151
|
Valieva ME, Gerasimova NS, Kudryashova KS, Kozlova AL, Kirpichnikov MP, Hu Q, Botuyan MV, Mer G, Feofanov AV, Studitsky VM. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by spFRET Microscopy. Cancers (Basel) 2017; 9:cancers9010003. [PMID: 28067802 PMCID: PMC5295774 DOI: 10.3390/cancers9010003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
A correct chromatin structure is important for cell viability and is tightly regulated by numerous factors. Human protein complex FACT (facilitates chromatin transcription) is an essential factor involved in chromatin transcription and cancer development. Here FACT-dependent changes in the structure of single nucleosomes were studied with single-particle Förster resonance energy transfer (spFRET) microscopy using nucleosomes labeled with a donor-acceptor pair of fluorophores, which were attached to the adjacent gyres of DNA near the contact between H2A-H2B dimers. Human FACT and its version without the C-terminal domain (CTD) and the high mobility group (HMG) domain of the structure-specific recognition protein 1 (SSRP1) subunit did not change the structure of the nucleosomes, while FACT without the acidic C-terminal domains of the suppressor of Ty 16 (Spt16) and the SSRP1 subunits caused nucleosome aggregation. Proteolytic removal of histone tails significantly disturbed the nucleosome structure, inducing partial unwrapping of nucleosomal DNA. Human FACT reduced DNA unwrapping and stabilized the structure of tailless nucleosomes. CTD and/or HMG domains of SSRP1 are required for this FACT activity. In contrast, previously it has been shown that yeast FACT unfolds (reorganizes) nucleosomes using the CTD domain of SSRP1-like Pol I-binding protein 3 subunit (Pob3). Thus, yeast and human FACT complexes likely utilize the same domains for nucleosome reorganization and stabilization, respectively, and these processes are mechanistically similar.
Collapse
Affiliation(s)
- Maria E Valieva
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
| | - Nadezhda S Gerasimova
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
| | - Kseniya S Kudryashova
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow 117997, Russia.
| | - Anastasia L Kozlova
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
| | - Mikhail P Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Alexey V Feofanov
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vasily M Studitsky
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia.
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
152
|
Fujisawa T, Filippakopoulos P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 2017; 18:246-262. [PMID: 28053347 DOI: 10.1038/nrm.2016.143] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.
Collapse
Affiliation(s)
- Takao Fujisawa
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford.,Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
153
|
Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 2017; 18:141-158. [PMID: 28053344 DOI: 10.1038/nrm.2016.159] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.
Collapse
Affiliation(s)
- Colin M Hammond
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
154
|
Chen L, Hu Y, He J, Chen J, Giesy JP, Xie P. Responses of the Proteome and Metabolome in Livers of Zebrafish Exposed Chronically to Environmentally Relevant Concentrations of Microcystin-LR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:596-607. [PMID: 28005350 DOI: 10.1021/acs.est.6b03990] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, for the first time, changes in expressions of proteins and profiles of metabolites in liver of the small, freshwater fish [Formula: see text] (zebrafish) were investigated after long-term exposure to environmentally relevant concentrations of microcystin-LR (MC-LR). Male zebrafish were exposed via water to 1 or 10 μg MC-LR/L for 90 days, and iTRAQ-based proteomics and 1H NMR-based metabolomics were employed. Histopathological observations showed that MC-LR caused damage to liver, and the effects were more pronounced in fish exposed to 10 μg MC-LR/L. Metabolomic analysis also showed alterations of hepatic function, which included changes in a number of metabolic pathways, including small molecules involved in energy, glucose, lipids, and amino acids metabolism. Concentrations of lactate were significantly greater in individuals exposed to MC-LR than in unexposed controls. This indicated a shift toward anaerobic metabolism, which was confirmed by impaired respiration in mitochondria. Proteomics revealed that MC-LR significantly influenced multiple proteins, including those involved in folding of proteins and metabolism. Endoplasmic reticulum stress contributed to disturbance of metabolism of lipids in liver of zebrafish exposed to MC-LR. Identification of proteins and metabolites in liver of zebrafish responsive to MC-LR provides insights into mechanisms of chronic toxicity of MCs.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yufei Hu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Biological Sciences, University of Hong Kong , Hong Kong SAR, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210089, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
155
|
Talbert PB, Henikoff S. Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 2016; 18:115-126. [PMID: 27924075 DOI: 10.1038/nrm.2016.148] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most histones are assembled into nucleosomes behind the replication fork to package newly synthesized DNA. By contrast, histone variants, which are encoded by separate genes, are typically incorporated throughout the cell cycle. Histone variants can profoundly change chromatin properties, which in turn affect DNA replication and repair, transcription, and chromosome packaging and segregation. Recent advances in the study of histone replacement have elucidated the dynamic processes by which particular histone variants become substrates of histone chaperones, ATP-dependent chromatin remodellers and histone-modifying enzymes. Here, we review histone variant dynamics and the effects of replacing DNA synthesis-coupled histones with their replication-independent variants on the chromatin landscape.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| |
Collapse
|
156
|
Segala G, Bennesch M, Pandey D, Hulo N, Picard D. Monoubiquitination of Histone H2B Blocks Eviction of Histone Variant H2A.Z from Inducible Enhancers. Mol Cell 2016; 64:334-346. [DOI: 10.1016/j.molcel.2016.08.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/22/2016] [Accepted: 08/26/2016] [Indexed: 11/28/2022]
|
157
|
Tsai CH, Chen YJ, Yu CJ, Tzeng SR, Wu IC, Kuo WH, Lin MC, Chan NL, Wu KJ, Teng SC. SMYD3-Mediated H2A.Z.1 Methylation Promotes Cell Cycle and Cancer Proliferation. Cancer Res 2016; 76:6043-6053. [PMID: 27569210 DOI: 10.1158/0008-5472.can-16-0500] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/06/2016] [Indexed: 11/16/2022]
Abstract
SMYD3 methyltransferase is nearly undetectable in normal human tissues but highly expressed in several cancers, including breast cancer, although its contributions to pathogenesis in this setting are unclear. Here we report that histone H2A.Z.1 is a substrate of SMYD3 that supports malignancy. SMYD3-mediated dimethylation of H2A.Z.1 at lysine 101 (H2A.Z.1K101me2) increased stability by preventing binding to the removal chaperone ANP32E and facilitating its interaction with histone H3. Moreover, a microarray analysis identified cyclin A1 as a target coregulated by SMYD3 and H2A.Z.1K101me2. The colocalization of SMYD3 and H2A.Z.1K101me2 at the promoter of cyclin A1 activated its expression and G1-S progression. Enforced expression of cyclin A1 in cells containing mutant H2A.Z.1 rescued tumor formation in a mouse model. Our findings suggest that SMYD3-mediated H2A.Z.1K101 dimethylation activates cyclin A1 expression and contributes to driving the proliferation of breast cancer cells. Cancer Res; 76(20); 6043-53. ©2016 AACR.
