151
|
Teng SX, Katz PS, Maxi JK, Mayeux JP, Gilpin NW, Molina PE. Alcohol exposure after mild focal traumatic brain injury impairs neurological recovery and exacerbates localized neuroinflammation. Brain Behav Immun 2015; 45:145-56. [PMID: 25489880 PMCID: PMC4342330 DOI: 10.1016/j.bbi.2014.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI) represents a leading cause of morbidity and mortality among young individuals. Alcohol abuse is a risk factor associated with increased TBI incidence. In addition, up to 26% of TBI patients engage in alcohol consumption after TBI. Limited preclinical studies have examined the impact of post-injury alcohol exposure on TBI recovery. The aim of this study was to determine the isolated and combined effects of TBI and alcohol on cognitive, behavioral, and physical recovery, as well as on associated neuroinflammatory changes. Male Sprague-Dawley rats (∼300g) were subjected to a mild focal TBI by lateral fluid percussion (∼30PSI, ∼25ms) under isoflurane anesthesia. On day 4 after TBI, animals were exposed to either sub-chronic intermittent alcohol vapor (95% ethanol 14h on/10h off; BAL∼200mg/dL) or room air for 10days. TBI induced neurological dysfunction reflected by an increased neurological severity score (NSS) showed progressive improvement in injured animals exposed to room air (TBI/air). In contrast, TBI animals exposed to alcohol vapor (TBI/alcohol) showed impaired NSS recovery throughout the 10-day period of alcohol exposure. Open-field exploration test revealed an increased anxiety-like behavior in TBI/alcohol group compared to TBI/air group. Additionally, alcohol-exposed animals showed decreased locomotion and impaired novel object recognition. Immunofluorescence showed enhanced reactive astrocytes, microglial activation, and HMGB1 expression localized to the injured cortex of TBI/alcohol as compared to TBI/air animals. The expression of neuroinflammatory markers showed significant positive correlation with NSS. These findings indicated a close relationship between accentuated neuroinflammation and impaired neurological recovery from post-TBI alcohol exposure. The clinical implications of long-term consequences in TBI patients exposed to alcohol during recovery warrant further investigation.
Collapse
Affiliation(s)
- Sophie X Teng
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Paige S Katz
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - John K Maxi
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Jacques P Mayeux
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Nicholas W Gilpin
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Patricia E Molina
- Department of Physiology and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| |
Collapse
|
152
|
McCool BA, Chappell AM. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice. Alcohol 2015; 49:111-20. [PMID: 25659650 DOI: 10.1016/j.alcohol.2015.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 02/01/2023]
Abstract
Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption.
Collapse
|
153
|
Daut RA, Busch EF, Ihne J, Fisher D, Mishina M, Grant SGN, Camp M, Holmes A. Tolerance to ethanol intoxication after chronic ethanol: role of GluN2A and PSD-95. Addict Biol 2015; 20:259-62. [PMID: 24397780 DOI: 10.1111/adb.12110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neural and genetic factors underlying chronic tolerance to alcohol are currently unclear. The GluN2A N-methyl-D-aspartate receptors (NMDAR) subunit and the NMDAR-anchoring protein PSD-95 mediate acute alcohol intoxication and represent putative mechanisms mediating tolerance. We found that chronic intermittent ethanol exposure (CIE) did not produce tolerance [loss of righting reflex (LORR)] or withdrawal-anxiety in C57BL/6J, GluN2A or PSD-95 knockout mice assayed 2-3 days later. However, significant tolerance to LORR was evident 1 day after CIE in C57BL/6J and PSD-95 knockouts, but absent in GluN2A knockouts. These data suggest a role for GluN2A in tolerance, extending evidence that human GluN2A gene variation is involved in alcohol dependence.
Collapse
Affiliation(s)
- Rachel A. Daut
- Laboratory of Behavioral and Genomic Neuroscience; National Institute on Alcoholism and Alcohol Abuse, NIH; Bethesda MD USA
| | - Erica F. Busch
- Laboratory of Behavioral and Genomic Neuroscience; National Institute on Alcoholism and Alcohol Abuse, NIH; Bethesda MD USA
| | - Jessica Ihne
- Laboratory of Behavioral and Genomic Neuroscience; National Institute on Alcoholism and Alcohol Abuse, NIH; Bethesda MD USA
| | - Daniel Fisher
- Laboratory of Behavioral and Genomic Neuroscience; National Institute on Alcoholism and Alcohol Abuse, NIH; Bethesda MD USA
| | - Masayoshi Mishina
- Brain Science Laboratory; The Research Organization of Science and Technology; Ritsumeikan University; Kusatsu Japan
| | - Seth G. N. Grant
- Centre for Clinical Brain Sciences and Centre for Neuroregeneration; The University of Edinburgh; Edinburgh UK
| | - Marguerite Camp
- Laboratory of Behavioral and Genomic Neuroscience; National Institute on Alcoholism and Alcohol Abuse, NIH; Bethesda MD USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience; National Institute on Alcoholism and Alcohol Abuse, NIH; Bethesda MD USA
| |
Collapse
|
154
|
Navarro AI, Mandyam CD. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex. Neuroscience 2015; 293:35-44. [PMID: 25732140 DOI: 10.1016/j.neuroscience.2015.02.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA). Tissue enriched in the mPFC was processed for Western blot analysis and Golgi-Cox staining to investigate the long-lasting effects of CIE on the structure of mPFC neurons and the levels of myelin-associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons. These changes occurred concurrently with hypophosphorylation of the N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels which occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produced hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC.
Collapse
Affiliation(s)
- A I Navarro
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - C D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
155
|
Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 2015; 35:3607-15. [PMID: 25716859 PMCID: PMC4339362 DOI: 10.1523/jneurosci.3137-14.2015] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 11/21/2022] Open
Abstract
Previous rodent studies have implicated the infralimbic (IL) subregion of the medial prefrontal cortex in extinction of auditory fear conditioning. However, these studies used pharmacological inactivation or electrical stimulation techniques, which lack temporal precision and neuronal specificity. Here, we used an optogenetic approach to either activate (with channelrhodopsin) or silence (with halorhodopsin) glutamatergic IL neurons during conditioned tones delivered in one of two phases: extinction training or extinction retrieval. Activating IL neurons during extinction training reduced fear expression and strengthened extinction memory the following day. Silencing IL neurons during extinction training had no effect on within-session extinction, but impaired the retrieval of extinction the following day, indicating that IL activity during extinction tones is necessary for the formation of extinction memory. Surprisingly, however, silencing IL neurons optogenetically or pharmacologically during the retrieval of extinction 1 day or 1 week following extinction training had no effect. Our findings suggest that IL activity during extinction training likely facilitates storage of extinction in target structures, but contrary to current models, IL activity does not appear to be necessary for retrieval of extinction memory.
