151
|
Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Modeling the Effect of Composition on Formation of Aerosolized Nanoemulsion System Encapsulating Docetaxel and Curcumin Using D-Optimal Mixture Experimental Design. Int J Mol Sci 2020; 21:E4357. [PMID: 32575390 PMCID: PMC7352744 DOI: 10.3390/ijms21124357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023] Open
Abstract
The synergistic anticancer effect of docetaxel (DTX) and curcumin (CCM) has emerged as an attractive therapeutic candidate for lung cancer treatment. However, the lack of optimal bioavailability because of high toxicity, low stability, and poor solubility has limited their clinical success. Given this, an aerosolized nanoemulsion system for pulmonary delivery is recommended to mitigate these drawbacks. In this study, DTX- and CCM-loaded nanoemulsions were optimized using the D-optimal mixture experimental design (MED). The effect of nanoemulsion compositions towards two response variables, namely, particle size and aerosol size, was studied. The optimized formulations for both DTX- and CCM-loaded nanoemulsions were determined, and their physicochemical and aerodynamic properties were evaluated as well. The MED models achieved the optimum formulation for DTX- and CCM-loaded nanoemulsions containing a 6.0 wt% mixture of palm kernel oil ester (PKOE) and safflower seed oils (1:1), 2.5 wt% of lecithin, 2.0 wt% mixture of Tween 85 and Span 85 (9:1), and 2.5 wt% of glycerol in the aqueous phase. The actual values of the optimized formulations were in line with the predicted values obtained from the MED, and they exhibited desirable attributes of physicochemical and aerodynamic properties for inhalation therapy. Thus, the optimized formulations have potential use as a drug delivery system for a pulmonary application.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.A.); (N.S.); (E.A.)
- UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
152
|
Joshi M, Nagarsenkar M, Prabhakar B. Albumin nanocarriers for pulmonary drug delivery: An attractive approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
153
|
Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020; 10:1203-1227. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineered immune cells offer a prime therapeutic alternate for some aggressive and frequently occurring malignancies like lung cancer. These therapies were reported to result in tumor regression and overall improvement in patient survival. However, studies also suggest that the presence of cancer cell-induced immune-suppressive microenvironment, off-target toxicity, and difficulty in concurrent imaging are some prime impendent in the success of these approaches. The present article reviews the need and significance of the currently available immune cell-based strategies for lung cancer therapeutics. It also showcases the utility of incorporating nanoengineered strategies and details the available formulations of nanocarriers. In last, it briefly discussed the existing methods for nanoparticle fuctionalization and challenges in translating basic research to the clinics. Graphical Abstract.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russian Federation
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Kamla Nehru Hospital,, Building (Gandhi Medical College Campus), Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
154
|
Ju Y, Cortez‐Jugo C, Chen J, Wang T, Mitchell AJ, Tsantikos E, Bertleff‐Zieschang N, Lin Y, Song J, Cheng Y, Mettu S, Rahim MA, Pan S, Yun G, Hibbs ML, Yeo LY, Hagemeyer CE, Caruso F. Engineering of Nebulized Metal-Phenolic Capsules for Controlled Pulmonary Deposition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902650. [PMID: 32195089 PMCID: PMC7080547 DOI: 10.1002/advs.201902650] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Indexed: 05/07/2023]
Abstract
Particle-based pulmonary delivery has great potential for delivering inhalable therapeutics for local or systemic applications. The design of particles with enhanced aerodynamic properties can improve lung distribution and deposition, and hence the efficacy of encapsulated inhaled drugs. This study describes the nanoengineering and nebulization of metal-phenolic capsules as pulmonary carriers of small molecule drugs and macromolecular drugs in lung cell lines, a human lung model, and mice. Tuning the aerodynamic diameter by increasing the capsule shell thickness (from ≈100 to 200 nm in increments of ≈50 nm) through repeated film deposition on a sacrificial template allows precise control of capsule deposition in a human lung model, corresponding to a shift from the alveolar region to the bronchi as aerodynamic diameter increases. The capsules are biocompatible and biodegradable, as assessed following intratracheal administration in mice, showing >85% of the capsules in the lung after 20 h, but <4% remaining after 30 days without causing lung inflammation or toxicity. Single-cell analysis from lung digests using mass cytometry shows association primarily with alveolar macrophages, with >90% of capsules remaining nonassociated with cells. The amenability to nebulization, capacity for loading, tunable aerodynamic properties, high biocompatibility, and biodegradability make these capsules attractive for controlled pulmonary delivery.
Collapse
Affiliation(s)
- Yi Ju
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jingqu Chen
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Ting‐Yi Wang
- Nanobiotechnology LaboratoryAustralian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Andrew J. Mitchell
- Department of Chemical EngineeringMaterials Characterisation and Fabrication PlatformThe University of MelbourneParkvilleVictoria3010Australia
| | - Evelyn Tsantikos
- Department of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Nadja Bertleff‐Zieschang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Yu‐Wei Lin
- Monash Biomedicine InstituteDepartment of MicrobiologyMonash UniversityClaytonVictoria3800Australia
| | - Jiaying Song
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Yizhe Cheng
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Srinivas Mettu
- School of Chemistry and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Gyeongwon Yun
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Margaret L. Hibbs
- Department of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVictoria3001Australia
| | - Christoph E. Hagemeyer
- Nanobiotechnology LaboratoryAustralian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
155
|
Bai X, Li M, Hu G. Nanoparticle translocation across the lung surfactant film regulated by grafting polymers. NANOSCALE 2020; 12:3931-3940. [PMID: 32003385 DOI: 10.1039/c9nr09251j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticle-based pulmonary drug delivery has gained significant attention due to its ease of administration, increased bioavailability, and reduced side effects caused by a high systemic dosage. After being delivered into the deep lung, the inhaled nanoparticles first interact with the lung surfactant lining layer composed of phospholipids and surfactant proteins and then potentially cause the dysfunction of the lung surfactant. Conditioning the surface properties of nanoparticles with grafting polymers to avoid these side effects is of crucial importance to the efficiency and safety of pulmonary drug delivery. Herein, we perform coarse-grained molecular simulations to decipher the involved mechanism responsible for the translocation of the polymer-grafted Au nanoparticles across the lung surfactant film. The simulations illustrate that conditioning of the grafting polymers, including their length, terminal charge, and grafting density, can result in different translocation processes. Based on the energy analysis, we find that these discrepancies in translocation stem from the affinity of the nanoparticles with the lipid tails and heads and their contact with the proteins, which can be tuned by the surface polarity and surface charge of the nanoparticles. We further demonstrate that the interaction between the nanoparticles and the lung surfactant is related to the depletion of the lipids and proteins during translocation, which affects the surface tension of the surfactant film. The change in the surface tension in turn affects the nanoparticle translocation and the collapse of the surfactant film. These results can help understand the adverse effects of the nanoparticles on the lung surfactant film and provide guidance to the design of inhaled nanomedicines for improved permeability and targeting.
