151
|
Ayachit G, Shaikh I, Pandya H, Das J. Salient Features, Data and Algorithms for MicroRNA Screening from Plants: A Review on the Gains and Pitfalls of Machine Learning Techniques. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200601121756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The era of big data and high-throughput genomic technology has enabled scientists to
have a clear view of plant genomic profiles. However, it has also led to a massive need for
computational tools and strategies to interpret this data. In this scenario of huge data inflow,
machine learning (ML) approaches are emerging to be the most promising for analysing
heterogeneous and unstructured biological datasets. Extending its application to healthcare and
agriculture, ML approaches are being useful for microRNA (miRNA) screening as well.
Identification of miRNAs is a crucial step towards understanding post-transcriptional gene
regulation and miRNA-related pathology. The use of ML tools is becoming indispensable in
analysing such data and identifying species-specific, non-conserved miRNA. However, these
techniques have their own benefits and lacunas. In this review, we will discuss the current scenario
and pitfalls of ML-based tools for plant miRNA identification and provide some insights into the
important features, the need for deep learning models and direction in which studies are needed.
Collapse
Affiliation(s)
- Garima Ayachit
- Department of Botany, Bioinformatics and Climate Change, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad – 380009, India
| | - Inayatullah Shaikh
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate Change, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad – 380009, India
| | - Jayashankar Das
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| |
Collapse
|
152
|
Francavilla A, Turoczi S, Tarallo S, Vodicka P, Pardini B, Naccarati A. Exosomal microRNAs and other non-coding RNAs as colorectal cancer biomarkers: a review. Mutagenesis 2021; 35:243-260. [PMID: 31784760 DOI: 10.1093/mutage/gez038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
The circulating human transcriptome, which includes both coding and non-coding RNA (ncRNA) molecules, represents a rich source of potential biomarkers for colorectal cancer (CRC) that has only recently been explored. In particular, the release of RNA-containing extracellular vesicles (EVs), in a multitude of different in vitro cell systems and in a variety of body fluids, has attracted wide interest. The role of RNA species in EVs is still not fully understood, but their capacity to act as a form of distant communication between cells and their higher abundance in association with cancer demonstrated their relevance. In this review, we report the evidence from both in vitro and human studies on microRNAs (miRNAs) and other ncRNA profiles analysed in EVs in relation to CRC as diagnostic, prognostic and predictive markers. The studies so far highlighted that, in exosomes, the most studied category of EVs, several miRNAs are able to accurately discriminate CRC cases from controls as well as to describe the progression of the disease and its prognosis. Most of the time, the in vitro findings support the miRNA profiles detected in human exosomes. The expression profiles measured in exosomes and other EVs differ and, interestingly, there is a variability of expression also among different subsets of exosomes according to their proteic profile. On the other hand, evidence is still limited for what concerns exosome miRNAs as early diagnostic and predictive markers of treatment. Several other ncRNAs that are carried by exosomes, mostly long ncRNAs and circular RNAs, seem also to be dysregulated in CRC. Besides various technical challenges, such as the standardisation of EVs isolation methods and the optimisation of methodologies to characterise the whole spectrum of RNA molecules in exosomes, further studies are needed in order to elucidate their relevance as CRC markers.
Collapse
Affiliation(s)
- Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy
| | - Szimonetta Turoczi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
153
|
Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, López-López R, Muinelo-Romay L, Diaz-Lagares A. Epigenetic Landscape of Liquid Biopsy in Colorectal Cancer. Front Cell Dev Biol 2021; 9:622459. [PMID: 33614651 PMCID: PMC7892964 DOI: 10.3389/fcell.2021.622459] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is a major cause of cancer-related deaths worldwide. Thus, there is a clinical need to improve early detection of CRC and personalize therapy for patients with this disease. In the era of precision oncology, liquid biopsy has emerged as a major approach to characterize the circulating tumor elements present in body fluids, including cell-free DNA and RNA, circulating tumor cells, and extracellular vesicles. This non-invasive tool has allowed the identification of relevant molecular alterations in CRC patients, including some indicating the disruption of epigenetic mechanisms. Epigenetic alterations found in solid and liquid biopsies have shown great utility as biomarkers for early detection, prognosis, monitoring, and evaluation of therapeutic response in CRC patients. Here, we summarize current knowledge of the most relevant epigenetic mechanisms associated with cancer development and progression, and the implications of their deregulation in cancer cells and liquid biopsy of CRC patients. In particular, we describe the methodologies used to analyze these epigenetic alterations in circulating tumor material, and we focus on the clinical utility of epigenetic marks in liquid biopsy as tumor biomarkers for CRC patients. We also discuss the great challenges and emerging opportunities of this field for the diagnosis and personalized management of CRC patients.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
154
|
Exosomal MiR-1290 Promotes Angiogenesis of Hepatocellular Carcinoma via Targeting SMEK1. JOURNAL OF ONCOLOGY 2021; 2021:6617700. [PMID: 33564307 PMCID: PMC7864765 DOI: 10.1155/2021/6617700] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, relies on the formation of new blood vessel for growth and frequent intrahepatic and extrahepatic metastasis. Therefore, it is important to explore the underlying molecular mechanisms of tumor angiogenesis of HCC. Recently, microRNAs have been shown to modulate angiogenic processes by modulating the expression of critical angiogenic factors. However, the potential roles of tumor-derived exosomal microRNAs in regulating tumor angiogenesis remain to be elucidated. In this study, our miRNome sequencing demonstrated that miR-1290 was overexpressed in HCC patient serum-derived exosomes, and we found that delivery of miR-1290 into human endothelial cells enhanced their angiogenic ability. Our results further revealed that SMEK1 is a direct target of miR-1290 in endothelial cells. MiR-1290 exerted its proangiogenic function, at least in part, by alleviating the inhibition of VEGFR2 phosphorylation done by SMEK1. Collectively, our findings provide evidence that miR-1290 is overexpressed in HCC and promotes tumor angiogenesis via exosomal secretion, implicating its potential role as a therapeutic target for HCC.
Collapse
|
155
|
Gao Z, Yuan H, Mao Y, Ding L, Effah CY, He S, He L, Liu LE, Yu S, Wang Y, Wang J, Tian Y, Yu F, Guo H, Miao L, Qu L, Wu Y. In situ detection of plasma exosomal microRNA for lung cancer diagnosis using duplex-specific nuclease and MoS 2 nanosheets. Analyst 2021; 146:1924-1931. [PMID: 33491014 DOI: 10.1039/d0an02193h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) encapsulated in tumor-derived exosomes are becoming ideal biomarkers for the early diagnosis and prognosis of lung cancer. However, the accuracy and sensitivity are often hampered by the extraction process of exosomal miRNA using traditional methods. Herein, this study developed a fluorogenic quantitative detection method for exosomal miRNA using the fluorescence quenching properties of molybdenum disulfide (MoS2) nanosheets and the enzyme-assisted signal amplification properties of duplex-specific nuclease (DSN). First, a fluorescently-labeled nucleic acid probe was used to hybridize the target miRNA to form a DNA/RNA hybrid structure. Under the action of the DSN, the DNA single strand in the DNA/RNA hybrid strand was selectively digested into smaller oligonucleotide fragments. At the same time, the released miRNA target triggers the next reaction cycle, so as to achieve signal amplification. Then, MoS2 was used to selectively quench the fluorescence of the undigested probe leaving the fluorescent signal of the fluorescently-labeled probe fragments. The fluorometric signals for miRNA-21 had a maximum excitation/emission wavelength of 488/518 nm. Most importantly, the biosensor was then applied for the accurate quantitative detection of miRNA-21 in exosome lysates extracted from human plasma and this method was able to successfully distinguish lung cancer patients from healthy people. This biosensor provides a simple, rapid, and a highly specific quantitative method for exosomal miRNA and has promising potential to be used in the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Zibo Gao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Ahmadi M, Jafari R, Mahmoodi M, Rezaie J. The tumorigenic and therapeutic functions of exosomes in colorectal cancer: Opportunity and challenges. Cell Biochem Funct 2021; 39:468-477. [PMID: 33491214 DOI: 10.1002/cbf.3622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Most cells release extracellular vesicles (EVs) mediating intercellular communication via transferring various biomolecules including proteins, nucleic acids, and lipids. A subset of EVs is exosomes that promote tumorigenesis. Different tumour cells such as colorectal cancer (CRC) cells produce exosomes that participate in the progression of CRC. Exosomes cargo including proteins and miRNAs not only support proliferation and metastasis of tumour cells but also mediate chemoresistance, immunomodulation and angiogenesis. In addition, as exosomes are present in most body fluids, they can hold the great capacity for clinical usage in early diagnosis and prognosis of CRC. Exosomes from CRC (CRC-Exo) differentially contain proteins and miRNAs that make them a promising candidate for CRC diagnosis by a simple liquid-biopsy. Despite hopeful results, some challanges about exosomes terminology and definition remains to be clarified in further experiments. In addition, there are little clinical trials regarding the application of exosomes in CRC treatment, therefore additional studies are essential focusing on exosome biology and translation of preclinical findings into the clinic. The present study discusses the key role of exosomes in CRC progression and diagnosis. Furthermore, it describes the opportunity and challenges associated with using exosomes as tumour markers.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Monireh Mahmoodi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
157
|
Chen K, Li G, Kang X, Liu P, Qian L, Shi Y, Osman RA, Yang Z, Zhang G. EMT-Related Markers in Serum Exosomes are Potential Diagnostic Biomarkers for Invasive Pituitary Adenomas. Neuropsychiatr Dis Treat 2021; 17:3769-3780. [PMID: 34992371 PMCID: PMC8711285 DOI: 10.2147/ndt.s339067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Assessing the invasiveness of pituitary adenomas (PAs) is critical to making the best surgical and treatment plan. However, it is difficult to determine the invasiveness of pituitary adenomas based on current clinical methods, such as imaging and histological methods. The present article aims to investigate noninvasive methods to discover viable biomarkers for invasive pituitary adenomas and provide a basis for early intervention of pituitary adenomas. METHODS E-cadherin, N-cadherin, Epcam, TGF-β, Smad3, and Smad7 were detected in the tissues and exosomes in 10 cases of invasive PAs and 10 cases of noninvasive PAs by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemical analysis. RESULTS Compared with that in the noninvasive group, the expression of N-cad in the exosomes of the invasive group was significantly increased, and the expression of E-cad and Epcam was reduced. In the invasive group, the expression levels of TGF-β1 and Smad3 were reduced. These results were consistent across exosomes and groups. In further cell experiments, the EMT ratio in the SIS3 treatment group, and especially in the TGF-β1 plus SIS3 treatment group (P <0.001), was significantly increased, and the EMT ratio was significantly lower when one-half the dose of TGF-β and SIS3. CONCLUSION The results indicate that EMT-related biomarkers in serum exosomes can be potentially used for assessing the invasiveness of pituitary adenoma.
