151
|
Yang L, Zhou J, Meng F, Fu C, Zou X, Liu J, Zhang C, Tan R, Li Z, Guo Q, Wei L. G1 phase cell cycle arrest in NSCLC in response to LZ-106, an analog of enoxacin, is orchestrated through ROS overproduction in a P53-dependent manner. Carcinogenesis 2019; 40:131-144. [PMID: 30239617 DOI: 10.1093/carcin/bgy124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/09/2023] Open
Abstract
LZ-106, a newly synthetized analog of quinolone, has been shown to be highly effective in non-small cell lung cancer (NSCLC) in both cultured cells and xenograft mouse model with low toxicity, yet the molecular mechanisms still require exploration. Here, we substantiated the involvement of P53 activation in intracellular reactive oxygen species (ROS) generation upon LZ-106 treatment and related P53 to the ROS-induced viability inhibition and apoptosis, which was exhibited in the previous research. P53 was shown to play an indispensable role in the elevated levels of intracellular ROS in LZ-106-treated NSCLC cells through ROS detection. We further identified the anti-proliferation effect of LZ-106 in NSCLC cells through G1 phase cell cycle arrest by cell cycle analysis, with the expression analysis of the key proteins, and discovered that the cell cycle arrest effect is also mediated by induction of ROS in a P53-dependent manner. In addition, the tumor suppression effect exhibited in vivo was demonstrated to be similar to that in vitro, which requires the participation of P53. Thus, LZ-106 is a potent antitumor drug possessing potent proliferation inhibition and apoptosis induction ability through the P53-dependent ROS modulation both in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Jieying Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Fei Meng
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Chengyu Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Xiaoqian Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Jinfeng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Chengwan Zhang
- The Central Laboratory of Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Tongjiaxiang, Nanjing, China
| |
Collapse
|
152
|
Xia Z, Karpov P, Popowicz G, Tetko IV. Focused Library Generator: case of Mdmx inhibitors. J Comput Aided Mol Des 2019; 34:769-782. [PMID: 31677002 DOI: 10.1007/s10822-019-00242-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/22/2019] [Indexed: 01/18/2023]
Abstract
We present a Focused Library Generator that is able to create from scratch new molecules with desired properties. After training the Generator on the ChEMBL database, transfer learning was used to switch the generator to producing new Mdmx inhibitors that are a promising class of anticancer drugs. Lilly medicinal chemistry filters, molecular docking, and a QSAR IC50 model were used to refine the output of the Generator. Pharmacophore screening and molecular dynamics (MD) simulations were then used to further select putative ligands. Finally, we identified five promising hits with equivalent or even better predicted binding free energies and IC50 values than known Mdmx inhibitors. The source code of the project is available on https://github.com/bigchem/online-chem.
Collapse
Affiliation(s)
- Zhonghua Xia
- Institute of Structural Biology, Helmholtz Zentrum München - Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Pavel Karpov
- Institute of Structural Biology, Helmholtz Zentrum München - Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- BigChem GmbH, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Grzegorz Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München - Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Igor V Tetko
- Institute of Structural Biology, Helmholtz Zentrum München - Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- BigChem GmbH, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
153
|
Double knock-out of Hmga1 and Hipk2 genes causes perinatal death associated to respiratory distress and thyroid abnormalities in mice. Cell Death Dis 2019; 10:747. [PMID: 31582725 PMCID: PMC6776533 DOI: 10.1038/s41419-019-1975-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/02/2022]
Abstract
The serine–threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) modulates important cellular functions during development, acting as a signal integrator of a wide variety of stress signals, and as a regulator of transcription factors and cofactors. We have previously demonstrated that HIPK2 binds and phosphorylates High-Mobility Group A1 (HMGA1), an architectural chromatinic protein ubiquitously expressed in embryonic tissues, decreasing its binding affinity to DNA. To better define the functional role of HIPK2 and HMGA1 interaction in vivo, we generated mice in which both genes are disrupted. About 50% of these Hmga1/Hipk2 double knock-out (DKO) mice die within 12 h of life (P1) for respiratory failure. The DKO mice present an altered lung morphology, likely owing to a drastic reduction in the expression of surfactant proteins, that are required for lung development. Consistently, we report that both HMGA1 and HIPK2 proteins positively regulate the transcriptional activity of the genes encoding the surfactant proteins. Moreover, these mice display an altered expression of thyroid differentiation markers, reasonably because of a drastic reduction in the expression of the thyroid-specific transcription factors PAX8 and FOXE1, which we demonstrate here to be positively regulated by HMGA1 and HIPK2. Therefore, these data indicate a critical role of HIPK2/HMGA1 cooperation in lung and thyroid development and function, suggesting the potential involvement of their impairment in the pathogenesis of human lung and thyroid diseases.