Collapse
Affiliation(s)
- Xuan Bai
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China. and The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mujun Li
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Hu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
156
|
Molavipordanjani S, Hosseinimehr SJ. Strategies for Conjugation of Biomolecules to Nanoparticles as Tumor Targeting Agents. Curr Pharm Des 2019; 25:3917-3926. [DOI: 10.2174/1381612825666190903154847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Combination of nanotechnology, biochemistry, chemistry and biotechnology provides the opportunity
to design unique nanoparticles for tumor targeting, drug delivery, medical imaging and biosensing. Nanoparticles
conjugated with biomolecules such as antibodies, peptides, vitamins and aptamer can resolve current challenges
including low accumulation, internalization and retention at the target site in cancer diagnosis and therapy
through active targeting. In this review, we focus on different strategies for conjugation of biomolecules to
nanoparticles such as inorganic nanoparticles (iron oxide, gold, silica and carbon nanoparticles), liposomes, lipid
and polymeric nanoparticles and their application in tumor targeting.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
157
|
Lectin coupled liposomes for pulmonary delivery of salbutamol sulphate for better management of asthma: Formulation development using QbD approach. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
158
|
Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. Int J Mol Sci 2019; 20:E6056. [PMID: 31801303 PMCID: PMC6928924 DOI: 10.3390/ijms20236056] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano-bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle's interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (J.W.S.); (J.E.P.); (K.M.D.); (S.M.)
| |
Collapse
|
159
|
Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23:20. [PMID: 31832232 PMCID: PMC6869321 DOI: 10.1186/s40824-019-0166-x] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
In modern-day medicine, nanotechnology and nanoparticles are some of the indispensable tools in disease monitoring and therapy. The term “nanomaterials” describes materials with nanoscale dimensions (< 100 nm) and are broadly classified into natural and synthetic nanomaterials. However, “engineered” nanomaterials have received significant attention due to their versatility. Although enormous strides have been made in research and development in the field of nanotechnology, it is often confusing for beginners to make an informed choice regarding the nanocarrier system and its potential applications. Hence, in this review, we have endeavored to briefly explain the most commonly used nanomaterials, their core properties and how surface functionalization would facilitate competent delivery of drugs or therapeutic molecules. Similarly, the suitability of carbon-based nanomaterials like CNT and QD has been discussed for targeted drug delivery and siRNA therapy. One of the biggest challenges in the formulation of drug delivery systems is fulfilling targeted/specific drug delivery, controlling drug release and preventing opsonization. Thus, a different mechanism of drug targeting, the role of suitable drug-laden nanocarrier fabrication and methods to augment drug solubility and bioavailability are discussed. Additionally, different routes of nanocarrier administration are discussed to provide greater understanding of the biological and other barriers and their impact on drug transport. The overall aim of this article is to facilitate straightforward perception of nanocarrier design, routes of various nanoparticle administration and the challenges associated with each drug delivery method.
Collapse
|
160
|
An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat Commun 2019; 10:5108. [PMID: 31704921 PMCID: PMC6841721 DOI: 10.1038/s41467-019-13094-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence suggests that the tumor microenvironment is profoundly immunosuppressive. Thus, mitigating tumor immunosuppression is crucial for inducing sustained antitumor immunity. Whereas previous studies involved intratumoral injection, we report here an inhalable nanoparticle-immunotherapy system targeting pulmonary antigen presenting cells (APCs) to enhance anticancer immunity against lung metastases. Inhalation of phosphatidylserine coated liposome loaded with STING agonist cyclic guanosine monophosphate–adenosine monophosphate (NP-cGAMP) in mouse models of lung metastases enables rapid distribution of NP-cGAMP to both lungs and subsequent uptake by APCs without causing immunopathology. NP-cGAMP designed for enhanced cytosolic release of cGAMP stimulates STING signaling and type I interferons production in APCs, resulting in the pro-inflammatory tumor microenvironment in multifocal lung metastases. Furthermore, fractionated radiation delivered to one tumor-bearing lung synergizes with inhaled NP-cGAMP, eliciting systemic anticancer immunity, controlling metastases in both lungs, and conferring long-term survival in mice with lung metastases and with repeated tumor challenge. Successful anticancer immunotherapy should induce robust systemic immunity against metastases. Here, the authors engineer an inhalable nano-STING agonist, which synergizes with fractionated radiation to control lung metastases and confers long-term systemic antitumor immunity in mice.
