151
|
Gemble S, Basto R. CHRONOCRISIS: When Cell Cycle Asynchrony Generates DNA Damage in Polyploid Cells. Bioessays 2020; 42:e2000105. [PMID: 32885500 DOI: 10.1002/bies.202000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Polyploid cells contain multiple copies of all chromosomes. Polyploidization can be developmentally programmed to sustain tissue barrier function or to increase metabolic potential and cell size. Programmed polyploidy is normally associated with terminal differentiation and poor proliferation capacity. Conversely, non-programmed polyploidy can give rise to cells that retain the ability to proliferate. This can fuel rapid genome rearrangements and lead to diseases like cancer. Here, the mechanisms that generate polyploidy are reviewed and the possible challenges upon polyploid cell division are discussed. The discussion is framed around a recent study showing that asynchronous cell cycle progression (an event that is named "chronocrisis") of different nuclei from a polyploid cell can generate DNA damage at mitotic entry. The potential mechanisms explaining how mitosis in non-programmed polyploid cells can generate abnormal karyotypes and genetic instability are highlighted.
Collapse
Affiliation(s)
- Simon Gemble
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR144, 12 rue Lhomond, Paris, 75005, France
| |
Collapse
|
152
|
Rainey MD, Bennett D, O’Dea R, Zanchetta ME, Voisin M, Seoighe C, Santocanale C. ATR Restrains DNA Synthesis and Mitotic Catastrophe in Response to CDC7 Inhibition. Cell Rep 2020; 32:108096. [DOI: 10.1016/j.celrep.2020.108096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
|
153
|
Shao X, Joergensen AM, Howlett NG, Lisby M, Oestergaard VH. A distinct role for recombination repair factors in an early cellular response to transcription-replication conflicts. Nucleic Acids Res 2020; 48:5467-5484. [PMID: 32329774 PMCID: PMC7261159 DOI: 10.1093/nar/gkaa268] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription-replication (T-R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T-R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T-R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T-R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication.
Collapse
Affiliation(s)
- Xin Shao
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | | | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| |
Collapse
|
154
|
Finardi A, Massari LF, Visintin R. Anaphase Bridges: Not All Natural Fibers Are Healthy. Genes (Basel) 2020; 11:genes11080902. [PMID: 32784550 PMCID: PMC7464157 DOI: 10.3390/genes11080902] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
At each round of cell division, the DNA must be correctly duplicated and distributed between the two daughter cells to maintain genome identity. In order to achieve proper chromosome replication and segregation, sister chromatids must be recognized as such and kept together until their separation. This process of cohesion is mainly achieved through proteinaceous linkages of cohesin complexes, which are loaded on the sister chromatids as they are generated during S phase. Cohesion between sister chromatids must be fully removed at anaphase to allow chromosome segregation. Other (non-proteinaceous) sources of cohesion between sister chromatids consist of DNA linkages or sister chromatid intertwines. DNA linkages are a natural consequence of DNA replication, but must be timely resolved before chromosome segregation to avoid the arising of DNA lesions and genome instability, a hallmark of cancer development. As complete resolution of sister chromatid intertwines only occurs during chromosome segregation, it is not clear whether DNA linkages that persist in mitosis are simply an unwanted leftover or whether they have a functional role. In this review, we provide an overview of DNA linkages between sister chromatids, from their origin to their resolution, and we discuss the consequences of a failure in their detection and processing and speculate on their potential role.
Collapse
Affiliation(s)
- Alice Finardi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
| | - Lucia F. Massari
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Rosella Visintin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Correspondence: ; Tel.: +39-02-5748-9859; Fax: +39-02-9437-5991
| |
Collapse
|
155
|
Nozawa RS, Yamamoto T, Takahashi M, Tachiwana H, Maruyama R, Hirota T, Saitoh N. Nuclear microenvironment in cancer: Control through liquid-liquid phase separation. Cancer Sci 2020; 111:3155-3163. [PMID: 32594560 PMCID: PMC7469853 DOI: 10.1111/cas.14551] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic nucleus is not a homogenous single‐spaced but a highly compartmentalized organelle, partitioned by various types of membraneless structures, including nucleoli, PML bodies, paraspeckles, DNA damage foci and RNA clouds. Over the past few decades, these nuclear structures have been implicated in biological reactions such as gene regulation and DNA damage response and repair, and are thought to provide “microenvironments,” facilitating these reactions in the nucleus. Notably, an altered morphology of these nuclear structures is found in many cancers, which may relate to so‐called “nuclear atypia” in histological examinations. While the diagnostic significance of nuclear atypia has been established, its nature has remained largely enigmatic and awaits characterization. Here, we review the emerging biophysical principles that govern biomolecular condensate assembly in the nucleus, namely, liquid‐liquid phase separation (LLPS), to investigate the nature of the nuclear microenvironment. In the nucleus, LLPS is typically driven by multivalent interactions between proteins with intrinsically disordered regions, and is also facilitated by protein interaction with nucleic acids, including nuclear non–coding RNAs. Importantly, an altered LLPS leads to dysregulation of nuclear events and epigenetics, and often to tumorigenesis and tumor progression. We further note the possibility that LLPS could represent a new therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Ryu-Suke Nozawa
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Motoko Takahashi
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute of JFCR, Tokyo, Japan
| | - Toru Hirota
- Division of Experimental Pathology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| |
Collapse
|
156
|
Tamayo-Orrego L, Gallo D, Racicot F, Bemmo A, Mohan S, Ho B, Salameh S, Hoang T, Jackson AP, Brown GW, Charron F. Sonic hedgehog accelerates DNA replication to cause replication stress promoting cancer initiation in medulloblastoma. ACTA ACUST UNITED AC 2020; 1:840-854. [DOI: 10.1038/s43018-020-0094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/12/2020] [Indexed: 01/02/2023]
|
157
|
3D genome organization contributes to genome instability at fragile sites. Nat Commun 2020; 11:3613. [PMID: 32680994 PMCID: PMC7367836 DOI: 10.1038/s41467-020-17448-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear. Here, we explore the transcriptional profile and DNA replication timing (RT) under mild replication stress in the context of the 3D genome organization. The results reveal a fragility signature, comprised of a TAD boundary overlapping a highly transcribed large gene with APH-induced RT-delay. This signature enables precise mapping of core fragility regions in known CFSs and identification of novel fragile sites. CFS stability may be compromised by incomplete DNA replication and repair in TAD boundaries core fragility regions leading to genomic instability. The identified fragility signature will allow for a more comprehensive mapping of CFSs and pave the way for investigating mechanisms promoting genomic instability in cancer. Common fragile sites are regions susceptible to replication stress and are prone to chromosomal instability. Here, the authors, by analyzing the contribution of 3D chromatin organization, identify and characterize a fragility signature and precisely map these fragility regions.
Collapse
|
158
|
Pennycook BR, Vesela E, Peripolli S, Singh T, Barr AR, Bertoli C, de Bruin RAM. E2F-dependent transcription determines replication capacity and S phase length. Nat Commun 2020; 11:3503. [PMID: 32665547 PMCID: PMC7360579 DOI: 10.1038/s41467-020-17146-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
DNA replication timing is tightly regulated during S-phase. S-phase length is determined by DNA synthesis rate, which depends on the number of active replication forks and their velocity. Here, we show that E2F-dependent transcription, through E2F6, determines the replication capacity of a cell, defined as the maximal amount of DNA a cell can synthesise per unit time during S-phase. Increasing or decreasing E2F-dependent transcription during S-phase increases or decreases replication capacity, and thereby replication rates, thus shortening or lengthening S-phase, respectively. The changes in replication rate occur mainly through changes in fork speed without affecting the number of active forks. An increase in fork speed does not induce replication stress directly, but increases DNA damage over time causing cell cycle arrest. Thus, E2F-dependent transcription determines the DNA replication capacity of a cell, which affects the replication rate, controlling the time it takes to duplicate the genome and complete S-phase.
Collapse
Affiliation(s)
- Betheney R Pennycook
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
- MRC London Institute of Medical Science Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Eva Vesela
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Silvia Peripolli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Tanya Singh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK
| | - Alexis R Barr
- MRC London Institute of Medical Science Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK.
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower street, London, WC1E 6BT, UK.
