151
|
|
152
|
|
153
|
|
154
|
|
155
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 5410=5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
156
|
|
157
|
|
158
|
|
159
|
|
160
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 2456=4508-- pete] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
161
|
|
162
|
|
163
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1-- mykv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
164
|
|
165
|
Abstract
Membrane trafficking between organelles by vesiculotubular carriers is fundamental to the existence of eukaryotic cells. Central in ensuring that cargoes are delivered to their correct destinations are the Rab GTPases, a large family of small GTPases that control membrane identity and vesicle budding, uncoating, motility and fusion through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases and motors. Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic. Functional impairments of Rab pathways are associated with diseases, such as immunodeficiencies, cancer and neurological disorders.
Collapse
|
166
|
Safdar A. Fungal cytoskeleton dysfunction or immune activation triggered by β-glucan synthase inhibitors. Cancer 2009; 115:2812-5. [DOI: 10.1002/cncr.24323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
167
|
König J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrügge M. The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 2009; 28:1855-66. [PMID: 19494833 DOI: 10.1038/emboj.2009.145] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 05/08/2009] [Indexed: 11/09/2022] Open
Abstract
Cytoskeletal transport promotes polar growth in filamentous fungi. In Ustilago maydis, the RNA-binding protein Rrm4 shuttles along microtubules and is crucial for polarity in infectious filaments. Mutations in the RNA-binding domain cause loss of function. However, it was unclear which RNAs are bound and transported. Here, we applied in vivo RNA binding studies and live imaging to determine the molecular function of Rrm4. This new combination revealed that Rrm4 mediates microtubule-dependent transport of distinct mRNAs encoding, for example, the ubiquitin fusion protein Ubi1 and the small G protein Rho3. These transcripts accumulate in ribonucleoprotein particles (mRNPs) that move bidirectionally along microtubules and co-localise with Rrm4. Importantly, the 3' untranslated region of ubi1 containing a CA-rich binding site functions as zipcode during mRNA transport. Furthermore, motile mRNPs are not formed when the RNA-binding domain of Rrm4 is deleted, although the protein is still shuttling. Thus, Rrm4 constitutes an integral component of the transport machinery. We propose that microtubule-dependent mRNP trafficking is crucial for hyphal growth introducing U. maydis as attractive model for studying mRNA transport in higher eukaryotes.
Collapse
Affiliation(s)
- Julian König
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
168
|
The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 2009; 21:537-42. [PMID: 19473826 DOI: 10.1016/j.ceb.2009.04.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 12/31/2022]
Abstract
The exocyst is an octameric protein complex, which mediates the tethering of post-Golgi secretory vesicles to the plasma membrane before exocytic fusion. The exocyst assembles by side-by-side packing of rod-shaped subunits composed of helical bundles. The targeting of secretory vesicles to the plasma membrane involves direct interactions of the exocyst with PI(4,5)P(2). In addition, a number of small GTP-binding proteins interact with components of the exocyst and regulate the assembly, localization, and function of this complex. Here we review the recent advances in the field, focusing on the function of the exocyst in polarized exocytosis.
Collapse
|
169
|
Yoshida S, Bartolini S, Pellman D. Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev 2009; 23:810-23. [PMID: 19339687 DOI: 10.1101/gad.1785209] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The small GTP-binding protein, Rho1/RhoA plays a central role in cytokinetic actomyosin ring (CAR) assembly and cytokinesis. Concentration of Rho proteins at the division site is a general feature of cytokinesis, yet the mechanisms for recruiting Rho to the division site for cytokinesis remain poorly understood. We find that budding yeast utilizes two mechanisms to concentrate Rho1 at the division site. During anaphase, the primary mechanism for recruiting Rho1 is binding to its guanine nucleotide exchange factors (GEFs). GEF-dependent recruitment requires that Rho1 has the ability to pass through its GDP or unliganded state prior to being GTP-loaded. We were able to test this model by generating viable yeast lacking all identifiable Rho1 GEFs. Later, during septation and abscission, a second GEF-independent mechanism contributes to Rho1 bud neck targeting. This GEF-independent mechanism requires the Rho1 polybasic sequence that binds to acidic phospholipids, including phosphatidylinositol 4,5-bisphosphate (PIP2). This latter mechanism is functionally important because Rho1 activation or increased cellular levels of PIP2 promote cytokinesis in the absence of a contractile ring. These findings comprehensively define the targeting mechanisms of Rho1 essential for cytokinesis in yeast, and are likely to be relevant to cytokinesis in other organisms.
Collapse
Affiliation(s)
- Satoshi Yoshida
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Division of Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
170
|
Hutagalung AH, Coleman J, Pypaert M, Novick PJ. An internal domain of Exo70p is required for actin-independent localization and mediates assembly of specific exocyst components. Mol Biol Cell 2009; 20:153-63. [PMID: 18946089 PMCID: PMC2613103 DOI: 10.1091/mbc.e08-02-0157] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 11/11/2022] Open
Abstract
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.