Collapse
|
161
|
Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1586. [PMID: 31602823 DOI: 10.1002/wnan.1586] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
Respiratory illnesses are prevalent around the world, and inhalation-based therapies provide an attractive, noninvasive means of directly delivering therapeutic agents to their site of action to improve treatment efficacy and limit adverse systemic side effects. Recent trends in medicine and nanoscience have prompted the development of inhalable nanomedicines to further enhance effectiveness, patient compliance, and quality of life for people suffering from lung cancer, chronic pulmonary diseases, and tuberculosis. Herein, we discuss recent advancements in the development of inhalable nanomaterial-based drug delivery systems and analyze several representative systems to illustrate their key design principles that can translate to improved therapeutic efficacy for prevalent respiratory diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Maria E Grimmett
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Christopher J Domalewski
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
162
|
Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2019; 14:21-58. [PMID: 31502904 DOI: 10.1080/17435390.2019.1661043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle(NP)-based materials have breakthrough applications in many fields of life, such as in engineering, communications and textiles industries; food and bioenvironmental applications; medicines and cosmetics, etc. Biomedical applications of NPs are very active areas of research with successful translation to pharmaceutical and clinical uses overcoming both pharmaceutical and clinical challenges. Although the attractiveness and enhanced applications of these NPs stem from their exceptional properties at the nanoscale size, i.e. 1-1000 nm, they exhibit completely different physicochemical profiles and, subsequently, toxicological profiles from their parent bulk materials. Hence, the clinical evaluation and toxicological assessment of NPs interactions within biological systems are continuously evolving to ensure their safety at the nanoscale. The pulmonary system is one of the primary routes of exposure to airborne NPs either intentionally, via aerosolized nanomedicines targeting pulmonary pathologies such as cancer or asthma, or unintentionally, via natural NPs and anthropogenic (man-made) NPs. This review presents the state-of-the-art, contemporary challenges, and knowledge gaps in the toxicological assessment of NPs interactions with the pulmonary system. It highlights the main mechanisms of NP toxicity, factors influencing their toxicity, the different toxicological assessment methods and their drawbacks, and the recent NP regulatory guidelines based on literature collected from the research pool of NPs interactions with lung cell lines, in vivo inhalation studies, and clinical trials.
Collapse
Affiliation(s)
- Nashwa M Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Y Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
163
|
Influence of stabilizer type and concentration on the lung deposition and retention of resveratrol nanosuspension-in-microparticles. Int J Pharm 2019; 569:118562. [PMID: 31351178 DOI: 10.1016/j.ijpharm.2019.118562] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to explore the influence of stabilizer type and concentration on the properties of spray dried nanosuspension-in-microparticles (NS-in-MPs) for inhalation. Taking resveratrol (RES) as a Biopharmaceutical Classification System II (BCS II) model drug, the RES containing nanosuspensions were fabricated by high pressure homogenization method with different stabilizers including sodium dodecyl sulphate (SDS), sodium alginate (SA), chitosan (CS) and polyvinyl alcohol (PVA). Then, the nanosuspensions were spray dried with mannitol to obtain inhalable NS-in-MPs. The particle size, morphology, drug existing state, in vitro aerodynamic performance, in vitro release behavior, lung retention and pharmacokinetic behaviors were characterized. It was found that the morphology, lung deposition as well as in vitro drug release from the microparticles were significantly influenced by stabilizer type, with 1% PVA as stabilizer presenting the highest fine particle fraction (FPF). Meanwhile, taking PVA as an example, it was found stabilizer concentration could alter morphology and flowability of the microparticles, and the FPF value decreased with the increase of stabilizer concentration. Further drug retention and in vivo pharmacokinetic studies demonstrated that the positively charged stabilizer CS could facilitate drug retention and minimize drug expose to the systemic circulation. In conclusion, the deposition and lung retention behavior of NS-in-MPs could be well tuned by selecting different type or concentration of stabilizers, which could facilitate local lung diseases therapy.
Collapse
|
164
|
Lee AY, Cho MH, Kim S. Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy. Expert Opin Drug Deliv 2019; 16:757-772. [PMID: 31282221 DOI: 10.1080/17425247.2019.1641083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer commonly occurs at a high incidence worldwide. Application of aerosol gene delivery systems using various kinds of vectors can improve the patient's quality of life by prolonging the survival rate. AREAS COVERED This review provides a recent update on aerosol gene delivery strategies using various kinds of vectors and gene-modification technologies. Peptide-mediated gene therapy achieves specific targeting of cells and highly improves efficacy. Promoter-operating expression and the CRISPR/Cas9 system are novel gene therapy strategies for effective lung cancer treatment. Furthermore, hybrid systems with a combination of vectors or drugs have been recently applied as new trends in gene therapy. EXPERT OPINION Although aerosol gene delivery has many advantages, physiological barriers in the lungs pose formidable challenges. Targeted gene delivery and gene-editing technology are promising strategies for lung cancer therapy. These strategies may allow the development of safety and high efficiency for clinical application. Recently, hybrid gene therapy combining novel and specific vectors has been developed as an advanced strategy. Although gene therapy for lung cancer is being actively researched, aerosol gene therapy strategies are currently lacking, and further studies on aerosol gene therapy are needed to treat lung cancer.
Collapse
Affiliation(s)
- Ah Young Lee
- a Center for Molecular Recognition Research, Materials and Life Science Research Division , Korea Institute of Science and Technology (KIST) , Seoul , Korea
| | - Myung-Haing Cho
- b Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine , Seoul National University , Seoul , Republic of Korea
| | - Sanghwa Kim
- c Cancer Biology Laboratory , Institut Pasteur Korea , Seongnam-si , Korea
| |
Collapse
|
165
|
Wang K, Hu H, Zhang Q, Zhang Y, Shi C. Synthesis, purification, and anticancer effect of magnetic Fe 3O 4-loaded poly (lactic-co-glycolic) nanoparticles of the natural drug tetrandrine. J Microencapsul 2019; 36:356-370. [PMID: 31190597 DOI: 10.1080/02652048.2019.1631403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here, we have successfully synthesised and purified multifunctional PLGA-based nanoparticles by the co-encapsulation of an anticancer drug (tetrandrine) and a magnetic material (Fe3O4). The obtained Tet-Fe3O4-PLGA NPs had a uniform spherical shape with a particle size of approximately 199 nm and a negative surface charge of -18.0 mV, displaying a high encapsulation efficiency. Furthermore, TEM studies provided representative images of the purification process of the magnetic nanoparticles with MACS® technology. The MFM and VSM results indicated that both the Fe3O4 NPs and Tet-Fe3O4-PLGA NPs were superparamagnetic. The DSC spectrum demonstrated that Tet was successfully encapsulated within the PLGA-based nanoparticles. Significantly, the release studies revealed NPs had a relatively slower release rate than free Tet after 8 h's initial burst release, which had decreased from 98% to 65% after 24 h. In vitro cellular studies revealed that NPs could effectively penetrate into A549 cells and A549 multicellular spheroids to exert cytotoxicity, displaying a significantly high anti-proliferation effect. Moreover, western blot demonstrated that the co-loaded NPs had a higher anticancer activity by injuring lysosomes to activate the mitochondria pathway and induce A549 cell apoptosis. The magnetic characteristics and high anticancer activity support the use of Tet/Fe3O4 co-loaded PLGA-based nanoparticles as a promising strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Kaiping Wang
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Huiping Hu
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Qian Zhang
- b Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Yu Zhang
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Chen Shi
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
166
|
Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther Deliv 2019; 9:731-749. [PMID: 30277138 DOI: 10.4155/tde-2018-0029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With recent advances in the field of RNAi-based therapeutics, it is possible to make any target gene 'druggable', at least in principle. The present review focuses on aspects critical for pulmonary delivery of formulations of nucleic acid-based drugs. The first part introduces the therapeutic potential of RNAi-based drugs for the treatment of lung diseases. Subsequently, we discuss opportunities for formulation-enabled pulmonary delivery of RNAi drugs in light of key physicochemical properties and physiological barriers. In the following section, an overview is included of methodologies for imparting inhalable characteristics to nucleic acid formulations. Finally, we review one of the bottlenecks in the early preclinical testing of inhalable nucleic acid-based formulations, in other words, devices suitable for pulmonary administration of powder-based formulations in rodents.
