J, Sun Y, Lu C, Yan J, Liu A, Luo HB, Huang L, Li X. Synthesis and evaluation of multi-target-directed ligands against Alzheimer's disease based on the fusion of donepezil and ebselen. J Med Chem 2013; 56:9089-99. [PMID: 24160297 DOI: 10.1021/jm401047q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel series of compounds obtained by fusing the cholinesterase inhibitor donepezil and the antioxidant ebselen were designed as multi-target-directed ligands against Alzheimer's disease. An in vitro assay showed that some of these molecules did not exhibit highly potent cholinesterase inhibitory activity but did have various other ebselen-related pharmacological effects. Among the molecules, compound 7d, one of the most potent acetylcholinesterase inhibitors (IC50 values of 0.042 μM for Electrophorus electricus acetylcholinesterase and 0.097 μM for human acetylcholinesterase), was found to be a strong butyrylcholinesterase inhibitor (IC50 = 1.586 μM), to possess rapid H2O2 and peroxynitrite scavenging activity and glutathione peroxidase-like activity (ν0 = 123.5 μM min(-1)), and to be a substrate of mammalian TrxR. A toxicity test in mice showed no acute toxicity at doses of up to 2000 mg/kg. According to an in vitro blood-brain barrier model, 7d is able to penetrate the central nervous system.
Collapse
Affiliation(s)
- Zonghua Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Chen Y, Sun J, Peng S, Liao H, Zhang Y, Lehmann J. Tacrine-Flurbiprofen Hybrids as Multifunctional Drug Candidates for the Treatment of Alzheimer's Disease. Arch Pharm (Weinheim) 2013; 346:865-71. [DOI: 10.1002/ardp.201300074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yao Chen
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
- Center of Drug Discovery; China Pharmaceutical University; Nanjing P. R. China
- Lehrstuhl für Pharmazeutische/Medizinische Chemie; Institut für Pharmazie; Friedrich-Schiller-Universität Jena; Jena Germany
| | - Jianfei Sun
- Neurobiology Lab; New Drug Screening Center; China Pharmaceutical University; Nanjing P. R. China
| | - Sixun Peng
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
- Center of Drug Discovery; China Pharmaceutical University; Nanjing P. R. China
| | - Hong Liao
- Neurobiology Lab; New Drug Screening Center; China Pharmaceutical University; Nanjing P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
- Center of Drug Discovery; China Pharmaceutical University; Nanjing P. R. China
| | - Jochen Lehmann
- Lehrstuhl für Pharmazeutische/Medizinische Chemie; Institut für Pharmazie; Friedrich-Schiller-Universität Jena; Jena Germany
| |
Collapse
|
172
|
Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer's disease. Eur J Med Chem 2013; 69:632-46. [DOI: 10.1016/j.ejmech.2013.09.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/05/2013] [Accepted: 09/08/2013] [Indexed: 12/17/2022]
|
173
|
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1157-78. [PMID: 24115839 PMCID: PMC3793592 DOI: 10.2147/dddt.s49763] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal ions play an important role in biological processes and in metal homeostasis. Metal imbalance is the leading cause for many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. 8-Hydroxyquinoline (8HQ) is a small planar molecule with a lipophilic effect and a metal chelating ability. As a result, 8HQ and its derivatives hold medicinal properties such as antineurodegenerative, anticancer, antioxidant, antimicrobial, anti-inflammatory, and antidiabetic activities. Herein, diverse bioactivities of 8HQ and newly synthesized 8HQ-based compounds are discussed together with their mechanisms of actions and structure–activity relationships.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Bangkok, Thailand
| | | | | | | |
Collapse
|
174
|
Keri RS, Quintanova C, Marques SM, Esteves AR, Cardoso SM, Santos MA. Design, synthesis and neuroprotective evaluation of novel tacrine–benzothiazole hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg Med Chem 2013; 21:4559-69. [DOI: 10.1016/j.bmc.2013.05.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 12/30/2022]