Collapse
Affiliation(s)
- Fabricio H Do-Monte
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Gabriela Manzano-Nieves
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Kelvin Quiñones-Laracuente
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Liorimar Ramos-Medina
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936
| |
Collapse
|
156
|
Marcinkiewcz CA, Dorrier CE, Lopez AJ, Kash TL. Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: implications for anxiety during ethanol withdrawal. Neuropharmacology 2015; 89:157-67. [PMID: 25229718 PMCID: PMC4469779 DOI: 10.1016/j.neuropharm.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 01/13/2023]
Abstract
One of the hallmarks of alcohol dependence is the presence of a withdrawal syndrome during abstinence, which manifests as physical craving for alcohol accompanied by subjective feelings of anxiety. Using a model of chronic intermittent ethanol (CIE) vapor in mice, we investigated the role of serotonin2c receptor (5HT2c-R) signaling in the BNST as a neural substrate underlying ethanol-induced anxiety during withdrawal. Mice were subjected to a 5-day CIE regimen of 16 h of ethanol vapor exposure followed by an 8 h "withdrawal" period between exposures. After the 5th and final exposure, mice were withdrawn for 24 h or 1 week before experiments began. Anxiety-like behavior was assessed in the social approach, light dark, and open field tests with mice showing deficits in social, but not general anxiety-like behavior that was alleviated by pretreatment with the 5HT2c-R antagonist SB 242,084 (3 mg/kg, i.p.) 24 h and 1 week post-CIE. Using immunohistochemistry and whole cell patch clamp electrophysiology, we also found that CIE increased FOS-IR and enhanced neuronal excitability in the ventral BNST (vBNST) 24 h into withdrawal in a 5HT2c-R dependent manner. This enhanced excitability persisted for 1 week post-CIE. We also found that mCPP, a 5HT2c/b agonist, induced a more robust depolarization in cells of the vBNST in CIE mice, confirming that 5HT2c-R signaling is upregulated in the vBNST following CIE. Taken together, these results suggest that CIE upregulates 5HT2c-R signaling in the vBNST, leading to increased excitability. This enhanced excitability of the vBNST may drive increased anxiety-like behavior during ethanol withdrawal.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cayce E Dorrier
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alberto J Lopez
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
157
|
McGuier NS, Padula AE, Lopez MF, Woodward JJ, Mulholland PJ. Withdrawal from chronic intermittent alcohol exposure increases dendritic spine density in the lateral orbitofrontal cortex of mice. Alcohol 2015; 49:21-7. [PMID: 25468278 DOI: 10.1016/j.alcohol.2014.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) are associated with functional and morphological changes in subfields of the prefrontal cortex. Clinical and preclinical evidence indicates that the orbitofrontal cortex (OFC) is critical for controlling impulsive behaviors, representing the value of a predicted outcome, and reversing learned associations. Individuals with AUDs often demonstrate deficits in OFC-dependent tasks, and rodent models of alcohol exposure show that OFC-dependent behaviors are impaired by chronic alcohol exposure. To explore the mechanisms that underlie these impairments, we examined dendritic spine density and morphology, and NMDA-type glutamate receptor expression in the lateral OFC of C57BL/6J mice following chronic intermittent ethanol (CIE) exposure. Western blot analysis demonstrated that NMDA receptors were not altered immediately following CIE exposure or after 7 days of withdrawal. Morphological analysis of basal dendrites of layer II/III pyramidal neurons revealed that dendritic spine density was also not affected immediately after CIE exposure. However, the total density of dendritic spines was significantly increased after a 7-day withdrawal from CIE exposure. The effect of withdrawal on spine density was mediated by an increase in the density of long, thin spines with no change in either stubby or mushroom spines. These data suggest that morphological neuroadaptations in lateral OFC neurons develop during alcohol withdrawal and occur in the absence of changes in the expression of NMDA-type glutamate receptors. The enhanced spine density that follows alcohol withdrawal may contribute to the impairments in OFC-dependent behaviors observed in CIE-treated mice.
Collapse
|
158
|
Tipps ME, Raybuck JD, Buck KJ, Lattal KM. Acute ethanol withdrawal impairs contextual learning and enhances cued learning. Alcohol Clin Exp Res 2015; 39:282-90. [PMID: 25684050 PMCID: PMC4331355 DOI: 10.1111/acer.12614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. METHODS We assess the effects of acute ethanol withdrawal (6 hours postinjection with 4 g/kg ethanol) on 2 forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post training withdrawal exposure; foreground/background processing; training strength; and nonassociative effects) is also investigated. RESULTS Acute ethanol withdrawal during training had a bidirectional effect on fear-conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. CONCLUSIONS Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes.
Collapse
Affiliation(s)
- Megan E. Tipps
- Portland Alcohol Research Center; Portland VA Medical Center 3710 SW US Veterans Hospital Rd., Bld 104 Portland, OR 97239-3098, USA
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - Jonathan D. Raybuck
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - Kari J. Buck
- Portland Alcohol Research Center; Portland VA Medical Center 3710 SW US Veterans Hospital Rd., Bld 104 Portland, OR 97239-3098, USA
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - K. Matthew Lattal
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| |
Collapse
|
159
|
Ortiz V, Giachero M, Espejo PJ, Molina VA, Martijena ID. The effect of Midazolam and Propranolol on fear memory reconsolidation in ethanol-withdrawn rats: influence of d-cycloserine. Int J Neuropsychopharmacol 2015; 18:pyu082. [PMID: 25617327 PMCID: PMC4360226 DOI: 10.1093/ijnp/pyu082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Withdrawal from chronic ethanol facilitates the formation of contextual fear memory and delays the onset to extinction, with its retrieval promoting an increase in ethanol consumption. Consequently, manipulations aimed to reduce these aversive memories, may be beneficial in the treatment of alcohol discontinuation symptoms. Related to this, pharmacological memory reconsolidation blockade has received greater attention due to its therapeutic potential. METHODS Here, we examined the effect of post-reactivation amnestic treatments such as Midazolam (MDZ, 3 mg/kg i.p) and Propranolol (PROP, 5 mg/kg i.p) on contextual fear memory reconsolidation in ethanol- withdrawn (ETOH) rats. Next, we examined whether the activation of N-methyl-D-aspartate (NMDA) receptors induced by d-cycloserine (DCS, 5 mg/kg i.p., a NMDA partial agonist) before memory reactivation can facilitate the disruptive effect of PROP and MDZ on fear memory in ETOH rats. RESULTS We observed a resistance to the disruptive effect of both MDZ and PROP following memory reactivation. Although intra-basolateral amygdala (BLA; 1.25 ug/side) and systemic PROP administration attenuated fear memory in DCS pre-treated ETOH rats, DCS/MDZ treatment did not affect memory in these animals. Finally, a decrease of both total and surface protein expression of the α1 GABAA receptor (GABAA-R) subunit in BLA was found in the ETOH rats. CONCLUSIONS Ethanol withdrawal facilitated the formation of fear memory resistant to labilization post-reactivation. DCS administration promoted the disruptive effect of PROP on memory reconsolidation in ETOH rats. The resistance to MDZ's disruptive effect on fear memory reconsolidation may be, at least in part, associated with changes in the GABAA-R composition induced by chronic ethanol administration/withdrawal.