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
159
|
León TE, Rapoz-D'Silva T, Bertoli C, Rahman S, Magnussen M, Philip B, Farah N, Richardson SE, Ahrabi S, Guerra-Assunção JA, Gupta R, Nacheva EP, Henderson S, Herrero J, Linch DC, de Bruin RAM, Mansour MR. EZH2-Deficient T-cell Acute Lymphoblastic Leukemia Is Sensitized to CHK1 Inhibition through Enhanced Replication Stress. Cancer Discov 2020; 10:998-1017. [PMID: 32349972 PMCID: PMC7611258 DOI: 10.1158/2159-8290.cd-19-0789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations of EZH2, the enzymatic component of PRC2, have been associated with poor outcome and chemotherapy resistance in T-cell acute lymphoblastic leukemia (T-ALL). Using isogenic T-ALL cells, with and without CRISPR/Cas9-induced EZH2-inactivating mutations, we performed a cell-based synthetic lethal drug screen. EZH2-deficient cells exhibited increased sensitivity to structurally diverse inhibitors of CHK1, an interaction that could be validated genetically. Furthermore, small-molecule inhibition of CHK1 had efficacy in delaying tumor progression in isogenic EZH2-deficient, but not EZH2 wild-type, T-ALL cells in vivo, as well as in a primary cell model of PRC2-mutant ALL. Mechanistically, EZH2 deficiency resulted in a gene-expression signature of immature T-ALL cells, marked transcriptional upregulation of MYCN, increased replication stress, and enhanced dependency on CHK1 for cell survival. Finally, we demonstrate this phenotype is mediated through derepression of a distal PRC2-regulated MYCN enhancer. In conclusion, we highlight a novel and clinically exploitable pathway in high-risk EZH2-mutated T-ALL. SIGNIFICANCE: Loss-of-function mutations of PRC2 genes are associated with chemotherapy resistance in T-ALL, yet no specific therapy for this aggressive subtype is currently clinically available. Our work demonstrates that loss of EZH2 activity leads to MYCN-driven replication stress, resulting in increased sensitivity to CHK1 inhibition, a finding with immediate clinical relevance.This article is highlighted in the In This Issue feature, p. 890.
Collapse
Affiliation(s)
- Theresa E León
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Sunniyat Rahman
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Michael Magnussen
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Brian Philip
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Simon E Richardson
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Sara Ahrabi
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Rajeev Gupta
- Stem Cell Laboratory, UCL Cancer Institute, University College London, London, United Kingdom
| | - Elisabeth P Nacheva
- Health Service Laboratories LLP, UCL Cancer Institute, London, United Kingdom
| | - Stephen Henderson
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - David C Linch
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom.
| |
Collapse
|
160
|
Reduced replication origin licensing selectively kills KRAS-mutant colorectal cancer cells via mitotic catastrophe. Cell Death Dis 2020; 11:499. [PMID: 32612138 PMCID: PMC7330027 DOI: 10.1038/s41419-020-2704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
To unravel vulnerabilities of KRAS-mutant CRC cells, a shRNA-based screen specifically inhibiting MAPK pathway components and targets was performed in CaCo2 cells harboring conditional oncogenic KRASG12V. The custom-designed shRNA library comprised 121 selected genes, which were previously identified to be strongly regulated in response to MEK inhibition. The screen showed that CaCo2 cells expressing KRASG12V were sensitive to the suppression of the DNA replication licensing factor minichromosome maintenance complex component 7 (MCM7), whereas KRASwt CaCo2 cells were largely resistant to MCM7 suppression. Similar results were obtained in an isogenic DLD-1 cell culture model. Knockdown of MCM7 in a KRAS-mutant background led to replication stress as indicated by increased nuclear RPA focalization. Further investigation showed a significant increase in mitotic cells after simultaneous MCM7 knockdown and KRASG12V expression. The increased percentage of mitotic cells coincided with strongly increased DNA damage in mitosis. Taken together, the accumulation of DNA damage in mitotic cells is due to replication stress that remained unresolved, which results in mitotic catastrophe and cell death. In summary, the data show a vulnerability of KRAS-mutant cells towards suppression of MCM7 and suggest that inhibiting DNA replication licensing might be a viable strategy to target KRAS-mutant cancers.
Collapse
|
161
|
Abstract
Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.
Collapse
Affiliation(s)
- David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA;
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
162
|
Björkman A, Johansen SL, Lin L, Schertzer M, Kanellis DC, Katsori AM, Christensen ST, Luo Y, Andersen JS, Elsässer SJ, Londono-Vallejo A, Bartek J, Schou KB. Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes Dev 2020; 34:1065-1074. [PMID: 32561545 PMCID: PMC7397856 DOI: 10.1101/gad.330050.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
In this study from Björkman et al., the authors sought to understand how RTEL1 helicase preserves genomic stability during replication. They demonstrate that RTEL1 and the Polδ subunit Poldip3 form a complex and are mutually dependent in chromatin binding after replication stress, and loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, thus highlighting a previously unknown role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect. RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.
Collapse
Affiliation(s)
- Andrea Björkman
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Søren L Johansen
- Department of Cell Biology and Physiology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8200, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Mike Schertzer
- 3UMR 3244 (Telomere and Cancer Laboratory), Centre National de la Recherche Scientifique, Institut Curie, PSL Research University, Sorbonne Universités, Paris 75005, France
| | - Dimitris C Kanellis
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Anna-Maria Katsori
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Søren T Christensen
- Department of Cell Biology and Physiology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus 8200, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Simon J Elsässer
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| | - Arturo Londono-Vallejo
- 3UMR 3244 (Telomere and Cancer Laboratory), Centre National de la Recherche Scientifique, Institut Curie, PSL Research University, Sorbonne Universités, Paris 75005, France
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden.,Danish Cancer Society Research Centre, DK-2100 Copenhagen, Denmark
| | - Kenneth B Schou
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Solna 171 77, Sweden
| |
Collapse
|
163
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
164
|
Luzhin AV, Avanesyan B, Velichko AK, Shender VO, Ovsyannikova N, Arapidi GP, Shnaider PV, Petrova NV, Kireev II, Razin SV, Kantidze OL. Chromatin Trapping of Factors Involved in DNA Replication and Repair Underlies Heat-Induced Radio- and Chemosensitization. Cells 2020; 9:cells9061423. [PMID: 32521766 PMCID: PMC7349668 DOI: 10.3390/cells9061423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
Hyperthermia has been used as an adjuvant treatment for radio- and chemotherapy for decades. In addition to its effects on perfusion and oxygenation of cancer tissues, hyperthermia can enhance the efficacy of DNA-damaging treatments such as radiotherapy and chemotherapy. Although it is believed that the adjuvant effects are based on hyperthermia-induced dysfunction of DNA repair systems, the mechanisms of these dysfunctions remain elusive. Here, we propose that elevated temperatures can induce chromatin trapping (c-trapping) of essential factors, particularly those involved in DNA repair, and thus enhance the sensitization of cancer cells to DNA-damaging therapeutics. Using mass spectrometry-based proteomics, we identified proteins that could potentially undergo c-trapping in response to hyperthermia. Functional analyses of several identified factors involved in DNA repair demonstrated that c-trapping could indeed be a mechanism of hyperthermia-induced transient deficiency of DNA repair systems. Based on our proteomics data, we showed for the first time that hyperthermia could inhibit maturation of Okazaki fragments and activate a corresponding poly(ADP-ribose) polymerase-dependent DNA damage response. Together, our data suggest that chromatin trapping of factors involved in DNA repair and replication contributes to heat-induced radio- and chemosensitization.