Collapse
Affiliation(s)
- Cheng-Hui Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Ju Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, Chang Gung University, Tao-Yuan, Taiwan. Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chen Wu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chieh Lin
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
158
|
Westermark PO. Linking Core Promoter Classes to Circadian Transcription. PLoS Genet 2016; 12:e1006231. [PMID: 27504829 PMCID: PMC4978467 DOI: 10.1371/journal.pgen.1006231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.
Collapse
Affiliation(s)
- Pål O. Westermark
- Institute for Theoretical Biology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
159
|
Kim S, Natesan S, Cornilescu G, Carlson S, Tonelli M, McClurg UL, Binda O, Robson CN, Markley JL, Balaz S, Glass KC. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3. J Biol Chem 2016; 291:18326-41. [PMID: 27281824 PMCID: PMC5000080 DOI: 10.1074/jbc.m115.690651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/23/2022] Open
Abstract
Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.
Collapse
Affiliation(s)
- Sophia Kim
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Senthil Natesan
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Samuel Carlson
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Urszula L McClurg
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Olivier Binda
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Craig N Robson
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Stefan Balaz
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Karen C Glass
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446,
| |
Collapse
|
160
|
Aguilar-Gurrieri C, Larabi A, Vinayachandran V, Patel NA, Yen K, Reja R, Ebong IO, Schoehn G, Robinson CV, Pugh BF, Panne D. Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly. EMBO J 2016; 35:1465-82. [PMID: 27225933 PMCID: PMC4931181 DOI: 10.15252/embj.201694105] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Nap1 is a histone chaperone involved in the nuclear import of H2A–H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A–H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1‐mediated H2A–H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H2A–H2B heterodimer. Oligomerization of the Nap1–H2A–H2B complex results in burial of surfaces required for deposition of H2A–H2B into nucleosomes. Chromatin immunoprecipitation‐exonuclease (ChIP‐exo) analysis shows that Nap1 is required for H2A–H2B deposition across the genome. Mutants that interfere with Nap1 oligomerization exhibit severe nucleosome assembly defects showing that oligomerization is essential for the chaperone function. These findings establish the molecular basis for Nap1‐mediated H2A–H2B deposition and nucleosome assembly.
Collapse
Affiliation(s)
- Carmen Aguilar-Gurrieri
- European Molecular Biology Laboratory, Grenoble, France Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Amédé Larabi
- European Molecular Biology Laboratory, Grenoble, France Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Nisha A Patel
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Kuangyu Yen
- Department of Cell Biology, Southern Medical University, Guangzhou, China
| | - Rohit Reja
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ima-O Ebong
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Guy Schoehn
- Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France Université Grenoble-Alpes, Grenoble, France Centre National de la Recherche Scientifique (CNRS) IBS, Grenoble, France CEA, IBS, Grenoble, France
| | | | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daniel Panne
- European Molecular Biology Laboratory, Grenoble, France Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, Grenoble, France
| |
Collapse
|
161
|
Solution structure of the isolated histone H2A-H2B heterodimer. Sci Rep 2016; 6:24999. [PMID: 27181506 PMCID: PMC4867618 DOI: 10.1038/srep24999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1-β1-α2-β2-α3-αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {(1)H}-(15)N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27-34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin.