Collapse
Affiliation(s)
| | | | | | | | - Irene Delia Martijena
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina (Ms Ortiz, Dr Giachero, Mr Espejo, PharmD, Drs Molina and Martijena)
| |
Collapse
|
160
|
Abstract
RATIONALE There is a high degree of comorbidity between alcohol use disorder and post-traumatic stress disorder (PTSD), but little is known about the interactions of ethanol with traumatic memories. OBJECTIVES Using auditory fear conditioning in rats, we asked if repeated exposure to ethanol could modify the retrieval of fear memories acquired prior to ethanol exposure. METHODS Following auditory fear conditioning, Sprague-Dawley rats were given daily injections of ethanol (1.5 g/kg) or saline over 5 days. Two days later, they were given 20 trials of extinction training and then tested for extinction memory the following day. In a separate experiment, conditioned rats were given repeated ethanol injections and processed for c-Fos immunohistochemistry following a fear retrieval session. RESULTS Two days following the cessation of ethanol, the magnitude of conditioned fear responses (freezing and suppression of bar pressing) was significantly increased. This increase persisted the following day. Waiting 10 days following cessation of ethanol eliminated the effect on fear retrieval. In rats conditioned with low shock levels, repeated exposure to ethanol converted a sub-threshold fear memory into a supra-threshold fear memory. It also increased c-Fos expression in the prelimbic prefrontal cortex, paraventricular thalamus, and the central and basolateral nuclei of the amygdala, areas implicated in the retrieval of fear memories. CONCLUSIONS These results suggest that repeated exposure to ethanol may exacerbate pre-existing traumatic memories.
Collapse
|
161
|
Abstract
Anxiety disorders commonly co-occur with substance use disorders both in the general population and in treatment-seeking samples. This co-occurrence is associated with greater symptom severity, higher levels of disability, and poorer course of illness relative to either disorder alone. Little research has been conducted, however, on the treatment of these co-occurring disorders. This gap may not only leave anxiety untreated or undertreated but also increase the risk for relapse and poor substance use outcomes. The aim of this article is to review the current state of the literature on treating co-occurring anxiety and substance use disorders. In addition to presenting a brief overview of the epidemiology of this co-occurrence, the article discusses the challenges in assessing anxiety in the context of a substance use disorder, the evidence for various treatment approaches, and recent advances and future directions in this understudied area. Also highlighted is the need for future research to identify optimal behavioral and pharmacologic treatments for co-occurring anxiety and substance use disorders.
Collapse
|
162
|
Meinhardt MW, Sommer WH. Postdependent state in rats as a model for medication development in alcoholism. Addict Biol 2015; 20:1-21. [PMID: 25403107 DOI: 10.1111/adb.12187] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review.
Collapse
Affiliation(s)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology; University of Heidelberg; Germany
- Department of Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
163
|
Barker JM, Taylor JR, De Vries TJ, Peters J. Brain-derived neurotrophic factor and addiction: Pathological versus therapeutic effects on drug seeking. Brain Res 2014; 1628:68-81. [PMID: 25451116 DOI: 10.1016/j.brainres.2014.10.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 11/27/2022]
Abstract
Many abused drugs lead to changes in endogenous brain-derived neurotrophic factor (BDNF) expression in neural circuits responsible for addictive behaviors. BDNF is a known molecular mediator of memory consolidation processes, evident at both behavioral and neurophysiological levels. Specific neural circuits are responsible for storing and executing drug-procuring motor programs, whereas other neural circuits are responsible for the active suppression of these "seeking" systems. These seeking-circuits are established as associations are formed between drug-associated cues and the conditioned responses they elicit. Such conditioned responses (e.g. drug seeking) can be diminished either through a passive weakening of seeking- circuits or an active suppression of those circuits through extinction. Extinction learning occurs when the association between cues and drug are violated, for example, by cue exposure without the drug present. Cue exposure therapy has been proposed as a therapeutic avenue for the treatment of addictions. Here we explore the role of BDNF in extinction circuits, compared to seeking-circuits that "incubate" over prolonged withdrawal periods. We begin by discussing the role of BDNF in extinction memory for fear and cocaine-seeking behaviors, where extinction circuits overlap in infralimbic prefrontal cortex (PFC). We highlight the ability of estrogen to promote BDNF-like effects in hippocampal-prefrontal circuits and consider the role of sex differences in extinction and incubation of drug-seeking behaviors. Finally, we examine how opiates and alcohol "break the mold" in terms of BDNF function in extinction circuits.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Taco J De Vries
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 BT Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Neuroscience Campus Amsterdam, Center for Neurogenomics and Cognitive Research, Faculty of Earth and Life Sciences, VU University, 1081 HV Amsterdam, The Netherlands
| | - Jamie Peters
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
164
|
DePoy LM, Perszyk RE, Zimmermann KS, Koleske AJ, Gourley SL. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors. Front Pharmacol 2014; 5:228. [PMID: 25452728 PMCID: PMC4233985 DOI: 10.3389/fphar.2014.00228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC). Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31–35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability—the p190rhogap+/– mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/– mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/– mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Pediatrics, Emory University School of Medicine , Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University , Atlanta, GA, USA ; Graduate Program in Neuroscience, Emory University , Atlanta, GA, USA
| | - Riley E Perszyk
- Graduate Program in Molecular and Systems Pharmacology, Emory University , Atlanta, GA, USA
| | - Kelsey S Zimmermann
- Department of Pediatrics, Emory University School of Medicine , Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University , Atlanta, GA, USA ; Graduate Program in Neuroscience, Emory University , Atlanta, GA, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT, USA ; Interdepartmental Neuroscience Program, Yale University , New Haven, CT, USA ; Department of Neurobiology, Yale University School of Medicine , New Haven, CT, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine , Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University , Atlanta, GA, USA ; Graduate Program in Neuroscience, Emory University , Atlanta, GA, USA
| |
Collapse
|
165
|
Abstract
Individuals use both passive and active defensive responses to environmental threats. Much is known about the neural circuits of passive defensive responses (e.g., freezing), but less is known about the substrates of active defensive responses (e.g., avoidance). We developed an active avoidance task in which rats learn to avoid a tone-signaled footshock by stepping onto a nearby platform. An advantage of this task is that freezing, which can interfere with avoidance, is reduced, thereby facilitating comparison of the effects of manipulations on avoidance versus freezing. After 10 d of avoidance training, rats were infused with muscimol to pharmacologically inactivate the prelimbic cortex (PL), infralimbic cortex (IL), ventral striatum (VS), or basolateral amygdala (BLA). Inactivating PL, VS, or BLA all impaired avoidance expression, but these areas differed with respect to freezing. Inactivating BLA decreased freezing consistent with loss of the tone-shock association, whereas inactivation of VS increased freezing consistent with loss of avoidance memory. Inactivation of PL had no effect on freezing. Inactivation of IL did not impair avoidance expression but did impair avoidance extinction. Our findings suggest that active avoidance is mediated by prefrontal-striatal circuits, which may be overactive in individuals suffering from trauma-related disorders.