Collapse
|
154
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cells ex vivo: Toward large-scale platelet production. World J Stem Cells 2019; 11:666-676. [PMID: 31616542 PMCID: PMC6789181 DOI: 10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Platelet transfusion is one of the most reliable strategies to cure patients suffering from thrombocytopenia or platelet dysfunction. With the increasing demand for transfusion, however, there is an undersupply of donors to provide the platelet source. Thus, scientists have sought to design methods for deriving clinical-scale platelets ex vivo. Although there has been considerable success ex vivo in the generation of transformative platelets produced by human stem cells (SCs), the platelet yields achieved using these strategies have not been adequate for clinical application. In this review, we provide an overview of the developmental process of megakaryocytes and the production of platelets in vivo and ex vivo, recapitulate the key advances in the production of SC-derived platelets using several SC sources, and discuss some strategies that apply three-dimensional bioreactor devices and biochemical factors synergistically to improve the generation of large-scale platelets for use in future biomedical and clinical settings.
Collapse
Affiliation(s)
- Xiao-Hua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Qing Yang
- Faculty of Laboratory Medical Science, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Chi-Yuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - En-Kui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
155
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cellsex vivo: Toward large-scale platelet production. World J Stem Cells 2019. [DOI: dx.doi.org/10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
156
|
Zhang Y, Sturgis EM, Wei P, Liu H, Wang Z, Ma Y, Liu C, Gu KJ, Wei Q, Li G. A genetic variant within MDM4 3'UTR miRNA binding site is associated with HPV16-positive tumors and survival of oropharyngeal cancer. Mol Carcinog 2019; 58:2276-2285. [PMID: 31513313 DOI: 10.1002/mc.23116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
As mouse double minute 4 (MDM4) and HPV16 E6 oncoproteins play important roles in inhibition of p53 activity, a functional polymorphism (rs4245739) in the 3' untranslated regions of MDM4 targeted by microRNA-191 may alter its expression level or functional efficiency, thus affecting tumor status and survival in human papillomavirus (HPV)-positive squamous cell carcinoma of oropharynx (SCCOP). A total of 564 incident SCCOP patients with definitive radiotherapy were included for determination of tumor HPV16 status and genotypes of the polymorphism. Univariate and multivariable Cox models were performed to assess the associations between the polymorphism and outcomes. We found that MDM4 rs4245739 had statistically significant associations with tumor HPV-positivity and survival of SCCOP patients. Patients with AC/CC variant genotypes of MDM4 rs4245739 were approximately 3-fold more likely to be HPV16-positive tumors among SCCOP patients compared with common homozygous AA genotype (adjusted odds ratio = 3.2, 95% confidence interval = 1.9-5.5). Moreover, patients with MDM4 rs4245739 AC/CC variant genotypes had significantly better overall, disease-specific, and disease-free survival compared with those with the corresponding common homozygous AA genotype (all log-rank = P < .05); and these genotypes were significantly associated with an approximately three to four times reduced risk of overall death, death owing to disease, and recurrence after multivariable adjustment. Finally, the significant effects of MDM4 rs4245739 polymorphism on survival were found among HPV16-positive SCCOP patients only after the stratified analyses by tumor HPV status. We concluded that MDM4 rs4245739 polymorphism is significantly associated with tumor HPV status and survival of SCCOP, especially in HPV16-positive SCCOP patients treated with definitive radiotherapy; nevertheless, prospective larger studies are warranted.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Beijing, China.,Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yiding Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chuan Liu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kyle J Gu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
157
|
Corton JC, Witt KL, Yauk CL. Identification of p53 Activators in a Human Microarray Compendium. Chem Res Toxicol 2019; 32:1748-1759. [PMID: 31397557 DOI: 10.1021/acs.chemrestox.9b00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biomarkers predictive of molecular and toxicological effects are needed to interpret emerging high-throughput transcriptomic data streams. The previously characterized 63 gene TGx-DDI biomarker that includes 20 genes known to be regulated by p53 was previously shown to accurately predict DNA damage in chemically treated cells. We comprehensively evaluated whether the molecular basis of the DDI predictions was based on a p53-dependent response. The biomarker was compared to microarray data in a compendium derived from human cells using the Running Fisher test, a nonparametric correlation test. Using the biomarker, we identified conditions that led to p53 activation, including exposure to the chemical nutlin-3 which disrupts interactions between p53 and the negative regulator MDM2 or by knockdown of MDM2. The expression of most of the genes in the biomarker (75%) were found to depend on p53 activation status based on gene behavior after TP53 overexpression or knockdown. The biomarker identified DDI chemicals that were strong inducers of p53 in wild-type cells; these p53 responses were decreased or abolished in cells after p53 knockdown by siRNAs. Using the biomarker, we screened ∼1950 chemicals in ∼9800 human cell line chemical vs control comparisons and identified ∼100 chemicals that caused p53 activation. Among the positive chemicals were many that are known to activate p53 through direct and indirect DNA damaging mechanisms. These results contribute to the evidence that the TGx-DDI biomarker is useful for identifying chemicals that cause DDI and activate p53.