Collapse
Affiliation(s)
- Alex H. Hutagalung
- *Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Jeff Coleman
- Department of Cell Biology, Yale University, New Haven, CT 06510
| | - Marc Pypaert
- Department of Cell Biology, Yale University, New Haven, CT 06510
| | - Peter J. Novick
- *Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093; and
| |
Collapse
|
171
|
Drakakaki G, Robert S, Raikhel NV, Hicks GR. Chemical dissection of endosomal pathways. PLANT SIGNALING & BEHAVIOR 2009; 4:57-62. [PMID: 19704710 PMCID: PMC2634075 DOI: 10.4161/psb.4.1.7314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 05/18/2023]
Abstract
Membrane trafficking and associated signal transduction pathways are critical for plant development and responses to environment. These transduction pathways, including those for brassinosteroids and auxins, require endocytosis to endosomes and recycling back to the plasma membrane. A major challenge toward understanding these processes and their biological roles has been the highly dynamic nature of endomembrane trafficking. To effectively study endocytosis and recycling, which occur in a time frame of minutes, bioactive chemicals provide a powerful and exacting tool. Pharmacological inhibitors such as Brefeldin A (BFA) and the newly identified Endosidin 1 (ES1) have been used to define endosome compartments. ES1 is a clear example of the ability of chemicals to dissect even distinct subpopulations of endosomes involved in trafficking and signal transduction. The ability to characterize and dissect such highly dynamic pathways in a temporal and spatial manner is possible only using pharmacological reagents which can act rapidly and reversibly.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Center for Plant Cell Biology, Institute for Integrative Genome Biology & Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
172
|
Žárský V, Cvrčková F, Potocký M, Hála M. Exocytosis and cell polarity in plants - exocyst and recycling domains. THE NEW PHYTOLOGIST 2009; 183:255-272. [PMID: 19496948 DOI: 10.1111/j.1469-8137.2009.02880.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, exocytosis is a central mechanism of cell morphogenesis. We still know surprisingly little about some aspects of this process, starting with exocytotic vesicle formation, which may take place at the trans-Golgi network even without coat assistance, facilitated by the local regulation of membrane lipid organization. The RabA4b guanosine triphosphatase (GTPase), recruiting phosphatidylinositol-4-kinase to the trans-Golgi network, is a candidate vesicle formation organizer. However, in plant cells, there are obviously additional endosomal source compartments for secretory vesicles. The Rho/Rop GTPase regulatory module is central for the initiation of exocytotically active domains in plant cell cortex (activated cortical domains). Most plant cells exhibit several distinct plasma membrane domains, established and maintained by endocytosis-driven membrane recycling. We propose the concept of a 'recycling domain', uniting the activated cortical domain and the connected endosomal compartments, as a dynamic spatiotemporal entity. We have recently described the exocyst tethering complex in plant cells. As a result of the multiplicity of its putative Exo70 subunits, this complex may belong to core regulators of recycling domain organization, including the generation of multiple recycling domains within a single cell. The conventional textbook concept that the plant secretory pathway is largely constitutive is misleading.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Fatima Cvrčková
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| |
Collapse
|
173
|
Nejsum LN, Nelson WJ. Epithelial cell surface polarity: the early steps. FRONT BIOSCI-LANDMRK 2009; 14:1088-98. [PMID: 19273117 DOI: 10.2741/3295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Establishment and maintenance of epithelial cell surface polarity is of vital importance for the correct function of transporting epithelia. To maintain normal cell function, the distribution of apical and basal-lateral proteins is highly regulated and defects in expression levels or plasma membrane targeting can have severe consequences. It has been shown recently that initiation of cell-surface polarity occurs immediately upon cell-cell contact, and requires components of the lateral targeting patch, the Exocyst and the lateral SNARE complex to specify delivery of basolateral proteins to the site of cell-cell adhesion. The Exocyst and SNARE complex are present in the cytoplasm in single epithelial cells before adhesion. Upon initial cell-cell adhesion, E-cadherin accumulates at the forming contact between cells. Shortly hereafter, components of the lateral targeting patch, the Exocyst and the lateral SNARE complex, co-localize with E-cadherin at the forming contact, where they function in specifying the delivery of basal-lateral.
Collapse
Affiliation(s)
- Lene N Nejsum
- Departments of Biology, and Molecular and Cellular Physiology, The James H. Clark Center, Bio-X Program, Stanford University, 318 Campus Drive E200, Stanford, CA 94305-5430, USA.
| | | |
Collapse
|
174
|
Songer JA, Munson M. Sec6p anchors the assembled exocyst complex at sites of secretion. Mol Biol Cell 2008; 20:973-82. [PMID: 19073882 DOI: 10.1091/mbc.e08-09-0968] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The exocyst is an essential protein complex required for targeting and fusion of secretory vesicles to sites of exocytosis at the plasma membrane. To study the function of the exocyst complex, we performed a structure-based mutational analysis of the Saccharomyces cerevisiae exocyst subunit Sec6p. Two "patches" of highly conserved residues are present on the surface of Sec6p; mutation of either patch does not compromise protein stability. Nevertheless, replacement of SEC6 with the patch mutants results in severe temperature-sensitive growth and secretion defects. At nonpermissive conditions, although trafficking of secretory vesicles to the plasma membrane is unimpaired, none of the exocyst subunits are polarized. This is consistent with data from other exocyst temperature-sensitive mutants, which disrupt the integrity of the complex. Surprisingly, however, these patch mutations result in mislocalized exocyst complexes that remain intact. Our results indicate that assembly and polarization of the exocyst are functionally separable events, and that Sec6p is required to anchor exocyst complexes at sites of secretion.