Collapse
Affiliation(s)
- Artem V. Luzhin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Bogdan Avanesyan
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
| | - Artem K. Velichko
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Victoria O. Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.O.S.); (G.P.A.); (P.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Ovsyannikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (N.O.); (I.I.K.)
| | - Georgij P. Arapidi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.O.S.); (G.P.A.); (P.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Moscow, Russia
| | - Polina V. Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.O.S.); (G.P.A.); (P.V.S.)
| | - Nadezhda V. Petrova
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
| | - Igor I. Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (N.O.); (I.I.K.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
| | - Sergey V. Razin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Omar L. Kantidze
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Correspondence: ; Tel.: +7-499-135-9787
| |
Collapse
|
165
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
166
|
A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. Aging (Albany NY) 2020; 11:2488-2511. [PMID: 30996128 PMCID: PMC6519998 DOI: 10.18632/aging.101917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Nuclear architecture plays a significant role in DNA repair mechanisms. It is evident that proteins involved in DNA repair are compartmentalized in not only spontaneously occurring DNA lesions or ionizing radiation-induced foci (IRIF), but a specific clustering of these proteins can also be observed within the whole cell nucleus. For example, 53BP1-positive and BRCA1-positive DNA repair foci decorate chromocenters and can appear close to nuclear speckles. Both 53BP1 and BRCA1 are well-described factors that play an essential role in double-strand break (DSB) repair. These proteins are members of two protein complexes: 53BP1-RIF1-PTIP and BRCA1-CtIP, which make a “decision” determining whether canonical nonhomologous end joining (NHEJ) or homology-directed repair (HDR) is activated. It is generally accepted that 53BP1 mediates the NHEJ mechanism, while HDR is activated via a BRCA1-dependent signaling pathway. Interestingly, the 53BP1 protein appears relatively quickly at DSB sites, while BRCA1 is functional at later stages of DNA repair, as soon as the Mre11-Rad50-Nbs1 complex is recruited to the DNA lesions. A function of the 53BP1 protein is also linked to a specific histone signature, including phosphorylation of histone H2AX (γH2AX) or methylation of histone H4 at the lysine 20 position (H4K20me); therefore, we also discuss an epigenetic landscape of 53BP1-positive DNA lesions.
Collapse
|
167
|
Gemble S, Buhagiar-Labarchède G, Onclercq-Delic R, Fontaine G, Lambert S, Amor-Guéret M. Topoisomerase IIα prevents ultrafine anaphase bridges by two mechanisms. Open Biol 2020; 10:190259. [PMID: 32400307 PMCID: PMC7276528 DOI: 10.1098/rsob.190259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Topoisomerase IIα (Topo IIα), a well-conserved double-stranded DNA (dsDNA)-specific decatenase, processes dsDNA catenanes resulting from DNA replication during mitosis. Topo IIα defects lead to an accumulation of ultrafine anaphase bridges (UFBs), a type of chromosome non-disjunction. Topo IIα has been reported to resolve DNA anaphase threads, possibly accounting for the increase in UFB frequency upon Topo IIα inhibition. We hypothesized that the excess UFBs might also result, at least in part, from an impairment of the prevention of UFB formation by Topo IIα. We found that Topo IIα inhibition promotes UFB formation without affecting the global disappearance of UFBs during mitosis, but leads to an aberrant UFB resolution generating DNA damage within the next G1. Moreover, we demonstrated that Topo IIα inhibition promotes the formation of two types of UFBs depending on cell cycle phase. Topo IIα inhibition during S-phase compromises complete DNA replication, leading to the formation of UFB-containing unreplicated DNA, whereas Topo IIα inhibition during mitosis impedes DNA decatenation at metaphase–anaphase transition, leading to the formation of UFB-containing DNA catenanes. Thus, Topo IIα activity is essential to prevent UFB formation in a cell-cycle-dependent manner and to promote DNA damage-free resolution of UFBs.
Collapse
Affiliation(s)
- Simon Gemble
- Institut Curie, PSL Research University, UMR 3348, Centre de Recherche, Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France.,Université Paris Saclay, UMR 3348, Centre Universitaire d'Orsay, France
| | - Géraldine Buhagiar-Labarchède
- Institut Curie, PSL Research University, UMR 3348, Centre de Recherche, Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France.,Université Paris Saclay, UMR 3348, Centre Universitaire d'Orsay, France
| | - Rosine Onclercq-Delic
- Institut Curie, PSL Research University, UMR 3348, Centre de Recherche, Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France.,Université Paris Saclay, UMR 3348, Centre Universitaire d'Orsay, France
| | - Gaëlle Fontaine
- Institut Curie, PSL Research University, UMR 3348, Centre de Recherche, Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France.,Université Paris Saclay, UMR 3348, Centre Universitaire d'Orsay, France
| | - Sarah Lambert
- Institut Curie, PSL Research University, UMR 3348, Centre de Recherche, Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France.,Université Paris Saclay, UMR 3348, Centre Universitaire d'Orsay, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, Centre de Recherche, Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110. 91405, Orsay, France.,Université Paris Saclay, UMR 3348, Centre Universitaire d'Orsay, France
| |
Collapse
|
168
|
Kurashima K, Kashiwagi H, Shimomura I, Suzuki A, Takeshita F, Mazevet M, Harata M, Yamashita T, Yamamoto Y, Kohno T, Shiotani B. SMARCA4 deficiency-associated heterochromatin induces intrinsic DNA replication stress and susceptibility to ATR inhibition in lung adenocarcinoma. NAR Cancer 2020; 2:zcaa005. [PMID: 34316685 PMCID: PMC8210217 DOI: 10.1093/narcan/zcaa005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex regulates transcription through the control of chromatin structure and is increasingly thought to play an important role in human cancer. Lung adenocarcinoma (LADC) patients frequently harbor mutations in SMARCA4, a core component of this multisubunit complex. Most of these mutations are loss-of-function mutations, which disrupt critical functions in the regulation of chromatin architecture and can cause DNA replication stress. This study reports that LADC cells deficient in SMARCA4 showed increased DNA replication stress and greater sensitivity to the ATR inhibitor (ATRi) in vitro and in vivo. Mechanistically, loss of SMARCA4 increased heterochromatin formation, resulting in stalled forks, a typical DNA replication stress. In the absence of SMARCA4, severe ATRi-induced single-stranded DNA, which caused replication catastrophe, was generated on nascent DNA near the reversed forks around heterochromatin in an Mre11-dependent manner. Thus, loss of SMARCA4 confers susceptibility to ATRi, both by increasing heterochromatin-associated replication stress and by allowing Mre11 to destabilize reversed forks. These two mechanisms synergistically increase susceptibility of SMARCA4-deficient LADC cells to ATRi. These results provide a preclinical basis for assessing SMARCA4 defects as a biomarker of ATRi efficacy.
Collapse
Affiliation(s)
- Kiminori Kurashima
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideto Kashiwagi
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Iwao Shimomura
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba-shi, Chiba 260-8670, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 277-8562, Japan
| | - Fumitaka Takeshita
- Department of Functional Analysis, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Marianne Mazevet
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Masahiko Harata
- Graduate School of Agricultural Science, Tohoku University, Sendai-shi, Miyagi 980-0845, Japan
| | - Takayuki Yamashita
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-shi, Gunma 371-8512, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Bunsyo Shiotani
- To whom correspondence should be addressed. Tel: +81 3 3547 5201 (Ext. 3681); Fax: +81 3 3543 9305;
| |
Collapse
|
169
|
Wu W, Bhowmick R, Vogel I, Özer Ö, Ghisays F, Thakur RS, Sanchez de Leon E, Richter PH, Ren L, Petrini JH, Hickson ID, Liu Y. RTEL1 suppresses G-quadruplex-associated R-loops at difficult-to-replicate loci in the human genome. Nat Struct Mol Biol 2020; 27:424-437. [PMID: 32398827 DOI: 10.1038/s41594-020-0408-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Oncogene activation during tumorigenesis generates DNA replication stress, a known driver of genome rearrangements. In response to replication stress, certain loci, such as common fragile sites and telomeres, remain under-replicated during interphase and subsequently complete locus duplication in mitosis in a process known as 'MiDAS'. Here, we demonstrate that RTEL1 (regulator of telomere elongation helicase 1) has a genome-wide role in MiDAS at loci prone to form G-quadruplex-associated R-loops, in a process that is dependent on its helicase function. We reveal that SLX4 is required for the timely recruitment of RTEL1 to the affected loci, which in turn facilitates recruitment of other proteins required for MiDAS, including RAD52 and POLD3. Our findings demonstrate that RTEL1 is required for MiDAS and suggest that RTEL1 maintains genome stability by resolving conflicts that can arise between the replication and transcription machineries.