Collapse
Affiliation(s)
- J Christopher Corton
- Integrated Systems Toxicology Division, NHEERL , United States Environmental Protection Agency , Research Triangle Park, Durham , North Carolina 27711 , United States
| | - Kristine L Witt
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| |
Collapse
|
158
|
Chen YT, Chen JJ, Wang HT. Targeting RNA Polymerase I with Hernandonine Inhibits Ribosomal RNA Synthesis and Tumor Cell Growth. Mol Cancer Res 2019; 17:2294-2305. [PMID: 31409627 DOI: 10.1158/1541-7786.mcr-19-0402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/08/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022]
Abstract
RNA polymerase I (RNA Pol. I) activity is consistently expanded in multiplying cells to continue the expanded interest for ribosome generation and protein synthesis, which are fundamental for cell development and division. Thus, selective inhibitors of RNA Pol. I may offer a general helpful intends to block cancer cell multiplication. Hernandonine, isolated from the root wood of Hernandia nymphaeifolia, causes rearrangement of nucleolar proteins consistent with segregation of the nucleolus, a hallmark of RNA Pol. I transcription stress. Furthermore, the compound destabilizes RPA194, the large catalytic protein of RNA Pol. I, in a proteasome-dependent manner and inhibits nascent rRNA synthesis and expression of the 45S rRNA precursor. Finally, hernandonine induces cellular apoptosis through a p53-dependent or p53-independent process in solid tumor cell lines. These outcomes feature the prevailing effect of RNA Pol. I transcription stress on apoptosis pathway initiation and present a synthetically novel and significant molecule that represses RNA Pol. I, making it a potential objective for malignancy treatment. IMPLICATIONS: Our findings position hernandonine as a potential, particular, and orally administered cancer treatment agent appropriate for use in investigational clinical trials.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
159
|
Haplotype and linkage disequilibrium of TP53-WRAP53 locus in Iranian-Azeri women with breast cancer. PLoS One 2019; 14:e0220727. [PMID: 31387111 PMCID: PMC6684289 DOI: 10.1371/journal.pone.0220727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023] Open
Abstract
Among the cancer susceptibility genes, TP53 is one of the crucial genes involved in cell cycle regulations and, therefore, it greatly affects breast cancer initiation and progression. In addition, WRAP53—a natural antisense transcript—regulates TP53 transcription and, as a protein, modulates the normal cell cycle, which results in breast cancer susceptibility. In this study, we aimed to analyze a haplotype comprising four SNPs, including rs1042522, rs17878362, rs2287499, and rs2287498, which are located at 5′ regions of the TP53 and WRAP53 genes, in 118 patients and 110 healthy controls of the Iranian-Azeri population. In silico studies were conducted using the SIFT, Polyphen2, Fanthmm, RNAsnp, and SNP&GO online servers. Linkage disequilibrium (LD) and D′ for each combination of the markers were calculated via the Haploview program. Our results showed that the GA1CC haplotype was the most frequent in the studied population. Additionally, no significant LD between any pairwise haplotypes was observed. The GA1CC and CA2GC haplotypes were significantly associated with breast cancer susceptibility. Moreover, the in silico analysis revealed the negative effects of rs2287499 and rs1042522 on WRAP53 and P53, respectively. In conclusion, the CA1GC haplotype was strongly identified as a breast cancer risk factor, and the GA1CC haplotype was assumed to be a protective factor against breast cancer risk. Hence, these markers may potentially be used as molecular prognostic and predictive biomarkers for breast cancer.