Collapse
|
167
|
Kononenko V, Warheit DB, Drobne D. Grouping of Poorly Soluble Low (Cyto)Toxic Particles: Example with 15 Selected Nanoparticles and A549 Human Lung Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E704. [PMID: 31064102 PMCID: PMC6566622 DOI: 10.3390/nano9050704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Poorly soluble, low (cyto)toxic particles (PSLTs) are often regarded as one group, but it is important that these particles can be further differentiated based on their bioactivity. Currently, there are no biological endpoint based groupings for inhaled nanoparticles (NPs) that would allow us to subgroup PSLTs based on their mode of action. The aim of this study was to group NPs based on their cytotoxicity and by using the in vitro response of the endo-lysosomal system as a biological endpoint. The endo-lysosomal system is a main cellular loading site for NPs. An impaired endo-lysosomal system in alveolar type II cells may have serious adverse effects on the maintenance of pulmonary surfactant homeostasis. The 15 different NPs were tested with human lung adenocarcinoma (A549) cells. The highly soluble NPs were most cytotoxic. With respect to PSLTs, only three NPs increased the cellular load of acid and phospholipid rich organelles indicating particle biopersistence. All the rest PSLTs could be regarded as low hazardous. The presented in vitro test system could serve as a fast screening tool to group particles according to their ability to interfere with lung surfactant metabolism. We discuss the applicability of the suggested test system for bringing together substances with similar modes-of-action on lung epithelium. In addition, we discuss this approach as a benchmark test for the comparative assessment of biopersistence of PSLTs.
Collapse
Affiliation(s)
- Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | | | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
168
|
Chakraborty S, Ehsan I, Mukherjee B, Mondal L, Roy S, Saha KD, Paul B, Debnath MC, Bera T. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:102006. [PMID: 31059793 DOI: 10.1016/j.nano.2019.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/27/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
Abstract
Corticosteroids commonly prescribed in asthma show several side-effects. Relatively non-toxic andrographolide (AG) has an anti-asthmatic potential. But its poor bioavailability and short plasma half-life constrain its efficacy. To overcome them, we encapsulated AG in nanoparticle (AGNP) and evaluated AGNP for anti-asthmatic efficacy on murine asthma model by oral/pulmonary delivery. AGNP had 5.47% drug loading with a sustained drug release in vitro. Plasma and lung pharmacokinetic data showed predominantly improved AG-bioavailability upon AGNP administered orally/by pulmonary route. Cell numbers, IL-4, IL-5, and IL-13 levels in broncho-alveolar lavage fluid and serum IgE content were reduced significantly after administration of AGNP compared to free-AG treatment. AGNP-mediated suppression of NF-κβ was predominantly more compared to free-AG. Further, pulmonary route showed better therapeutic performance. In conclusion, AGNP effectively controlled mild and severe asthma and the pulmonary administration of AGNP was more efficacious than the oral route.
Collapse
Affiliation(s)
| | - Iman Ehsan
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Laboni Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Saheli Roy
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Brahamacharry Paul
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tanmoy Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
169
|
Abdelrady H, Hathout RM, Osman R, Saleem I, Mortada ND. Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. Eur J Pharm Sci 2019; 133:115-126. [DOI: 10.1016/j.ejps.2019.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/22/2023]
|
170
|
Rosière R, Berghmans T, De Vuyst P, Amighi K, Wauthoz N. The Position of Inhaled Chemotherapy in the Care of Patients with Lung Tumors: Clinical Feasibility and Indications According to Recent Pharmaceutical Progresses. Cancers (Basel) 2019; 11:cancers11030329. [PMID: 30866545 PMCID: PMC6468657 DOI: 10.3390/cancers11030329] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
Despite new treatment modalities, including targeted therapies and checkpoint inhibitors, cytotoxic chemotherapy remains central in the care of patients with lung tumors. Use of the pulmonary route to deliver chemotherapy has been proved to be feasible and safe in phase I, Ib/IIa and II trials for lung tumors, with the administration of drug doses to the lungs without prior distribution in the organism. The severe systemic toxicities commonly observed with conventional systemic chemotherapy are consequently reduced. However, development has failed in phase II at best. This review first focuses on the causes of failure of inhaled chemotherapy. It then presents new promising technologies able to take up the current challenges. These technologies include the use of a dry powder inhaler or a smart nebulizer with advanced drug formulations such as controlled-release formulations and nanomedicine. Finally, the potential position of inhaled chemotherapy in patient care is discussed and some indications are proposed based on the literature.
Collapse
Affiliation(s)
- Rémi Rosière
- Unité de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
| | - Thierry Berghmans
- Service des Soins Intensifs et Urgences Oncologiques et Oncologie Thoracique, Institut Jules Bordet, Université libre de Bruxelles (ULB), Brussels 1000, Belgium.
| | - Paul De Vuyst
- Service of Pneumologie, Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium.
| | - Karim Amighi
- Unité de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
| | - Nathalie Wauthoz
- Unité de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.
| |
Collapse
|
171
|
Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, Balaji S, Yuan K, Keswani S, Danielson B, Gao M, Medina C, Nathan A, Chakraborty A, Bollyky PL, De Jesus Perez VA. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials 2019; 203:52-62. [PMID: 30852423 DOI: 10.1016/j.biomaterials.2019.02.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-β driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.