Collapse
Affiliation(s)
- Kelin Chen
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, People's Republic of China
| | - Guoge Li
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xixiong Kang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, People's Republic of China
| | - Pinan Liu
- Department of Neurosurgery of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingye Qian
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yijun Shi
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Rasha Alsamani Osman
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhijun Yang
- Department of Neurosurgery of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing, China.,Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, People's Republic of China
| |
Collapse
|
158
|
Paciorek P, Żuberek M, Grzelak A. Rola miRNA w rozwoju wybranych nowotworów – potencjalne zastosowanie w diagnostyce*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streszczenie
MikroRNA (miRNA) są małymi cząsteczkami kwasu rybonukleinowego, które mimo że nie podlegają procesowi translacji, pełnią ważną funkcję regulacyjną w komórkach eukariotycznych. Ich fizjologiczną funkcją jest utrzymywanie homeostazy komórek. Zaburzona ekspresja miRNA może spowodować rozwój wielu chorób, w tym chorób nowotworowych. Działanie miRNA polega na hamowaniu tworzenia się białek, w tym białek o właściwościach onkogennych i antyonkogennych. Mutacje w miejscach kodowania miRNA mogą prowadzić do nadmiernego lub zmniejszonego wytwarzania wspomnianych białek. Odkrycie miRNA i poznanie ich roli w komórce otworzyło nowe możliwości dla diagnostyki chorób nowotworowych. Zmiany poziomu odpowiednich miRNA, w krwiobiegu lub innych płynach ustrojowych, mogą być markerem diagnostycznym chorób. Diagnostyka onkologiczna mogłaby przebiegać na podstawie badań profilu miRNA pacjenta i porównania go z opracowanymi wcześniej profilami zmian miRNA powiązanymi z występowaniem danego rodzaju choroby nowotworowej. Informacja o zmianach profilu miRNA podstawowych w regulacji ekspresji genów związanych z procesami nowotworzenia, mogłaby się przyczynić do opracowania terapii eksperymentalnych opartych na przywróceniu pierwotnego poziomu miRNA w komórkach, a tym samym, na przywróceniu prawidłowej regulacji ekspresji genów. Coraz nowsze metody wyciszania i włączania ekspresji miRNA mogą w przyszłości zaowocować skutecznymi rozwiązaniami terapeutycznymi.
Collapse
Affiliation(s)
- Patrycja Paciorek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Mariusz Żuberek
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| | - Agnieszka Grzelak
- Katedra Biofizyki Molekularnej, Wydział Biologii i Ochrony Środowiska , Uniwersytet Łódzki
| |
Collapse
|
159
|
Liu ZN, Jiang Y, Liu XQ, Yang MM, Chen C, Zhao BH, Huang HF, Luo Q. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications. J Diabetes Res 2021; 2021:4632745. [PMID: 34869778 PMCID: PMC8635917 DOI: 10.1155/2021/4632745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication which is normally diagnosed in the second trimester of gestation. With an increasing incidence, GDM poses a significant threat to maternal and offspring health. Therefore, we need a deeper understanding of GDM pathophysiology and novel investigation on the diagnosis and treatment for GDM. MicroRNAs (miRNAs), a class of endogenic small noncoding RNAs with a length of approximately 19-24 nucleotides, have been reported to exert their function in gene expression by binding to proteins or being enclosed in membranous vesicles, such as exosomes. Studies have investigated the roles of miRNAs in the pathophysiological mechanism of GDM and their potential as noninvasive biological candidates for the management of GDM, including diagnosis and treatment. This review is aimed at summarizing the pathophysiological significance of miRNAs in GDM development and their potential function in GDM clinical diagnosis and therapeutic approach. In this review, we summarized an integrated expressional profile and the pathophysiological significance of placental exosomes and associated miRNAs, as well as other plasma miRNAs such as exo-AT. Furthermore, we also discussed the practical application of exosomes in GDM postpartum outcomes and the potential function of several miRNAs as therapeutic target in the GDM pathological pathway, thus providing a novel clinical insight of these biological signatures into GDM therapeutic approach.
Collapse
Affiliation(s)
- Zhao-Nan Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Xuan-Qi Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Meng-Meng Yang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Cheng Chen
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Bai-Hui Zhao
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - He-Feng Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
160
|
Geng H, Wu G, Li C, Song J, Chen P, Cai Q. Preparation of Sm-doped CaZrO 3 nanosheets for facile human serum exosome isolation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01055g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel strategy for facile serum exosome isolation based on specific interactions between phospholipid bilayers and CaZrO3:Sm.
Collapse
Affiliation(s)
- Hongchao Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Guangyao Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development
- College of Life Sciences
- Hunan Normal University
- Changsha
| | - Chenyi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Ping Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development
- College of Life Sciences
- Hunan Normal University
- Changsha
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|
161
|
Alves dos Santos K, Clemente dos Santos IC, Santos Silva C, Gomes Ribeiro H, de Farias Domingos I, Nogueira Silbiger V. Circulating Exosomal miRNAs as Biomarkers for the Diagnosis and Prognosis of Colorectal Cancer. Int J Mol Sci 2020; 22:ijms22010346. [PMID: 33396209 PMCID: PMC7795745 DOI: 10.3390/ijms22010346] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract. It is a multifactorial disease that involves environmental factors, genetic factors, and lifestyle factors. Due to the absence of specific and sensitive biomarkers, CRC patients are usually diagnosed at an advanced stage and consequently suffer from a low 5-year overall survival rate. Despite improvements in surgical resection and adjuvant chemotherapy, the prognosis of patients with CRC remains unfavorable due to local and distant metastases. Several studies have shown that small noncoding RNAs, such as microRNAs packed in exosomes, are potential biomarkers in various types of cancers, including CRC, and that they can be detected in a stable form in both serum and plasma. In this review, we report the potential of circulating exosomal miRNAs to act as biomarkers for the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Katiusse Alves dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Isabelle Cristina Clemente dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Carollyne Santos Silva
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Hériks Gomes Ribeiro
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Igor de Farias Domingos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
| | - Vivian Nogueira Silbiger
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
- Correspondence: ; Tel.: +55-84-99939-4224
| |
Collapse
|
162
|
Nouwairi RL, O'Connell KC, Gunnoe LM, Landers JP. Microchip Electrophoresis for Fluorescence-Based Measurement of Polynucleic Acids: Recent Developments. Anal Chem 2020; 93:367-387. [PMID: 33351599 DOI: 10.1021/acs.analchem.0c04596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Renna L Nouwairi
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Killian C O'Connell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah M Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Pathology, University of Virginia Health Science Center, Charlottesville, Virginia 22903, United States
| |
Collapse
|
163
|
Cho WC, Kim M, Park JW, Jeong SY, Ku JL. Exosomal miR-193a and let-7g accelerate cancer progression on primary colorectal cancer and paired peritoneal metastatic cancer. Transl Oncol 2020; 14:101000. [PMID: 33352502 PMCID: PMC7758376 DOI: 10.1016/j.tranon.2020.101000] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023] Open
Abstract
A metastasis of colorectal cancer is difficult to diagnose, and has a poor prognosis. Therefore, we tried to elucidate the possibility of a diagnostic and prognostic marker. Exosomal miR-193a and let-7g were sorted by miRNA microarray. The expression of miR-193a in the PTM group was lower than that of the primary CRC group, and the expression of let-7g was higher than that of the primary CRC. MMP16 and CDKN1A expression was confirmed respectively for target genes of two miRNAs. When the mimics of these miRNAs were treated with cell lines, both MMP16 and CDKN1A decreased intracellular expression. Cell invasiveness and proliferation were decreased by miR-193a and increased by let-7g. The differences in expression of exosomal miR-193a and let-7g extracted from the plasma of patients were classified as cancer progression indicators. Furthermore, the survival rate decreased in the group with low miR-193a expression and high let-7g expression. Our study confirmed the possibility of using this as a diagnostic and prognostic marker for colorectal cancer by measuring the expression levels of exosomal miR-193a and let-7g in blood.
Collapse
Affiliation(s)
- Woo-Cheol Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Minjung Kim
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea.