Collapse
|
162
|
Konstantinov NK, Ulff-Møller CJ, Dimitrov S. Histone variants and melanoma: facts and hypotheses. Pigment Cell Melanoma Res 2016; 29:426-33. [DOI: 10.1111/pcmr.12467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Stefan Dimitrov
- Institut Albert Bonniot; U823, INSERM/Université Joseph Fourier; Grenoble Cedex 9 France
| |
Collapse
|
163
|
Gursoy-Yuzugullu O, House N, Price BD. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. J Mol Biol 2016; 428:1846-60. [PMID: 26625977 PMCID: PMC4860187 DOI: 10.1016/j.jmb.2015.11.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 01/07/2023]
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Nealia House
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| |
Collapse
|
164
|
Agarwal P, Miller KM. The nucleosome: orchestrating DNA damage signaling and repair within chromatin. Biochem Cell Biol 2016; 94:381-395. [PMID: 27240007 DOI: 10.1139/bcb-2016-0017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
Collapse
Affiliation(s)
- Poonam Agarwal
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA
| |
Collapse
|
165
|
Chou CC, Wang AHJ. Structural D/E-rich repeats play multiple roles especially in gene regulation through DNA/RNA mimicry. MOLECULAR BIOSYSTEMS 2016; 11:2144-51. [PMID: 26088262 DOI: 10.1039/c5mb00206k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aspartic acid and glutamic acid repeats in proteins exhibit strong negative charge distribution and they may play special biological roles. From 39,684 unique structural data in the RCSB Protein Data Bank (PDB), 173 structures were found to contain ordered D/E-rich repeat structures, and 57 of them were related to DNA/RNA functions. The frequency of occurrence of glutamic acid (36.90%) was higher than that of aspartic acid (27.02%). Glycine (2.38%), alanine (2.68%), valine (3.54%), leucine (5.57%), and isoleucine (3.34%), but not methionine (0.91%), were the most abundant hydrophobic residues. The available complex structures suggested that D/E-rich proteins might be involved in DNA mimicry, mRNA processing and regulation of the transcription complex. The region surrounding the D/E-rich repeat sequences plays important roles in the binding specificity toward the target proteins. The numbers and composition of aspartic acid and glutamic acid might also affect binding properties. Aspartic acid and glutamic acid are disorder-promoting residues in the intrinsically disorder proteins. Our findings suggest that the D/E-rich repeats are unique components of intrinsically disordered proteins, which are involved in the gene regulation and could serve as potential druggable fragments or drug targets.
Collapse
Affiliation(s)
- Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
166
|
Wenderski W, Maze I. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease. Bioessays 2016; 38:410-9. [PMID: 26990528 DOI: 10.1002/bies.201500171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease.
Collapse
Affiliation(s)
- Wendy Wenderski
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Ian Maze
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
167
|
Jeronimo C, Robert F. Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants. Bioessays 2016; 38:420-6. [PMID: 26990181 DOI: 10.1002/bies.201500122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histone variants are specialized histones which replace their canonical counterparts in specific nucleosomes. Together with histone post-translational modifications and DNA methylation, they contribute to the epigenome. Histone variants are incorporated at specific locations by the concerted action of histone chaperones and ATP-dependent chromatin remodelers. Recent studies have shown that the histone chaperone FACT plays key roles in preventing pervasive incorporation of two histone variants: H2A.Z and CenH3/CENP-A. In addition, Spt6, another histone chaperone, was also shown to be important for appropriate H2A.Z localization. FACT and Spt6 are both associated with elongating RNA polymerase II. Based on these two examples, we propose that the establishment and maintenance of histone variant genomic distributions depend on a transcription-coupled epigenome editing (or surveillance) function of histone chaperones.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
168
|
Liang X, Shan S, Pan L, Zhao J, Ranjan A, Wang F, Zhang Z, Huang Y, Feng H, Wei D, Huang L, Liu X, Zhong Q, Lou J, Li G, Wu C, Zhou Z. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1. Nat Struct Mol Biol 2016; 23:317-23. [PMID: 26974124 DOI: 10.1038/nsmb.3190] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/10/2016] [Indexed: 11/09/2022]
Abstract
Histone variant H2A.Z, a universal mark of dynamic nucleosomes flanking gene promoters and enhancers, is incorporated into chromatin by SRCAP (SWR1), an ATP-dependent, multicomponent chromatin-remodeling complex. The YL1 (Swc2) subunit of SRCAP (SWR1) plays an essential role in H2A.Z recognition, but how it achieves this has been unclear. Here, we report the crystal structure of the H2A.Z-binding domain of Drosophila melanogaster YL1 (dYL1-Z) in complex with an H2A.Z-H2B dimer at 1.9-Å resolution. The dYL1-Z domain adopts a new whip-like structure that wraps over H2A.Z-H2B, and preferential recognition is largely conferred by three residues in loop 2, the hyperacidic patch and the extended αC helix of H2A.Z. Importantly, this domain is essential for deposition of budding yeast H2A.Z in vivo and SRCAP (SWR1)-catalyzed histone H2A.Z replacement in vitro. Our studies distinguish YL1-Z from known H2A.Z chaperones and suggest a hierarchical mechanism based on increasing binding affinity facilitating H2A.Z transfer from SRCAP (SWR1) to the nucleosome.
Collapse
Affiliation(s)
- Xiaoping Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shan Shan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lu Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jicheng Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Anand Ranjan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Feng Wang
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingzi Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Li Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuehui Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Carl Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.,Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
169
|
Latrick CM, Marek M, Ouararhni K, Papin C, Stoll I, Ignatyeva M, Obri A, Ennifar E, Dimitrov S, Romier C, Hamiche A. Molecular basis and specificity of H2A.Z–H2B recognition and deposition by the histone chaperone YL1. Nat Struct Mol Biol 2016; 23:309-16. [DOI: 10.1038/nsmb.3189] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
170
|
Yang S, Zhou L, Reilly PT, Shen SM, He P, Zhu XN, Li CX, Wang LS, Mak TW, Chen GQ, Yu Y. ANP32B deficiency impairs proliferation and suppresses tumor progression by regulating AKT phosphorylation. Cell Death Dis 2016; 7:e2082. [PMID: 26844697 PMCID: PMC4849165 DOI: 10.1038/cddis.2016.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/31/2016] [Accepted: 01/04/2016] [Indexed: 01/10/2023]
Abstract
The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is reported to impact normal development, with Anp32b-knockout mice exhibiting smaller size and premature aging. However, its cellular and molecular mechanisms, especially its potential roles in tumorigenesis, remain largely unclear. Here, we utilize 'knockout' models, RNAi silencing and clinical cohorts to more closely investigate the role of this enigmatic factor in cell proliferation and cancer phenotypes. We report that, compared with Anp32b wild-type (Anp32b+/+) littermates, a broad panel of tissues in Anp32b-deficient (Anp32b−/−) mice are demonstrated hypoplasia. Anp32b−/− mouse embryo fibroblast cell has a slower proliferation, even after oncogenic immortalization. ANP32B knockdown also significantly inhibits in vitro and in vivo growth of cancer cells by inducing G1 arrest. In line with this, ANP32B protein has higher expression in malignant tissues than adjacent normal tissues from a cohort of breast cancer patients, and its expression level positively correlates with their histopathological grades. Moreover, ANP32B deficiency downregulates AKT phosphorylation, which involves its regulating effect on cell growth. Collectively, our findings suggest that ANP32B is an oncogene and a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- S Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - L Zhou
- Department of Surgery, Branch of Shanghai First People's Hospital, SJTU-SM, Shanghai, China
| | - P T Reilly
- Laboratory of Inflammation Biology, National Cancer Centre Singapore, Singapore, Singapore
| | - S-M Shen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - P He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - X-N Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - C-X Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - L-S Wang
- State Key Laboratory of Genetic Engineering, Minhang Hospital, Fudan University, Shanghai, China
| | - T W Mak
- Campbell Family Cancer Research Institute, University Health Network, Toronto, ON, Canada
| | - G-Q Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Y Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
171
|
Ng MK, Cheung P. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context. Biochem Cell Biol 2016. [DOI: 10.1139/bcb-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.