Collapse
Affiliation(s)
- Jennifer A Songer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
175
|
Köhli M, Galati V, Boudier K, Roberson RW, Philippsen P. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. J Cell Sci 2008; 121:3878-89. [DOI: 10.1242/jcs.033852] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We use the fungus Ashbya gossypii to investigate how its polar growth machinery is organized to achieve sustained hyphal growth. In slowly elongating hyphae exocyst, cell polarity and polarisome proteins permanently localize as cortical cap at hyphal tips, thus defining the zone of secretory vesicle fusion. In tenfold faster growing hyphae, this zone is only slightly enlarged demonstrating a capacity of hyphal growth zones to increase rates of vesicle processing to reach higher speeds. Concomitant with this increase, vesicles accumulate as spheroid associated with the tip cortex, indicating that a Spitzenkörper forms in fast hyphae. We also found spheroid-like accumulations for the exocyst components AgSec3, AgSec5, AgExo70 and the polarisome components AgSpa2, AgBni1 and AgPea2 (but not AgBud6 or cell polarity factors such as AgCdc42 or AgBem1). The localization of AgSpa2, AgPea2 and AgBni1 depend on each other but only marginally on AgBud6, as concluded from a set of deletions. Our data define three conditions to achieve fast growth at hyphal tips: permanent presence of the polarity machinery in a confined cortical area, organized accumulation of vesicles and a subset of polarity components close to this area, and spatial separation of the zones of exocytosis (tip front) and endocytosis (tip rim).
Collapse
Affiliation(s)
- Michael Köhli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Virginie Galati
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Kamila Boudier
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Peter Philippsen
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
176
|
Kurischko C, Kuravi VK, Wannissorn N, Nazarov PA, Husain M, Zhang C, Shokat KM, McCaffery JM, Luca FC. The yeast LATS/Ndr kinase Cbk1 regulates growth via Golgi-dependent glycosylation and secretion. Mol Biol Cell 2008; 19:5559-78. [PMID: 18843045 DOI: 10.1091/mbc.e08-05-0455] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Saccharomyces cerevisiae Cbk1 is a LATS/Ndr protein kinase and a downstream component of the regulation of Ace2 and morphogenesis (RAM) signaling network. Cbk1 and the RAM network are required for cellular morphogenesis, cell separation, and maintenance of cell integrity. Here, we examine the phenotypes of conditional cbk1 mutants to determine the essential function of Cbk1. Cbk1 inhibition severely disrupts growth and protein secretion, and triggers the Swe1-dependent morphogenesis checkpoint. Cbk1 inhibition also delays the polarity establishment of the exocytosis regulators Rab-GTPase Sec4 and its exchange factor Sec2, but it does not interfere with actin polarity establishment. Cbk1 binds to and phosphorylates Sec2, suggesting that it regulates Sec4-dependent exocytosis. Intriguingly, Cbk1 inhibition causes a >30% decrease in post-Golgi vesicle accumulation in late secretion mutants, indicating that Cbk1 also functions upstream of Sec2-Sec4, perhaps at the level of the Golgi. In agreement, conditional cbk1 mutants mislocalize the cis-Golgi mannosyltransferase Och1, are hypersensitive to the aminoglycoside hygromycin B, and exhibit diminished invertase and Sim1 glycosylation. Significantly, the conditional lethality and hygromycin B sensitivity of cbk1 mutants are suppressed by moderate overexpression of several Golgi mannosyltransferases. These data suggest that an important function for Cbk1 and the RAM signaling network is to regulate growth and secretion via Golgi and Sec2/Sec4-dependent processes.
Collapse
Affiliation(s)
- Cornelia Kurischko
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Wu H, Rossi G, Brennwald P. The ghost in the machine: small GTPases as spatial regulators of exocytosis. Trends Cell Biol 2008; 18:397-404. [PMID: 18706813 DOI: 10.1016/j.tcb.2008.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/23/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Temporal and spatial regulation of membrane-trafficking events is crucial to both membrane identity and overall cell polarity. Small GTPases of the Rab, Ral and Rho protein families have been implicated as important regulators of vesicle docking and fusion events. This review focuses on how these GTPases interact with the exocyst complex, which is a multisubunit tethering complex involved in the regulation of cell-surface transport and cell polarity. The Rab and Ral GTPases are thought to function in exocyst assembly and vesicle-tethering processes, whereas the Rho family GTPases seem to function in the local activation of the exocyst complex to facilitate downstream vesicle-fusion events. The localized activation of the exocyst by Rho GTPases is likely to have an important role in spatial regulation of exocytosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
178
|
Yalovsky S, Bloch D, Sorek N, Kost B. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. PLANT PHYSIOLOGY 2008; 147:1527-43. [PMID: 18678744 PMCID: PMC2492628 DOI: 10.1104/pp.108.122150] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 06/12/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Shaul Yalovsky
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
179
|
Sahin A, Daignan-Fornier B, Sagot I. Polarized growth in the absence of F-actin in Saccharomyces cerevisiae exiting quiescence. PLoS One 2008; 3:e2556. [PMID: 18596916 PMCID: PMC2440520 DOI: 10.1371/journal.pone.0002556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/30/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast, these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases, actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step of polarized growth is therefore very challenging. PRINCIPAL FINDINGS We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to trigger polarized growth.