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
164
|
Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J. Hypoxic exosomes orchestrate tumorigenesis: molecular mechanisms and therapeutic implications. J Transl Med 2020; 18:474. [PMID: 33302971 PMCID: PMC7731629 DOI: 10.1186/s12967-020-02662-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
The solid tumor microenvironment possesses a hypoxic condition, which promotes aggressiveness and resistance to therapies. Hypoxic tumor cells undergo broadly metabolic and molecular adaptations and communicate with surrounding cells to provide conditions promising for their homeostasis and metastasis. Extracellular vesicles such as exosomes originating from the endosomal pathway carry different types of biomolecules such as nucleic acids, proteins, and lipids; participate in cell-to-cell communication. The exposure of cancer cells to hypoxic conditions, not only, increases exosomes biogenesis and secretion but also alters exosomes cargo. Under the hypoxic condition, different signaling pathways such as HIFs, Rab-GTPases, NF-κB, and tetraspanin are involved in the exosomes biogenesis. Hypoxic tumor cells release exosomes that induce tumorigenesis through promoting metastasis, angiogenesis, and modulating immune responses. Exosomes from hypoxic tumor cells hold great potential for clinical application and cancer diagnosis. Besides, targeting the biogenesis of these exosomes may be a therapeutic opportunity for reducing tumorigenesis. Exosomes can serve as a drug delivery system transferring therapeutic compounds to cancer cells. Understanding the detailed mechanisms involved in biogenesis and functions of exosomes under hypoxic conditions may help to develop effective therapies against cancer.
Collapse
Affiliation(s)
- Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, P.O. BoX: 1138, 57147, Urmia, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, P.O. BoX: 1138, 57147, Urmia, Iran.
| |
Collapse
|
165
|
Tumor-Derived Exosomal miR-620 as a Diagnostic Biomarker in Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2020; 2020:6691211. [PMID: 33343663 PMCID: PMC7725551 DOI: 10.1155/2020/6691211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/23/2023]
Abstract
Background Evidence has suggested the functional role of exosomal miRNAs in cancer diagnosis. This study aimed to determine whether the serum exosomal biomarkers can improve the diagnosis of patients with non-small-cell lung cancer (NSCLC). Materials and Methods The exosomes were extracted from the serum of NSCLC patients (n = 235) and healthy donors (n = 231) using ultracentrifugation and then were evaluated by using transmission electron microscopy, qNano, and western blotting. The serum exosomal miRNA expression was validated using qPCR. Results Exosomal miR-620 was significantly reduced in NSCLC and early-stage NSCLC patients (P < 0.0001) when compared to that of healthy controls, with an area under the curve (AUC) of 0.728 and 0.707, respectively. Exosomal miR-620 expression showed an association with drinking (P=0.008) and distant metastasis (P=0.037). Additionally, the downregulated exosomal miR-620 showed association with chemotherapeutic effect (P=0.044). Conclusion These findings suggest the serum exosomal miR-620 as a promising diagnostic and prognostic noninvasive biomarker in NSCLC patients.
Collapse
|
166
|
Xing Y, Cheng Z, Wang R, Lv C, James TD, Yu F. Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
167
|
Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J 2020; 11:603-627. [PMID: 33144898 PMCID: PMC7594983 DOI: 10.1007/s13167-020-00226-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Interest in the use of cell-free nucleic acids (CFNAs) as clinical non-invasive biomarker panels for prediction and prevention of multiple diseases has greatly increased over the last decade. Indeed, circulating CFNAs are attributable to many physiological and pathological processes such as imbalanced stress conditions, physical activities, extensive apoptosis of different origin, systemic hypoxic-ischemic events and tumour progression, amongst others. This article highlights the involvement of circulating CFNAs in local and systemic processes dealing with the question, whether specific patterns of CFNAs in blood, their detection, quantity and quality (such as their methylation status) might be instrumental to predict a disease development/progression and could be further utilised for accompanying diagnostics, targeted prevention, creation of individualised therapy algorithms, therapy monitoring and prognosis. Presented considerations conform with principles of 3P medicine and serve for improving individual outcomes and cost efficacy of medical services provided to the population.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
168
|
Gao H, Ma J, Cheng Y, Zheng P. Exosomal Transfer of Macrophage-Derived miR-223 Confers Doxorubicin Resistance in Gastric Cancer. Onco Targets Ther 2020; 13:12169-12179. [PMID: 33268995 PMCID: PMC7701146 DOI: 10.2147/ott.s283542] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Macrophages are a major component of the tumour microenvironment and play an important role in chemoresistance of cancer. However, how exosomal microRNAs (miRNAs) derived from macrophages contribute to the development of doxorubicin resistance in gastric cancer (GC) are not clearly defined. The aim of this study was to investigate whether macrophage-derived exosomes mediate doxorubicin resistance in GC. Methods Exosomes isolated from macrophage culture medium were characterized and co-cultured with GC cells and the miR-223 level was detected using real-time quantitative PCR (RT-qPCR). The internalization of exosomes and transfer of miR-223 were observed via immunofluorescence. Macrophages were transfected with an miR-223 inhibitor or negative control. Cell Counting Kit-8 and flow cytometry were employed to explore the effect of macrophage-derived exosomes on the doxorubicin resistance of GC cells. Western blot and RT-qPCR assay were also performed to explore the regulation of GC chemotherapy resistance by exosomal miR-223. Results Here, the macrophages and macrophage-derived exosomes promoted doxorubicin resistance in GC cells. MiR-223 was enriched in macrophage-derived exosomes and they could be transferred to co-cultivated GC cells. The miR-223 knockdown in macrophages could reduce the effects of exosomes on GC cells. Functional studies revealed that exosomal miR-223 derived from macrophages promoted doxorubicin resistance in GC cells by inhibiting F-box and WD repeat domain-containing 7 (FBXW7). Clinically, the expression of miR-223 significantly increased in GC tissues and high expression of plasma exosomal miR-223 was highly linked with doxorubicin resistance in GC patients. Conclusion The exosomal transfer of macrophage-derived miR-223 conferred doxorubicin resistance in GC and targeting exosome communication may be a promising new therapeutic strategy for GC patients.
Collapse
Affiliation(s)
- Huijie Gao
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, People's Republic of China
| | - Jincheng Ma
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, People's Republic of China
| | - Yanhui Cheng
- Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, People's Republic of China
| | - Peiming Zheng
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|
169
|
Jordan KR, Hall JK, Schedin T, Borakove M, Xian JJ, Dzieciatkowska M, Lyons TR, Schedin P, Hansen KC, Borges VF. Extracellular vesicles from young women's breast cancer patients drive increased invasion of non-malignant cells via the Focal Adhesion Kinase pathway: a proteomic approach. Breast Cancer Res 2020; 22:128. [PMID: 33225939 PMCID: PMC7681773 DOI: 10.1186/s13058-020-01363-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment. However, the proteomic content of EVs isolated from young women’s breast cancer patients and the mechanisms underlying the influence of EVs on tumor cell behavior have not yet been reported. Methods In our current translational studies, we compared the proteomic content of EVs isolated from invasive breast cancer cell lines and plasma samples from young women’s breast cancer (YWBC) patients and age-matched healthy donors using mass spectrometry. We analyzed the functionality of EVs in two dimensional tumor cell invasion assays and the gene expression changes in tumor cells after incubation with EVs. Results We found that treatment with EVs from both invasive breast cancer cell lines and plasma of YWBC patients altered the invasive properties of non-invasive breast cancer cells. Proteomics identified differences between EVs from YWBC patients and healthy donors that correlated with their altered function. Further, we identified gene expression changes in non-invasive breast cancer cells after treatment with EVs that implicate the Focal Adhesion Kinase (FAK) signaling pathway as a potential targetable pathway affected by breast cancer-derived EVs. Conclusions Our results suggest that the proteome of EVs from breast cancer patients reflects their functionality in tumor motility assays and may help elucidate the role of EVs in breast cancer progression.
Collapse
Affiliation(s)
- Kimberly R Jordan
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jessica K Hall
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Troy Schedin
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle Borakove
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenny J Xian
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pepper Schedin
- Knight Cancer Institute and Department of Cell, Developmental & Cancer Biology, Oregon Health Science University, Portland, OR, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Virginia F Borges
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
170
|
Deb A, Gupta S, Mazumder PB. Exosomes: A new horizon in modern medicine. Life Sci 2020; 264:118623. [PMID: 33096118 DOI: 10.1016/j.lfs.2020.118623] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Exosomes are a type of extracellular vesicles belonging to endocytic origin. These vesicles carry different biological cargo that play numerous physiological roles and is also indicative of different diseased state. Exosomes are considered as promising tools for therapeutic drug delivery, owing to their intrinsic features like stability, biocompatibility and a capacity of stealth. A clearer understanding of the composition, biogenesis and biology of exosomes can provide us with better insights into the pathophysiological, diagnostic, and therapeutic roles of these extracellular vesicles. In this review we have summarize existing literature regarding the production, efficacy, action mechanism, and potential therapeutic roles of exosomes in the contexts of various diseases such as cancer, renal disease, neurological disorders, cardio-vascular diseases, inflammatory diseases and some of the auto-immune diseases.
Collapse
Affiliation(s)
- Ananya Deb
- Natural Product & Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Shweta Gupta
- Natural Product & Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| | - P B Mazumder
- Natural Product & Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
171
|
Role of extracellular vesicles in tumour microenvironment. Cell Commun Signal 2020; 18:163. [PMID: 33081785 PMCID: PMC7574205 DOI: 10.1186/s12964-020-00643-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, it has been demonstrated that extracellular vesicles (EVs) can be released by almost all cell types, and detected in most body fluids. In the tumour microenvironment (TME), EVs serve as a transport medium for lipids, proteins, and nucleic acids. EVs participate in various steps involved in the development and progression of malignant tumours by initiating or suppressing various signalling pathways in recipient cells. Although tumour-derived EVs (T-EVs) are known for orchestrating tumour progression via systemic pathways, EVs from non-malignant cells (nmEVs) also contribute substantially to malignant tumour development. Tumour cells and non-malignant cells typically communicate with each other, both determining the progress of the disease. In this review, we summarise the features of both T-EVs and nmEVs, tumour progression, metastasis, and EV-mediated chemoresistance in the TME. The physiological and pathological effects involved include but are not limited to angiogenesis, epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) remodelling, and immune escape. We discuss potential future directions of the clinical application of EVs, including diagnosis (as non-invasive biomarkers via liquid biopsy) and therapeutic treatment. This may include disrupting EV biogenesis and function, thus utilising the features of EVs to repurpose them as a therapeutic tool in immunotherapy and drug delivery systems. We also discuss the overall findings of current studies, identify some outstanding issues requiring resolution, and propose some potential directions for future research. Video abstract.