Collapse
Affiliation(s)
- Wei Wu
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Rahul Bhowmick
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Vogel
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Özgün Özer
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
- Institute of Cancer Research, London, UK
| | - Fiorella Ghisays
- Laboratory of Chromosome Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Roshan S Thakur
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Esther Sanchez de Leon
- Laboratory of Chromosome Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Philipp H Richter
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Liqun Ren
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
- The Basic Medical Research Institute, Chengde Medical University, Chengde, China
| | - John H Petrini
- Laboratory of Chromosome Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ian D Hickson
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| | - Ying Liu
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
170
|
Current Understanding of RAD52 Functions: Fundamental and Therapeutic Insights. Cancers (Basel) 2020; 12:cancers12030705. [PMID: 32192055 PMCID: PMC7140074 DOI: 10.3390/cancers12030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
In this Special Issue, we would like to focus on the various functions of the RAD52 helicase-like protein and the current implications of such findings for cancer treatment. Over the last few years, various laboratories have discovered particular activities of mammalian RAD52—both in S and M phase—that are distinct from the auxiliary role of yeast RAD52 in homologous recombination. At DNA double-strand breaks, RAD52 was demonstrated to spur alternative pathways to compensate for the loss of homologous recombination functions. At collapsed replication forks, RAD52 activates break-induced replication. In the M phase, RAD52 promotes the finalization of DNA replication. Its compensatory role in the resolution of DNA double-strand breaks has put RAD52 in the focus of synthetic lethal strategies, which is particularly relevant for cancer treatment.
Collapse
|
171
|
Antagonistic activities of CDC14B and CDK1 on USP9X regulate WT1-dependent mitotic transcription and survival. Nat Commun 2020; 11:1268. [PMID: 32152317 PMCID: PMC7063047 DOI: 10.1038/s41467-020-15059-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Regulation of mitosis secures cellular integrity and its failure critically contributes to the development, maintenance, and treatment resistance of cancer. In yeast, the dual phosphatase Cdc14 controls mitotic progression by antagonizing Cdk1-mediated protein phosphorylation. By contrast, specific mitotic functions of the mammalian Cdc14 orthologue CDC14B have remained largely elusive. Here, we find that CDC14B antagonizes CDK1-mediated activating mitotic phosphorylation of the deubiquitinase USP9X at serine residue 2563, which we show to be essential for USP9X to mediate mitotic survival. Starting from an unbiased proteome-wide screening approach, we specify Wilms' tumor protein 1 (WT1) as the relevant substrate that becomes deubiquitylated and stabilized by serine 2563-phosphorylated USP9X in mitosis. We further demonstrate that WT1 functions as a mitotic transcription factor and specify CXCL8/IL-8 as a target gene of WT1 that conveys mitotic survival. Together, we describe a ubiquitin-dependent signaling pathway that directs a mitosis-specific transcription program to regulate mitotic survival.
Collapse
|
172
|
Abstract
Common fragile sites (CFSs) are large chromosomal regions that exhibit breakage on metaphase chromosomes upon replication stress. They become preferentially unstable at the early stage of cancer development and are hotspots for chromosomal rearrangements in cancers. Increasing evidence has highlighted the complexity underlying the instability of CFSs, and a combination of multiple mechanisms is believed to cause CFS fragility. We will review recent advancements in our understanding of the molecular mechanisms underlying the maintenance of CFS stability and the relevance of CFSs to cancer-associated genome instability. We will emphasize the contribution of the structure-prone AT-rich sequences to CFS instability, which is in line with the recent genome-wide study showing that structure-forming repeat sequences are principal sites of replication stress.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA 92037 USA
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA 92037 USA
| |
Collapse
|
173
|
Sanchez A, de Vivo A, Tonzi P, Kim J, Huang TT, Kee Y. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency. PLoS Genet 2020; 16:e1008524. [PMID: 32142505 PMCID: PMC7080270 DOI: 10.1371/journal.pgen.1008524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Common fragile sites (CFSs) are breakage-prone genomic loci, and are considered to be hotspots for genomic rearrangements frequently observed in cancers. Understanding the underlying mechanisms for CFS instability will lead to better insight on cancer etiology. Here we show that Polycomb group proteins BMI1 and RNF2 are suppressors of transcription-replication conflicts (TRCs) and CFS instability. Cells depleted of BMI1 or RNF2 showed slower replication forks and elevated fork stalling. These phenotypes are associated with increase occupancy of RNA Pol II (RNAPII) at CFSs, suggesting that the BMI1-RNF2 complex regulate RNAPII elongation at these fragile regions. Using proximity ligase assays, we showed that depleting BMI1 or RNF2 causes increased associations between RNAPII with EdU-labeled nascent forks and replisomes, suggesting increased TRC incidences. Increased occupancy of a fork protective factor FANCD2 and R-loop resolvase RNH1 at CFSs are observed in RNF2 CRISPR-KO cells, which are consistent with increased transcription-associated replication stress in RNF2-deficient cells. Depleting FANCD2 or FANCI proteins further increased genomic instability and cell death of the RNF2-deficient cells, suggesting that in the absence of RNF2, cells depend on these fork-protective factors for survival. These data suggest that the Polycomb proteins have non-canonical roles in suppressing TRC and preserving genomic integrity.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Angelo de Vivo
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Peter Tonzi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Jeonghyeon Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Tony T. Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
174
|
Ovejero S, Bueno A, Sacristán MP. Working on Genomic Stability: From the S-Phase to Mitosis. Genes (Basel) 2020; 11:E225. [PMID: 32093406 PMCID: PMC7074175 DOI: 10.3390/genes11020225] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
175
|
Petsalaki E, Zachos G. DNA damage response proteins regulating mitotic cell division: double agents preserving genome stability. FEBS J 2020; 287:1700-1721. [PMID: 32027459 DOI: 10.1111/febs.15240] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
The DNA damage response recognizes DNA lesions and coordinates a cell cycle arrest with the repair of the damaged DNA, or removal of the affected cells to prevent the passage of genetic alterations to the next generation. The mitotic cell division, on the other hand, is a series of processes that aims to accurately segregate the genomic material from the maternal to the two daughter cells. Despite their great importance in safeguarding genomic integrity, the DNA damage response and the mitotic cell division were long viewed as unrelated processes, mainly because animal cells that are irradiated during mitosis continue cell division without repairing the broken chromosomes. However, recent studies have demonstrated that DNA damage proteins play an important role in mitotic cell division. This is performed through regulation of the onset of mitosis, mitotic spindle formation, correction of misattached kinetochore-microtubules, spindle checkpoint signaling, or completion of cytokinesis (abscission), in the absence of DNA damage. In this review, we summarize the roles of DNA damage proteins in unperturbed mitosis, analyze the molecular mechanisms involved, and discuss the potential implications of these findings in cancer therapy.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
176
|
Abstract
In this review, Slade provides an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. The author also highlights the clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discusses the predictive biomarkers of inhibitor sensitivity and mechanisms of resistance as well as the means of overcoming them through combination therapy. Oxidative and replication stress underlie genomic instability of cancer cells. Amplifying genomic instability through radiotherapy and chemotherapy has been a powerful but nonselective means of killing cancer cells. Precision medicine has revolutionized cancer therapy by putting forth the concept of selective targeting of cancer cells. Poly(ADP-ribose) polymerase (PARP) inhibitors represent a successful example of precision medicine as the first drugs targeting DNA damage response to have entered the clinic. PARP inhibitors act through synthetic lethality with mutations in DNA repair genes and were approved for the treatment of BRCA mutated ovarian and breast cancer. PARP inhibitors destabilize replication forks through PARP DNA entrapment and induce cell death through replication stress-induced mitotic catastrophe. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) exploit and exacerbate replication deficiencies of cancer cells and may complement PARP inhibitors in targeting a broad range of cancer types with different sources of genomic instability. Here I provide an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. I highlight clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discuss the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
177
|
Ercilla A, Feu S, Aranda S, Llopis A, Brynjólfsdóttir SH, Sørensen CS, Toledo LI, Agell N. Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse. Cell Mol Life Sci 2020; 77:735-749. [PMID: 31297568 PMCID: PMC11104804 DOI: 10.1007/s00018-019-03206-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
During S phase, replication forks can encounter several obstacles that lead to fork stalling, which if persistent might result in fork collapse. To avoid this collapse and to preserve the competence to restart, cells have developed mechanisms that maintain fork stability upon replication stress. In this study, we aimed to understand the mechanisms involved in fork stability maintenance in non-transformed human cells by performing an isolation of proteins on nascent DNA-mass spectrometry analysis in hTERT-RPE cells under different replication stress conditions. Our results show that acute hydroxyurea-induced replication blockade causes the accumulation of large amounts of single-stranded DNA at the fork. Remarkably, this results in the disengagement of replisome components from nascent DNA without compromising fork restart. Notably, Cdc45-MCM-GINS helicase maintains its integrity and replisome components remain associated with chromatin upon acute hydroxyurea treatment, whereas replisome stability is lost upon a sustained replication stress that compromises the competence to restart.