Collapse
Affiliation(s)
- Elya A Shamskhou
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Mark E Orcholski
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nadine Nagy
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Gernot Kaber
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Emily Steen
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Swathi Balaji
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ke Yuan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sundeep Keswani
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ben Danielson
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Max Gao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carlos Medina
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Abinaya Nathan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ananya Chakraborty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Vinicio A De Jesus Perez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
172
|
Das T, Choong HJ, Kwang YC, Chan HK, Manos J, Kwok PCL, Duong HTT. Spray-Dried Particles of Nitric Oxide-Modified Glutathione for the Treatment of Chronic Lung Infection. Mol Pharm 2019; 16:1723-1731. [PMID: 30763098 DOI: 10.1021/acs.molpharmaceut.9b00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance in pathogenic bacteria has emerged as a big challenge to human and animal health and significant economy loss worldwide. Development of novel strategies to tackle antibiotic resistance is of the utmost priority. In this study, we combined glutathione (GSH), a master antioxidant in all mammalian cells, and nitric oxide, a proven biofilm-dispersing agent, to produce GSNO. The resazurin biofilm viability assay, crystal violet biofilm assay, and confocal microscopy techniques showed that GSNO disrupted biofilms of both P. aeruginosa PAO1 and multidrug resistant A. baumaunii (MRAB 015069) more efficiently than GSH alone. In addition, GSNO showed a higher reduction in biofilm viability and biomass when combined with antibiotics. This combination treatment also inhibited A. baumaunii (MRAB 015069) growth and facilitated human foreskin fibroblast (HFF-1) confluence and growth simultaneously. A potentially inhalable GSNO powder with reasonable aerosol performance and antibiofilm activity was produced by spray drying. This combination shows promise as a novel formulation for treating pulmonary bacterial infections.
Collapse
Affiliation(s)
- Theerthankar Das
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Huai-Jin Choong
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Yee Chin Kwang
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Hak-Kim Chan
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Jim Manos
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Philip Chi Lip Kwok
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| | - Hien T T Duong
- Sydney School of Pharmacy, Faculty of Medicine and Health , The University of Sydney , New South Wales 2006 , Australia
| |
Collapse
|
173
|
Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. Eur J Pharm Sci 2019; 132:63-71. [PMID: 30797026 DOI: 10.1016/j.ejps.2019.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/05/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy is amongst the most rapidly developing therapeutic strategies against cancer. However, most photosensitizers are administered intravenously with very few reports about pulmonary applications. To address this issue, an inhalable formulation consisting of nanoparticles loaded with photosensitizer (i.e. curcumin) was developed. The nanoparticles were prepared using nanoprecipitation method. Dynamic light scattering measurements of the curcumin loaded nanoparticles revealed a hydrodynamic diameter of 181.20 ± 11.52 nm. In vitro irradiation experiments with human lung epithelial carcinoma cells (A549) showed a selective cellular toxicity of the nanoparticles upon activation using LED irradiating device. Moreover, curcumin nanoparticles exhibited a dose-dependent photocytotoxicity and the IC50 values of curcumin were directly dependent on the radiation fluence used. The nanoparticles were subsequently spray dried using mannitol as a stabilizer to produce Nano-in-Microparticles with appropriate aerodynamic properties for a sufficient deposition in the lungs. This was confirmed using the next generation impactor, which revealed a large fine particle fraction (64.94 ± 3.47%) and a mass median aerodynamic diameter of 3.02 ± 0.07 μm. Nano-in-Microparticles exhibited a good redispersibility and disintegrated into the original nanoparticles upon redispersion in aqueous medium. The Langmuir monolayer experiments revealed an excellent compatibility of the nanoparticles with the lung surfactant. Results from this study showed that the Nano-in-Microparticles are promising drug carriers for the photodynamic therapy of lung cancer.
Collapse
|
174
|
Zhang Y, Wu Z, Yu H, Wang H, Liu G, Wang S, Ji X. Chinese Herbal Medicine Wenxia Changfu Formula Reverses Cell Adhesion-Mediated Drug Resistance via the Integrin β1-PI3K-AKT Pathway in Lung Cancer. J Cancer 2019; 10:293-304. [PMID: 30719123 PMCID: PMC6360309 DOI: 10.7150/jca.25163] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
In the treatment of lung cancer, the multidrug resistance to chemotherapeutic drugs is one of the reasons of low rates for cure and treatment failure, the combination of chemotherapeutic drugs and traditional Chinese medicine can increase the sensitivity of chemotherapy and reduce its adverse effects. Our previous study has proved that Chinese herbal medicine (CHM) Wenxia Changfu Formula (WCF for short) effectively enhances chemotherapeutic efficacy in lung cancer treatment and reverses multidrug resistance in lung cancer cells in vitro. The present study aims to investigate the effect and mechanism of WCF in reversing cell adhesion-mediated drug resistance of lung cancer by using A549 three-dimensional cell culture and nude mouse model of the A549 cell line with Integrin β1 overexpression. We show that the combination of WCF with DDP can decrease proliferation of lung cancer cells by inducing cell cycle arrest and apoptosis. Moreover, we find that the combination of WCF with DDP suppresses the expression of certain molecules which regulate cell cycle and apoptosis. Mechanistically, we show that the Integrin β1, FAK, PI3K, and AKT protein expressions are suppressed by DDP and even more responses are observed when DDP and WCF are combined, showing WCF treatment enhances the effect of commonly used anticancer drugs. In line with the above findings, our results confirm that WCF reverses cell adhesion-mediated drug resistance of lung cancer via inactivating Integrin β1/PI3K/AKT and apoptosis induction.