Collapse
|
172
|
Słomka A, Mocan T, Wang B, Nenu I, Urban SK, Gonzalez-Carmona MA, Schmidt-Wolf IGH, Lukacs-Kornek V, Strassburg CP, Spârchez Z, Kornek M. EVs as Potential New Therapeutic Tool/Target in Gastrointestinal Cancer and HCC. Cancers (Basel) 2020; 12:3019. [PMID: 33080904 PMCID: PMC7603109 DOI: 10.3390/cancers12103019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
For more than a decade, extracellular vesicles (EVs) have been in focus of science. Once thought to be an efficient way to eliminate undesirable cell content, EVs are now well-accepted as being an important alternative to cytokines and chemokines in cell-to-cell communication route. With their cargos, mainly consisting of functional proteins, lipids and nucleic acids, they can activate signalling cascades and thus change the phenotype of recipient cells at local and systemic levels. Their substantial role as modulators of various physiological and pathological processes is acknowledged. Importantly, more and more evidence arises that EVs play a pivotal role in many stages of carcinogenesis. Via EV-mediated communication, tumour cells can manipulate cells from host immune system or from the tumour microenvironment, and, ultimately, they promote tumour progression and modulate host immunity towards tumour's favour. Additionally, the role of EVs in modulating resistance to pharmacological and radiological therapy of many cancer types has become evident lately. Our understanding of EV biology and their role in cancer promotion and drug resistance has evolved considerably in recent years. In this review, we specifically discuss the current knowledge on the association between EVs and gastrointestinal (GI) and liver cancers, including their potential for diagnosis and treatment.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland;
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Iuliana Nenu
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Sabine K. Urban
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Maria A. Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany;
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| | - Zeno Spârchez
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.M.); (I.N.); (Z.S.)
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany; (B.W.); (S.K.U.); (M.G.-C.); (C.P.S.)
| |
Collapse
|
173
|
Meng Y, Bian L, Zhang M, Bo F, Lu X, Li D. Liquid biopsy and their application progress in head and neck cancer: focus on biomarkers CTCs, cfDNA, ctDNA and EVs. Biomark Med 2020; 14:1393-1404. [PMID: 33073579 DOI: 10.2217/bmm-2020-0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck cancer (HNC) is the sixth leading cause of cancer death worldwide. Due to the low early diagnosis rate of HNC, local recurrence and high distant metastasis rate are the main reasons for treatment failure. Therefore, it is important to establish a method of diagnosis and monitoring, which is convenient, safe, reproducible, sensitive and specific. Compared with tissue biopsy, liquid biopsy is an emerging biopsy technique, which has the advantages of re-sampling, noninvasive and cost-effectiveness, and has shown good diagnostic and prognostic value in studies for various types of malignant solid tumors. This review introduces liquid biopsy, its research progress and prospects in HNC including early diagnosis, staging, grading, prognosis assessment and disease surveillance.
Collapse
Affiliation(s)
- Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Bo
- Department of Otolaryngology-Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Lu
- Department of Stomatology, Shanghai Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
174
|
Gan X, Wang T, Chen ZY, Zhang KH. Blood-derived molecular signatures as biomarker panels for the early detection of colorectal cancer. Mol Biol Rep 2020; 47:8159-8168. [DOI: 10.1007/s11033-020-05838-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
|
175
|
Wang H, Chen X, Bao L, Zhang X. Investigating potential molecular mechanisms of serum exosomal miRNAs in colorectal cancer based on bioinformatics analysis. Medicine (Baltimore) 2020; 99:e22199. [PMID: 32925795 PMCID: PMC7489663 DOI: 10.1097/md.0000000000022199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/11/2020] [Accepted: 08/16/2020] [Indexed: 11/26/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant gastrointestinal tumor worldwide. Serum exosomal microRNAs (miRNAs) play a critical role in tumor progression and metastasis. However, the underlying molecular mechanisms are poorly understood.The miRNAs expression profile (GSE39833) was downloaded from Gene Expression Omnibus (GEO) database. GEO2R was applied to screen the differentially expressed miRNAs (DEmiRNAs) between healthy and CRC serum exosome samples. The target genes of DEmiRNAs were predicted by starBase v3.0 online tool. The gene ontology (GO) and Kyoto Encyclopedia of Genomes pathway (KEGG) enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. The protein-protein interaction (PPI) network was established by the Search Tool for the Retrieval of Interacting Genes (STRING) visualized using Cytoscape software. Molecular Complex Detection (MCODE) and cytohubba plug-in were used to screen hub genes and gene modules.In total, 102 DEmiRNAs were identified including 67 upregulated and 35 downregulated DEmiRNAs, and 1437 target genes were predicted. GO analysis showed target genes of upregulated DEmiRNAs were significantly enriched in transcription regulation, protein binding, and ubiquitin protein ligase activity. While the target genes of downregulated DEmiRNAs were mainly involved in transcription from RNA polymerase II promoter, SMAD binding, and DNA binding. The KEGG pathway enrichment analyses showed target genes of upregulated DEmiRNAs were significantly enriched in proteoglycans in cancer, microRNAs in cancer, and phosphatidylinositol-3 kinases/Akt (PI3K-Akt) signaling pathway, while target genes of downregulated DEmiRNAs were mainly enriched in transforming growth factor-beta (TGF-beta) signaling pathway and proteoglycans in cancer. The genes of the top 3 modules were mainly enriched in ubiquitin mediated proteolysis, spliceosome, and mRNA surveillance pathway. According to the cytohubba plugin, 37 hub genes were selected, and 4 hub genes including phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), SRC, cell division cycle 42 (CDC42), E1A binding protein p300 (EP300) were identified by combining 8 ranked methods of cytohubba.The study provides a comprehensive analysis of exosomal DEmiRNAs and target genes regulatory network in CRC, which can better understand the roles of exosomal miRNAs in the development of CRC. However, these findings require further experimental validation in future studies.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| | - Xiliang Chen
- Department of Clinical Laboratory, Zhangqiu District People's Hospital, Jinan, Shandong, China
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| | - Xuede Zhang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, Zhejiang
| |
Collapse
|
176
|
miR-19 Is a Potential Clinical Biomarker for Gastrointestinal Malignancy: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2810150. [PMID: 32964023 PMCID: PMC7501555 DOI: 10.1155/2020/2810150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Objectives To assess the expression and clinical value of miR-19 in gastrointestinal malignancy. Setting. Embase, Web of Science, PubMed, and other databases were retrieved to screen out relevant studies until December 31, 2019. Participants. Gastrointestinal cancer patients with the description of miR-19 expression, as well as the correlation between miR-19 and clinicopathological characteristics or prognosis. Main Outcome Measures. Pooled odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) was obtained to determine miR-19 expression in gastrointestinal malignancy and the association between miR-19 and patients' clinical characteristics and survival. Results Thirty-seven studies were included in this study. miR-19 levels in gastrointestinal malignancy, especially in hepatocellular (OR = 4.88, 95% CI = 2.38‐9.99), colorectal (OR = 4.81, 95% CI = 2.38‐9.72), and pancreatic (OR = 5.12, 95% CI = 2.43‐10.78) cancers, were significantly overexpressed, and miR-19 was tightly related to some clinicopathological characteristics, such as lymph node metastasis (OR = 1.74, 95% CI = 1.05‐2.86). Although gastrointestinal cancer patients with low and high miR-19 expression had comparable OS (overall survival) and DFS (disease-free survival), subgroup analyses showed that patients with high miR-19 presented better DFS than those with low miR-19 in liver cancer (HR = 0.46, 95% CI = 0.30‐0.71). Conclusions miR-19 might be a potential progression and prognostic biomarker for gastrointestinal malignancy.
Collapse
|
177
|
Logozzi M, Mizzoni D, Di Raimo R, Fais S. Exosomes: A Source for New and Old Biomarkers in Cancer. Cancers (Basel) 2020; 12:E2566. [PMID: 32916840 PMCID: PMC7565506 DOI: 10.3390/cancers12092566] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical oncology needs reliable tumor biomarkers to allow a follow-up of tumor patients who do not necessarily need invasive approaches. To date, the existing biomarkers are not sufficiently reliable, and many of them have generated more problems than facilitating the commitment of clinical oncologists. Over the last decades, a broad family of extracellular vesicles, with size ranging between micro to nano, has been raised as a new hope for potential sources of new tumor biomarkers. However, while knowledge in the field is increasing, we do not currently have definitive information allowing a clinical use of extracellular vesicles in cancer clinics. Recent evidence provides new perspective in clinical oncology, based on data showing that circulating nanovesicles called exosomes may represent a valuable source of tumor biomarkers. In this review, we discuss the existing clinical data supporting a key role of exosomes as a source of tumor biomarkers, including proteins and miRNAs, but also discuss the importance of the expression of known tumor biomarkers when expressed on exosomes.