Collapse
Affiliation(s)
- Amaia Ercilla
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Centre for Chromosome Stability (CCS), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Sonia Feu
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Alba Llopis
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | | | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Luis Ignacio Toledo
- Centre for Chromosome Stability (CCS), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Neus Agell
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
178
|
Aiello FA, Palma A, Malacaria E, Zheng L, Campbell JL, Shen B, Franchitto A, Pichierri P. RAD51 and mitotic function of mus81 are essential for recovery from low-dose of camptothecin in the absence of the WRN exonuclease. Nucleic Acids Res 2020; 47:6796-6810. [PMID: 31114910 PMCID: PMC6648349 DOI: 10.1093/nar/gkz431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Stabilization of stalled replication forks prevents excessive fork reversal or degradation, which can undermine genome integrity. The WRN protein is unique among the other human RecQ family members to possess exonuclease activity. However, the biological role of the WRN exonuclease is poorly defined. Recently, the WRN exonuclease has been linked to protection of stalled forks from degradation. Alternative processing of perturbed forks has been associated to chemoresistance of BRCA-deficient cancer cells. Thus, we used WRN exonuclease-deficiency as a model to investigate the fate of perturbed forks undergoing degradation, but in a BRCA wild-type condition. We find that, upon treatment with clinically-relevant nanomolar doses of the Topoisomerase I inhibitor camptothecin, loss of WRN exonuclease stimulates fork inactivation and accumulation of parental gaps, which engages RAD51. Such mechanism affects reinforcement of CHK1 phosphorylation and causes persistence of RAD51 during recovery from treatment. Notably, in WRN exonuclease-deficient cells, persistence of RAD51 correlates with elevated mitotic phosphorylation of MUS81 at Ser87, which is essential to prevent excessive mitotic abnormalities. Altogether, these findings indicate that aberrant fork degradation, in the presence of a wild-type RAD51 axis, stimulates RAD51-mediated post-replicative repair and engagement of the MUS81 complex to limit genome instability and cell death.
Collapse
Affiliation(s)
- Francesca Antonella Aiello
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Anita Palma
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Annapaola Franchitto
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models Unit, Department of Environment and Health, Istituto Superiore di Sanità, Roma, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| |
Collapse
|
179
|
Viner-Breuer R, Yilmaz A, Benvenisty N, Goldberg M. The essentiality landscape of cell cycle related genes in human pluripotent and cancer cells. Cell Div 2020; 14:15. [PMID: 31889988 PMCID: PMC6927170 DOI: 10.1186/s13008-019-0058-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cell cycle regulation is a complex system consisting of growth-promoting and growth-restricting mechanisms, whose coordinated activity is vital for proper division and propagation. Alterations in this regulation may lead to uncontrolled proliferation and genomic instability, triggering carcinogenesis. Here, we conducted a comprehensive bioinformatic analysis of cell cycle-related genes using data from CRISPR/Cas9 loss-of-function screens performed in four cancer cell lines and in human embryonic stem cells (hESCs). Results Cell cycle genes, and in particular S phase and checkpoint genes, are highly essential for the growth of cancer and pluripotent cells. However, checkpoint genes are also found to underlie the differences between the cell cycle features of these cell types. Interestingly, while growth-promoting cell cycle genes overlap considerably between cancer and stem cells, growth-restricting cell cycle genes are completely distinct. Moreover, growth-restricting genes are consistently less frequent in cancer cells than in hESCs. Here we show that most of these genes are regulated by the tumor suppressor gene TP53, which is mutated in most cancer cells. Therefore, the growth-restriction system in cancer cells lacks important factors and does not function properly. Intriguingly, M phase genes are specifically essential for the growth of hESCs and are highly abundant among hESC-enriched genes. Conclusions Our results highlight the differences in cell cycle regulation between cell types and emphasize the importance of conducting cell cycle studies in cells with intact genomes, in order to obtain an authentic representation of the genetic features of the cell cycle.
Collapse
Affiliation(s)
- Ruth Viner-Breuer
- 1The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, 9190401 Jerusalem, Israel.,2Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, 9190401 Jerusalem, Israel
| | - Atilgan Yilmaz
- 1The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, 9190401 Jerusalem, Israel.,2Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, 9190401 Jerusalem, Israel
| | - Nissim Benvenisty
- 1The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, 9190401 Jerusalem, Israel.,2Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, 9190401 Jerusalem, Israel
| | - Michal Goldberg
- 2Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, 9190401 Jerusalem, Israel
| |
Collapse
|
180
|
When RAD52 Allows Mitosis to Accept Unscheduled DNA Synthesis. Cancers (Basel) 2019; 12:cancers12010026. [PMID: 31861741 PMCID: PMC7017103 DOI: 10.3390/cancers12010026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Faithful duplication of the human genome during the S phase of cell cycle and accurate segregation of sister chromatids in mitosis are essential for the maintenance of chromosome stability from one generation of cells to the next. Cells that are copying their DNA in preparation for division can suffer from ‘replication stress’ (RS) due to various external or endogenous impediments that slow or stall replication forks. RS is a major cause of pathologies including cancer, premature ageing and other disorders associated with genomic instability. It particularly affects genomic loci where progression of replication forks is intrinsically slow or problematic, such as common fragile site (CFS), telomeres, and repetitive sequences. Although the eukaryotic cell cycle is conventionally thought of as several separate steps, each of which must be completed before the next one is initiated, it is now accepted that incompletely replicated chromosomal domains generated in S phase upon RS at these genomic loci can result in late DNA synthesis in G2/M. In 2013, during investigations into the mechanism by which the specialized DNA polymerase eta (Pol η) contributes to the replication and stability of CFS, we unveiled that indeed some DNA synthesis was still occurring in early mitosis at these loci. This surprising observation of mitotic DNA synthesis that differs fundamentally from canonical semi-conservative DNA replication in S-phase has been then confirmed, called “MiDAS”and believed to counteract potentially lethal chromosome mis-segregation and non-disjunction. While other contributions in this Special Issue of Cancers focus on the role of RAS52RAD52 during MiDAS, this review emphases on the discovery of MiDAS and its molecular effectors.
Collapse
|
181
|
Pladevall-Morera D, Munk S, Ingham A, Garribba L, Albers E, Liu Y, Olsen JV, Lopez-Contreras AJ. Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability. Nucleic Acids Res 2019; 47:8004-8018. [PMID: 31180492 PMCID: PMC6735892 DOI: 10.1093/nar/gkz510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/31/2023] Open
Abstract
Common fragile sites (CFSs) are conserved genomic regions prone to break under conditions of replication stress (RS). Thus, CFSs are hotspots for rearrangements in cancer and contribute to its chromosomal instability. Here, we have performed a global analysis of proteins that recruit to CFSs upon mild RS to identify novel players in CFS stability. To this end, we performed Chromatin Immunoprecipitation (ChIP) of FANCD2, a protein that localizes specifically to CFSs in G2/M, coupled to mass spectrometry to acquire a CFS interactome. Our strategy was validated by the enrichment of many known regulators of CFS maintenance, including Fanconi Anemia, DNA repair and replication proteins. Among the proteins identified with unknown functions at CFSs was the chromatin remodeler ATRX. Here we demonstrate that ATRX forms foci at a fraction of CFSs upon RS, and that ATRX depletion increases the occurrence of chromosomal breaks, a phenotype further exacerbated under mild RS conditions. Accordingly, ATRX depletion increases the number of 53BP1 bodies and micronuclei, overall indicating that ATRX is required for CFS stability. Overall, our study provides the first proteomic characterization of CFSs as a valuable resource for the identification of novel regulators of CFS stability.