Collapse
Affiliation(s)
- YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - Guowei Liu
- Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - XuMing Ji
- College of Basic Medicine,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| |
Collapse
|
175
|
Comparison of quick recovery outcome of inhalable doxorubicin and cisplatin in lung cancer patients: a randomized, double-blind, single-center trial. Drug Deliv Transl Res 2018; 8:985-993. [PMID: 29717473 DOI: 10.1007/s13346-018-0529-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systematic chemotherapy has required high time span for recovery in cancer patients, serious toxic effects, and increased the time of cancer-free survival of patient but decreased the overall survival time of patients irrespective of diseased condition(s). To compare the quick recovery of inhalable doxorubicin and cisplatin in the lung cancer patients. A total of 240 patients with non-small cell lung cancer (NSCLC) patients were randomly divided into two groups of 120 each. Patients had inhaled 25 mg/m2 doxorubicin (DON group) or 10 mg/m2 cisplatin (CPN group) once in a day for 21 days. Volume, diameter, type, and a number of lung nodes, pulmonary function, and 21-day lung cancer risk assessment were evaluated. One-way ANOVA following Bonferroni multiple comparison tests was performed at 95% of confidence level. DON and CPN both groups had shrunken the lung cancer nodule, decreased solid nodules and non-solid nodules, and increased partially solid nodules. The DON group (5.88 ± 3.98%) had strongly decreased nodule size than the CPN group (4.15 ± 2.92%; p < 0.0001, q = 3.721). The incidence of nodular size reduction was 9.47 ± 1.13% higher for doxorubicin than cisplatin. The CPN group had 36.53 ± 0.66% and the DON group had 34.65 ± 0.7% lung cancer risk assessment after 21 days (p < 0.0001, q = 3.785). Inhalable doxorubicin might be an effective therapy in NSCLC patients with acceptable hematologic and non-hematologic toxic effects. TRIAL REGISTRY researchregistry3382, dated 28 December 2014 ( www.researchregistry.com ).
Collapse
|
176
|
Ritsema JA, der Weide HV, Te Welscher YM, Goessens WH, van Nostrum CF, Storm G, Bakker-Woudenberg IA, Hays JP. Antibiotic-nanomedicines: facing the challenge of effective treatment of antibiotic-resistant respiratory tract infections. Future Microbiol 2018; 13:1683-1692. [PMID: 30499686 DOI: 10.2217/fmb-2018-0194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory tract infections are one of the most frequent infections worldwide, with an increasing number being associated with (multiple) antibiotic-resistant pathogens. Improved treatment requires the development of new therapeutic strategies, including the possible development of antibiotic-nanomedicines. Antibiotic-nanomedicines comprise antibiotic molecules coupled to nanocarriers via surface adsorption, surface attachment, entrapment or conjugation and can be administered via aerosolization. The efficacy and tolerability of this approach has been shown in clinical studies, with amikacin liposome inhalation suspension being the first inhalatory antibiotic-nanomedicine approved by the US FDA. In this special report, we summarize and discuss the potential value and the clinical status of antibiotic-nanomedicines for the treatment of (antibiotic-resistant) respiratory tract infections.
Collapse
Affiliation(s)
- Jeffrey As Ritsema
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hessel van der Weide
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands
| | - Yvonne M Te Welscher
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wil Hf Goessens
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Irma Ajm Bakker-Woudenberg
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands
| | - John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam (Erasmus MC), Rotterdam, The Netherlands
| |
Collapse
|
177
|
Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P. Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opin Drug Deliv 2018; 15:1223-1247. [DOI: 10.1080/17425247.2018.1547280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nasser Alhajj
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Wellness Research Cluster, Institute of Research Management & Monitoring, University of Malaya, Kuala Lumpur, Malaysia
| | - Paolo Colombo
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
178
|
Boda SK, Li X, Xie J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. JOURNAL OF AEROSOL SCIENCE 2018; 125:164-181. [PMID: 30662086 PMCID: PMC6333098 DOI: 10.1016/j.jaerosci.2018.04.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Electrospraying (ES) is a robust and versatile technique for the fabrication of micro- and nanoparticulate materials of various compositions, morphologies, shapes, textures and sizes. The physics of ES provides a great degree of flexibility towards the materials design of choice with desired physicochemical and biological properties. Not surprising, this technology has become an important tool for the production of micro- and nanostructured materials, especially in the pharmaceutical and biomedical arena. In this review, a basic introduction to the fundamentals of ES along with a brief description of the experimental parameters that can be manipulated to obtain micro- and nanostructured materials of desired composition, size, and configuration are outlined. A greater focus of this review is to bring to light the broad range of electrosprayed materials and their applications in drug delivery, biomedical imaging, implant coating, tissue engineering, and sensing. Taken together, this review will provide an appreciation of this unique technology, which can be used to fabricate micro- and nanostructured materials with tremendous applications in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
179
|
Verco J, Johnston W, Baltezor M, Kuehl PJ, Gigliotti A, Belinsky SA, Lopez A, Wolff R, Hylle L, diZerega G. Pharmacokinetic Profile of Inhaled Submicron Particle Paclitaxel (NanoPac ®) in a Rodent Model. J Aerosol Med Pulm Drug Deliv 2018; 32:99-109. [PMID: 30359162 PMCID: PMC6477588 DOI: 10.1089/jamp.2018.1467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background: Inhaled chemotherapeutics may enhance pulmonary drug exposure to malignant lesions in the lung without substantially contributing to systemic toxicities. The pharmacokinetic profile of inhaled submicron particle paclitaxel (NanoPac®) in healthy rodent plasma and lung tissue is evaluated here to determine administration proof-of-principle. Methods: Healthy male Sprague Dawley rats received paclitaxel in one of three arms: intravenous nab-paclitaxel at 2.9 mg/kg (IVnP), inhaled NanoPac low dose (IHNP-LD) at 0.38 mg/kg, or inhaled NanoPac high dose (IHNP-HD) at 1.18 mg/kg. Plasma and lung tissue paclitaxel concentrations were determined using ultraperformance liquid chromatography tandem mass spectrometry from animals sacrificed at 10 time points ranging up to 2 weeks after administration. Peak concentration (Cmax), apparent residence half-life (T1/2), exposure (AUC(last)), and dose-normalized exposure (AUCD(last)) were determined. Pulmonary histopathology was performed on rats sacrificed at the 336-hour time point. Results: Paclitaxel was detectable and quantifiable in the rat lung for both inhaled NanoPac arms sampled at the final necropsy, 336 hours postadministration. Substantial paclitaxel deposition and retention resulted in an order of magnitude increase in dose-normalized pulmonary exposure over IVnP. Inhaled NanoPac arms had an order of magnitude lower plasma Cmax than IVnP, but followed a similar plasma T1/2 clearance (quantifiable only to 72 hours postadministration). Pulmonary histopathology found all treated animals indistinguishable from treatment-naive rats. Conclusion: In the rodent model, inhaled NanoPac demonstrated substantial deposition and retention of paclitaxel in sampled lung tissue. Further research to determine NanoPac's toxicity profile and potential efficacy as lung cancer therapy is underway.