Collapse
|
166
|
Cruz E, López AV, Porter JT. Spontaneous recovery of fear reverses extinction-induced excitability of infralimbic neurons. PLoS One 2014; 9:e103596. [PMID: 25089624 PMCID: PMC4138022 DOI: 10.1371/journal.pone.0103596] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/03/2014] [Indexed: 01/13/2023] Open
Abstract
In rodents, the infralimbic (IL) region of the medial prefrontal cortex plays a key role in the recall of fear extinction. Previously we showed that fear conditioning decreases the intrinsic excitability of IL neurons, and that fear extinction reverses the depressed excitability. In the current study, we examined the time course of the extinction-induced changes in adolescent rats. Immediately after extinction, IL neurons continued to show depressed excitability. However 4 hours after extinction, IL neurons showed an increase in evoked spikes that correlated with a reduced fast afterhyperpolarizing potential. This suggests that acquisition of fear extinction induces an increase in spike firing 4 hours later, during the consolidation of extinction. We also examined IL excitability in a group of rats that showed spontaneous recovery of fear 17 days after extinction (SR group). Similar to neurons after fear conditioning, IL neurons from the SR group showed depressed intrinsic excitability compared to neurons 4 hours after extinction, suggesting that extinction-induced enhancement in intrinsic excitability decreases with time reverting back to a depressed state. These results suggest that plasticity in IL contributes to the spontaneous recovery of fear and preventing this depression of IL excitability could prolong fear extinction.
Collapse
Affiliation(s)
- Emmanuel Cruz
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| | - Ana V. López
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
| | - James T. Porter
- Department of Physiology and Pharmacology, Ponce School of Medicine, Ponce, Puerto Rico
- * E-mail:
| |
Collapse
|
167
|
Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014; 171:4690-718. [PMID: 24835117 DOI: 10.1111/bph.12779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022] Open
Abstract
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | | |
Collapse
|
168
|
Fritz BM, Boehm SL. Site-specific microinjection of Gaboxadol into the infralimbic cortex modulates ethanol intake in male C57BL/6J mice. Behav Brain Res 2014; 273:8-15. [PMID: 25043731 DOI: 10.1016/j.bbr.2014.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/27/2022]
Abstract
Extrasynaptic GABAA receptors, often identified as those containing both α4 and δ subunits, demonstrate super-sensitivity to GABA and are involved in tonic inhibitory processes regulating activity within mesolimbocortical circuitry. Rodent studies testing the effects of the δ-subunit selective agonist Gaboxadol (THIP) on alcohol consumption have produced mixed results. The goal of this study was to determine the role of extrasynaptic GABAA receptors located in the infralimbic cortex (ILC) in the alcohol consumption of male C57BL/6J (B6) mice. The ILC is of interest due to its demonstrated involvement in stress reactivity. Furthermore, alcohol exposure has been shown to interfere with extinction learning; impairments of which may be related to inflexible behavior (i.e., problematic alcohol consumption). Adult male B6 mice were bilaterally implanted with guide cannulas aimed at the ILC and were subsequently offered daily limited access to 20% ethanol or 5% sucrose for 7 days. Immediately prior to ethanol or sucrose access on day 7, mice were bilaterally injected with 50 or 100ng THIP (25 or 50ng per side respectively) or saline vehicle into the ILC. The highest dose of intra-ILC THIP (100ng/mouse) increased alcohol intake relative to vehicle controls, although control animals consumed relatively little ethanol following infusion. Intra-ILC THIP had no effect on sucrose consumption (p>0.05), suggesting that the effect of THIP was selective for ethanol consumption. Together, these findings suggest that THIP may have effectively prevented the decrease in ethanol intake on day 7 induced by the microinjection process, perhaps supporting a suggested role for the ILC in adaptive learning processes and behavioral flexibility.
Collapse
Affiliation(s)
- Brandon M Fritz
- Indiana Alcohol Research Center, Department of Psychology Indiana University - Purdue University Indianapolis, IN, United States.
| | - Stephen L Boehm
- Indiana Alcohol Research Center, Department of Psychology Indiana University - Purdue University Indianapolis, IN, United States
| |
Collapse
|
169
|
Masneuf S, Lowery-Gionta E, Colacicco G, Pleil KE, Li C, Crowley N, Flynn S, Holmes A, Kash T. Glutamatergic mechanisms associated with stress-induced amygdala excitability and anxiety-related behavior. Neuropharmacology 2014; 85:190-7. [PMID: 24796255 DOI: 10.1016/j.neuropharm.2014.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/11/2023]
Abstract
The neural factors underlying individual differences in susceptibility to chronic stress remain poorly understood. Preclinical studies demonstrate that mouse strains vary greatly in anxiety-related responses to chronic stress in a manner paralleled by differential stress-induced changes in glutamatergic signaling in the basolateral amygdala (BLA). Previous work has also shown that alterations in the amygdala gene expression of the GluN1 NMDA and the GluK1 kainate receptors are associated with stress-induced alterations in anxiety-like behavior in the C57BL/6J mouse strain. Using in vivo behavioral pharmacological and ex vivo physiological approaches, the aim of the current study was to further elucidate changes in glutamate neurotransmission in the BLA caused by stress and to test the functional roles of GluN1 and GluK1 in mediating stress-related changes in behavior. Results showed that stress-induced alterations in anxiety-like behavior (light/dark exploration test) were absent following bilateral infusion of the GluK1 agonist ATPA into the BLA. Intra-BLA infusion of the competitive NMDA antagonist AP5 produced a generalized behavioral disinhibition/locomotor hyperactivity, irrespective of stress. Slice electrophysiological recordings showed that ATPA augmented BLA GABAergic neurotransmission and that stress increased the amplitude of network-dependent spontaneous excitatory postsynaptic currents and amplitude of GABAergic miniature inhibitory postsynaptic currents in BLA. These findings could indicate stress-induced BLA glutamatergic neuronal network hyperexcitability and a compensatory increase in GABAergic neurotransmission, suggesting that GluK1 agonism augmented GABAergic inhibition to prevent behavioral sequelae of stress. Current data could have implications for developing novel therapeutic approaches, including GluK1 agonists, for stress-related anxiety disorders.