Collapse
Affiliation(s)
- David Pladevall-Morera
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Stephanie Munk
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark.,Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Ingham
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lorenza Garribba
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Eliene Albers
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ying Liu
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andres J Lopez-Contreras
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
182
|
Salguero I, Belotserkovskaya R, Coates J, Sczaniecka-Clift M, Demir M, Jhujh S, Wilson MD, Jackson SP. MDC1 PST-repeat region promotes histone H2AX-independent chromatin association and DNA damage tolerance. Nat Commun 2019; 10:5191. [PMID: 31729360 PMCID: PMC6858307 DOI: 10.1038/s41467-019-12929-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/03/2019] [Indexed: 02/02/2023] Open
Abstract
Histone H2AX and MDC1 are key DNA repair and DNA-damage signalling proteins. When DNA double-strand breaks (DSBs) occur, H2AX is phosphorylated and then recruits MDC1, which in turn serves as a docking platform to promote the localization of other factors, including 53BP1, to DSB sites. Here, by using CRISPR-Cas9 engineered human cell lines, we identify a hitherto unknown, H2AX-independent, function of MDC1 mediated by its PST-repeat region. We show that the PST-repeat region directly interacts with chromatin via the nucleosome acidic patch and mediates DNA damage-independent association of MDC1 with chromatin. We find that this region is largely functionally dispensable when the canonical γH2AX-MDC1 pathway is operative but becomes critical for 53BP1 recruitment to DNA-damage sites and cell survival following DSB induction when H2AX is not available. Consequently, our results suggest a role for MDC1 in activating the DDR in areas of the genome lacking or depleted of H2AX.
Collapse
Affiliation(s)
- Israel Salguero
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Rimma Belotserkovskaya
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Julia Coates
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Matylda Sczaniecka-Clift
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mukerrem Demir
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Satpal Jhujh
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Stephen P Jackson
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|
183
|
Salvador Moreno N, Liu J, Haas KM, Parker LL, Chakraborty C, Kron SJ, Hodges K, Miller LD, Langefeld C, Robinson PJ, Lelièvre SA, Vidi PA. The nuclear structural protein NuMA is a negative regulator of 53BP1 in DNA double-strand break repair. Nucleic Acids Res 2019; 47:2703-2715. [PMID: 30812030 PMCID: PMC6451129 DOI: 10.1093/nar/gkz138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 01/13/2023] Open
Abstract
P53-binding protein 1 (53BP1) mediates DNA repair pathway choice and promotes checkpoint activation. Chromatin marks induced by DNA double-strand breaks and recognized by 53BP1 enable focal accumulation of this multifunctional repair factor at damaged chromatin. Here, we unveil an additional level of regulation of 53BP1 outside repair foci. 53BP1 movements are constrained throughout the nucleoplasm and increase in response to DNA damage. 53BP1 interacts with the structural protein NuMA, which controls 53BP1 diffusion. This interaction, and colocalization between the two proteins in vitro and in breast tissues, is reduced after DNA damage. In cell lines and breast carcinoma NuMA prevents 53BP1 accumulation at DNA breaks, and high NuMA expression predicts better patient outcomes. Manipulating NuMA expression alters PARP inhibitor sensitivity of BRCA1-null cells, end-joining activity, and immunoglobulin class switching that rely on 53BP1. We propose a mechanism involving the sequestration of 53BP1 by NuMA in the absence of DNA damage. Such a mechanism may have evolved to disable repair functions and may be a decisive factor for tumor responses to genotoxic treatments.
Collapse
Affiliation(s)
- Naike Salvador Moreno
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jing Liu
- Department of Physics, Indiana university-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Chaitali Chakraborty
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Kurt Hodges
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center of Wake Forest University
| | - Carl Langefeld
- Comprehensive Cancer Center of Wake Forest University.,Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Paul J Robinson
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Comprehensive Cancer Center of Wake Forest University
| |
Collapse
|
184
|
Petsalaki E, Zachos G. Building bridges between chromosomes: novel insights into the abscission checkpoint. Cell Mol Life Sci 2019; 76:4291-4307. [PMID: 31302750 PMCID: PMC11105294 DOI: 10.1007/s00018-019-03224-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
Abstract
In the presence of chromatin bridges, mammalian cells delay completion of cytokinesis (abscission) to prevent chromatin breakage or tetraploidization by regression of the cleavage furrow. This abscission delay is called "the abscission checkpoint" and is dependent on Aurora B kinase. Furthermore, cells stabilize the narrow cytoplasmic canal between the two daughter cells until the DNA bridges are resolved. Impaired abscission checkpoint signaling or unstable intercellular canals can lead to accumulation of DNA damage, aneuploidy, or generation of polyploid cells which are associated with tumourigenesis. However, the molecular mechanisms involved have only recently started to emerge. In this review, we focus on the molecular pathways of the abscission checkpoint and describe newly identified triggers, Aurora B-regulators and effector proteins in abscission checkpoint signaling. We also describe mechanisms that control intercellular bridge stabilization, DNA bridge resolution, or abscission checkpoint silencing upon satisfaction, and discuss how abscission checkpoint proteins can be targeted to potentially improve cancer therapy.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| |
Collapse
|
185
|
Conde CD, Petronczki ÖY, Baris S, Willmann KL, Girardi E, Salzer E, Weitzer S, Ardy RC, Krolo A, Ijspeert H, Kiykim A, Karakoc-Aydiner E, Förster-Waldl E, Kager L, Pickl WF, Superti-Furga G, Martínez J, Loizou JI, Ozen A, van der Burg M, Boztug K. Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress. J Clin Invest 2019; 129:4194-4206. [PMID: 31449058 PMCID: PMC6763221 DOI: 10.1172/jci128903] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance. The essentiality of polymerase δ has constrained the generation of polymerase δ-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase δ complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase δ. The mutations affected the stability and interactions within the polymerase δ complex or its intrinsic polymerase activity. We believe our discovery of human polymerase δ deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.
Collapse
Affiliation(s)
- Cecilia Domínguez Conde
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Safa Baris
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Katharina L. Willmann
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Stefan Weitzer
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Hanna Ijspeert
- Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Elisabeth Förster-Waldl
- Department of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine
| | - Leo Kager
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, and
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Javier Martínez
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
| | - Ahmet Ozen
- Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey
- Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| |
Collapse
|
186
|
Sonneville R, Bhowmick R, Hoffmann S, Mailand N, Hickson ID, Labib K. TRAIP drives replisome disassembly and mitotic DNA repair synthesis at sites of incomplete DNA replication. eLife 2019; 8:e48686. [PMID: 31545170 PMCID: PMC6773462 DOI: 10.7554/elife.48686] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
The faithful segregation of eukaryotic chromosomes in mitosis requires that the genome be duplicated completely prior to anaphase. However, cells with large genomes sometimes fail to complete replication during interphase and instead enter mitosis with regions of incompletely replicated DNA. These regions are processed in early mitosis via a process known as mitotic DNA repair synthesis (MiDAS), but little is known about how cells switch from conventional DNA replication to MiDAS. Using the early embryo of the nematode Caenorhabditis elegans as a model system, we show that the TRAIP ubiquitin ligase drives replisome disassembly in response to incomplete DNA replication, thereby providing access to replication forks for other factors. Moreover, TRAIP is essential for MiDAS in human cells, and is important in both systems to prevent mitotic segregation errors. Our data indicate that TRAIP is a master regulator of the processing of incomplete DNA replication during mitosis in metazoa.