|
175
|
Lu C, Guo Y, Yan J, Luo Z, Luo HB, Yan M, Huang L, Li X. Design, Synthesis, and Evaluation of Multitarget-Directed Resveratrol Derivatives for the Treatment of Alzheimer’s Disease. J Med Chem 2013; 56:5843-59. [DOI: 10.1021/jm400567s] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chuanjun Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yueyan Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jun Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zonghua Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
176
|
Samadi A, de la Fuente Revenga M, Pérez C, Iriepa I, Moraleda I, Rodríguez-Franco MI, Marco-Contelles J. Synthesis, pharmacological assessment, and molecular modeling of 6-chloro-pyridonepezils: new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease. Eur J Med Chem 2013; 67:64-74. [PMID: 23838422 DOI: 10.1016/j.ejmech.2013.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/30/2022]
Abstract
6-Chloro-pyridonepezils are chloropyridine-donepezil hybrids designed by combining the N-benzylpiperidine moiety present in donepezil with the 2-chloropyridine-3,5-dicarbonitrile heterocyclic ring system, both connected by an appropriate polymethylene linker. 6-Chloro-pyridonepezils1-8 were prepared by reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (13) [or 2,6-dichloropyridine-3,5-dicarbonitrile (14)] with suitable 2-(1-benzylpiperidin-4-yl)alkylamines (9-12). The biological evaluation showed that these new compounds are cholinesterase inhibitors, in the submicromolar range, one of them (6) being a potent hBuChE inhibitor (IC50 = 0.47 ± 0.08 μM). 6-Chloro-pyridonepezils4, 7 and 8 are potent hAChE inhibitors showing IC50 in the 0.013-0.054 μM range. Particularly, 6-chloro-pyridonepezil8 is 625-fold more selective for hAChE than for hBuChE and compared to donepezil is equipotent for the inhibition of hAChE. Molecular modeling investigation on 6-chloro-pyridonepezils4, 6-8 supports its dual AChE inhibitory profile, by binding simultaneously at the catalytic active and at peripheral anionic sites of the enzyme. The in vitro Blood Brain Barrier (BBB) and theoretical ADME analysis of 6-chloro-pyridonepezils1-8 have been carried out. Overall, compound 8, is a permeable potent and selective dual AChEI that can be considered as a good candidate with potential impact for further pharmacological development in Alzheimer's therapy.
Collapse
Affiliation(s)
- Abdelouahid Samadi
- Laboratorio de Química Médica, Instituto de Química Orgánica General (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
177
|
Eckroat TJ, Green KD, Reed RA, Bornstein JJ, Garneau-Tsodikova S. Investigation of the role of linker moieties in bifunctional tacrine hybrids. Bioorg Med Chem 2013; 21:3614-23. [DOI: 10.1016/j.bmc.2013.02.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
178
|
Xie SS, Wang XB, Li JY, Yang L, Kong LY. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease. Eur J Med Chem 2013; 64:540-53. [PMID: 23685572 DOI: 10.1016/j.ejmech.2013.03.051] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 02/01/2023]
Abstract
A series of tacrine-coumarin hybrids (8a-t) were designed, synthesized and evaluated as multifunctional cholinesterase (ChE) inhibitors against Alzheimer's disease (AD). The screening results showed that most of them exhibited a significant ability to inhibit ChE and self-induced β-amyloid (Aβ) aggregation, and to act as metal chelators. Especially, 8f displayed the greatest ability to inhibit acetylcholinesterase (AChE, IC50 = 0.092 μM) and Aβ aggregation (67.8%, 20 μM). It was also a good butyrylcholinesterase inhibitor (BuChE, IC50 = 0.234 μM) and metal chelator. Besides, kinetic and molecular modeling studies indicated that 8f was a mixed-type inhibitor, binding simultaneously to active, peripheral and mid-gorge sites of AChE. These results suggested that 8f might be an excellent multifunctional agent for AD treatment.