Collapse
Affiliation(s)
- Sophie Masneuf
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA
| | - Emily Lowery-Gionta
- Laboratory of Molecular Neurophysiology, Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Giovanni Colacicco
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA
| | - Kristen E Pleil
- Laboratory of Molecular Neurophysiology, Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Chia Li
- Laboratory of Molecular Neurophysiology, Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Nicole Crowley
- Laboratory of Molecular Neurophysiology, Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Shaun Flynn
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA
| | - Thomas Kash
- Laboratory of Molecular Neurophysiology, Bowles Center for Alcohol Studies, Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
170
|
Griffin WC. Alcohol dependence and free-choice drinking in mice. Alcohol 2014; 48:287-93. [PMID: 24530006 DOI: 10.1016/j.alcohol.2013.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 02/04/2023]
Abstract
Alcohol dependence continues to be an important health concern and animal models are critical to furthering our understanding of this complex disease. A hallmark feature of alcoholism is a significant increase in alcohol drinking over time. While several different animal models of excessive alcohol (ethanol) drinking exist for mice and rats, a growing number of laboratories are using a model that combines chronic ethanol exposure procedures with voluntary ethanol drinking with mice as experimental subjects. Primarily, these studies use a chronic intermittent ethanol (CIE) exposure pattern to render mice dependent and a 2-h limited access procedure to evaluate drinking behavior. Compared to non-dependent mice that also drink ethanol, the ethanol-dependent mice demonstrate significant increases in voluntary ethanol drinking. The increased drinking significantly elevates blood and brain ethanol concentrations compared to the non-dependent control mice. Studies report that the increased drinking by dependent mice is driven by neuroadaptations in glutamatergic and corticotropin-releasing factor signaling in different brain regions known to be involved in alcohol-related behaviors. The dysregulation of these systems parallels findings in human alcoholics and treatments that demonstrate efficacy in alcoholics can also reduce drinking in this model. Moreover, preclinical findings have informed the development of human clinical trials, further highlighting the translational potential of the model. As a result of these features, the CIE exposure and free-choice drinking model is becoming more widely used and promises to provide more insight into mechanisms of excessive drinking that may be important for developing treatments for human alcoholics. The salient features and possible future considerations for CIE exposure and free-choice drinking in mice are discussed.
Collapse
|
171
|
Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex. J Neurosci 2014; 34:3706-18. [PMID: 24599469 DOI: 10.1523/jneurosci.0623-13.2014] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) receptors in the medial prefrontal cortex (mPFC) exert powerful effects on cognition by modulating the balance between excitatory and inhibitory neurotransmission. The present study examined the impact of chronic intermittent ethanol (CIE) exposure on cognitive function and DA receptor-mediated neurotransmission in the rat mPFC. Consistent with alterations in executive function in alcoholics, CIE-exposed rats exhibited deficits in behavioral flexibility in an operant set-shifting task. Since alterations in dopaminergic neurotransmission in the mPFC have been implicated in a number of behavioral disorders including addiction, studies were then performed in the adult acute slice preparation to examine changes in DA receptor function in the mPFC following CIE exposure. In slices obtained from control rats, DA receptor stimulation was observed to exert complex actions on neuronal firing and synaptic neurotransmission that were not only dependent upon the particular receptor subtype but also whether it was a pyramidal cell or a fast-spiking interneuron. In contrast to slices from control rats, there was a near complete loss of the modulatory actions of D2/D4 receptors on cell firing and neurotransmission in slices obtained immediately, 1 and 4 weeks after the last day of CIE exposure. This loss did not appear to be associated with changes in receptor expression. In contrast, CIE exposure did not alter D1 receptor function or mGluR1 modulation of firing. These studies are consistent with the suggestion that chronic alcohol exposure disrupts cognitive function at least in part through disruption of D2 and D4 receptor signaling in mPFC.
Collapse
|
172
|
Kim A, Zamora-Martinez ER, Edwards S, Mandyam CD. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity. Brain Struct Funct 2014; 220:1705-20. [PMID: 24667898 PMCID: PMC4177030 DOI: 10.1007/s00429-014-0755-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the activity of pyramidal neurons and decreases the number of glial progenitors in the medial prefrontal cortex (mPFC). Adult male Wistar rats were exposed to CIE and were injected with mitotic markers to label and phenotype proliferating cells to test the hypothesis that CIE produces concurrent alterations in the structure of pyramidal neurons and the cell cycle kinetics and developmental stages of glial progenitors in the mPFC. Medial prefrontal cortical tissue was processed for Golgi-Cox staining, immunohistochemistry and Western blotting analysis. CIE increased dendritic arborization and spine densities within basal and apical dendrites of pyramidal neurons via aberrant reorganization of actin cytoskeleton-associated molecules. CIE concomitantly increased the expression of total NR2B subunits without affecting phosphorylation of NR2B at Tyr-1472 or levels of PSD-95. CIE reduced the length of S-phase of the cell cycle of glial progenitors and reduced proliferation and differentiation of progenitors into bHLH transcription factor Olig2-expressing premyelinating oligodendrocyte progenitor cells (OPCs). CIE also produced a corresponding hyperphosphorylation of Olig2, and reduced expression of myelin basic protein. Our findings demonstrate that CIE-induced alterations in OPCs and myelin-related proteins are associated with profound alterations in the structure of pyramidal neurons. In sum, our results not only provide evidence that alcohol dependence leads to pathological changes in the mPFC, which may in part define a cellular basis for cognitive impairments associated with alcoholism, but also show dependence-associated morphological changes in the PFC at the single neuron level.
Collapse
Affiliation(s)
- Airee Kim
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Eva R. Zamora-Martinez
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, LSU Health Sciences Center, New Orleans, LA, USA
| | - Chitra D. Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
173
|
Criado-Marrero M, Santini E, Porter JT. Modulating fear extinction memory by manipulating SK potassium channels in the infralimbic cortex. Front Behav Neurosci 2014; 8:96. [PMID: 24715857 PMCID: PMC3970028 DOI: 10.3389/fnbeh.2014.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/07/2014] [Indexed: 11/13/2022] Open
Abstract
Fear extinction correlates with increased infralimbic (IL) neuronal excitability. Since small conductance Ca2+-dependent K+ (SK) channels modulate neuronal excitability and certain types of learning and memory, pharmacological modulation of SK channels could be used to regulate IL excitability and fear extinction. To test this, we first determined the effect of blocking SK channels with apamin on the intrinsic excitability of IL pyramidal neurons in brain slices. In whole-cell patch-clamp recordings, apamin increased the number of spikes evoked by a depolarizing current pulse, increased the firing frequency, and reduced the fast afterhyperpolarizing potential (fAHP) indicating that blockade of SK channels could be used to enhance the intrinsic excitability of IL neurons. Next, we assessed whether SK channels in IL regulate extinction of conditioned fear by infusing apamin into IL of fear conditioned rats prior to extinction training. Apamin infusion did not affect conditioned freezing at the beginning of the extinction session or within-session extinction. However, the following day, apamin-infused rats showed significantly less conditioned freezing. To further examine the importance of SK channels in IL in fear extinction, we assessed the effect of the SK channel activator DCEBIO on IL neuronal excitability and fear extinction. Activation of SK channels with DCEBIO decreased the number of evoked spikes, reduced the firing frequency, and enhanced the fAHP of IL neurons. Infusion of DCEBIO into IL prior to fear extinction impaired recall of fear extinction without affecting acquisition of extinction. Taken together, these findings suggest that SK channels are involved in regulating IL excitability and extinction-induced plasticity. Therefore, SK channels are a potential target for the development of new pharmacological treatments to facilitate extinction in patients suffering from anxiety disorders.