Collapse
Affiliation(s)
- Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Rahul Bhowmick
- Department of Cellular and Molecular Medicine, Center for Chromosome StabilityUniversity of CopenhagenCopenhagenDenmark
| | - Saskia Hoffmann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome StabilityUniversity of CopenhagenCopenhagenDenmark
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
187
|
Graziano S, Kreienkamp R, Coll-Bonfill N, Gonzalo S. Causes and consequences of genomic instability in laminopathies: Replication stress and interferon response. Nucleus 2019; 9:258-275. [PMID: 29637811 PMCID: PMC5973265 DOI: 10.1080/19491034.2018.1454168] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian nuclei are equipped with a framework of intermediate filaments that function as a karyoskeleton. This nuclear scaffold, formed primarily by lamins (A-type and B-type), maintains the spatial and functional organization of the genome and of sub-nuclear compartments. Over the past decade, a body of evidence has highlighted the significance of these structural nuclear proteins in the maintenance of nuclear architecture and mechanical stability, as well as genome function and integrity. The importance of these structures is now unquestioned given the wide range of degenerative diseases that stem from LMNA gene mutations, including muscular dystrophy disorders, peripheral neuropathies, lipodystrophies, and premature aging syndromes. Here, we review our knowledge about how alterations in nuclear lamins, either by mutation or reduced expression, impact cellular mechanisms that maintain genome integrity. Despite the fact that DNA replication is the major source of DNA damage and genomic instability in dividing cells, how alterations in lamins function impact replication remains minimally explored. We summarize recent studies showing that lamins play a role in DNA replication, and that the DNA damage that accumulates upon lamins dysfunction is elicited in part by deprotection of replication forks. We also discuss the emerging model that DNA damage and replication stress are “sensed” at the cytoplasm by proteins that normally survey this space in search of foreign nucleic acids. In turn, these cytosolic sensors activate innate immune responses, which are materializing as important players in aging and cancer, as well as in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Simona Graziano
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ray Kreienkamp
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Nuria Coll-Bonfill
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Susana Gonzalo
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
188
|
Feng W, Simpson DA, Carvajal-Garcia J, Price BA, Kumar RJ, Mose LE, Wood RD, Rashid N, Purvis JE, Parker JS, Ramsden DA, Gupta GP. Genetic determinants of cellular addiction to DNA polymerase theta. Nat Commun 2019; 10:4286. [PMID: 31537809 PMCID: PMC6753077 DOI: 10.1038/s41467-019-12234-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dennis A Simpson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Carvajal-Garcia
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandon A Price
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
189
|
Zheng XF, Acharya SS, Choe KN, Nikhil K, Adelmant G, Satapathy SR, Sharma S, Viccaro K, Rana S, Natarajan A, Sicinski P, Marto JA, Shah K, Chowdhury D. A mitotic CDK5-PP4 phospho-signaling cascade primes 53BP1 for DNA repair in G1. Nat Commun 2019; 10:4252. [PMID: 31534152 PMCID: PMC6751209 DOI: 10.1038/s41467-019-12084-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023] Open
Abstract
Mitotic cells attenuate the DNA damage response (DDR) by phosphorylating 53BP1, a critical DDR mediator, to prevent its localization to damaged chromatin. Timely dephosphorylation of 53BP1 is critical for genome integrity, as premature recruitment of 53BP1 to DNA lesions impairs mitotic fidelity. Protein phosphatase 4 (PP4) dephosphorylates 53BP1 in late mitosis to allow its recruitment to DNA lesions in G1. How cells appropriately dephosphorylate 53BP1, thereby restoring DDR, is unclear. Here, we elucidate the underlying mechanism of kinetic control of 53BP1 dephosphorylation in mitosis. We demonstrate that CDK5, a kinase primarily functional in post-mitotic neurons, is active in late mitotic phases in non-neuronal cells and directly phosphorylates PP4R3β, the PP4 regulatory subunit that recognizes 53BP1. Specific inhibition of CDK5 in mitosis abrogates PP4R3β phosphorylation and abolishes its recognition and dephosphorylation of 53BP1, ultimately preventing the localization of 53BP1 to damaged chromatin. Our results establish CDK5 as a regulator of 53BP1 recruitment.
Collapse
Affiliation(s)
- Xiao-Feng Zheng
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sanket S Acharya
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Katherine N Choe
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kumar Nikhil
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shakti Ranjan Satapathy
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith Viccaro
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
190
|
Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nat Commun 2019; 10:4224. [PMID: 31530811 PMCID: PMC6748914 DOI: 10.1038/s41467-019-12255-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Mitotic catastrophe is a broad descriptor encompassing unclear mechanisms of cell death. Here we investigate replication stress-driven mitotic catastrophe in human cells and identify that replication stress principally induces mitotic death signalled through two independent pathways. In p53-compromised cells we find that lethal replication stress confers WAPL-dependent centromere cohesion defects that maintain spindle assembly checkpoint-dependent mitotic arrest in the same cell cycle. Mitotic arrest then drives cohesion fatigue and triggers mitotic death through a primary pathway of BAX/BAK-dependent apoptosis. Simultaneously, a secondary mitotic death pathway is engaged through non-canonical telomere deprotection, regulated by TRF2, Aurora B and ATM. Additionally, we find that suppressing mitotic death in replication stressed cells results in distinct cellular outcomes depending upon how cell death is averted. These data demonstrate how replication stress-induced mitotic catastrophe signals cell death with implications for cancer treatment and cancer genome evolution. Mitotic catastrophe is a regulated mechanism that responds to aberrant mitoses leading to removal of damaged cells. Here the authors reveal how replication stress induces mitotic death through pathways regulated by WAPL and telomere deprotection.
Collapse
|
191
|
Valenti F, Sacconi A, Ganci F, Grasso G, Strano S, Blandino G, Di Agostino S. The miR-205-5p/BRCA1/RAD17 Axis Promotes Genomic Instability in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2019; 11:E1347. [PMID: 31514456 PMCID: PMC6771082 DOI: 10.3390/cancers11091347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Defective DNA damage response (DDR) is frequently associated with tumorigenesis. Abrogation of DDR leads to genomic instability, which is one of the most common characteristics of human cancers. TP53 mutations with gain-of-function activity are associated with tumors under high replicative stress, high genomic instability, and reduced patient survival. The BRCA1 and RAD17 genes encode two pivotal DNA repair proteins required for proper cell-cycle regulation and maintenance of genomic stability. We initially evaluated whether miR-205-5p, a microRNA (miRNA) highly expressed in head and neck squamous cell carcinoma (HNSCC), targeted BRCA1 and RAD17 expression. We found that, in vitro and in vivo, BRCA1 and RAD17 are targets of miR-205-5p in HNSCC, leading to inefficient DNA repair and increased chromosomal instability. Conversely, miR-205-5p downregulation increased BRCA1 and RAD17 messenger RNA (mRNA) levels, leading to a reduction in in vivo tumor growth. Interestingly, miR-205-5p expression was significantly anti-correlated with BRCA1 and RAD17 targets. Furthermore, we documented that miR-205-5p expression was higher in tumoral and peritumoral HNSCC tissues than non-tumoral tissues in patients exhibiting reduced local recurrence-free survival. Collectively, these findings unveil miR-205-5p's notable role in determining genomic instability in HNSCC through its selective targeting of BRCA1 and RAD17 gene expression. High miR-205-5p levels in the peritumoral tissues might be relevant for the early detection of minimal residual disease and pre-cancer molecular alterations involved in tumor development.
Collapse
Affiliation(s)
- Fabio Valenti
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Giuseppe Grasso
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Sabrina Strano
- Molecular Chemoprevention Group, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.V.); (A.S.); (F.G.); (G.G.)
| |
Collapse
|
192
|
Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proc Natl Acad Sci U S A 2019; 116:19552-19562. [PMID: 31501315 DOI: 10.1073/pnas.1906102116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.
Collapse
|
193
|
Thompson R, Gatenby R, Sidi S. How Cells Handle DNA Breaks during Mitosis: Detection, Signaling, Repair, and Fate Choice. Cells 2019; 8:cells8091049. [PMID: 31500247 PMCID: PMC6770852 DOI: 10.3390/cells8091049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Mitosis is controlled by a complex series of signaling pathways but mitotic control following DNA damage remains poorly understood. Effective DNA damage sensing and repair is integral to survival but is largely thought to occur primarily in interphase and be repressed during mitosis due to the risk of telomere fusion. There is, however, increasing evidence to suggest tight control of mitotic progression in the incidence of DNA damage, whether induced in mitotic cells or having progressed from failed interphase checkpoints. Here we will discuss what is known to date about signaling pathways controlling mitotic progression and resulting cell fate in the incidence of mitotic DNA damage.
Collapse
Affiliation(s)
- Ruth Thompson
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Rachel Gatenby
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA.
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA.
| |
Collapse
|
194
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
195
|
Mediani L, Guillén-Boixet J, Alberti S, Carra S. Nucleoli and Promyelocytic Leukemia Protein (PML) bodies are phase separated nuclear protein quality control compartments for misfolded proteins. Mol Cell Oncol 2019; 6:e1415624. [PMID: 31693723 DOI: 10.1080/23723556.2019.1652519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 01/18/2023]
Abstract
We uncovered a role for nucleoli and PML-bodies as phase-separated protein quality control organelles that compartmentalize protein quality control factors and misfolded proteins for their efficient clearance. Failure to dispose misfolded proteins converts nucleoli and PML-bodies into a solid state that immobilizes ubiquitin, limiting its recycling for genome integrity maintenance.