Collapse
Affiliation(s)
| | | | | | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (D.M.); (R.D.R.)
| |
Collapse
|
178
|
Wu Q, Liu W, Wang J, Zhu L, Wang Z, Peng Y. Exosomal noncoding RNAs in colorectal cancer. Cancer Lett 2020; 493:228-235. [PMID: 32898600 DOI: 10.1016/j.canlet.2020.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a commonly diagnosed malignancy with unsatisfactory survival outcomes. Recent studies indicate that noncoding RNAs (ncRNAs) can be selectively packaged into exosomes, the extracellular vesicles composed of a lipid bilayer, and delivered from donor to recipient cells, thus regulating the behavior of the recipient cells. Increasing evidence has demonstrated that exosomal ncRNAs in blood exhibit distinct expression patterns among CRC patients with or without metastasis, and healthy controls. Moreover, exosomal ncRNAs can participate in the regulation of tumor microenvironment, the establishment of pre-metastatic niches, and the induction of drug resistance via cell-to-cell communication. Intriguingly, exosomal ncRNAs have the potential to serve as biomarkers for diagnosis, prognostic prediction, and therapeutic response monitoring of patients with CRC. In this review, we summarize the emerging functions of exosomal ncRNAs during CRC development and also discuss their potential clinical application in patients with CRC.
Collapse
Affiliation(s)
- Qingbin Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Wang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
179
|
Gonzalez-Villarreal CA, Quiroz-Reyes AG, Islas JF, Garza-Treviño EN. Colorectal Cancer Stem Cells in the Progression to Liver Metastasis. Front Oncol 2020; 10:1511. [PMID: 32974184 PMCID: PMC7468493 DOI: 10.3389/fonc.2020.01511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal carcinoma (CRC) is a leading cause of cancer mortality. Tumorigenesis is a dynamic process wherein cancer stem cells (CSCs) and their microenvironment promote initiation, progression, and metastasis. Metastatic colonization is an inefficient process that is very complex and is poorly understood; however, in most cases, metastatic disease is not curable, and resistance mechanisms tend to develop against conventional treatments. An understanding of the underlying mechanisms and factors that contribute to the development of metastasis in CRC can aid in the search for specific therapeutic targets for improving standard treatments. In this review, we summarize current knowledge regarding tumor biology and the use of stroma cells as prognostic factors and inflammatory inducers associated with the use of tumor microenvironments as a promoter of cancer metastasis. Moreover, we look into the importance of CSC, pericytes, and circulating tumor cells as mechanisms that lead to liver metastasis, and we also focus on the cellular and molecular pathways that modulate and regulate epithelial–mesenchymal transition. Finally, we discuss a novel therapeutic target that can potentially eliminate CSCs as a CRC treatment.
Collapse
Affiliation(s)
| | - Adriana G Quiroz-Reyes
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Jose F Islas
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| | - Elsa N Garza-Treviño
- Universidad Autonoma de Nuevo Leon Facultad de Medicina, Departamento de Bioquimica y Medicina Molecular, San Nicolás de los Garza, Mexico
| |
Collapse
|
180
|
Wei R, Chen L, Qin D, Guo Q, Zhu S, Li P, Min L, Zhang S. Liquid Biopsy of Extracellular Vesicle-Derived miR-193a-5p in Colorectal Cancer and Discovery of Its Tumor-Suppressor Functions. Front Oncol 2020; 10:1372. [PMID: 33014778 PMCID: PMC7461920 DOI: 10.3389/fonc.2020.01372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Previously, abnormal extracellular vesicle (EV) sorting of miR-193a was identified in colorectal cancer (CRC) progression. Although a reduced level of miR-193a-5p in plasma/serum has been reported in many different types of cancer, the EV-derived miR-193a-5p level in CRC and its potential application as a minimally invasive biomarker are still unknown. Here, we evaluated the circulating EV-derived miR-193a-5p expression levels in a cohort of 101 participants by real-time quantitative polymerase chain reaction (RT-qPCR). We found that plasma EV-miR-193a-5p decreased significantly in CRC patients as compared with precancerous colorectal adenoma (CA) and non-cancerous control (NC) individuals. The circulating EV-miR-193a-5p showed an area under the receiver operating characteristic curve (AUC) of 0.740 in distinguishing CRC from CA and an AUC of 0.759 in distinguishing CRC from NC. Furthermore, the suppression on CRC cells of miR-193a-5p was verified by transwell, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), EdU, RT-qPCR, and western blotting. Bioinformatic analysis predicted 32 genes, which were the most likely miR-193a-5p targeted and mainly focused on tumor progression. Among them, we revealed that miR-193a-5p could inhibit CRC migration and invasion via targeting tumor-associated genes like CUT-like homeobox 1 (CUX1) and intersectin 1 (ITSN1). In conclusion, miR-193a-5p could suppress CRC development, and decreased plasma EV-miR-193a-5p could be a promising biomarker for human CRC detection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Min
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shutian Zhang
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
181
|
Bharti A, Mittal S, Rana S, Dahiya D, Agnihotri N, Prabhakar N. Electrochemical biosensor for miRNA-21 based on gold-platinum bimetallic nanoparticles coated 3-aminopropyltriethoxy silane. Anal Biochem 2020; 609:113908. [PMID: 32818505 DOI: 10.1016/j.ab.2020.113908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 01/01/2023]
Abstract
We report an electrochemical biosensor based on gold platinum bimetallic nanoparticles (AuPtBNPs)/3-aminopropyltriethoxy silane (APTS) nanocomposite coated fluorine-doped tin oxide (FTO) as a biosensing platform for hybridization-based detection of miRNA-21. Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and electrochemical measurements were carried out to ensure the successful construction of the biosensor. The amount of cDNA immobilized on electrode surface and hybridization time required for the miRNA-21 sensing were optimized. The biosensing platform showed detection limit of 0.63 fM with wide linear range i.e. 1 fM-100 nM for miRNA-21 detection. The biosensing strategy demonstrates a good recovery yield from 90.18% to 94.6% in serum samples. It offers good selectivity for its complementary miRNA compared to the non-complementary miRNAs. Other analytical features of the biosensor such as stability, reusability and reproducibility were also tested, providing appropriate results.
Collapse
Affiliation(s)
- Anu Bharti
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sakshi Mittal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Shilpa Rana
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Divya Dahiya
- Department of Surgery, PGIMER, Chandigarh, India
| | | | - Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
182
|
Yu J, Dong W, Liang J. Extracellular Vesicle-Transported Long Non-Coding RNA (LncRNA) X Inactive-Specific Transcript (XIST) in Serum is a Potential Novel Biomarker for Colorectal Cancer Diagnosis. Med Sci Monit 2020; 26:e924448. [PMID: 32843612 PMCID: PMC7448689 DOI: 10.12659/msm.924448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Colorectal cancer (CRC) cell-derived extracellular vesicles (EVs) contribute to tumor progression. Differentially expressed long non-coding (lnc)RNAs may serve as biomarkers for CRC diagnosis. This study aimed to discuss the diagnostic value of serum EV-derived lncRNA X inactive-specific transcript (XIST) in CRC. Material/Methods Serum EVs were extracted and identified. Microarray analysis was performed to screen out the differentially expressed lncRNAs in serum EVs. The expression and diagnostic efficacy of the most differentially expressed lncRNA were measured. Kaplan-Meier survival analysis was performed to evaluate the association between survival time and XIST expression in EVs. The expression profile of serum EV-carried XIST in 94 CRC patients with different tumor-node-metastasis stages, lymph node metastasis, and differentiation was assessed. The serum contents of CEA, CA242, CA199, and CA153 were measured. Results XIST in serum EVs in CRC patients was upregulated, with greatest diagnostic value. CRC patients with higher expression of XIST in serum EVs had worse 5-year survival rates and shorter life cycles, lower differentiation, higher lymph node metastasis, and tumor-node-metastasis than patients with lower XIST expression. XIST expression in serum EVs was positively correlated with CRC marker contents. Conclusions XIST upregulation in serum EVs is related to CRC progression, which may be helpful to the clinical diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Jinfeng Yu
- Department of General Medicine, Yantaishan Hospital, Yantai, Shandong, China (mainland)
| | - Weiwei Dong
- Department of Medical, Jinan First People's Hospital, Jinan, Shandong, China (mainland)
| | - Jianxiao Liang
- Department of Radiology, Dongying People's Hospital, Dongying, Shandong, China (mainland)
| |
Collapse
|
183
|
Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R, Lamperska K. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25:808-819. [PMID: 32884453 DOI: 10.1016/j.rpor.2020.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