Collapse
Affiliation(s)
- Annelise Sahin
- Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- CNRS – UMR5095, Bordeaux, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- CNRS – UMR5095, Bordeaux, France
| | - Isabelle Sagot
- Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
- CNRS – UMR5095, Bordeaux, France
- * E-mail:
| |
Collapse
|
180
|
Involvement of Saccharomyces cerevisiae Avo3p/Tsc11p in maintaining TOR complex 2 integrity and coupling to downstream signaling. EUKARYOTIC CELL 2008; 7:1328-43. [PMID: 18552287 DOI: 10.1128/ec.00065-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Target-of-rapamycin proteins (TORs) are Ser/Thr kinases serving a central role in cell growth control. TORs function in two conserved multiprotein complexes, TOR complex 1 (TORC1) and TORC2; the mechanisms underlying their actions and regulation are not fully elucidated. Saccharomyces TORC2, containing Tor2p, Avo1p, Avo2p, Avo3p/Tsc11p, Bit61p, and Lst8p, regulates cell integrity and actin organization. Two classes of avo3 temperature-sensitive (avo3(ts)) mutants that we previously identified display cell integrity and actin defects, yet one is suppressed by AVO1 while the other is suppressed by AVO2 or SLM1, defining two TORC2 downstream signaling mechanisms, one mediated by Avo1p and the other by Avo2p/Slm1p. Employing these mutants, we explored Avo3p functions in TORC2 structure and signaling. By observing binary protein interactions using coimmunoprecipitation, we discovered that the composition of TORC2 and its recruitment of the downstream effectors Slm1p and Slm2p were differentially affected in different avo3(ts) mutants. These molecular defects can be corrected only by expressing AVO3, not by expressing suppressors, highlighting the role of Avo3p as a structural and signaling scaffold for TORC2. Phenotypic modifications of avo3(ts) mutants by deletion of individual Rho1p-GTPase-activating proteins indicate that two TORC2 downstream signaling branches converge on Rho1p activation. Our results also suggest that Avo2p/Slm1p-mediated signaling, but not Avo1p-mediated signaling, links to Rho1p activation specifically through the Rho1p-guanine nucleotide exchange factor Tus1p.
Collapse
|
181
|
Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L, Camonis J, D'Souza-Schorey C, Chavrier P. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. ACTA ACUST UNITED AC 2008; 181:985-98. [PMID: 18541705 PMCID: PMC2426946 DOI: 10.1083/jcb.200709076] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Invadopodia are actin-based membrane protrusions formed at contact sites between invasive tumor cells and the extracellular matrix with matrix proteolytic activity. Actin regulatory proteins participate in invadopodia formation, whereas matrix degradation requires metalloproteinases (MMPs) targeted to invadopodia. In this study, we show that the vesicle-tethering exocyst complex is required for matrix proteolysis and invasion of breast carcinoma cells. We demonstrate that the exocyst subunits Sec3 and Sec8 interact with the polarity protein IQGAP1 and that this interaction is triggered by active Cdc42 and RhoA, which are essential for matrix degradation. Interaction between IQGAP1 and the exocyst is necessary for invadopodia activity because enhancement of matrix degradation induced by the expression of IQGAP1 is lost upon deletion of the exocyst-binding site. We further show that the exocyst and IQGAP1 are required for the accumulation of cell surface membrane type 1 MMP at invadopodia. Based on these results, we propose that invadopodia function in tumor cells relies on the coordination of cytoskeletal assembly and exocytosis downstream of Rho guanosine triphosphatases.
Collapse
|
182
|
|
183
|
Hála M, Cole R, Synek L, Drdová E, Pecenková T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler JE, Zárský V. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. THE PLANT CELL 2008; 20:1330-45. [PMID: 18492870 PMCID: PMC2438459 DOI: 10.1105/tpc.108.059105] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/16/2008] [Accepted: 05/05/2008] [Indexed: 05/04/2023]
Abstract
The exocyst, an octameric tethering complex and effector of Rho and Rab GTPases, facilitates polarized secretion in yeast and animals. Recent evidence implicates three plant homologs of exocyst subunits (SEC3, SEC8, and EXO70A1) in plant cell morphogenesis. Here, we provide genetic, cell biological, and biochemical evidence that these and other predicted subunits function together in vivo in Arabidopsis thaliana. Double mutants in exocyst subunits (sec5 exo70A1 and sec8 exo70A1) show a synergistic defect in etiolated hypocotyl elongation. Mutants in exocyst subunits SEC5, SEC6, SEC8, and SEC15a show defective pollen germination and pollen tube growth phenotypes. Using antibodies directed against SEC6, SEC8, and EXO70A1, we demonstrate colocalization of these proteins at the apex of growing tobacco pollen tubes. The SEC3, SEC5, SEC6, SEC8, SEC10, SEC15a, and EXO70 subunits copurify in a high molecular mass fraction of 900 kD after chromatographic fractionation of an Arabidopsis cell suspension extract. Blue native electrophoresis confirmed the presence of SEC3, SEC6, SEC8, and EXO70 in high molecular mass complexes. Finally, use of the yeast two-hybrid system revealed interaction of Arabidopsis SEC3a with EXO70A1, SEC10 with SEC15b, and SEC6 with SEC8. We conclude that the exocyst functions as a complex in plant cells, where it plays important roles in morphogenesis.