Collapse
Affiliation(s)
- L Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - J Guillén-Boixet
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - S Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Dresden, Germany
| | - S Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
196
|
Böhly N, Kistner M, Bastians H. Mild replication stress causes aneuploidy by deregulating microtubule dynamics in mitosis. Cell Cycle 2019; 18:2770-2783. [PMID: 31448675 DOI: 10.1080/15384101.2019.1658477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Chromosomal instability (CIN) causes structural and numerical chromosome aberrations and represents a hallmark of cancer. Replication stress (RS) has emerged as a driver for structural chromosome aberrations while mitotic defects can cause whole chromosome missegregation and aneuploidy. Recently, first evidence indicated that RS can also influence chromosome segregation in cancer cells exhibiting CIN, but the underlying mechanisms remain unknown. Here, we show that chromosomally unstable cancer cells suffer from very mild RS, which allows efficient proliferation and which can be mimicked by treatment with very low concentrations of aphidicolin. Both, endogenous RS and aphidicolin-induced very mild RS cause chromosome missegregation during mitosis leading to the induction of aneuploidy. Moreover, RS triggers an increase in microtubule plus end growth rates in mitosis, an abnormality previously identified to cause chromosome missegregation in cancer cells. In fact, RS-induced chromosome missegregation is mediated by increased mitotic microtubule growth rates and is suppressed after restoration of proper microtubule growth rates and upon rescue of replication stress. Hence, very mild and cancer-relevant RS triggers aneuploidy by deregulating microtubule dynamics in mitosis.
Collapse
Affiliation(s)
- Nicolas Böhly
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG) , Göttingen , Germany
| | - Magdalena Kistner
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG) , Göttingen , Germany
| | - Holger Bastians
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG) , Göttingen , Germany
| |
Collapse
|
197
|
Chang L, Shen L, Zhou H, Gao J, Pan H, Zheng L, Armstrong B, Peng Y, Peng G, Zhou BP, Rosen ST, Shen B. ITCH nuclear translocation and H1.2 polyubiquitination negatively regulate the DNA damage response. Nucleic Acids Res 2019; 47:824-842. [PMID: 30517763 PMCID: PMC6344871 DOI: 10.1093/nar/gky1199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
The downregulation of the DNA damage response (DDR) enables aggressive tumors to achieve uncontrolled proliferation against replication stress, but the mechanisms underlying this process in tumors are relatively complex. Here, we demonstrate a mechanism through which a distinct E3 ubiquitin ligase, ITCH, modulates DDR machinery in triple-negative breast cancer (TNBC). We found that expression of a nuclear form of ITCH was significantly increased in human TNBC cell lines and tumor specimens. Phosphorylation of ITCH at Ser257 by AKT led to the nuclear localization of ITCH and ubiquitination of H1.2. The ITCH-mediated polyubiquitination of H1.2 suppressed RNF8/RNF168-dependent formation of 53BP1 foci, which plays important roles in DDR. Consistent with these findings, impaired ITCH nuclear translocation and H1.2 polyubiquitination sensitized cells to replication stress and limited cell growth and migration. AKT activation of ITCH-H1.2 axis may confer TNBC cells with a DDR repression to counteract the replication stress and increase cancer cell survivorship and growth potential.
Collapse
Affiliation(s)
- Lufen Chang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hu Zhou
- Department of Analytical Chemistry, Shanghai Institute of Material Medical Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Department of Analytical Chemistry, Shanghai Institute of Material Medical Science, Chinese Academy of Sciences, Shanghai, China
| | - Hangyi Pan
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Brian Armstrong
- Department of Developmental and Stem Cell Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY 40506, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
198
|
de Vivo A, Sanchez A, Yegres J, Kim J, Emly S, Kee Y. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res 2019; 47:729-746. [PMID: 30508113 PMCID: PMC6344881 DOI: 10.1093/nar/gky1219] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Timely stalling and resumption of RNA polymerases at damaged chromatin are actively regulated processes. Prior work showed an importance of FACT histone chaperone in such process. Here we provide a new role of OTUD5 deubiquitinase in the FACT-dependent process. Through a DUB RNAi screen, we found OTUD5 as a specific stabilizer of the UBR5 E3 ligase. OTUD5 localizes to DNA double strand breaks (DSBs), interacts with UBR5 and represses the RNA Pol II elongation and RNA synthesis. OTUD5 co-localizes and interacts with the FACT component SPT16 and antagonizes the histone H2A deposition at DSB lesions. OTUD5 interacts with UBR5 and SPT16 independently through two distinct regions, and both interactions are necessary for arresting the Pol II elongation at lesions. These analyses suggested that the catalytic (through UBR5 stabilization) as well as scaffolding (through FACT binding) activities of OTUD5 are involved in the FACT-dependent transcription. We found that a cancer-associated missense mutation within the OTUD5 Ubiquitin Interacting Motif (UIM) abrogates the FACT association and the Pol II arrest, providing a possible link between the transcriptional regulation and tumor suppression. Our work establishes OTUD5 as a new regulator of the DNA damage response, and provides an insight into the FACT-dependent transcription at damaged chromatin.
Collapse
Affiliation(s)
- Angelo de Vivo
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Anthony Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Jose Yegres
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Jeonghyeon Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Sylvia Emly
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
199
|
Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, Altmeyer M. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J 2019; 38:e101379. [PMID: 31267591 PMCID: PMC6694294 DOI: 10.15252/embj.2018101379] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) generates transient repair compartments to concentrate repair proteins and activate signaling factors. The physicochemical properties of these spatially confined compartments and their function remain poorly understood. Here, we establish, based on live cell microscopy and CRISPR/Cas9-mediated endogenous protein tagging, that 53BP1-marked repair compartments are dynamic, show droplet-like behavior, and undergo frequent fusion and fission events. 53BP1 assembly, but not the upstream accumulation of γH2AX and MDC1, is highly sensitive to changes in osmotic pressure, temperature, salt concentration and to disruption of hydrophobic interactions. Phase separation of 53BP1 is substantiated by optoDroplet experiments, which further allowed dissection of the 53BP1 sequence elements that cooperate for light-induced clustering. Moreover, we found the tumor suppressor protein p53 to be enriched within 53BP1 optoDroplets, and conditions that disrupt 53BP1 phase separation impair 53BP1-dependent induction of p53 and diminish p53 target gene expression. We thus suggest that 53BP1 phase separation integrates localized DNA damage recognition and repair factor assembly with global p53-dependent gene activation and cell fate decisions.
Collapse
Affiliation(s)
- Sinan Kilic
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Eliana Bianco
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
- Present address:
Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Jone Michelena
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| |
Collapse
|
200
|
Paulson CN, John K, Baxley RM, Kurniawan F, Orellana K, Francis R, Sobeck A, Eichman BF, Chazin WJ, Aihara H, Georg GI, Hawkinson JE, Bielinsky AK. The anti-parasitic agent suramin and several of its analogues are inhibitors of the DNA binding protein Mcm10. Open Biol 2019; 9:190117. [PMID: 31409229 PMCID: PMC6731595 DOI: 10.1098/rsob.190117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Minichromosome maintenance protein 10 (Mcm10) is essential for DNA unwinding by the replisome during S phase. It is emerging as a promising anti-cancer target as MCM10 expression correlates with tumour progression and poor clinical outcomes. Here we used a competition-based fluorescence polarization (FP) high-throughput screening (HTS) strategy to identify compounds that inhibit Mcm10 from binding to DNA. Of the five active compounds identified, only the anti-parasitic agent suramin exhibited a dose-dependent decrease in replication products in an in vitro replication assay. Structure–activity relationship evaluation identified several suramin analogues that inhibited ssDNA binding by the human Mcm10 internal domain and full-length Xenopus Mcm10, including analogues that are selective for Mcm10 over human RPA. Binding of suramin analogues to Mcm10 was confirmed by surface plasmon resonance (SPR). SPR and FP affinity determinations were highly correlated, with a similar rank between affinity and potency for killing colon cancer cells. Suramin analogue NF157 had the highest human Mcm10 binding affinity (FP Ki 170 nM, SPR KD 460 nM) and cell activity (IC50 38 µM). Suramin and its analogues are the first identified inhibitors of Mcm10 and probably block DNA binding by mimicking the DNA sugar phosphate backbone due to their extended, polysulfated anionic structures.
Collapse
Affiliation(s)
- Carolyn N Paulson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery & Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Kristen John
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery & Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fredy Kurniawan
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kayo Orellana
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rawle Francis
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery & Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandt F Eichman
- Departments of Biological Sciences and Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery & Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Jon E Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery & Development, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|