Collapse
Key Words
- 5-FU, 5-fluorouracyl
- ACVR2A, activin A receptor type 2A
- AKT, AKT serine/threonine kinase
- AR, androgen receptor
- ATG7, autophagy related 7
- ATM, ATM serine/threonine kinase
- BAX, BCL2 associated Xapoptosis regulator
- BCL2, BCL2 apoptosis regulator
- BCL2L10, BCL2 like 10
- BDNF, brain derived neurotrophic factor
- BLCA, bladder urothelial carcinoma
- BRCA, breast cancer
- Biomarker
- Bp, base pair
- C-myc (MYCBP), MYC binding protein
- CASC2, cancer susceptibility 2
- CD133 (PROM1), prominin 1
- CDC42, cell division cycle 42
- CDKN1, Bcyclin dependent kinase inhibitor 1B
- COAD, colon adenocarcinoma
- Cancer
- Circulating miRNA
- DDR, DNA damage repair
- E2F family (E2F1, E2F2, E2F3), E2F transcription factors
- EBV, Epstein-Barr virus
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERBB (EGFR), epidermal growth factor receptor
- ESCA, esophageal carcinoma
- FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA
- FER1L4, fer-1 like family member 4 (pseudogene)
- GAS5, growth arrest–specific 5
- HIF-1α (HIF1A), hypoxia inducible factor 1 subunit alpha
- HNRNPA1, heterogeneous nuclear ribonucleoprotein A1
- HNSC, head and neck squamous cell carcinoma
- HRR, homologous recombination-based DNA repair
- IFN-γ (IFNG), interferon gamma
- IGF1, insulin like growth factor 1
- IL6, interleukin 6
- IPMK, inositol phosphate multikinase
- KIRC, clear cell kidney carcinoma
- KIRP, kidney renal papillary cell carcinoma
- KRAS, KRAS proto-oncogene, GTPase
- LIHC, liver hepatocellular carcinoma
- LMP1, latent membrane protein 1
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Liquid biopsy
- MAPK, mitogen-activated protein kinase
- MCM7, minichromosome maintenance complex component 7
- MET, mesenchymal-to-epithelial transition
- MTOR, mechanistic target of rapamycin kinase
- N-myc (MYCN), MYCN proto-oncogene, bHLH transcription factor
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOTCH2, notch receptor 2
- Oncogene
- PAAD, pancreatic adenocarcinoma
- PERK (EIF2AK3), eukaryotic translation initiation factor 2 alpha kinase 3
- PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
- PIAS3, protein inhibitor of activated STAT 3
- PRAD, prostate adenocarcinoma
- RISC, RNA-induced silencing complex
- SMAD2, SMAD family member 2
- SMG1, SMG1 nonsense mediated mRNA decay associated PI3K related kinase
- SNHG1, small nucleolar RNA host gene 1
- SOCS5, suppressor of cytokine signaling 5
- STAD, stomach adenocarcinoma
- STAT3, signal transducer and activator of transcription 3
- STK4, serine/threonine kinase 4
- Suppressor
- TCGA
- TCGA, The Cancer Genome Atlas
- TGF-β (TGFB1), transforming growth factor beta 1
- TGFBR2, transforming growth factor beta receptor 2
- THCA, papillary thyroid carcinoma
- TNM, Classification of Malignant Tumors: T - tumor / N - lymph nodes / M – metastasis
- TP53, tumor protein p53
- TP53TG1, TP53 target 1
- TRIAP1, p53-regulating inhibitor of apoptosis gene
- TSC1, TSC complex subunit 1
- UCA1, urothelial cancer associated 1
- UCEC, uterine corpus endometrial carcinoma
- UTR, untranslated region
- WDFY3-AS2, WDFY3 antisense RNA 2
- WEE1, WEE1 G2 checkpoint kinase
- WNT family, Wingless-type MMTV integration site family/Wnt family ligands
- ZEB1/ZEB2, zinc finger E-box binding homeobox 1 and 2
- ceRNA, competitive endogenous RNA
- cncRNA, protein coding and non-coding RNA
- lncRNA, long-non coding RNA
- miR-17-92a
- miR-18a
- miRNA
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
184
|
Maminezhad H, Ghanadian S, Pakravan K, Razmara E, Rouhollah F, Mossahebi-Mohammadi M, Babashah S. A panel of six-circulating miRNA signature in serum and its potential diagnostic value in colorectal cancer. Life Sci 2020; 258:118226. [PMID: 32771555 DOI: 10.1016/j.lfs.2020.118226] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022]
Abstract
AIM Colorectal carcinoma (CRC) is one of the most prevalent cancers throughout the world. Circulating serum-derived microRNAs (miRNAs, miRs) can be used as non-invasive biomarkers for CRC diagnosis. This study aimed to identify a panel of six serum exosomal miRNAs as novel diagnostic biomarkers for CRC. MAIN METHODS Exosomes were isolated and characterized from the conditioned media of the human colon adenocarcinoma cells (HCT-116 and Caco2). Sera were isolated from peripheral blood of 45 CRC and also 45 healthy individuals. The expression levels and diagnostic value of candidate circulating miRNAs (miR-19a, miR-20a, miR-150, miR-143, miR-145, and let-7a) were measured through quantitative real-time PCR. Receiver operating characteristic (ROC) curves were applied to evaluate the diagnostic accuracy of selected miRNAs. The association of candidate miRNAs and clinicopathological characteristics e.g. tumor node metastasis (TNM) staging and lymph node metastasis (LNM) were further evaluated. KEY FINDINGS Circulating serum miR-19a, miR-20a, miR-150, and let-7a were significantly up-regulated in CRC patients, while miR-143 and miR-145 showed a significant down-regulation. The higher levels of miR-143 and miR-145 in patients with TNM stage I-II were detected, whereas miR-19a, miR-20a, miR-150, and let-7a were highly expressed in TNM stage III. The expression levels of miR-19a, miR-20a, and miR-150 were positively correlated with LNM status, while the expression levels of miR-143 and miR-145 were lower in patients with LNM. Area under the ROC curves of miR-19a, miR-20a, miR-150, miR-143, miR-145, and let-7a were 0.87, 0.83, 0.75, 0.76, 0.78 and 0.71, respectively. SIGNIFICANCE We established a panel of six-circulating miRNA signature (i.e. miR-19a, miR-20a, miR-143, miR-145, miR-150, and let-7a) in serum as a non-invasive biomarker for CRC diagnosis. These findings confirm that serum-derived miRNAs have a strong potential to be a diagnostic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Hamidreza Maminezhad
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Ghanadian
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences of Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
185
|
Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 2020; 5:144. [PMID: 32747657 PMCID: PMC7400738 DOI: 10.1038/s41392-020-00258-9] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy refers to the sampling and molecular analysis of the biofluids of circulating tumor cells, extracellular vesicles, nucleic acids, and so forth. Exosomes are small extracellular vesicles with sizes between 30–150 nm. They are secreted by multivesicular bodies through exocytosis in live cells and can participate in intercellular communication due to their contents, including nucleic acids, proteins, and lipids. Herein, we investigate publication frequencies on exosomes over the past 10 years, and review recent clinical studies on liquid biopsy of exosomes in the fields of oncology, pregnancy disorders, cardiovascular diseases, and organ transplantation. We also describe the advantages of exosomes as an effective liquid biopsy tool and the progression of exosome extraction methods. Finally, we depict the commercial development of exosome research and discuss the future role of exosomes in liquid biopsy.
Collapse
|
186
|
Sorop A, Iacob R, Iacob S, Constantinescu D, Chitoiu L, Fertig TE, Dinischiotu A, Chivu-Economescu M, Bacalbasa N, Savu L, Gheorghe L, Dima S, Popescu I. Plasma Small Extracellular Vesicles Derived miR-21-5p and miR-92a-3p as Potential Biomarkers for Hepatocellular Carcinoma Screening. Front Genet 2020; 11:712. [PMID: 32793278 PMCID: PMC7391066 DOI: 10.3389/fgene.2020.00712] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Liquid biopsy using circulating microvesicles and exosomes is emerging as a new diagnostic tool that could improve hepatocellular carcinoma (HCC) early diagnosis and screening protocols. Our study aimed to investigate the utility of plasma exosomal miR-21-5p and miR-92-3p for HCC diagnosis during screening protocols. METHODS The study group included 106 subjects: 48 patients diagnosed with HCC during screening, who underwent a potentially curative treatment (surgical resection or liver transplantation), 38 patients with liver cirrhosis (LC) on the waiting list for liver transplantation, and 20 healthy volunteers. The exosomes were isolated by precipitation with a reagent based on polyethylene glycol and were characterized based on morphological aspects (i.e., diameter); molecular weight; CD63, CD9, and CD81 protein markers; and exosomal miR-21-5p and miR-92a-3p expression levels. RESULTS We first demonstrate that the exosome population isolated with the commercially available Total Exosome Isolation kit respects the same size ranging, morphological, and protein expression aspects compared to the traditional ultracentrifugation technique. The analysis of the expression profile indicates that miR-21-5p was upregulated (p = 0.017), and miR-92a-3p was downregulated (p = 0.0005) in plasma-derived exosomes from HCC subjects, independently from the patient's characteristics. AUROC for HCC diagnosis based on AFP (alpha-fetoprotein) was 0.72. By integrating AFP and the relative expression of exosomal miR-21-5p and miR-92a-3p in a logistic regression equation for HCC diagnosis, the combined AUROC of the new exosomal miR HCC score was 0.85-significantly better than serum AFP alone (p = 0.0007). CONCLUSION Together with serum AFP, plasma exosomal miR-21-5p and miR-92a-3p could be used as potential biomarkers for HCC diagnosis in patients with LC subjected to screening and surveillance.