Collapse
Affiliation(s)
- Marlee K. Ng
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
| | - Peter Cheung
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, Life Sciences Building, Rm 331A, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
172
|
Histone variants: nuclear function and disease. Curr Opin Genet Dev 2016; 37:82-89. [PMID: 26826795 DOI: 10.1016/j.gde.2015.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/23/2022]
Abstract
Histone variants have emerged as important contributors to the regulation of chromatin structure and therefore of almost all DNA-based processes. Hence, these specialized proteins play important roles in transcriptional regulation, cell cycle progression, DNA repair, chromatin stability, chromosome segregation and apoptosis. Due to their evident biological significance, it is not surprising that mutations or the deregulation of their expression levels can have severe implications for cellular functions that ultimately might contribute to or even drive disease development, most notably cancer. Besides the histones themselves, their respective chaperone/remodeling complexes needed for precise variant chromatin deposition, are consequently frequent targets in neoplasms and diverse diseases. In this review, we briefly summarize current understanding on the function of human/mammalian histone variants and their regulatory networks and highlight their roles in cancer development.
Collapse
|
173
|
Shaytan AK, Armeev GA, Goncearenco A, Zhurkin VB, Landsman D, Panchenko AR. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. J Mol Biol 2015; 428:221-237. [PMID: 26699921 DOI: 10.1016/j.jmb.2015.12.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Grigoriy A Armeev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
174
|
Pradhan SK, Su T, Yen L, Jacquet K, Huang C, Côté J, Kurdistani SK, Carey MF. EP400 Deposits H3.3 into Promoters and Enhancers during Gene Activation. Mol Cell 2015; 61:27-38. [PMID: 26669263 DOI: 10.1016/j.molcel.2015.10.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
Gene activation in metazoans is accompanied by the presence of histone variants H2AZ and H3.3 within promoters and enhancers. It is not known, however, what protein deposits H3.3 into chromatin or whether variant chromatin plays a direct role in gene activation. Here we show that chromatin containing acetylated H2AZ and H3.3 stimulates transcription in vitro. Analysis of the Pol II pre-initiation complex on immobilized chromatin templates revealed that the E1A binding protein p400 (EP400) was bound preferentially to and required for transcription stimulation by acetylated double-variant chromatin. EP400 also stimulated H2AZ/H3.3 deposition into promoters and enhancers and influenced transcription in vivo at a step downstream of the Mediator complex. EP400 efficiently exchanged recombinant histones H2A and H3.1 with H2AZ and H3.3, respectively, in a chromatin- and ATP-stimulated manner in vitro. Our data reveal that EP400 deposits H3.3 into chromatin alongside H2AZ and contributes to gene regulation after PIC assembly.
Collapse
Affiliation(s)
- Suman K Pradhan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Trent Su
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Linda Yen
- The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA
| | - Karine Jacquet
- Laval University Cancer Research Center, CHU de Québec Research Center-Oncology, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC G1R 2J6, Canada
| | - Chengyang Huang
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec Research Center-Oncology, Hôtel-Dieu de Québec, 9 McMahon Street, Quebec City, QC G1R 2J6, Canada
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA; The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, 351A Biomedical Sciences Research Building, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA; The Molecular Biology Institute, UCLA, Paul D. Boyer Hall, 611 Charles E. Young Drive South, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
175
|
Gaume X, Torres-Padilla ME. Regulation of Reprogramming and Cellular Plasticity through Histone Exchange and Histone Variant Incorporation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:165-175. [PMID: 26582788 DOI: 10.1101/sqb.2015.80.027458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Early embryonic cells are totipotent and can generate a complete organism including embryonic and extraembryonic tissues. After division, cells lose their potency as they move toward a pluripotent state characterized by decreased cellular plasticity. During this transition, drastic changes in transcriptional programs occur in parallel with global chromatin reorganization. The epigenetic mechanisms governing the changes in chromatin signatures during the transitions of cellular plasticity states are starting to be understood. Among these mechanisms, recent studies highlight the importance of histone variant incorporation and/or eviction from chromatin in the regulation of the chromatin state that is linked to cellular potential. In this review, we discuss the role of histone variants during in vivo and in vitro reprogramming events. These results sustain the hypothesis that histone variants and histone exchange are key actors in the establishment of cellular plasticity programs.