Collapse
Affiliation(s)
- James Verco
- 1 US Biotest, Inc. , San Luis Obispo, California
| | | | | | | | | | | | - Anita Lopez
- 3 Lovelace Biomedical , Albuquerque, New Mexico
| | - Ronald Wolff
- 4 RK Wolff-Safety Consulting , Fort Myers, Florida
| | - Lauren Hylle
- 1 US Biotest, Inc. , San Luis Obispo, California
| | - Gere diZerega
- 1 US Biotest, Inc. , San Luis Obispo, California.,5 NanOlogy, LLC, Fort Worth, Texas
| |
Collapse
|
180
|
Kuehl PJ, Grimes MJ, Dubose D, Burke M, Revelli DA, Gigliotti AP, Belinsky SA, Tessema M. Inhalation delivery of topotecan is superior to intravenous exposure for suppressing lung cancer in a preclinical model. Drug Deliv 2018; 25:1127-1136. [PMID: 29779406 PMCID: PMC6058531 DOI: 10.1080/10717544.2018.1469688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intravenous (IV) topotecan is approved for the treatment of various malignancies including lung cancer but its clinical use is greatly undermined by severe hematopoietic toxicity. We hypothesized that inhalation delivery of topotecan would increase local exposure and efficacy against lung cancer while reducing systemic exposure and toxicity. These hypotheses were tested in a preclinical setting using a novel inhalable formulation of topotecan against the standard IV dose. Respirable dry-powder of topotecan was manufactured through spray-drying technology and the pharmacokinetics of 0.14 and 0.79 mg/kg inhalation doses were compared with 0.7 mg/kg IV dose. The efficacy of four weekly treatments with 1 mg/kg inhaled vs. 2 mg/kg IV topotecan were compared to untreated control using an established orthotopic lung cancer model for a fast (H1975) and moderately growing (A549) human lung tumors in the nude rat. Inhalation delivery increased topotecan exposure of lung tissue by approximately 30-fold, lung and plasma half-life by 5- and 4-folds, respectively, and reduced the maximum plasma concentration by 2-fold than the comparable IV dose. Inhaled topotecan improved the survival of rats with the fast-growing lung tumors from 7 to 80% and reduced the tumor burden of the moderately-growing lung tumors over 5- and 10-folds, respectively, than the 2-times higher IV topotecan and untreated control (p < .00001). These results indicate that inhalation delivery increases topotecan exposure of lung tissue and improves its efficacy against lung cancer while also lowering the effective dose and maximum systemic concentration that is responsible for its dose-limiting toxicity.
Collapse
Affiliation(s)
| | - Marcie J Grimes
- b Lung Cancer Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Devon Dubose
- c Lonza-Bend Research Institute , Bend , OR , USA
| | | | | | | | - Steven A Belinsky
- b Lung Cancer Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Mathewos Tessema
- b Lung Cancer Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
181
|
Wang X, Chen Q, Zhang X, Ren X, Zhang X, Meng L, Liang H, Sha X, Fang X. Matrix metalloproteinase 2/9-triggered-release micelles for inhaled drug delivery to treat lung cancer: preparation and in vitro/in vivo studies. Int J Nanomedicine 2018; 13:4641-4659. [PMID: 30147314 PMCID: PMC6095127 DOI: 10.2147/ijn.s166584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Improvement in drug accumulation in the lungs through inhalation administration and high expression of MMP2 and MMP9 in lung tumors have both been widely reported. Methods MMP2/9-triggered-release micelles were constructed and in vitro and in vivo studies of inhalation administration against lung tumor carried out. Pluronic P123 (P123) was modified with GPLGIAGQ-NH2 (GQ8) peptide to obtain P123-GQ8 (PG). MMP2/9-triggered-release micelles were constructed using PG and succinylated gelatin (SG) and loading paclitaxel (Ptx). To study biodistribution of micelles, DiR encapsulated in micelles was dosed to rats via intravenous injection or inhalation before ex vivo imaging for detecting DiR quantity in lungs. And B16F10 lung cancer-bearing nude mice were chosen as animal models to evaluate in vivo efficacy of MMP2/9-triggered-release micelles. Results Ptx-release efficiency from PG-SG-Ptx micelles was MMP2/9-concentration-dependent. For A549 cells, PG-SG-Ptx cytotoxicity was significantly greater (P<0.001) compared to P123-Ptx. Aerosol inhalation was chosen as the method of administration. In biodistribution experiment, DiR quantity in lungs was 5.8%±0.4% of that in major organs, while the ratio was 38.8%±0.5% for inhalation. For B16F10 lung cancer-bearing nude mice, the efficacy of inhalation of PG-SG-Ptx was significantly higher (P<0.001) than Taxol inhalation and injected PG-SG-Ptx. Inhaled PG-SG-Ptx also significantly inhibited the expression of Pgp in lung cancer. Conclusion Inhalation of MMP2/9-triggered-release micelles increased tumor sensitivity to chemotherapeutics and reduced the toxicity of chemotherapy to healthy lung cells, which has great potential in lung cancer therapy.