Collapse
Affiliation(s)
- Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Razvan Iacob
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Speranta Iacob
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Diana Constantinescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Leona Chitoiu
- Ultrastructural Pathology Laboratory, Victor Babeş National Institute, Bucharest, Romania
| | - Tudor Emanuel Fertig
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Ultrastructural Pathology Laboratory, Victor Babeş National Institute, Bucharest, Romania
| | | | - Mihaela Chivu-Economescu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Lorand Savu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- “Titu Maiorescu” University of Medicine and Pharmacy, Bucharest, Romania
| | - Liliana Gheorghe
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
| | - Irinel Popescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- “Titu Maiorescu” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
187
|
Zhao Q, Zheng X, Guo H, Xue X, Zhang Y, Niu M, Cui J, Liu H, Luo H, Yang D, Shi Y, Huangfu H, Wen S, Wu Y, Gao W, Wang B. Serum Exosomal miR-941 as a promising Oncogenic Biomarker for Laryngeal Squamous Cell Carcinoma. J Cancer 2020; 11:5329-5344. [PMID: 32742479 PMCID: PMC7391210 DOI: 10.7150/jca.45394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
At present, no blood-based biomarkers have been used in clinical practice for laryngeal squamous cell carcinoma (LSCC). Increasing evidence suggests that circulating exosomal microRNAs (miRNAs) may serve as potential diagnostic biomarkers for various cancers. This study aims to identify and evaluate serum exosomal miRNAs for LSCC diagnosis. The ExoQuick solution (EQ), which provides a high-yield and is a highly efficient exosome isolation method, was selected to isolate serum exosomes in the current study. In LSCC samples, exosome concentrations were higher than in healthy control (HC) samples. RNA-seq analysis identified a total of 1608 miRNAs, with 34 upregulated and 41 downregulated in LSCC samples relative to HC samples. Furthermore, qRT-PCR showed that miR-941 is significantly upregulated in LSCC serum exosomes, with this same trend seen in LSCC tissues and cells. Moreover, when examining miR-941 in cell lines, miR-941 overexpression promoted proliferation and invasion, while miR-941 knockdown inhibited cell proliferation and invasion. ROC curve analysis showed that miR-941 has an area under the curve (AUC) of 0.797 (95% CI = 0.676-0.918) for distinguishing LSCC patients from HCs. In conclusion, serum exosomal miR-941 may serve as a promising oncogenic biomarker for diagnosing LSCC, and has the potential as a therapeutic target.
Collapse
Affiliation(s)
- Qinli Zhao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hongjie Luo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Dongli Yang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yong Shi
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Hui Huangfu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, General Hospital of Shenzhen University, Shenzhen 518061, Guangdong, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001 Shanxi, P. R. China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P. R. China
| |
Collapse
|
188
|
Vafaei S, Roudi R, Madjd Z, Aref AR, Ebrahimi M. Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer. Cancer Cell Int 2020; 20:288. [PMID: 32655320 PMCID: PMC7339440 DOI: 10.1186/s12935-020-01389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly "liquid biopsy". Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. MAIN TEXT CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. CONCLUSION Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
189
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
190
|
Li X, Tang M. Exosomes released from M2 macrophages transfer miR-221-3p contributed to EOC progression through targeting CDKN1B. Cancer Med 2020; 9:5976-5988. [PMID: 32590883 PMCID: PMC7433826 DOI: 10.1002/cam4.3252] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
In contrast to other solid tumors within the abdominal cavity, epithelial ovarian cancers (EOCs) tend to undergo peritoneal metastasis. Thus, the peritoneal immune microenvironment is crucial for EOC progression. Previous reports indicate that the main immune cells within the peritoneum are M2 macrophages, specifically tumor‐associated macrophages (TAMs). The communication between TAMs and tumor cells plays an important role in EOC development, and exosomes, acting as micro–message carriers, occupy an essential position in this process. Microarray analyses of exosomes revealed that miR‐221‐3p was enriched in M2 exosomes. Furthermore, miR‐221‐3p suppressed cyclin‐dependent kinase inhibitor 1B (CDKN1B) directly. Thus, miR‐221‐3p contributed to the proliferation and G1/S transition of EOC cells. Additionally, low levels of CDKN1B were associated with EOC progression and poor prognosis. These observations suggest that TAMs‐derived exosomal miR‐221‐3p acts as a regulator of EOC progression by targeting CDKN1B. The results of this study confirm that certain exosomal microRNAs may provide novel diagnostic biomarkers and therapeutic targets for EOC.
Collapse
Affiliation(s)
- Xiaoduan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiling Tang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
191
|
Chen L, Chen Y, Feng YL, Zhu Y, Wang LQ, Hu S, Cheng P. Tumor circulome in the liquid biopsies for digestive tract cancer diagnosis and prognosis. World J Clin Cases 2020; 8:2066-2080. [PMID: 32548136 PMCID: PMC7281040 DOI: 10.12998/wjcc.v8.i11.2066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023] Open
Abstract
Digestive tract cancer is one of the main diseases that endanger human health. At present, the early diagnosis of digestive tract tumors mainly depends on serology, imaging, endoscopy, and so on. Although tissue specimens are the gold standard for cancer diagnosis, with the rapid development of precision medicine in cancer, the demand for dynamic monitoring of tumor molecular characteristics has increased. Liquid biopsy involves the collection of body fluids via non-invasive approaches, and analyzes biological markers such as circulating tumor cells, circulating tumor DNA, circulating cell-free DNA, microRNAs, and exosomes. In recent years, liquid biopsy has become more and more important in the diagnosis and prognosis of cancer in clinical practice due to its convenience, non-invasiveness, high specificity and it overcomes temporal-spatial heterogeneity. Therefore, this review summarizes the current evidence on liquid biopsies in digestive tract cancers in relation to diagnosis and prognosis.
Collapse
Affiliation(s)
- Long Chen
- Department of Radiotherapy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Yu Chen
- Department of Pediatric Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yuan-Ling Feng
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yan Zhu
- Department of Respiratory, Shulan Hospital, Hangzhou 310004, Zhejiang Province, China
| | - Li-Quan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310052, Zhejiang Province, China
| |
Collapse
|
192
|
Eslami-S Z, Cortés-Hernández LE, Cayrefourcq L, Alix-Panabières C. The Different Facets of Liquid Biopsy: A Kaleidoscopic View. Cold Spring Harb Perspect Med 2020; 10:a037333. [PMID: 31548226 PMCID: PMC7263091 DOI: 10.1101/cshperspect.a037333] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current limitations of cancer diagnosis and molecular profiling based on invasive tissue biopsies or clinical imaging have led to the development of the liquid biopsy field. Liquid biopsy includes the isolation of circulating tumor cells (CTCs), circulating free or tumor DNA (cfDNA or ctDNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from body fluid samples and their molecular characterization to identify biomarkers for early cancer diagnosis, prognosis, therapeutic prediction, and follow-up. These innovative biosources show similar features as the primary tumor from where they originated or interacted. This review describes the different technologies and methods used for processing these biosources as well as their main clinical applications with their advantages and limitations.
Collapse
Affiliation(s)
- Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| |
Collapse
|
193
|
Han F, Huang D, Huang X, Wang W, Yang S, Chen S. Exosomal microRNA-26b-5p down-regulates ATF2 to enhance radiosensitivity of lung adenocarcinoma cells. J Cell Mol Med 2020; 24:7730-7742. [PMID: 32476275 PMCID: PMC7348161 DOI: 10.1111/jcmm.15402] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022] Open
Abstract
Lung adenocarcinoma (LUAD), as the most common subtype of non‐small cell lung cancer, is responsible for more than 500 000 deaths worldwide annually. In this study, we identify a novel microRNA‐26b‐5p (miR‐26b‐5p) and elucidated its function on LUAD. The survival rate of parent LUAD cells and radiation‐resistant LUAD cells were determined using clonogenic survival assay. We overexpressed or inhibited miR‐26b‐5p in LUAD, and the correlation between activating transcription factor 2 (ATF2) and miR‐26b‐5p was determined using integrated bioinformatics analysis and dual‐luciferase reporter gene assay. Exosomes derived from A549 cell lines were then detected using Western blot assay, followed by co‐transfection with radiation‐resistant A549R cells. LUAD tissues and serum were collected, followed by miR‐26b‐5p relative expression quantification using RT‐qPCR. miR‐26b‐5p was identified as the most differentially expressed miRNA and was down‐regulated in LUAD. Radiation‐resistant cells were more resistant to X‐radiation compared with parent cells. miR‐26b‐5p overexpression and X‐irradiation led to enhanced radiosensitivity of LUAD cells. ATF2 was negatively targeted by miR‐26b‐5p. Exosomal miR‐26b‐5p derived from A549 cells could be transported to irradiation‐resistant LUAD cells and inhibit ATF2 expression to promote DNA damage, apoptosis and radiosensitivity of LUAD cells, which was verified using serum‐based miR‐26b‐5p. Our results show a regulatory network of miR‐26b‐5p on radiosensitivity of LUAD cells, which may serve as a non‐invasive biomarker for LUAD.