Collapse
Affiliation(s)
- Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Moreno-Jiménez R, García-Soto J, Martínez-Cadena G. Small GTP-binding proteins are associated with chitosomes and vesicles carrying glucose oxidase from Mucor circinelloides. MICROBIOLOGY-SGM 2008; 154:842-851. [PMID: 18310030 DOI: 10.1099/mic.0.2007/012179-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fractions enriched with chitosomes and vesicles carrying glucose oxidase (GOX) activity from the dimorphic zygomycete Mucor circinelloides were obtained using two successive sucrose gradients, the first a linear-log and the second an isopycnic gradient. Using an [alpha-(32)P]GTP-binding assay, we detected the association of small GTP-binding proteins (21 and 17 kDa) with both types of vesicles. In addition, by ADP-ribosylation with C3 exotoxin, and Western blot analysis with specific antibodies, we identified the small GTPases RhoA (Rho1p) and Rab8, and a 17 kDa protein, with pI values of 6.0, 6.1, and 6.2 and molecular masses of 21, 21 and 17 kDa, respectively, associated with those vesicles carrying GOX activity. Rab and Cdc42 proteins with pI values of 6.1 and 6.2 and molecular masses of 21 and 17 kDa, respectively, were found associated with chitosomes. These data indicate the presence in M. circinelloides of low molecular mass G-proteins in chitosomes and in vesicles carrying GOX activity. The difference in association of Rho1 and Cdc42, with vesicles carrying GOX activity and chitosomes, respectively, indicates that each of these proteins probably controls formation, transport and specific plasma membrane site docking of the respective vesicles.
Collapse
Affiliation(s)
- Rocío Moreno-Jiménez
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apdo. postal 187, Guanajuato, Gto. 36000, Mexico
| | - Jesús García-Soto
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apdo. postal 187, Guanajuato, Gto. 36000, Mexico
| | - Guadalupe Martínez-Cadena
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apdo. postal 187, Guanajuato, Gto. 36000, Mexico
| |
Collapse
|
185
|
Zhang X, Orlando K, He B, Xi F, Zhang J, Zajac A, Guo W. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. ACTA ACUST UNITED AC 2008; 180:145-58. [PMID: 18195105 PMCID: PMC2213614 DOI: 10.1083/jcb.200704128] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The exocyst is an octameric protein complex implicated in tethering post-Golgi secretory vesicles at the plasma membrane in preparation for fusion. However, it is not clear how the exocyst is targeted to and physically associates with specific domains of the plasma membrane and how its functions are regulated at those regions. We demonstrate that the N terminus of the exocyst component Sec3 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues in Sec3 that are critical for its binding to the guanosine triphosphate-bound form of Cdc42. Genetic analyses indicate that the dual interactions of Sec3 with phospholipids and Cdc42 control its function in yeast cells. Disrupting these interactions not only blocks exocytosis and affects exocyst polarization but also leads to defects in cell morphogenesis. We propose that the interactions of Sec3 with phospholipids and Cdc42 play important roles in exocytosis and polarized cell growth.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Kono K, Nogami S, Abe M, Nishizawa M, Morishita S, Pellman D, Ohya Y. G1/S cyclin-dependent kinase regulates small GTPase Rho1p through phosphorylation of RhoGEF Tus1p in Saccharomyces cerevisiae. Mol Biol Cell 2008; 19:1763-71. [PMID: 18256282 DOI: 10.1091/mbc.e07-09-0950] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho1p is an essential small GTPase that plays a key role in the morphogenesis of Saccharomyces cerevisiae. We show here that the activation of Rho1p is regulated by a cyclin-dependent kinase (CDK). Rho1p is activated at the G1/S transition at the incipient-bud sites by the Cln2p (G1 cyclin) and Cdc28p (CDK) complex, in a process mediated by Tus1p, a guanine nucleotide exchange factor for Rho1p. Tus1p interacts physically with Cln2p/Cdc28p and is phosphorylated in a Cln2p/Cdc28p-dependent manner. CDK phosphorylation consensus sites in Tus1p are required for both Cln2p-dependent activation of Rho1p and polarized organization of the actin cytoskeleton. We propose that Cln2p/Cdc28p-dependent phosphorylation of Tus1p is required for appropriate temporal and spatial activation of Rho1p at the G1/S transition.
Collapse
Affiliation(s)
- Keiko Kono
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
187
|
Martínez-Rocha AL, Roncero MIG, López-Ramirez A, Mariné M, Guarro J, Martínez-Cadena G, Di Pietro A. Rho1 has distinct functions in morphogenesis, cell wall biosynthesis and virulence of Fusarium oxysporum. Cell Microbiol 2008; 10:1339-51. [PMID: 18248628 DOI: 10.1111/j.1462-5822.2008.01130.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rho-type GTPases regulate polarized growth in yeast by reorganization of the actin cytoskeleton and through signalling pathways that control the expression of cell wall biosynthetic genes. We report the cloning and functional analysis of rho1 from Fusarium oxysporum, a soilborne fungal pathogen causing vascular wilt on plants and opportunistic infections in humans. F. oxysporum strains carrying either a Deltarho1 loss-of-function mutation or a rho1(G14V) gain-of-function allele were viable, but displayed a severely restricted colony phenotype which was partially relieved by the osmotic stabilizer sorbitol, indicating structural alterations in the cell wall. Consistent with this hypothesis, Deltarho1 strains showed increased resistance to cell wall-degrading enzymes and staining with Calcofluor white, as well as changes in chitin and glucan synthase gene expression and enzymatic activity. Re-introduction of a functional rho1 allele into the Deltarho1 mutant fully restored the wild-type phenotype. The Deltarho1 strain had dramatically reduced virulence on tomato plants, but was as virulent as the wild type on immunodepressed mice. Thus, Rho1 plays a key role during fungal infection of plants, but not of mammalian hosts.