Collapse
Affiliation(s)
- Xavier Gaume
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 Illkirch, CU de Strasbourg, France
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, U de S, F-67404 Illkirch, CU de Strasbourg, France
| |
Collapse
|
176
|
Leo VI, Bunte RM, Reilly PT. BALB/c-congenic ANP32B-deficient mice reveal a modifying locus that determines viability. Exp Anim 2015; 65:53-62. [PMID: 26558540 PMCID: PMC4783651 DOI: 10.1538/expanim.15-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We previously found that deletion of the multifunctional factor ANP32B (a.k.a. SSP29,
APRIL, PAL31, PHAPI2) resulted in a severe but strain-specific defect resulting in
perinatal lethality. The difficulty in generating an adult cohort of ANP32B-deficient
animals limited our ability to examine adult phenotypes, particularly cancer-related
phenotypes. We bred the Anp32b-null allele into the BALB/c and FVB/N
genetic background. The BALB/c, but not the FVB/N, background provided sufficient
frequency of adult Anp32b-null (Anp32b−/−)
animals. From these, we found no apparent oncogenic role for this protein in mammary
tumorigenesis contrary to what was predicted based on human data. We also found runtism,
pathologies in various organ systems, and an unusual clinical chemistry signature in the
adult Anp32b−/− mice. Intriguingly, genome-wide
single-nucleotide polymorphism analysis suggested that our colony retained an unlinked
C57BL/6J locus at high frequency. Breeding this locus to homozygosity demonstrated that it
had a strong effect on Anp32b−/− viability indicating that
this locus contains a modifier gene of Anp32b with respect to
development. This suggests a functionally important genetic interaction with one of a
limited number of candidate genes, foremost among them being the variant histone gene
H2afv. Using congenic breeding strategies, we have generated a viable
ANP32B-deficient animal in a mostly pure background. We have used this animal to reliably
exclude mouse ANP32B as an important oncogene in mammary tumorigenesis. Our further
phenotyping strengthens the evidence that ANP32B is a widespread regulator of gene
expression. These studies may also impact the choice of subsequent groups with respect to
congenic breeding versus de novo zygote targeting strategies for
background analyses in mouse genetics.
Collapse
Affiliation(s)
- Vonny I Leo
- Laboratory of Inflammation Biology, National Cancer Centre Singapore
| | | | | |
Collapse
|
177
|
Novel genes associated with lymph node metastasis in triple negative breast cancer. Sci Rep 2015; 5:15832. [PMID: 26537449 PMCID: PMC4633580 DOI: 10.1038/srep15832] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and no targeted treatments. TNBC patients are more likely to develop metastases and relapse than patients with other breast cancer subtypes. We aimed to identify TNBC-specific genes and genes associated with lymph node metastasis, one of the first signs of metastatic spread. A total of 33 TNBCs were used; 17 of which had matched normal adjacent tissues available, and 15 with matched lymph node metastases. Gene expression microarray analysis was used to reveal genes that were differentially expressed between these groups. We identified and validated 66 genes that are significantly altered when comparing tumours to normal adjacent samples. Further, we identified 83 genes that are associated with lymph node metastasis and correlated these with miRNA-expression. Pathway analysis revealed their involvement in DNA repair, recombination and cell death, chromosomal instability and other known cancer-related pathways. Finally, four genes were identified that were specific for TNBC, of which one was associated with overall survival. This study has identified novel genes involved in LN metastases in TNBC and genes that are TNBC specific that may be used as treatment targets or prognostic indicators in the future.
Collapse
|
178
|
Mattiroli F, D'Arcy S, Luger K. The right place at the right time: chaperoning core histone variants. EMBO Rep 2015; 16:1454-66. [PMID: 26459557 DOI: 10.15252/embr.201540840] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Sheena D'Arcy
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| | - Karolin Luger
- Department of Molecular and Radiobiological Sciences, Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
179
|
FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs. Mol Cell 2015; 60:294-306. [PMID: 26455391 DOI: 10.1016/j.molcel.2015.09.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/31/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022]
Abstract
FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.
Collapse
|
180
|
|
181
|
Arenas-Mena C, Coffman JA. Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals. Dev Dyn 2015; 244:1193-201. [PMID: 26173445 PMCID: PMC4705838 DOI: 10.1002/dvdy.24305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency.
Collapse
Affiliation(s)
- Cesar Arenas-Mena
- Department of Biology, College of Staten Island and Graduate Center, The City University of New York (CUNY), Staten Island, New York
| | | |
Collapse
|
182
|
Melters DP, Nye J, Zhao H, Dalal Y. Chromatin Dynamics in Vivo: A Game of Musical Chairs. Genes (Basel) 2015; 6:751-76. [PMID: 26262644 PMCID: PMC4584328 DOI: 10.3390/genes6030751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/30/2023] Open
Abstract
Histones are a major component of chromatin, the nucleoprotein complex fundamental to regulating transcription, facilitating cell division, and maintaining genome integrity in almost all eukaryotes. In addition to canonical, replication-dependent histones, replication-independent histone variants exist in most eukaryotes. In recent years, steady progress has been made in understanding how histone variants assemble, their involvement in development, mitosis, transcription, and genome repair. In this review, we will focus on the localization of the major histone variants H3.3, CENP-A, H2A.Z, and macroH2A, as well as how these variants have evolved, their structural differences, and their functional significance in vivo.