Collapse
Affiliation(s)
- Fushi Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Huang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinghong Huang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shusong Yang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
194
|
Xu L, Gimple RC, Lau WB, Lau B, Fei F, Shen Q, Liao X, Li Y, Wang W, He Y, Feng M, Bu H, Wang W, Zhou S. THE PRESENT AND FUTURE OF THE MASS SPECTROMETRY-BASED INVESTIGATION OF THE EXOSOME LANDSCAPE. MASS SPECTROMETRY REVIEWS 2020; 39:745-762. [PMID: 32469100 DOI: 10.1002/mas.21635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
Exosomes are critical intercellular messengers released upon the fusion of multivesicular bodies with the cellular plasma membrane that deliver their cargo in the form of extracellular vesicles. Containing numerous nonrandomly packed functional proteins, lipids, and RNAs, exosomes are vital intercellular messengers that contribute to the physiologic processes of the healthy organism. During the post-genome era, exosome-oriented proteomics have garnered great interest. Since its establishment, mass spectrometry (MS) has been indispensable for the field of proteomics research and has advanced rapidly to interrogate biological samples at a higher resolution and sensitivity. Driven by new methodologies and more advanced instrumentation, MS-based approaches have revolutionized our understanding of protein biology. As the access to online proteomics database platforms has blossomed, experimental data processing occurs with more speed and accuracy. Here, we review recent advances in the technological progress of MS-based proteomics and several new detection strategies for MS-based proteomics research. We also summarize the use of integrated online databases for proteomics research in the era of big data. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ryan C Gimple
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Bonnie Lau
- Department of Emergency Medicine, Kaiser Permanente Santa Clara Medical Center, Affiliate of Stanford University, Stanford, CA
| | - Fan Fei
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiuhong Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,School of Biological Sciences, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Xiaolin Liao
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hong Bu
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
195
|
Zhang Y, Liu J, Zhou L, Hao S, Ding Z, Xiao L, Zhou M. Exosomal Small RNA Sequencing Uncovers Dose-Specific MiRNA Markers for Ionizing Radiation Exposure. Dose Response 2020; 18:1559325820926735. [PMID: 32528236 PMCID: PMC7263154 DOI: 10.1177/1559325820926735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Acute exposure to ionizing radiation (IR) is hazardous or even lethal. Accurate estimation of the doses of IR exposure is critical to wisely determining the following treatments. Exosomes are nanoscale vesicles harboring biomolecules and mediate the communications among cells and tissues to influence biological processes. Screening out the microRNAs (miRNAs) contained in exosomes as biomarkers can be useful for estimating the IR exposure doses and exploring the correlation between these miRNAs and the occurrence of disease. Methods: We treated mice with 2.0, 6.5, and 8.0 Gy doses of IR and collected the mice sera at 0, 24, 48, and 72 hours after exposure. Then, the serum exosomes were isolated by ultracentrifuge and the small RNA portion was extracted for sequencing and the following bioinformatics analysis. Qualitative polymerase chain reaction was performed to validate the potential dose-specific markers. Results: Fifty-six miRNAs (31 upregulated, 25 downregulated) were differentially expressed after exposure of the above 3 IR doses and may act as common IR exposure miRNA markers. Bioinformatic analysis also identified several dosage-specific responsive miRNAs. Importantly, IR-induced miR-151-3p and miR-128-3p were significantly and stably increased at 24 hours in different mouse strains with distinct genetic background after exposed to 8.0 Gy of IR. Conclusion: Our study shows that miR-151-3p and miR-128-3p can be used as dose-specific biomarkers of 8.0 Gy IR exposure, which can be used to determine the exposure dose by detecting the amount of the 2 miRNAs in serum exosomes.
Collapse
Affiliation(s)
- Ying Zhang
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabin Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuai Hao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lin Xiao
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
196
|
Girigoswami K, Girigoswami A. A Review on the Role of Nanosensors in Detecting Cellular miRNA Expression in Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:12-26. [PMID: 32410567 DOI: 10.2174/1871530320666200515115723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of death across the globe. Early diagnosis with high sensitivity can prevent CRC progression, thereby reducing the condition of metastasis. OBJECTIVE The purpose of this review is (i) to discuss miRNA based biomarkers responsible for CRC, (ii) to brief on the different methods used for the detection of miRNA in CRC, (iii) to discuss different nanobiosensors so far found for the accurate detection of miRNAs in CRC using spectrophotometric detection, piezoelectric detection. METHODS The keywords for the review like micro RNA detection in inflammation, colorectal cancer, nanotechnology, were searched in PubMed and the relevant papers on the topics of miRNA related to CRC, nanotechnology-based biosensors for miRNA detection were then sorted and used appropriately for writing the review. RESULTS The review comprises a general introduction explaining the current scenario of CRC, the biomarkers used for the detection of different cancers, especially CRC and the importance of nanotechnology and a general scheme of a biosensor. The further subsections discuss the mechanism of CRC progression, the role of miRNA in CRC progression and different nanotechnology-based biosensors so far investigated for miRNA detection in other diseases, cancer and CRC. A scheme depicting miRNA detection using gold nanoparticles (AuNPs) is also illustrated. CONCLUSION This review may give insight into the different nanostructures, like AuNPs, quantum dots, silver nanoparticles, MoS2derived nanoparticles, etc., based approaches for miRNA detection using biosensors.
Collapse
Affiliation(s)
- Koyeli Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai, 603103, India
| |
Collapse
|
197
|
Song S, Shim MK, Lim S, Moon Y, Yang S, Kim J, Hong Y, Yoon HY, Kim IS, Hwang KY, Kim K. In Situ One-Step Fluorescence Labeling Strategy of Exosomes via Bioorthogonal Click Chemistry for Real-Time Exosome Tracking In Vitro and In Vivo. Bioconjug Chem 2020; 31:1562-1574. [PMID: 32369345 DOI: 10.1021/acs.bioconjchem.0c00216] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exosomes are cellular components with promising uses in cancer diagnostics and therapeutics, and their imaging and tracking are essential to study their biological properties. Herein, we report on an in situ one-step fluorescence labeling strategy for exosomes via bioorthogonal click chemistry. First, exosome donor cancer cells were treated with tetraacetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz) to generate unnatural azide groups (-N3) on their surface via metabolic glycoengineering. Then, the azide groups were labeled with near-infrared fluorescent dye-conjugated dibenzylcyclooctyne (DBCO-Cy5) via bioorthogonal click chemistry. After 2 days of incubation, the DBCO-Cy5-labeled exosomes (Cy5-Exo) were successfully secreted from the donor cancer cells and were isolated via classical ultracentrifugation, providing a high-yield of fluorescent dye-labeled exosomes. This in situ one-step bioorthogonal click chemistry offers improved labeling efficiency, biocompatibility, and imaging sensitivy compared to standard exosomes (ST-Exo), purified with classical ultracentrifugation or carbocyanine lipophilic dye (DiD)-labeled exosomes (DiD-Exo) in vitro. In particular, the Cy5-Exo were successfully taken up by A549 cells in a time-dependent manner, and they could escape from lysosome confinement, showing their possible use as a delivery carrier of therapeutic drugs or imaging agents. Finally, intraveneously injected Cy5-Exo were noninvasively tracked and imaged via near-infrared fluorescence (NIRF) imaging in tumor-bearing mice. This new fluorescence labeling strategy for natural exosomes may be useful to provide better understanding of their theranostic effects in many biomedical applications.
Collapse
Affiliation(s)
- Sukyung Song
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Biosystems & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yujeong Moon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Suah Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jinseong Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yeonsun Hong
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biosystems & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
198
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs in Colon and Rectal Cancer - Novel Biomarkers from Diagnosis to Therapy. Endocr Metab Immune Disord Drug Targets 2020; 20:1211-1226. [PMID: 32370729 DOI: 10.2174/1871530320666200506075219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a significant cause of tumor- related deaths worldwide. Traditional biomarkers, such as CEA and CA199, are not sensitive enough to provide useful information for early diagnosis and treatment and are rather used to track the clinical progression of the disease. There is growing evidence that microRNAs (miRNA) are potentially superior to traditional biomarkers as promising non-invasive biomarkers for the timely diagnosis and prediction of prognosis or treatment response in the management of CRC. In this review, the latest studies on the dysregulation of miRNAs expression in CRC and the potential for miRNAs to serve as biomarkers were collected. Given the limitations of miRNA, as discussed in this paper, its clinical applications as a diagnostic biomarker should be limited to use in combination with other biomarkers. Further research is necessary to elucidate the clinical applications of miRNA in therapy for CRC.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zi-Qiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
199
|
Abstract
Introduction: Ovarian carcinoma (OC) is the leading cause of death in women with gynecologic cancers. Most patients are diagnosed at an advanced stage with a low five-year survival rate of 20-30%. Discovering novel biomarkers for early detection and outcome prediction of OC is an urgent medical need. miRNAs, a group of small non-coding RNAs, play critical roles in multiple biologic processes and cancer pathogenesis.Areas covered: We provide an in-depth look at the functions of miRNAs in OC, particularly focusing on their roles in chemoresistance and metastasis in OC. We also discuss the biological and clinical significance of miRNAs in exosomes and expand on long non-coding RNA which acts as ceRNA of miRNAs.Expert opinion: miRNAs participate in many biological processes including proliferation, apoptosis, chemoresistance, metastasis, epithelial-mesenchymal transition, and cancer stem cell. They will substantially contribute to our understanding of OC pathogenesis. Given their resistance to the degradation of ribonucleases and availability in plasma exosomes, miRNAs may serve as emerging biomarkers for cancer detection, therapeutic assessment, and prognostic prediction. Being a messenger, exosomal miRNAs are crucial for the crosstalk between cancer cells and stromal cells in tumor microenvironment.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
200
|
Maeda K, Sasaki H, Ueda S, Miyamoto S, Terada S, Konishi H, Kogata Y, Ashihara K, Fujiwara S, Tanaka Y, Tanaka T, Hayashi M, Ito Y, Kondo Y, Ochiya T, Ohmichi M. Serum exosomal microRNA-34a as a potential biomarker in epithelial ovarian cancer. J Ovarian Res 2020; 13:47. [PMID: 32336272 PMCID: PMC7184688 DOI: 10.1186/s13048-020-00648-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Ovarian cancer (OC) is a leading cause of cancer-related death in women, and thus an accurate diagnosis of the predisposition and its early detection is necessary. The aims of this study were to determine whether serum exosomal microRNA-34a (miR-34a) in ovarian cancer could be used as a potential biomarker. Methods Exosomes from OC patients’ serum were collected, and exosomal miRNAs were extracted. The relative expression of miR-34a was calculated from 58 OC samples by quantitative real-time polymerase chain reaction. Results Serum exosomal miR-34a levels were significantly increased in early-stage OC patients compared with advanced-stage patients. Its levels were significantly lower in patients with lymph node metastasis than in those with no lymph node metastasis. Furthermore, its levels in the recurrence group were significantly lower than those in the recurrence-free group. Conclusions Serum exosomal miR-34a could be a potential biomarker for improving the diagnostic efficiency of OC.
Collapse
Affiliation(s)
- Kazuya Maeda
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan.
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Keisuke Ashihara
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Satoe Fujiwara
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yoshimichi Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| |
Collapse
|