Collapse
|
160
|
Insights into the binding mechanisms of inhibitors of MDM2 based on molecular dynamics simulations and binding free energy calculations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
161
|
Muszak D, Łabuzek B, Brela MZ, Twarda-Clapa A, Czub M, Musielak B, Surmiak E, Holak TA. The synthesis and characterization of tetramic acid derivatives as Mdm2-p53 inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
162
|
Packwood K, Martland G, Sommerlad M, Shaw E, Moutasim K, Thomas G, Bateman AC, Jones L, Haywood L, Evans DG, Birch JM, Alsalmi OA, Henderson A, Poplawski N, Eccles DM. Breast cancer in patients with germline TP53 pathogenic variants have typical tumour characteristics: the Cohort study of TP53 carrier early onset breast cancer (COPE study). J Pathol Clin Res 2019; 5:189-198. [PMID: 31041842 PMCID: PMC6648388 DOI: 10.1002/cjp2.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/29/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Germline TP53 pathogenic variants are rare but associated with a high risk of cancer; they are often identified in the context of clinically diagnosed Li-Fraumeni syndrome predisposing to a range of young onset cancers including sarcomas and breast cancer. The study aim was to conduct a detailed morphological review and immuno-phenotyping of breast cancer arising in carriers of a germline TP53 pathogenic variant. We compared breast cancers from five defined groups: (1) TP53 carriers with breast cancer (n = 59), (2) early onset HER2-amplified breast cancer, no germline pathogenic variant in BRCA1/2 or TP53 (n = 55), (3) BRCA1 pathogenic variant carriers (n = 60); (4) BRCA2 pathogenic variant carriers (n = 61) and (5) young onset breast cancer with no known germline pathogenic variant (n = 98). Pathologists assessed a pre-agreed set of morphological characteristics using light microscopy. Immunohistochemistry (IHC) for HER2, ER, PR, p53, integrin alpha v beta 6 (αvβ6) integrin, α-smooth muscle actin (α-SMA) and pSMAD2/3 was performed on tissue microarrays of invasive carcinoma. We confirmed a previously reported high prevalence of HER2-amplified, ductal no special type invasive breast carcinoma amongst known TP53 germline pathogenic variant carriers 20 of 36 (56%). Furthermore we observed a high frequency of densely sclerotic tumour stroma in cancers from TP53 carriers (29/36, 80.6%) when compared with non-carriers, 50.9% (28/55), 34.7% (50/144), 41.4% (65/157), 43.8% (95/217) in groups 2-5 respectively. The majority of germline TP53 gene carrier breast tumours had a high intensity of integrin αvβ6, α-SMA and pSMAD2/3 expression in the majority of cancer cells. In conclusion, aggressive HER2 positive breast cancers with densely sclerotic stroma are common in germline TP53 carriers. High levels of αvβ6 integrin, α-SMA and pSMAD2/3 expression suggest that the dense stromal phenotype may be driven by upregulated transforming growth factor beta signalling.
Collapse
Affiliation(s)
- Kate Packwood
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Guy Martland
- Cellular Pathology DepartmentPoole Hospital NHS Foundation TrustPooleUK
| | - Matthew Sommerlad
- Cellular Pathology DepartmentUniversity Hospital NHS Foundation TrustSouthamptonUK
| | - Emily Shaw
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Cellular Pathology DepartmentUniversity Hospital NHS Foundation TrustSouthamptonUK
| | - Karwan Moutasim
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Cellular Pathology DepartmentUniversity Hospital NHS Foundation TrustSouthamptonUK
| | - Gareth Thomas
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Cellular Pathology DepartmentUniversity Hospital NHS Foundation TrustSouthamptonUK
| | - Adrian C Bateman
- Cellular Pathology DepartmentUniversity Hospital NHS Foundation TrustSouthamptonUK
| | - Louise Jones
- Centre for Tumour Biology Department, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Linda Haywood
- Centre for Tumour Biology Department, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - D Gareth Evans
- Department of Genomic Medicine, Division of Evolution and Genomic ScienceUniversity of ManchesterManchesterUK
| | - Jillian M Birch
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Ohud A Alsalmi
- Centre for Tumour Biology Department, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Alex Henderson
- Northern Genetics ServiceNewcastle upon Tyne HospitalsNewcastleUK
| | - Nicola Poplawski
- Discipline of Paediatrics, Adelaide Medical SchoolUniversity of AdelaideAdelaideAustralia
| | - Diana M Eccles
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
163
|
Yang Y, Li H, He Z, Xie D, Ni J, Lin X. MicroRNA‐488‐3p inhibits proliferation and induces apoptosis by targeting ZBTB2 in esophageal squamous cell carcinoma. J Cell Biochem 2019; 120:18702-18713. [PMID: 31243806 DOI: 10.1002/jcb.29178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yi Yang
- Department of Clinical Skills Center, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - He Li
- Department of Otolaryngoloy-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Deyao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
164
|
Wang C, Liu H, Zhou J. Oscillatory Dynamics of p53 Genetic Network Induced by Feedback Loops and Time Delays. IEEE Trans Nanobioscience 2019; 18:611-621. [PMID: 31226080 DOI: 10.1109/tnb.2019.2924079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DNA damage caused by γ -irradiation initiates oscillatory expression of the p53 genetic network. Although many studies revealed the effects of the p53-Mdm2 circuit on p53 dynamics, a few studies explored the contribution of upstream kinases to p53 oscillation. In this paper, an integrated mathematical model of the p53 network in response to γ -irradiation is studied, which consists of five basic components, two ubiquitous time delays, and two negative feedback loops. It is found that recurrent p53 pulses are externally initiated by ataxia telangiectasia mutated (ATM), and the negative feedback loop formed between ATM and p53, via Wip1, plays a dominant role in generating p53 oscillation. In addition, p53 oscillation requires not only an appropriate Mdm2 negative strength but also a threshold level of Wip1 negative strength. Furthermore, the time delays required for transcription and translation of Mdm2 and Wip1 proteins are essential for p53 oscillation. In particular, the critical value of time delay for inducing oscillation and the properties of delay-driven Hopf bifurcation are theoretically analyzed. As expected, the results are clearly in consistence with biological experiments and observations.