Collapse
Affiliation(s)
- Marangelie Criado-Marrero
- Department of Physiology and Pharmacology, Ponce School of Medicine and Health Sciences Ponce, Puerto Rico
| | - Edwin Santini
- College of Pharmacy, Nova Southeastern University Ponce, Puerto Rico
| | - James T Porter
- Department of Physiology and Pharmacology, Ponce School of Medicine and Health Sciences Ponce, Puerto Rico
| |
Collapse
|
174
|
Abstract
Deficits of attention, emotion, and cognition occur in individuals with alcohol abuse and addiction. This review elucidates the concepts of attention, emotion, and cognition and references research on the underlying neural networks and their compromise in alcohol use disorder. Neuroimaging research on adolescents with family history of alcoholism contributes to the understanding of pre-existing brain structural conditions and characterization of cognition and attention processes in high-risk individuals. Attention and cognition interact with other brain functions, including perceptual selection, salience, emotion, reward, and memory, through interconnected neural networks. Recent research reports compromised microstructural and functional network connectivity in alcoholism, which can have an effect on the dynamic tuning between brain systems, e.g., the frontally based executive control system, the limbic emotion system, and the midbrain-striatal reward system, thereby impeding cognitive flexibility and behavioral adaptation to changing environments. Finally, we introduce concepts of functional compensation, the capacity to generate attentional resources for performance enhancement, and brain structure recovery with abstinence. An understanding of the neural mechanisms of attention, emotion, and cognition will likely provide the basis for better treatment strategies for developing skills that enhance alcoholism therapy adherence and quality of life, and reduce the propensity for relapse.
Collapse
|
175
|
Abstract
Alcohol dependence encompasses a serious medical and societal problem that constitutes a major public health concern. A serious consequence of dependence is the emergence of symptoms associated with the alcohol withdrawal syndrome when drinking is abruptly terminated or substantially reduced. Clinical features of alcohol withdrawal include signs of central nervous system hyperexcitability, heightened autonomic nervous system activation, and a constellation of symptoms contributing to psychologic discomfort and negative affect. The development of alcohol dependence is a complex and dynamic process that ultimately reflects a maladaptive neurophysiologic state. Perturbations in a wide range of neurochemical systems, including glutamate, γ-aminobutyric acid, monoamines, a host of neuropeptide systems, and various ion channels produced by the chronic presence of alcohol ultimately compromise the functional integrity of the brain. These neuroadaptations not only underlie the emergence and expression of many alcohol withdrawal symptoms, but also contribute to enhanced relapse vulnerability as well as perpetuation of uncontrolled excessive drinking. This chapter highlights the hallmark features of the alcohol withdrawal syndrome, and describes neuroadaptations in a wide array of neurotransmitter and neuromodulator systems (amino acid and monoamine neurotransmitter, neuropeptide systems, and various ion channels) as they relate to the expression of various signs and symptoms of alcohol withdrawal, as well as their relationship to the significant clinical problem of relapse and uncontrolled dangerous drinking.
Collapse
|
176
|
Cho JH, Deisseroth K, Bolshakov VY. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 2013; 80:1491-507. [PMID: 24290204 PMCID: PMC3872173 DOI: 10.1016/j.neuron.2013.09.025] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 12/19/2022]
Abstract
Retrieval of fear extinction memory is associated with increased firing of neurons in the medial prefrontal cortex (mPFC). It is unknown, however, how extinction learning-induced changes in mPFC activity are relayed to target structures in the amygdala, resulting in diminished fear responses. Here, we show that fear extinction decreases the efficacy of excitatory synaptic transmission in projections from the mPFC to the basolateral nucleus of the amygdala (BLA), whereas inhibitory responses are not altered. In contrast, synaptic strength at direct mPFC inputs to intercalated neurons remains unchanged after extinction. Moreover, priming stimulation of mPFC projections induced heterosynaptic inhibition in auditory cortical inputs to the BLA. These synaptic mechanisms could contribute to the encoding of extinction memory by diminishing the ability of projections from the mPFC to drive BLA activity while retaining the ability of intercalated neurons to inhibit the output nuclei of the amygdala.
Collapse
Affiliation(s)
- Jun-Hyeong Cho
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Karl Deisseroth
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| |
Collapse
|
177
|
Tipps ME, Raybuck JD, Lattal KM. Substance abuse, memory, and post-traumatic stress disorder. Neurobiol Learn Mem 2013; 112:87-100. [PMID: 24345414 DOI: 10.1016/j.nlm.2013.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
A large body of literature demonstrates the effects of abused substances on memory. These effects differ depending on the drug, the pattern of delivery (acute or chronic), and the drug state at the time of learning or assessment. Substance use disorders involving these drugs are often comorbid with anxiety disorders, such as post-traumatic stress disorder (PTSD). When the cognitive effects of these drugs are considered in the context of the treatment of these disorders, it becomes clear that these drugs may play a deleterious role in the development, maintenance, and treatment of PTSD. In this review, we examine the literature evaluating the cognitive effects of three commonly abused drugs: nicotine, cocaine, and alcohol. These three drugs operate through both common and distinct neurobiological mechanisms and alter learning and memory in multiple ways. We consider how the cognitive and affective effects of these drugs interact with the acquisition, consolidation, and extinction of learned fear, and we discuss the potential impediments that substance abuse creates for the treatment of PTSD.
Collapse
Affiliation(s)
- Megan E Tipps
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
178
|
Prefrontal single-unit firing associated with deficient extinction in mice. Neurobiol Learn Mem 2013; 113:69-81. [PMID: 24231425 DOI: 10.1016/j.nlm.2013.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/23/2013] [Accepted: 11/05/2013] [Indexed: 11/21/2022]
Abstract
The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of S1 than B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and increased the number of Zif268-labeled cells in layer II of IL, but failed to increase vmPFC single-unit firing. Collectively, these findings further support the important contribution these cortical regions play in determining the balance between robust extinction on the one hand, and sustained fear on the other. Elucidating the precise nature of these roles could help inform understanding of the pathophysiology of fear-related anxiety disorders.
Collapse
|
179
|
Amygdala FAAH and anandamide: mediating protection and recovery from stress. Trends Pharmacol Sci 2013; 34:637-44. [PMID: 24325918 DOI: 10.1016/j.tips.2013.08.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/23/2022]
Abstract
A long-standing literature linking endocannabinoids (ECBs) to stress, fear, and anxiety has led to growing interest in developing novel anxiolytics targeting the ECB system. Following rapid on-demand biosynthesis and degradation upon neuronal activation, the ECB N-arachidonoylethanolamide (anandamide, AEA) is actively degraded by the serine hydrolase enzyme, fatty acid amide hydrolase (FAAH). Exposure to stress rapidly mobilizes FAAH to deplete the signaling pool of AEA and increase neuronal excitability in a key anxiety-mediating region--the basolateral amygdala (BLA). Gene deletion or pharmacological inhibition of FAAH prevents stress-induced reductions in AEA and associated increases in BLA dendritic hypertrophy and anxiety-like behavior. Additionally, inhibition of FAAH facilitates long-term fear extinction and rescues deficient fear extinction in rodent models by enhancing AEA-CB1 (cannabinoid type 1) receptor signaling and synaptic plasticity in the BLA. These preclinical findings propose restoring deficient BLA AEA levels by pharmacologically inhibiting FAAH as a mechanism to therapeutically mitigate the effects of traumatic stress.