Collapse
Affiliation(s)
- Daniël P Melters
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| | - Jonathan Nye
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| | - Haiqing Zhao
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA.
| | - Yamini Dalal
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
183
|
Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat Cell Biol 2015; 17:1158-68. [PMID: 26237645 PMCID: PMC4800990 DOI: 10.1038/ncb3209] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/19/2015] [Indexed: 02/05/2023]
Abstract
Histone methylation regulates DNA repair. However, the mechanisms that underlie the regulation of histone methylation during this repair remain to be further defined. Here, we show that exposure to ionizing radiation induces DNA-PK-dependent phosphorylation of nuclear fumarase at Thr 236, which leads to an interaction between fumarase and the histone variant H2A.Z at DNA double-strand break (DSB) regions. Locally generated fumarate inhibits KDM2B histone demethylase activity, resulting in enhanced dimethylation of histone H3 Lys 36; in turn, this increases the accumulation of the Ku70-containing DNA-PK at DSB regions for non-homologous end-joining DNA repair and cell survival. These findings reveal a feedback mechanism that underlies DNA-PK regulation by chromatin-associated fumarase and an instrumental function of fumarase in regulating histone H3 methylation and DNA repair.
Collapse
|
184
|
Alatwi HE, Downs JA. Removal of H2A.Z by INO80 promotes homologous recombination. EMBO Rep 2015; 16:986-94. [PMID: 26142279 PMCID: PMC4552491 DOI: 10.15252/embr.201540330] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/09/2022] Open
Abstract
The mammalian INO80 remodelling complex facilitates homologous recombination (HR), but the mechanism by which it does this is unclear. Budding yeast INO80 can remove H2A.Z/H2B dimers from chromatin and replace them with H2A/H2B dimers. H2A.Z is actively incorporated at sites of damage in mammalian cells, raising the possibility that H2A.Z may need to be subsequently removed for resolution of repair. Here, we show that H2A.Z in human cells is indeed rapidly removed from chromatin flanking DNA damage by INO80. We also report that the histone chaperone ANP32E, which is implicated in removing H2AZ from chromatin, similarly promotes HR and appears to work on the same pathway as INO80 in these assays. Importantly, we demonstrate that the HR defect in cells depleted of INO80 or ANP32E can be rescued by H2A.Z co-depletion, suggesting that H2A.Z removal from chromatin is the primary function of INO80 and ANP32E in promoting homologous recombination.
Collapse
Affiliation(s)
- Hanan E Alatwi
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| | - Jessica A Downs
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
185
|
Kawashima T, Lorković ZJ, Nishihama R, Ishizaki K, Axelsson E, Yelagandula R, Kohchi T, Berger F. Diversification of histone H2A variants during plant evolution. TRENDS IN PLANT SCIENCE 2015; 20:419-25. [PMID: 25983206 DOI: 10.1016/j.tplants.2015.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 05/19/2023]
Abstract
Among eukaryotes, the four core histones show an extremely high conservation of their structure and form nucleosomes that compact, protect, and regulate access to genetic information. Nevertheless, in multicellular eukaryotes the two families, histone H2A and histone H3, have diversified significantly in key residues. We present a phylogenetic analysis across the green plant lineage that reveals an early diversification of the H2A family in unicellular green algae and remarkable expansions of H2A variants in flowering plants. We define motifs and domains that differentiate plant H2A proteins into distinct variant classes. In non-flowering land plants, we identify a new class of H2A variants and propose their possible role in the emergence of the H2A.W variant class in flowering plants.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Zdravko J Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Frederic Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria.
| |
Collapse
|
186
|
Jarillo JA, Piñeiro M. H2A.Z mediates different aspects of chromatin function and modulates flowering responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:96-109. [PMID: 25943140 DOI: 10.1111/tpj.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Eukaryotic organisms have canonical histones and a number of histone variants that perform specialized functions and confer particular structural properties to the nucleosomes that contain them. The histone H2A family comprises several variants, with H2A.Z being the most evolutionarily conserved. This variant is essential in eukaryotes and has emerged as a key player in chromatin function, performing an essential role in gene transcription and genome stability. During recent years, biochemical, genetic and genomic studies have begun to uncover the role of several ATP-dependent chromatin-remodeling complexes in H2A.Z deposition and removal. These ATPase complexes are widely conserved from yeast to mammals. In Arabidopsis there are homologs for most of the subunits of these complexes, and their functions are just beginning to be unveiled. In this review, we discuss the major contributions made in relation to the biology of the H2A.Z in plants, and more specifically concerning the function of this histone variant in the transition from vegetative to reproductive development. Recent advances in the understanding of the molecular mechanisms underlying the H2A.Z-mediated modulation of the floral transition, and thermosensory flowering responses in particular, are discussed. The emerging picture shows that plants contain chromatin-remodeling complexes related to those involved in modulating the dynamics of H2A.Z in other eukaryotes, but their precise biochemical nature remains elusive.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| |
Collapse
|
187
|
Vardabasso C, Gaspar-Maia A, Hasson D, Pünzeler S, Valle-Garcia D, Straub T, Keilhauer EC, Strub T, Dong J, Panda T, Chung CY, Yao JL, Singh R, Segura MF, Fontanals-Cirera B, Verma A, Mann M, Hernando E, Hake SB, Bernstein E. Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Mol Cell 2015; 59:75-88. [PMID: 26051178 DOI: 10.1016/j.molcel.2015.05.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/24/2015] [Accepted: 04/30/2015] [Indexed: 01/19/2023]
Abstract
Histone variants are emerging as key regulatory molecules in cancer. We report a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z-interacting protein, levels of which are also elevated in melanoma. We further demonstrate that H2A.Z.2-regulated genes are bound by BRD2 and E2F1 in an H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandre Gaspar-Maia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sebastian Pünzeler
- Center for Integrated Protein Science Munich and Department of Molecular Biology, Adolf-Butenandt Institute, Ludwig-Maximilians University, 80336 Munich, Germany
| | - David Valle-Garcia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Molecular Genetics Department, Institute for Cellular Physiology, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Tobias Straub
- Center for Integrated Protein Science Munich and Department of Molecular Biology, Adolf-Butenandt Institute, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Eva C Keilhauer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Thomas Strub
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna Dong
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taniya Panda
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chi-Yeh Chung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan L Yao
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajendra Singh
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel F Segura
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY 10016, USA
| | - Barbara Fontanals-Cirera
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY 10016, USA
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Eva Hernando
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sandra B Hake
- Center for Integrated Protein Science Munich and Department of Molecular Biology, Adolf-Butenandt Institute, Ludwig-Maximilians University, 80336 Munich, Germany.