Collapse
Affiliation(s)
- Ana Lilia Martínez-Rocha
- Departamento de Genetica, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel, 14071 Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
188
|
Bloch D, Hazak O, Lavy M, Yalovsky S. A novel ROP/RAC GTPase effector integrates plant cell form and pattern formation. PLANT SIGNALING & BEHAVIOR 2008; 3:41-3. [PMID: 19704766 PMCID: PMC2633956 DOI: 10.4161/psb.3.1.4838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/06/2007] [Indexed: 05/03/2023]
Abstract
ROPs/RACs are the only known signaling Ras superfamily small GTPases in plants. As such they have been suggested to function as central regulators of diverse signaling cascades. The ROP/RAC signaling networks are largely unknown, however, because only few of their effector proteins have been identified. In a paper that was published in the June 5, 2007 issue of Current Biology we described the identification of a novel ROP/RAC effector designated ICR1 (Interactor of Constitutive active ROPs 1). We demonstrated that ICR1 functions as a scaffold that interacts with diverse but specific group of proteins including SEC3 subunit of the exocyst vesicle tethering complex. ICR1-SEC3 complexes can interact with ROPs in vivo and are thereby recruited to the plasma membrane. ICR1 knockdown or silencing leads to cell deformation and loss of the root stem cells population, and ectopic expression of ICR1 phenocopies activated ROPs/RACs. ICR1 presents a new paradigm in ROP/RAC signaling and integrates mechanisms regulating cell form and pattern formation at the whole plant level.
Collapse
Affiliation(s)
- Daria Bloch
- Department of Plant Sciences; Tel Aviv University; Tel Aviv, Israel
| | - Ora Hazak
- Department of Plant Sciences; Tel Aviv University; Tel Aviv, Israel
| | - Meirav Lavy
- Department of Biology; Indiana University; Bloomington, Indiana USA
| | - Shaul Yalovsky
- Department of Plant Sciences; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
189
|
Swennen D, Beckerich JM. Yarrowia lipolytica vesicle-mediated protein transport pathways. BMC Evol Biol 2007; 7:219. [PMID: 17997821 PMCID: PMC2241642 DOI: 10.1186/1471-2148-7-219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 11/12/2007] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. RESULTS We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii). These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO) encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular transport shows that 40% of Y. lipolytica proteins are closer to animal ones, whereas they are only 13% in the case of S. cerevisiae. CONCLUSION These results provide further support for the idea, previously noted about the endoplasmic reticulum translocation pathway, that Y. lipolytica is more representative of vesicular secretion of animals and other fungi than is S. cerevisiae.
Collapse
Affiliation(s)
- Dominique Swennen
- Laboratoire de Microbiologie et Génétique Moléculaire INRA-CNRS-AgroParisTech UMR 1238 CBAI BP01 F-78850 Thiverval Grignon, France.
| | | |
Collapse
|
190
|
He B, Xi F, Zhang X, Zhang J, Guo W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 2007; 26:4053-65. [PMID: 17717527 PMCID: PMC2230670 DOI: 10.1038/sj.emboj.7601834] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 07/23/2007] [Indexed: 01/01/2023] Open
Abstract
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.
Collapse
Affiliation(s)
- Bing He
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fengong Xi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoyu Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
191
|
Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR. Activation of RalA Is Required for Insulin-Stimulated Glut4 Trafficking to the Plasma Membrane via the Exocyst and the Motor Protein Myo1c. Dev Cell 2007; 13:391-404. [PMID: 17765682 DOI: 10.1016/j.devcel.2007.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/06/2007] [Accepted: 07/18/2007] [Indexed: 12/25/2022]
Abstract
Insulin stimulates glucose transport in muscle and adipose tissue by producing translocation of the glucose transporter Glut4. The exocyst, an evolutionarily conserved vesicle tethering complex, is crucial for targeting Glut4 to the plasma membrane. Here we report that insulin regulates this process via the G protein RalA, which is present in Glut4 vesicles and interacts with the exocyst in adipocytes. Insulin stimulates the activity of RalA in a PI 3-kinase-dependent manner. Disruption of RalA function by dominant-negative mutants or siRNA-mediated knockdown attenuates insulin-stimulated glucose transport. RalA also interacts with Myo1c, a molecular motor implicated in Glut4 trafficking. This interaction is modulated by Calmodulin, which functions as the light chain for Myo1c during insulin-stimulated glucose uptake. Thus, RalA serves two functions in insulin action: as a cargo receptor for the Myo1c motor, and as a signal for the unification of the exocyst to target Glut4 vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
192
|
de la Cruz JO, García-Soto J, Uriostegui C, Carranza L, Novoa G, Reyna G, Martínez-Cadena G. Differential expression of Rho1GTPase and Rho3GTPase during isotropic and polarized growth of Mucor circinelloides. Can J Microbiol 2007; 53:168-76. [PMID: 17496964 DOI: 10.1139/w06-128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence has been obtained that indicates the presence of small 22 kDa GTP-binding Rho proteins through ADP-ribosylation by Clostridium botulinum C3 exotoxin in Mucor circinelloides. Rho protein was detected at all stages of growth studied. During polarized growth, both under aerobic conditions and during the yeast-mycelia transition, the radiolabeling of the [32P]ADP-ribosylated protein increased when tube formation occurred and decreased as the hyphae branched. However, when Mucor grew isotropically, the Rho protein band was thick and its intensity did not vary significantly even after bud formation and separation of daughter cells. Crude extracts of yeast and mycelial cells exhibited a broad 22 kDa band of the [32P]ADP-ribosylated Rho protein that was resolved into a protein with a pI of 6.0, after two-dimensional electrophoresis, corresponding to the Rho1p homolog. Furthermore, [32P]ADP-ribosylated Rho protein from soluble and particulate extracts of multipolarized mycelial cells obtained from the yeast-mycelia transition was separated into two proteins with pI of 6.0 and 6.4, respectively, after two-dimensional electrophoresis. These correspond to the Rho1p and Rho3p homologs, respectively. Therefore, our results show that an increase in Rho accumulation is associated with polarized growth.