Collapse
Affiliation(s)
- Xiaofei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ; .,Shanghai Omni Pharmaceuticall Co., Ltd., Shanghai, People's Republic of China
| | - Qinyue Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoyan Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoqing Ren
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiulei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Lin Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Huihui Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| |
Collapse
|
182
|
Lee WH, Loo CY, Ghadiri M, Leong CR, Young PM, Traini D. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev 2018; 133:107-130. [PMID: 30189271 DOI: 10.1016/j.addr.2018.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023]
Abstract
Lung cancer is a highly invasive and prevalent disease with ineffective first-line treatment and remains the leading cause of cancer death in men and women. Despite the improvements in diagnosis and therapy, the prognosis and outcome of lung cancer patients is still poor. This could be associated with the lack of effective first-line oncology drugs, formation of resistant tumors and non-optimal administration route. Therefore, the repurposing of existing drugs currently used for different indications and the introduction of a different method of drug administration could be investigated as an alternative to improve lung cancer therapy. This review describes the rationale and development of repositioning of drugs for lung cancer treatment with emphasis on inhalation. The review includes the current progress of repurposing non-cancer drugs, as well as current chemotherapeutics for lung malignancies via inhalation. Several potential non-cancer drugs such as statins, itraconazole and clarithromycin, that have demonstrated preclinical anti-cancer activity, are also presented. Furthermore, the potential challenges and limitations that might hamper the clinical translation of repurposed oncology drugs are described.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia.
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Chean-Ring Leong
- Section of Bioengineering Technology, Universiti Kuala Lumpur (UniKL) MICET, Alor Gajah, Melaka, Malaysia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| |
Collapse
|
183
|
Shen X, Diao M, Lu M, Feng R, Zhang P, Jiang T, Wang D. Pathways and cost-effectiveness of routine lung cancer inpatient care in rural Anhui, China: a retrospective cohort study protocol. BMJ Open 2018; 8:e018519. [PMID: 29463588 PMCID: PMC5879485 DOI: 10.1136/bmjopen-2017-018519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Routine inpatient care (RIC) for patients with cancer forms various pathways of clinical procedures. Although most individual procedures comprising the pathways have been tested via clinical trials, little is known about the collective cost and effectiveness of the pathways as a whole. This study aims at exploring RIC pathways for patients with lung cancer from rural Anhui, China, and their determinants and economic impacts. METHODS AND ANALYSIS The study adopts a retrospective cohort design and proceeds in five steps. Step 1 defines the four main categories of study variables, including clinical procedures, direct cost and effectiveness of procedures, and factors affecting use of these procedures and their cost and effectiveness. Step 2 selects a cohort of 5000 patients with lung cancer diagnosed between 1 July 2015 and 30 June 2016 from rural Anhui by clustered random sampling. Step 3 retrieves the records of all the inpatient care episodes due to lung cancer and extracts data about RIC procedures, proximate variables (eg, Karnofsky Performance Status, Lung Function Score) of patient outcomes and related factors (eg, stage of cancer, age, gender), by two independent clinician researchers using a web-based form. Step 4 estimates the direct cost of each of the RIC procedures using micro-costing and collects data about ultimate patient outcomes (survival and progression-free survival) through a follow-up survey of patients and/or their close relatives. Step 5 analyses the data collected and explores pathways of RIC procedures and their relations with patient outcomes, costs, cost:effect ratios, and a whole range of clinical and sociodemographic factors using multivariate regression and path models. ETHICS AND DISSEMINATION The study protocol has been approved by an authorised ethics committee of Anhui Medical University (reference number: 20170312). Findings from the study will be disseminated through conventional academic routes such as peer-reviewed publications and presentations at regional, national and international conferences. TRIAL REGISTRATION NUMBER ISRCTN25595562.
Collapse
Affiliation(s)
- XingRong Shen
- School of Health Services Management, Anhui Medical University, Hefei, Anhui, China
| | - MengJie Diao
- School of Health Services Management, Anhui Medical University, Hefei, Anhui, China
| | - ManMan Lu
- School of Health Services Management, Anhui Medical University, Hefei, Anhui, China
| | - Rui Feng
- Department of Literature Review and Analysis, Library of Anhui Medical University, Hefei, Anhui, China
| | - PanPan Zhang
- School of Health Services Management, Anhui Medical University, Hefei, Anhui, China
| | - Tao Jiang
- School of Health Services Management, Anhui Medical University, Hefei, Anhui, China
| | - DeBin Wang
- School of Health Services Management, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
184
|
Rosière R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathivet T, Vermeersch M, Van Antwerpen P, Amighi K, Wauthoz N. New Folate-Grafted Chitosan Derivative To Improve Delivery of Paclitaxel-Loaded Solid Lipid Nanoparticles for Lung Tumor Therapy by Inhalation. Mol Pharm 2018; 15:899-910. [PMID: 29341619 DOI: 10.1021/acs.molpharmaceut.7b00846] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inhaled chemotherapy for the treatment of lung tumors requires that drug delivery systems improve selectivity for cancer cells and tumor penetration and allow sufficient lung residence. To this end, we developed solid lipid nanoparticles (SLN) with modified surface properties. We successfully synthesized a new folate-grafted copolymer of polyethylene glycol (PEG) and chitosan, F-PEG-HTCC, with a PEG-graft ratio of 7% and a molecular weight range of 211-250 kDa. F-PEG-HTCC-coated, paclitaxel-loaded SLN were prepared with an encapsulation efficiency, mean diameter, and zeta potential of about 100%, 250 nm, and +32 mV, respectively. The coated SLN entered folate receptor (FR)-expressing HeLa and M109-HiFR cells in vitro and M109 tumors in vivo after pulmonary delivery. The coated SLN significantly decreased the in vitro half-maximum inhibitory concentrations of paclitaxel in M109-HiFR cells (60 vs 340 nM, respectively). We demonstrated that FR was involved in these improvements, especially in M109-HiFR cells. After pulmonary delivery in vivo, the coated SLN had a favorable pharmacokinetic profile, with pulmonary exposure to paclitaxel prolonged to up to 6 h and limited systemic distribution. Our preclinical findings therefore demonstrated the positive impact of the coated SLN on the delivery of paclitaxel by inhalation.
Collapse
Affiliation(s)
| | - Matthias Van Woensel
- Research Group Experimental Neurosurgery and Neuroanatomy, Laboratory of Pediatric Immunology , KULeuven , B-3000 Leuven , Belgium
| | | | | | | | - Thomas Mathivet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970 , Paris Cardiovascular Research Center , 75015 Paris , France
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), B-6041 Gosselies , Belgium
| | | | | | | |
Collapse
|
185
|
|