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
188
|
Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proc Natl Acad Sci U S A 2015; 112:7507-12. [PMID: 26034280 DOI: 10.1073/pnas.1504868112] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4-Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair.
Collapse
|
189
|
The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations. Mol Cell 2015; 58:1113-23. [PMID: 25959393 DOI: 10.1016/j.molcel.2015.03.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022]
Abstract
H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here we provide genomic and biochemical evidence that the RNA polymerase II (RNA Pol II) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Therefore, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters that otherwise may license or promote cryptic transcription.
Collapse
|
190
|
Dunn J, McCuaig R, Tu WJ, Hardy K, Rao S. Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes. BMC Immunol 2015; 16:27. [PMID: 25943594 PMCID: PMC4422045 DOI: 10.1186/s12865-015-0089-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Background Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to “remember” previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an antigen, previously activated genes are transcribed more rapidly and robustly in memory T cells compared to their naïve counterparts. The ability for cells to remember past transcriptional responses is termed “adaptive transcriptional memory”. Results Recent global epigenome studies suggest that epigenetic mechanisms are central to establishing and maintaining transcriptional memory, with elegant studies in model organisms providing tantalizing insights into the epigenetic programs that contribute to adaptive immunity. These epigenetic mechanisms are diverse, and include not only classical acetylation and methylation events, but also exciting and less well-known mechanisms involving histone structure, upstream signalling pathways, and nuclear localisation of genomic regions. Conclusions Current global health challenges in areas such as tuberculosis and influenza demand not only more effective and safer vaccines, but also vaccines for a wider range of health priorities, including HIV, cancer, and emerging pathogens such as Ebola. Understanding the multi-layered epigenetic mechanisms that underpin the rapid recall responses of memory T cells following reactivation is a critical component of this development pathway.
Collapse
Affiliation(s)
- Jennifer Dunn
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Robert McCuaig
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Wen Juan Tu
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Kristine Hardy
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| | - Sudha Rao
- Faculty of Education, Science, Technology & Maths, University of Canberra, Canberra, ACT, Australia.
| |
Collapse
|
191
|
Monteiro FL, Baptista T, Amado F, Vitorino R, Jerónimo C, Helguero LA. Expression and functionality of histone H2A variants in cancer. Oncotarget 2015; 5:3428-43. [PMID: 25003966 PMCID: PMC4116493 DOI: 10.18632/oncotarget.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regulation of gene expression includes the replacement of canonical histones for non-allelic histone variants, as well as their multiple targeting by postranslational modifications. H2A variants are highly conserved between species suggesting they execute important functions that cannot be accomplished by canonical histones. Altered expression of many H2A variants is associated to cancer. MacroH2A variants are enriched in heterocromatic foci and are necessary for chromatin condensation. MacroH2A1.1 and macroH2A1.2 are two mutually exclusive isoforms. MacroH2A1.1 and macroH2A2 inhibit proliferation and are associated with better cancer prognosis; while macroH2A1.2 is associated to cancer progression. H2AX variant functions as a sensor of DNA damage and defines the cellular response towards DNA repair or apoptosis; therefore, screening approaches and therapeutic options targeting H2AX have been proposed. H2A.Z is enriched in euchromatin, acting as a proto-oncogene with established roles in hormone responsive cancers and overexpressed in endocrine-resistant disease. Other H2A family members have also been found altered in cancer, but their function remains unknown. Substantial progress has been made to understand histone H2A variants, their contribution to normal cellular function and to cancer development and progression. Yet, implementation of high resolution mass spectrometry is needed to further our knowledge on highly homologous H2A variants expression and function.