Collapse
Affiliation(s)
- Javier O de la Cruz
- Instituto de Investigación en Biología Experimental, Facultad de Química, Universidad de Guanajuato, Apdo. postal 187, Guanajuato, Gto. 36000, Mexico
| | | | | | | | | | | | | |
Collapse
|
193
|
Li CR, Lee RTH, Wang YM, Zheng XD, Wang Y. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J Cell Sci 2007; 120:1898-907. [PMID: 17504812 DOI: 10.1242/jcs.002931] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The growing tips of Candida albicans hyphae are sites of polarized exocytosis. Mammalian septins have been implicated in regulating exocytosis and C. albicans septins are known to localize at hyphal tips, although their function here is unknown. Here, we report that C. albicans cells deleted of the exocyst subunit gene SEC3 can grow normal germ tubes, but are unable to maintain tip growth after assembly of the first septin ring, resulting in isotropic expansion of the tip. Deleting either of the septin genes CDC10 or CDC11 caused Sec3p mislocalization and surprisingly, also restored hyphal development in the sec3Δ mutant without rescuing the temperature sensitivity. Co-immunoprecipitation experiments detected association of the septin Cdc3p with the exocyst subunits Sec3p and Sec5p. Our results reveal that C. albicans hyphal development occurs through Sec3p-independent and dependent phases, and provide strong genetic and biochemical evidence for a role of septins in polarized exocytosis.
Collapse
Affiliation(s)
- Chang-Run Li
- Candida albicans Molecular and Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | |
Collapse
|
194
|
Moore BA, Robinson HH, Xu Z. The crystal structure of mouse Exo70 reveals unique features of the mammalian exocyst. J Mol Biol 2007; 371:410-21. [PMID: 17583731 PMCID: PMC2692999 DOI: 10.1016/j.jmb.2007.05.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/01/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
The exocyst is a eukaryotic tethering complex necessary for the fusion of exocytic vesicles with the plasma membrane. Its function in vivo is tightly regulated by interactions with multiple small GTPases. Exo70, one of the eight subunits of the exocyst, is important for the localization of the exocyst to the plasma membrane. It interacts with TC10 and Rho3 GTPases in mammals and yeast, respectively, and has been shown recently to bind to the actin-polymerization complex Arp2/3. Here, we present the crystal structure of Mus musculus Exo70 at 2.25 A resolution. Exo70 is composed of alpha-helices in a series of right-handed helix-turn-helix motifs organized into a long rod of length 170 A and width 35 A. Although the alpha-helical organization of this molecule is similar to that in Saccharomyces cerevisiae Exo70, major structural differences are observed on the surface of the molecule, at the domain boundaries, and in various loop structures. In particular, the C-terminal domain of M. musculus Exo70 adopts a new orientation relative to the N-terminal half not seen in S. cerevisiae Exo70 structures. Given the low level of sequence conservation within Exo70, this structure provides new insights into our understanding of many species-specific functions of the exocyst.
Collapse
Affiliation(s)
- Brian A. Moore
- Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48019
| | | | - Zhaohui Xu
- Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48019
- Corresponding Author: Zhaohui Xu, Telephone: (734) 615-2077, Fax: (734) 763-6492, E-mail:
| |
Collapse
|
195
|
Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S. A Novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 2007; 17:947-52. [PMID: 17493810 DOI: 10.1016/j.cub.2007.04.038] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 04/14/2007] [Accepted: 04/16/2007] [Indexed: 11/15/2022]
Abstract
ROP/RAC GTPases are master regulators of cell polarity in plants, implicated in the regulation of diverse signaling cascades including cytoskeleton organization, vesicle trafficking, and Ca(2+) gradients [1-8]. The involvement of ROPs in differentiation processes is yet unknown. Here we show the identification of a novel ROP/RAC effector, designated interactor of constitutive active ROPs 1 (ICR1), that interacts with GTP-bound ROPs. ICR1 knockdown or silencing leads to cell deformation and loss of root stem-cell population. Ectopic expression of ICR1 phenocopies activated ROPs, inducing cell deformation of leaf-epidermis-pavement and root-hair cells [3, 5, 6, 9]. ICR1 is comprised of coiled-coil domains and forms complexes with itself and the exocyst vesicle-tethering complex subunit SEC3 [10-13]. The ICR1-SEC3 complexes can interact with ROPs in vivo. Plants overexpressing a ROP- and SEC3-noninteracting ICR1 mutant have a wild-type phenotype. Taken together, our results show that ICR1 is a scaffold-mediating formation of protein complexes that are required for cell polarity, linking ROP/RAC GTPases with vesicle trafficking and differentiation.