Collapse
Affiliation(s)
- Sai-Sai Xie
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | | | | | | | | |
Collapse
|
179
|
Romero A, Cacabelos R, Oset-Gasque MJ, Samadi A, Marco-Contelles J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23:1916-22. [DOI: 10.1016/j.bmcl.2013.02.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/28/2013] [Accepted: 02/04/2013] [Indexed: 12/19/2022]
|
180
|
Lu C, Zhou Q, Yan J, Du Z, Huang L, Li X. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer's disease. Eur J Med Chem 2013; 62:745-53. [DOI: 10.1016/j.ejmech.2013.01.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
|
181
|
Chen Y, Sun J, Huang Z, Liao H, Peng S, Lehmann J, Zhang Y. Design, synthesis and evaluation of tacrine-flurbiprofen-nitrate trihybrids as novel anti-Alzheimer's disease agents. Bioorg Med Chem 2013; 21:2462-70. [PMID: 23541836 DOI: 10.1016/j.bmc.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 11/18/2022]
Abstract
To search for multifunctional anti-Alzheimer's disease (AD) agents with good safety, the previously synthesized tacrine-flurbiprofen hybrids 1a and 1b were modified into tacrine-flurbiprofen-nitrate trihybrids 3a-h. These compounds displayed comparable or higher cholinesterase inhibitory activity relative to the bivalent hybrids. Compound 3a was the most potent, which released moderate NO, exerted blood vessel relaxative activity, and showed significant Aβ inhibitory effects whereas tacrine and flurbiprofen did not exhibit any Aβ inhibitory activity at the same dose. In addition, 3a was active in improving memory impairment in vivo. More importantly, the hepatotoxicity study showed that 3a was much safer than tacrine, suggesting it might be a promising anti-AD agent for further investigation.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | |
Collapse
|
182
|
New tacrine analogs as acetylcholinesterase inhibitors - theoretical study with chemometric analysis. Molecules 2013; 18:2878-94. [PMID: 23459299 PMCID: PMC6270554 DOI: 10.3390/molecules18032878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/30/2022] Open
Abstract
Computer simulations constitute the basis of the design and discovery of new drugs. This approach is not only significant with regards to finding new structures, but also for selecting the molecules with the highest probability of being useful in the diagnostic process and treatment of numerous diseases. In our work, we used computational software to analyze 32 new acetylcholinesterase (AChE) inhibitors and formulate ADMET predictions. To understand the influence of the structure of our derivatives on binding mode, we docked all structures to the active site of AChE and assigned some pharmacophoric features. Finally, we undertook a chemometric analysis of all the compounds on the basis of FT-IR, which gave us the possibility of performing a fast categorization of the analyzed compounds and design compounds with similar structures.
Collapse
|
183
|
Genest D, Rochais C, Lecoutey C, Oliveira Santos JSD, Ballandonne C, Butt-Gueulle S, Legay R, Since M, Dallemagne P. Design, synthesis and biological evaluation of novel indano- and thiaindano-pyrazoles with potential interest for Alzheimer's disease. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
184
|
Kochi A, Eckroat TJ, Green KD, Mayhoub AS, Lim MH, Garneau-Tsodikova S. A novel hybrid of 6-chlorotacrine and metal–amyloid-β modulator for inhibition of acetylcholinesterase and metal-induced amyloid-β aggregation. Chem Sci 2013. [DOI: 10.1039/c3sc51902c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
185
|
Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquiquzzaman M, Alam MM. Quinoline: A versatile heterocyclic. Saudi Pharm J 2013; 21:1-12. [PMID: 23960814 PMCID: PMC3744984 DOI: 10.1016/j.jsps.2012.03.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/20/2012] [Indexed: 11/20/2022] Open
Abstract
Quinoline or 1-aza-naphthalene is a weak tertiary base. Quinoline ring has been found to possess antimalarial, anti-bacterial, antifungal, anthelmintic, cardiotonic, anticonvulsant, anti-inflammatory, and analgesic activity. Quinoline not only has a wide range of biological and pharmacological activities but there are several established protocols for the synthesis of this ring. The article aims at highlighting these very diversities of the ring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| |
Collapse
|
186
|
Telpoukhovskaia MA, Patrick BO, Rodríguez-Rodríguez C, Orvig C. Exploring the multifunctionality of thioflavin- and deferiprone-based molecules as acetylcholinesterase inhibitors for potential application in Alzheimer's disease. MOLECULAR BIOSYSTEMS 2013; 9:792-805. [DOI: 10.1039/c3mb25600f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
187
|
Mao F, Huang L, Luo Z, Liu A, Lu C, Xie Z, Li X. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg Med Chem 2012; 20:5884-92. [DOI: 10.1016/j.bmc.2012.07.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/20/2022]
|
188
|