Collapse
|
180
|
Abstract
RATIONALE An increasingly compelling literature points to a major role for the glutamate system in mediating the effects of alcohol on behavior and the pathophysiology of alcoholism. Preclinical studies indicate that glutamate signaling mediates certain aspects of ethanol's intoxicating and rewarding effects, and undergoes adaptations following chronic alcohol exposure that may contribute to the withdrawal, craving and compulsive drug-seeking that drive alcohol abuse and alcoholism. OBJECTIVES We discuss the potential for targeting the glutamate system as a novel pharmacotherapeutic approach to treating alcohol use disorders, focusing on five major components of the glutamate system: the N-methyl-D-aspartate (NMDA) receptor and specific NMDA subunits, the glycineB site on the NMDA receptors (NMDAR), L-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid ionotropic (AMPA) and kainate (KAR) receptors, metabotropic receptors (mGluR), and glutamate transporters. RESULTS Chronic alcohol abuse produces a hyperglutamatergic state, characterized by elevated extracellular glutamate and altered glutamate receptors and transporters. Pharmacologically manipulating glutamatergic neurotransmission alters alcohol-related behaviors including intoxication, withdrawal, and alcohol-seeking, in rodents and human subjects. Blocking NMDA and AMPA receptors reduces alcohol consumption in rodents, but side-effects may limit this as a therapeutic approach. Selectively targeting NMDA and AMPA receptor subunits (e.g., GluN2B, GluA3), or the NMDAR glycineB site offers an alternative approach. Blocking mGluR5 potently affects various alcohol-related behaviors in rodents, and mGluR2/3 agonism also suppresses alcohol consumption. Finally, glutamate transporter upregulation may mitigate behavioral and neurotoxic sequelae of excess glutamate caused by alcohol. CONCLUSIONS Despite the many challenges that remain, targeting the glutamate system offers genuine promise for developing new treatments for alcoholism.
Collapse
|
181
|
Courtin J, Karalis N, Gonzalez-Campo C, Wurtz H, Herry C. Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem 2013; 113:82-9. [PMID: 24091205 DOI: 10.1016/j.nlm.2013.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/10/2013] [Accepted: 09/24/2013] [Indexed: 11/15/2022]
Abstract
Extinction of auditory fear conditioning induces a temporary inhibition of conditioned fear responses that can spontaneously reappear with the passage of time. Several lines of evidence indicate that extinction learning relies on the recruitment of specific neuronal populations within the basolateral amygdala. In contrast, post-extinction spontaneous fear recovery is thought to result from deficits in the consolidation of extinction memory within prefrontal neuronal circuits. Interestingly, recent data indicates that the strength of gamma oscillations in the basolateral amygdala during auditory fear conditioning correlates with retrieval of conditioned fear responses. In the present manuscript we evaluated the hypothesis that post-extinction spontaneous fear recovery might depend on the maintenance of gamma oscillations within the basolateral amygdala by using single unit and local field potential recordings in behaving mice. Our results indicate that gamma oscillations in the basolateral amygdala were enhanced following fear conditioning, whereas during extinction learning gamma profiles were more heterogeneous despite similar extinction learning rates. Remarkably, variations in the strength of gamma power within the basolateral amygdala between early and late stages of extinction linearly predicted the level of post-extinction spontaneous fear recovery. These data suggest that maintenance of gamma oscillations in the basolateral amygdala during extinction learning is a strong predictive factor of long term spontaneous fear recovery.
Collapse
Affiliation(s)
- J Courtin
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - N Karalis
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - C Gonzalez-Campo
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - H Wurtz
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - C Herry
- INSERM, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U862, 146 Rue Léo-Saignat, 33077 Bordeaux, France.
| |
Collapse
|
182
|
Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc Natl Acad Sci U S A 2013; 110:14783-8. [PMID: 23959891 DOI: 10.1073/pnas.1308198110] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug addictions including alcoholism are characterized by degradation of executive control over behavior and increased compulsive drug seeking. These profound behavioral changes are hypothesized to involve a shift in the regulation of behavior from prefrontal cortex to dorsal striatum (DLS). Studies in rodents have shown that ethanol disrupts cognitive processes mediated by the prefrontal cortex, but the potential effects of chronic ethanol on DLS-mediated cognition and learning are much less well understood. Here, we first examined the effects of chronic EtOH on DLS neuronal morphology, synaptic plasticity, and endocannabinoid-CB1R signaling. We next tested for ethanol-induced changes in striatal-related learning and DLS in vivo single-unit activity during learning. Mice exposed to chronic intermittent ethanol (CIE) vapor exhibited expansion of dendritic material in DLS neurons. Following CIE, DLS endocannabinoid CB1 receptor signaling was down-regulated, and CB1 receptor-dependent long-term depression at DLS synapses was absent. CIE mice showed facilitation of DLS-dependent pairwise visual discrimination and reversal learning, relative to air-exposed controls. CIE mice were also quicker to extinguish a stimulus-reward instrumental response and faster to reduce Pavlovian approach behavior under an omission schedule. In vivo single-unit recording during learning revealed that CIE mice had augmented DLS neuronal activity during correct responses. Collectively, these findings support a model in which chronic ethanol causes neuroadaptations in the DLS that prime for greater DLS control over learning. The shift to striatal dominance over behavior may be a critical step in the progression of alcoholism.
Collapse
|
183
|
Brigman JL, Daut R, Wright T, Gunduz-Cinar O, Graybeal C, Davis MI, Jiang Z, Saksida L, Jinde S, Pease M, Bussey TJ, Lovinger DM, Nakazawa K, Holmes A. GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat Neurosci 2013; 16:1101-10. [PMID: 23831965 PMCID: PMC3725191 DOI: 10.1038/nn.3457] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
A choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or it becomes perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but the molecular mechanisms of these processes are not well understood. We integrated mouse behavioral, immunocytochemical, in vivo electrophysiological, genetic and pharmacological approaches to study choice. We found that the dorsal striatum (DS) was increasingly activated with choice learning, whereas reversal of learned choice engaged prefrontal regions. In vivo, DS neurons showed activity associated with reward anticipation and receipt that emerged with learning and relearning. Corticostriatal or striatal deletion of Grin2b (encoding the NMDA-type glutamate receptor subunit GluN2B) or DS-restricted GluN2B antagonism impaired choice learning, whereas cortical Grin2b deletion or OFC GluN2B antagonism impaired shifting. Our convergent data demonstrate how corticostriatal GluN2B circuits govern the ability to learn and shift choice behavior.