Collapse
Affiliation(s)
- Meirav Lavy
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Fuchs BB, Tang RJ, Mylonakis E. The temperature-sensitive role of Cryptococcus neoformans ROM2 in cell morphogenesis. PLoS One 2007; 2:e368. [PMID: 17426816 PMCID: PMC1838519 DOI: 10.1371/journal.pone.0000368] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 03/20/2007] [Indexed: 12/16/2022] Open
Abstract
ROM2 is associated with Cryptococcus neoformans virulence. We examined additional roles of ROM2 in C. neoformans and found that ROM2 plays a role in several cell functions specifically at high temperature conditions. Morphologically rom2 mutant cells demonstrated a “tear”-like shape and clustered together. A sub-population of cells had a hyperelongated phenotype at restrictive growth conditions. Altered morphology was associated with defects in actin that was concentrated at the cell periphery and with abnormalities in microtubule organization. Interestingly, the ROM2 associated defects in cell morphology, location of nuclei, and actin and microtubule organization were not observed in cells grown at temperatures below 37°C. These results indicate that in C. neoformans, ROM2 is important at restrictive temperature conditions and is involved in several cell maintenance functions.
Collapse
Affiliation(s)
- Beth Burgwyn Fuchs
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Robin J. Tang
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
197
|
Strahl T, Thorner J. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:353-404. [PMID: 17382260 PMCID: PMC1868553 DOI: 10.1016/j.bbalip.2007.01.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 02/02/2023]
Abstract
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.
Collapse
Affiliation(s)
- Thomas Strahl
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jeremy Thorner
- Divisions of Biochemistry & Molecular Biology and of Cell & Developmental Biology.Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
198
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 329] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
199
|
Novick P, Medkova M, Dong G, Hutagalung A, Reinisch K, Grosshans B. Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem Soc Trans 2007; 34:683-6. [PMID: 17052174 DOI: 10.1042/bst0340683] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sec2p is the exchange factor that activates Sec4p, the Rab GTPase controlling the final stage of the yeast exocytic pathway. Sec2p is recruited to secretory vesicles by Ypt32-GTP, a Rab controlling exit from the Golgi. Sec15p, a subunit of the octameric exocyst tethering complex and an effector of Sec4p, binds to Sec2p on secretory vesicles, displacing Ypt32p. Sec2p mutants defective in the region 450-508 amino acids bind to Sec15p more tightly. In these mutants, Sec2p accumulates in the cytosol in a complex with the exocyst and is not recruited to vesicles by Ypt32p. Thus the region 450-508 amino acids negatively regulates the association of Sec2p with the exocyst, allowing it to recycle on to new vesicles. The structures of one nearly full-length exocyst subunit and three partial subunits have been determined and, despite very low sequence identity, all form rod-like structures built of helical bundles stacked end to end. These rods may bind to each other along their sides to form the assembled complex. While Sec15p binds Sec4-GTP on the vesicle, other subunits bind Rho GTPases on the plasma membrane, thus tethering vesicles to exocytic sites. Sec4-GTP also binds Sro7p, a yeast homologue of the Drosophila lgl (lethal giant larvae) tumour suppressor. Sro7 also binds to Sec9p, a SNAP25 (25 kDa synaptosome-associated protein)-like t-SNARE [target-membrane-associated SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor)], and can form a Sec4p-Sro7p-Sec9p ternary complex. Overexpression of Sec4p, Sro7p or Sec1p (another SNARE regulator) can bypass deletions of three different exocyst subunits. Thus promoting SNARE function can compensate for tethering defects.
Collapse
Affiliation(s)
- P Novick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Kikuchi Y, Mizuuchi E, Nogami S, Morishita S, Ohya Y. Involvement of Rho-type GTPase in control of cell size in Saccharomyces cerevisiae. FEMS Yeast Res 2007; 7:569-78. [PMID: 17302939 DOI: 10.1111/j.1567-1364.2007.00213.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Maintaining specific cell size, which is important for many organisms, is achieved by coordinating cell growth and cell division. In the budding yeast Saccharomyces cerevisiae, the existence of two cell-size checkpoints is proposed: at the first checkpoint, cell size is monitored before budding at the G1/S transition, and at the second checkpoint, actin depolymerization occurring in the small bud is monitored before the G2/M transition. Morphological analyses have revealed that the small GTPase Rho1p participates in cell-size control at both the G1/S and the G2/M boundaries. One group of rho1 mutants (rho1A) underwent premature entry into mitosis, leading to the birth of abnormally small cells. In another group of rho1 mutants (rho1B), the mother cells failed to reach an appropriate size before budding, and expression of the G1 cyclin Cln2p began at an earlier phase of the cell cycle. Analyses of mutants defective in Rho1p effector proteins indicate that Skn7p, Fks1p and Mpk1p are involved in cell-size control. Thus, Rho1p and its downstream regulatory pathways are involved in controlling cell size in S. cerevisiae.
Collapse
Affiliation(s)
- Yo Kikuchi
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | |
Collapse
|