Huang L, Lu C, Sun Y, Mao F, Luo Z, Su T, Jiang H, Shan W, Li X. Multitarget-Directed Benzylideneindanone Derivatives: Anti-β-Amyloid (Aβ) Aggregation, Antioxidant, Metal Chelation, and Monoamine Oxidase B (MAO-B) Inhibition Properties against Alzheimer’s Disease. J Med Chem 2012; 55:8483-92. [DOI: 10.1021/jm300978h] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling Huang
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanjun Lu
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Sun
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Mao
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zonghua Luo
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Su
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huailei Jiang
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjun Shan
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingshu Li
- Institute
of Drug Synthesis and Pharmaceutical Processing,
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
189
|
Zheng W, Li J, Qiu Z, Xia Z, Li W, Yu L, Chen H, Chen J, Chen Y, Hu Z, Zhou W, Shao B, Cui Y, Xie Q, Chen H. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property. Toxicol Appl Pharmacol 2012; 264:65-72. [DOI: 10.1016/j.taap.2012.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
190
|
Rodríguez-Rodríguez C, Telpoukhovskaia M, Orvig C. The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
191
|
Deb PK, Sharma A, Piplani P, Akkinepally RR. Molecular docking and receptor-specific 3D-QSAR studies of acetylcholinesterase inhibitors. Mol Divers 2012; 16:803-23. [PMID: 22996404 DOI: 10.1007/s11030-012-9394-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022]
Abstract
The reversible inhibition of acetylcholinesterase (AChE) has become a promising target for the treatment of Alzheimer's disease (AD) which is mainly associated with low in vivo levels of acetylcholine (ACh). The availability of AChE crystal structures with and without a ligand triggered the effort to find a structure-based design of acetylcholinesterase inhibitors (AChEIs) for AD. The major problem observed with the structure-based design was the feeble robustness of the scoring functions toward the correlation of docking scores with inhibitory potencies of known ligands. This prompted us to develop new prediction models using the stepwise regression analysis based on consensus of different docking and their scoring methods (GOLD, LigandFit, and GLIDE). In the present investigation, a dataset of 91 molecules belonging to 9 different structural classes of heterocyclic compounds with an activity range of 0.008 to 281,000 nM was considered for docking studies and development of AChE-specific 3D-QSAR models. The model (M1) developed using consensus of docking scores of scoring functions viz. Glide score, Gold score, Chem score, ASP score, PMF score, and DOCK score was found to be the best (R(2) = 0.938, Q(2) = 0.925, R(pred)(2) = 0.919, R(2)m((overall)) = 0.936) compared to other consensus models. Docking studies revealed that the molecules with proper alignment in the active site gorge and the ability to interact with all the crucial amino acid residues, in particular by forming π-π stacking interactions with Trp84 at the catalytic anionic site (CAS) and Trp279 at peripheral anionic site (PAS), showed augmented potencies with consequent improvement in patient cognition and reduced the formation of senile plaques associated with AD. Further, the descriptors that signify the association of the ligands with the receptor as well as ADME properties of the ligands were also analyzed by means of the set of ligands that have been pre-positioned with respect to a receptor after docking analysis and considered as independent variables to generate a linear model (M3 and M4) using a stepwise multiple linear regression method to get additional insight into the physicochemical requirements for effective binding of ligands with AChE as well as for prediction of AChE inhibition. The developed AChE-specific prediction models (M1-M4) satisfactorily reflect the structure-activity relationship of the existing AChEIs and have all the potential to facilitate the process of design and development of new potent AChEIs.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS) and Centre of Advanced Study in Pharmaceutical Sciences (UGC-CAS), Panjab University, Chandigarh, 160 014, India
| | | | | | | |
Collapse
|
192
|
Gelation Behavior of 5-Chloro-8-hydroxyquinoline, an Antituberculosis Agent in Aqueous Alcohol Solutions. Antibiotics (Basel) 2012; 1:17-24. [PMID: 27029417 PMCID: PMC4790243 DOI: 10.3390/antibiotics1010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/23/2012] [Accepted: 09/10/2012] [Indexed: 11/16/2022] Open
Abstract
It was shown that 5-chloro-8-hydroxyquinoline, an antituberculosis agent, gels aqueous alcohol solutions efficiently. Thermal stability and gel-to-sol transition temperature of 1% gel in CD3OD/D2O (2:1) was studied by 1H-NMR. Fibrous structures of four xerogels have been characterized by scanning electron microscope.