Collapse
MESH Headings
- Adaptation, Psychological/physiology
- Animals
- Anticipation, Psychological/physiology
- Choice Behavior/physiology
- Conditioning, Operant/physiology
- Corpus Striatum/physiology
- Decision Making/physiology
- Discrimination Learning/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Gene Deletion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nerve Net/physiology
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuronal Plasticity
- Patch-Clamp Techniques
- Pattern Recognition, Visual/physiology
- Phenols/pharmacology
- Piperidines/pharmacology
- Prefrontal Cortex/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/deficiency
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/physiology
- Reward
Collapse
Affiliation(s)
- Jonathan L. Brigman
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Rachel Daut
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Tara Wright
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Carolyn Graybeal
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | | | - Zhihong Jiang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH
| | - Lisa Saksida
- Department of Experimental Psychology, University of Cambridge, Cambridge, Medical Research Council and Wellcome Trust Behavioral and Clinical Neuroscience Institute, UK
| | - Seiichiro Jinde
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH
| | - Matthew Pease
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Timothy J. Bussey
- Department of Experimental Psychology, University of Cambridge, Cambridge, Medical Research Council and Wellcome Trust Behavioral and Clinical Neuroscience Institute, UK
| | | | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| |
Collapse
|
184
|
Alkohol induzierte kognitive Dysfunktion. Wien Med Wochenschr 2013; 164:9-14. [DOI: 10.1007/s10354-013-0226-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/25/2013] [Indexed: 01/30/2023]
|
185
|
Courtin J, Bienvenu T, Einarsson E, Herry C. Medial prefrontal cortex neuronal circuits in fear behavior. Neuroscience 2013; 240:219-42. [DOI: 10.1016/j.neuroscience.2013.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/01/2023]
|
186
|
Holcombe A, Howorko A, Powell RA, Schalomon M, Hamilton TJ. Reversed scototaxis during withdrawal after daily-moderate, but not weekly-binge, administration of ethanol in zebrafish. PLoS One 2013; 8:e63319. [PMID: 23675478 PMCID: PMC3652870 DOI: 10.1371/journal.pone.0063319] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022] Open
Abstract
Alcohol abuse can lead to severe psychological and physiological damage. Little is known, however, about the relative impact of a small, daily dose of alcohol (daily-moderate schedule) versus a large, once per week dose (weekly-binge schedule). In this study, we examined the effect of each of these schedules on behavioural measures of anxiety in zebrafish (Danio rerio). Adult wild-type zebrafish were administered either 0.2% ethanol on a daily-moderate schedule or 1.4% ethanol on a weekly-binge schedule for a period of 21 days, and then tested for scototaxis (preference for darkness) during withdrawal. Compared to a control group with no alcohol exposure, the daily-moderate group spent significantly more time on the light side of the arena (indicative of decreased anxiety) on day two of withdrawal, but not day 9 of withdrawal. The weekly-binge group was not significantly different from the control group on either day of withdrawal and showed no preference for either the light or dark zones. Our results indicate that even a small dose of alcohol on a daily basis can cause significant, though reversible, changes in behaviour.
Collapse
Affiliation(s)
- Adam Holcombe
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Adam Howorko
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Russell A. Powell
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Melike Schalomon
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
| | - Trevor J. Hamilton
- Department of Psychology, Grant MacEwan University, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
187
|
Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci 2013; 33:4834-42. [PMID: 23486954 DOI: 10.1523/jneurosci.5839-11.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although alcoholism is a worldwide problem resulting in millions of deaths, only a small percentage of alcohol users become addicted. The specific neural substrates responsible for individual differences in vulnerability to alcohol addiction are not known. In this study, we used rodent models to study behavioral and synaptic correlates related to individual differences in the development of ethanol locomotor sensitization, a form of drug-dependent behavioral plasticity associated with addiction vulnerability. Male Swiss Webster mice were treated daily with saline or 1.8 g/kg ethanol for 21 d. Locomotor activity tests were performed once a week for 15 min immediately after saline or ethanol injections. After at least 11 d of withdrawal, cohorts of saline- or ethanol-treated mice were used to characterize the relationships between locomotor sensitization, ethanol drinking, and glutamatergic synaptic transmission in the nucleus accumbens. Ethanol-treated mice that expressed locomotor sensitization to ethanol drank significantly more ethanol than saline-treated subjects and ethanol-treated animals resilient to this form of behavioral plasticity. Moreover, ethanol-sensitized mice also had reduced accumbal NMDA receptor function and expression, as well as deficits in NMDA receptor-dependent long-term depression in the nucleus accumbens core after a protracted withdrawal. These findings suggest that disruption of accumbal core NMDA receptor-dependent plasticity may represent a synaptic correlate associated with ethanol-induced locomotor sensitization and increased propensity to consume ethanol.
Collapse
|
188
|
Sepulveda-Orengo MT, Lopez AV, Soler-Cedeño O, Porter JT. Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons. J Neurosci 2013; 33:7184-93. [PMID: 23616528 PMCID: PMC3690368 DOI: 10.1523/jneurosci.5198-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/01/2013] [Accepted: 02/27/2013] [Indexed: 11/21/2022] Open
Abstract
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPARs with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.
Collapse
Affiliation(s)
| | - Ana V. Lopez
- Department of Pharmacology and Physiology, Ponce School of Medicine, Ponce, Puerto Rico 00732
| | - Omar Soler-Cedeño
- Department of Pharmacology and Physiology, Ponce School of Medicine, Ponce, Puerto Rico 00732
| | - James T. Porter
- Department of Pharmacology and Physiology, Ponce School of Medicine, Ponce, Puerto Rico 00732
| |
Collapse
|
189
|
Holmes A, Singewald N. Individual differences in recovery from traumatic fear. Trends Neurosci 2013; 36:23-31. [PMID: 23260015 PMCID: PMC3787595 DOI: 10.1016/j.tins.2012.11.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 11/25/2022]
Abstract
Although exposure to major psychological trauma is unfortunately common, risk for related neuropsychiatric conditions, such as post-traumatic stress disorder (PTSD), varies greatly among individuals. Fear extinction offers a tractable and translatable behavioral readout of individual differences in learned recovery from trauma. Studies in rodent substrains and subpopulations are providing new insights into neural system dysfunctions associated with impaired fear extinction. Rapid progress is also being made in identifying key molecular circuits, epigenetic mechanisms, and gene variants associated with differences in fear extinction. Here, we discuss how this research is informing understanding of the etiology and pathophysiology of individual differences in risk for trauma-related anxiety disorders, and how future work can help identify novel diagnostic biomarkers and pharmacotherapeutics for these disorders.
Collapse
Affiliation(s)
- Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health, Bethesda, MD, USA.
| | | |
Collapse
|