Collapse
Affiliation(s)
- Fátima Liliana Monteiro
- Mass Specrometry Center, Organic Chemistry and Natural Products Unit (QOPNA), Department of Chemistry, Universidade de Aveiro., Aveiro, Portugal
| | | | | | | | | | - Luisa A Helguero
- Mass Specrometry Center, Organic Chemistry and Natural Products Unit (QOPNA), Dep. of Chemistry, Universidade de Aveiro., Aveiro, Portugal
| |
Collapse
|
192
|
Perdigão-Henriques R, Petrocca F, Altschuler G, Thomas MP, Le MTN, Tan SM, Hide W, Lieberman J. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 2015; 35:158-72. [PMID: 25798844 DOI: 10.1038/onc.2015.69] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
The miR-200 family promotes the epithelial state by suppressing the Zeb1/Zeb2 epithelial gene transcriptional repressors. To identify other miR-200-regulated genes, we isolated mRNAs bound to transfected biotinylated miR-200c in mouse breast cancer cells. In all, 520 mRNAs were significantly enriched in miR-200c binding at least twofold. Putative miR-200-regulated genes included Zeb2, enriched 3.5-fold in the pull down. However, Zeb2 knockdown does not fully recapitulate miR-200c overexpression, suggesting that regulating other miR-200 targets contributes to miR-200's enhancement of epithelial gene expression. Candidate genes were highly enriched for miR-200c seed pairing in their 3'UTR and coding sequence and for genes that were downregulated by miR-200c overexpression. Epidermal growth factor receptor and downstream MAPK signaling pathways were the most enriched pathways. Genes whose products mediate transforming growth factor (TGF)-β signaling were also significantly overrepresented, and miR-200 counteracted the suppressive effects of TGF-β and bone morphogenic protein 2 (BMP-2) on epithelial gene expression. miR-200c regulated the 3'UTRs of 12 of 14 putative miR-200c-binding mRNAs tested. The extent of mRNA binding to miR-200c strongly correlated with gene suppression. Twelve targets of miR-200c (Crtap, Fhod1, Smad2, Map3k1, Tob1, Ywhag/14-3-3γ, Ywhab/14-3-3β, Smad5, Zfp36, Xbp1, Mapk12, Snail1) were experimentally validated by identifying their 3'UTR miR-200 recognition elements. Smad2 and Smad5 form a complex with Zeb2 and Ywhab/14-3-3β and Ywhag/14-3-3γ form a complex with Snail1. These complexes that repress transcription assemble on epithelial gene promoters. miR-200 overexpression induced RNA polymerase II localization and reduced Zeb2 and Snail1 binding to epithelial gene promoters. Expression of miR-200-resistant Smad5 modestly, but significantly, reduced epithelial gene induction by miR-200. miR-200 expression and Zeb2 knockdown are known to inhibit cell invasion in in vitro assays. Knockdown of each of three novel miR-200 target genes identified here, Smad5, Ywhag and Crtap, also profoundly suppressed cell invasion. Thus, miR-200 suppresses TGF-β/BMP signaling, promotes epithelial gene expression and suppresses cell invasion by regulating a network of genes.
Collapse
Affiliation(s)
- R Perdigão-Henriques
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
| | - F Petrocca
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - G Altschuler
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - M P Thomas
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - M T N Le
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - S M Tan
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - W Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
193
|
Chemical “Diversity” of Chromatin Through Histone Variants and Histone Modifications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
194
|
Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 2015; 16:178-89. [DOI: 10.1038/nrm3941] [Citation(s) in RCA: 650] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
195
|
Gerhold CB, Hauer MH, Gasser SM. INO80-C and SWR-C: Guardians of the Genome. J Mol Biol 2015; 427:637-51. [DOI: 10.1016/j.jmb.2014.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
|
196
|
Subramanian* V, Fields* PA, Boyer LA. H2A.Z: a molecular rheostat for transcriptional control. F1000PRIME REPORTS 2015; 7:01. [PMID: 25705384 PMCID: PMC4311278 DOI: 10.12703/p7-01] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The replacement of nucleosomal H2A with the histone variant H2A.Z is critical for regulating DNA-mediated processes across eukaryotes and for early development of multicellular organisms. How this variant performs these seemingly diverse roles has remained largely enigmatic. Here, we discuss recent mechanistic insights that have begun to reveal how H2A.Z functions as a molecular rheostat for gene control. We focus on specific examples in metazoans as a model for understanding how H2A.Z integrates information from histone post-translational modifications, other histone variants, and transcription factors (TFs) to regulate proper induction of gene expression programs in response to cellular cues. Finally, we propose a general model of how H2A.Z incorporation regulates chromatin states in diverse processes.
Collapse
|
197
|
Transcribing through the nucleosome. Trends Biochem Sci 2014; 39:577-86. [DOI: 10.1016/j.tibs.2014.10.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
|
198
|
|
199
|
Ivanauskiene K, Delbarre E, McGhie JD, Küntziger T, Wong LH, Collas P. The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Res 2014; 24:1584-94. [PMID: 25049225 PMCID: PMC4199371 DOI: 10.1101/gr.173831.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 12/24/2022]
Abstract
Histone variant H3.3 is deposited in chromatin at active sites, telomeres, and pericentric heterochromatin by distinct chaperones, but the mechanisms of regulation and coordination of chaperone-mediated H3.3 loading remain largely unknown. We show here that the chromatin-associated oncoprotein DEK regulates differential HIRA- and DAAX/ATRX-dependent distribution of H3.3 on chromosomes in somatic cells and embryonic stem cells. Live cell imaging studies show that nonnucleosomal H3.3 normally destined to PML nuclear bodies is re-routed to chromatin after depletion of DEK. This results in HIRA-dependent widespread chromatin deposition of H3.3 and H3.3 incorporation in the foci of heterochromatin in a process requiring the DAXX/ATRX complex. In embryonic stem cells, loss of DEK leads to displacement of PML bodies and ATRX from telomeres, redistribution of H3.3 from telomeres to chromosome arms and pericentric heterochromatin, induction of a fragile telomere phenotype, and telomere dysfunction. Our results indicate that DEK is required for proper loading of ATRX and H3.3 on telomeres and for telomeric chromatin architecture. We propose that DEK acts as a "gatekeeper" of chromatin, controlling chromatin integrity by restricting broad access to H3.3 by dedicated chaperones. Our results also suggest that telomere stability relies on mechanisms ensuring proper histone supply and routing.
Collapse
Affiliation(s)
- Kristina Ivanauskiene
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Erwan Delbarre
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - James D McGhie
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Küntziger
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway
| | - Lee H Wong
- Epigenetics and Chromatin (EpiC) Research, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Philippe Collas
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, and Norwegian Center for Stem Cell Research, University of Oslo, 0317 Oslo, Norway;
| |
Collapse
|
200
|
Reilly PT, Yu Y, Hamiche A, Wang L. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. Bioessays 2014; 36:1062-71. [PMID: 25156960 PMCID: PMC4270211 DOI: 10.1002/bies.201400058] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities.
Collapse
Affiliation(s)
- Patrick T Reilly
- Laboratory of Inflammation Biology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|