Collapse
|
193
|
Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, Bernardi CL, Wartchow KM, Lunardi PS, Gonçalves CA. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 2012; 236:186-193. [PMID: 22964138 DOI: 10.1016/j.bbr.2012.08.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/21/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Intracerebroventricular (ICV) infusion of streptozotocin (STZ) provides a relevant animal model of chronic brain dysfunction that is characterized by long-term and progressive deficits in learning, memory, and cognitive behavior, along with a permanent and ongoing cerebral energy deficit. Numerous studies on green tea epigallocatechin gallate (EGCG) demonstrate its beneficial effects on cognition and memory. As such, this study evaluated, for the first time, the effects of sub-chronic EGCG treatment in rats that were submitted to ICV infusion of STZ (3mg/kg). Male Wistar rats were divided into sham, STZ, sham+EGCG and STZ+EGCG groups. EGCG was administered at a dose of 10mg/kg/day for 4 weeks per gavage. Learning and memory was evaluated using Morris' Water Maze. Oxidative stress markers and involvement of the nitric oxide (NO) system, acetylcholinesterase activity (AChE) and glucose uptake were evaluated as well as glial parameters including S100B content and secretion and GFAP content. Our results show that EGCG was not able to modify glucose uptake and glutathione content, although cognitive deficit, S100B content and secretion, AChE activity, glutathione peroxidase activity, NO metabolites, and reactive oxygen species content were completely reversed by EGCG administration, confirming the neuroprotective potential of this compound. These findings contribute to the understanding of diseases accompanied by cognitive deficits and the STZ-model of dementia.
Collapse
Affiliation(s)
- Regina Biasibetti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ana Carolina Tramontina
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ana Paula Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Márcio Ferreira Dutra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Caren Luciane Bernardi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| | - Krista Minéia Wartchow
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Paula Santana Lunardi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
194
|
Maalej E, Chabchoub F, Oset-Gasque MJ, Esquivias-Pérez M, González MP, Monjas L, Pérez C, de los Ríos C, Rodríguez-Franco MI, Iriepa I, Moraleda I, Chioua M, Romero A, Marco-Contelles J, Samadi A. Synthesis, biological assessment, and molecular modeling of racemic 7-aryl-9,10,11,12-tetrahydro-7H-benzo[7,8]chromeno[2,3-b]quinolin-8-amines as potential drugs for the treatment of Alzheimer's disease. Eur J Med Chem 2012; 54:750-63. [DOI: 10.1016/j.ejmech.2012.06.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 01/28/2023]
|
195
|
Antequera D, Bolos M, Spuch C, Pascual C, Ferrer I, Fernandez-Bachiller MI, Rodríguez-Franco MI, Carro E. Effects of a tacrine-8-hydroxyquinoline hybrid (IQM-622) on Aβ accumulation and cell death: involvement in hippocampal neuronal loss in Alzheimer's disease. Neurobiol Dis 2012; 46:682-91. [PMID: 22426395 DOI: 10.1016/j.nbd.2012.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/06/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022] Open
Abstract
Several studies have implicated the enzyme acetylcholinesterase (AChE) as well as several biometals in the pathogenesis of Alzheimer's disease (AD). A multifunctional molecule, the hybrid tacrine-8-hydroxyquinoline (named IQM-622), displays cholinergic, antioxidant, copper-complexing and neuroprotective properties. Using in vitro and in vivo models, we investigated the modulating effects of IQM-622 on amyloid β-protein (Aβ)-induced pathology as well as on chemically induced neurodegeneration by domoic acid. In the first experimental model, we observed a significant decrease in brain Aβ deposits in IQM-622-treated APP/Ps1 mice for four weeks. Moreover, IQM-622 promoted the degradation of intracellular Aβ in astrocytes, and protected against Aβ toxicity in cultured astrocytes and neurons. These findings suggest that the neuroprotective effect of IQM-622 is not only related to AChE inhibition, but also involves other mechanisms, including the modulation of Aβ-degradation pathways in AD brain. In this study we also compare the neuronal loss in CA1 hippocampal field of AD patients and of mice treated with domoic acid, giving similar patterns. Thus, we used a second experimental model by killing hippocampal neurons by domoic acid damage, in which IQM-622 increased survival in the CA1 and dentate gyrus regions of the hippocampus. Our observations suggest that administration of IQM-622 may have significant beneficial effects in neurodegenerative diseases, including AD, which course with acute or progressive neuronal death.
Collapse
Affiliation(s)
- Desiree Antequera
- Neuroscience Group, Instituto de Investigación Hospital 12 de Octubre i+12, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Fernández-Bachiller MI, Pérez C, Monjas L, Rademann J, Rodríguez-Franco MI. New Tacrine–4-Oxo-4H-chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Cholinergic, Antioxidant, and β-Amyloid-Reducing Properties. J Med Chem 2012; 55:1303-17. [DOI: 10.1021/jm201460y] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María Isabel Fernández-Bachiller
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Medicinal Chemistry, Institut für Molekulare Pharmakologie (FMP),
Campus Berlin-Buch, Robert-Rössle Strasse 10, 13125 Berlin,
Germany
| | - Concepción Pérez
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Leticia Monjas
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jörg Rademann
- Medicinal Chemistry, Institut für Molekulare Pharmakologie (FMP),
Campus Berlin-Buch, Robert-Rössle Strasse 10, 13125 Berlin,
Germany
- Medicinal Chemistry,
Institute
of Pharmacy, Leipzig University, Brüderstrasse
34, 04103 Leipzig, Germany
| | - María Isabel Rodríguez-Franco
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
197
|
Pérez-Mayoral E, Musilová Z, Gil B, Marszalek B, Položij M, Nachtigall P, Čejka J. Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Trans 2012; 41:4036-44. [DOI: 10.1039/c2dt11978a] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
198
|
Viña D, Matos MJ, Yáñez M, Santana L, Uriarte E. 3-Substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer's disease. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00221j] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
199
|
Chioua M, Sucunza D, Soriano E, Hadjipavlou-Litina D, Alcázar A, Ayuso I, Oset-Gasque MJ, González MP, Monjas L, Rodríguez-Franco MI, Marco-Contelles J, Samadi A. Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties. J Med Chem 2011; 55:153-68. [PMID: 22126405 DOI: 10.1021/jm201105a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment.
Collapse
Affiliation(s)
- Mourad Chioua
- Laboratorio de Radicales Libres y Química Computacional, Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, 28006-Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer's disease. Int J Alzheimers Dis 2011; 2012:728983. [PMID: 22216416 PMCID: PMC3246720 DOI: 10.1155/2012/728983] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/06/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023] Open
Abstract
Acetylcholinesterase (AChE) remains a highly viable target for the symptomatic improvement in Alzheimer's disease (AD) because cholinergic deficit is a consistent and early finding in AD. The treatment approach of inhibiting peripheral AchE for myasthenia gravis had effectively proven that AchE inhibition was a reachable therapeutic target. Subsequently tacrine, donepezil, rivastigmine, and galantamine were developed and approved for the symptomatic treatment of AD. Since then, multiple cholinesterase inhibitors (ChEI) continue to be developed. These include newer ChEIs, naturally derived ChEIs, hybrids, and synthetic analogues. In this paper, we summarize the different types of ChEIs in development and their respective mechanisms of actions. This pharmacological approach continues to be active with many promising compounds.
Collapse
Affiliation(s)
- Mona Mehta
- The Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ 85351, USA
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, United Arab Emirates University, Al Ain, UAE
| | - Marwan Sabbagh
- The Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, 10515 W Santa Fe Dr, Sun City, AZ 85351, USA
| |
Collapse
|