Collapse
|
165
|
Wang C, Jiang S, Ke L, Zhang L, Li D, Liang J, Narita Y, Hou I, Chen CH, Wang L, Zhong Q, Ling Y, Lv X, Xiang Y, Guo X, Teng M, Tsao SW, Gewurz BE, Zeng MS, Zhao B. Genome-wide CRISPR-based gene knockout screens reveal cellular factors and pathways essential for nasopharyngeal carcinoma. J Biol Chem 2019; 294:9734-9745. [PMID: 31073033 PMCID: PMC6597810 DOI: 10.1074/jbc.ra119.008793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Early diagnosis of nasopharyngeal carcinoma (NPC) is difficult because of a lack of specific symptoms. Many patients have advanced disease at diagnosis, and these patients respond poorly to treatment. New treatments are therefore needed to improve the outcome of NPC. To better understand the molecular pathogenesis of NPC, here we used an NPC cell line in a genome-wide CRISPR-based knockout screen to identify the cellular factors and pathways essential for NPC (i.e. dependence factors). This screen identified the Moz, Ybf2/Sas3, Sas2, Tip60 histone acetyl transferase complex, NF-κB signaling, purine synthesis, and linear ubiquitination pathways; and MDM2 proto-oncogene as NPC dependence factors/pathways. Using gene knock out, complementary DNA rescue, and inhibitor assays, we found that perturbation of these pathways greatly reduces the growth of NPC cell lines but does not affect growth of SV40-immortalized normal nasopharyngeal epithelial cells. These results suggest that targeting these pathways/proteins may hold promise for achieving better treatment of patients with NPC.
Collapse
Affiliation(s)
- Chong Wang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Sizun Jiang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Liangru Ke
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Luyao Zhang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Difei Li
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jun Liang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Yohei Narita
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Isabella Hou
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Chen-Hao Chen
- the Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115
| | - Liangwei Wang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Qian Zhong
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yihong Ling
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xing Lv
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yanqun Xiang
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiang Guo
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mingxiang Teng
- the Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, and
| | - Sai-Wah Tsao
- the School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Benjamin E Gewurz
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Mu-Sheng Zeng
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Bo Zhao
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
166
|
Kawaguchi Y, Kopetz S, Newhook TE, De Bellis M, Chun YS, Tzeng CWD, Aloia TA, Vauthey JN. Mutation Status of RAS, TP53, and SMAD4 is Superior to Mutation Status of RAS Alone for Predicting Prognosis after Resection of Colorectal Liver Metastases. Clin Cancer Res 2019; 25:5843-5851. [PMID: 31221662 DOI: 10.1158/1078-0432.ccr-19-0863] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Somatic gene mutations have been increasingly recognized to impact prognosis following resection of colorectal liver metastases (CLM). We aimed to determine the impact of combinations of somatic mutations on survival in patients undergoing CLM resection. EXPERIMENTAL DESIGN We identified patients who underwent initial CLM resection during 2007-2017 and had genetic sequencing data available. Risk factors for overall survival (OS) and recurrence-free survival (RFS) were determined using Cox proportional hazards models. RESULTS Of 1460 patients who underwent CLM resection during the study period, 507 met the inclusion criteria. Multigene testing revealed mutation rates greater than 10% for TP53 (mutated in 70.8% of patients), APC (53.5%), RAS (50.7%), PIK3CA (15.8%), and SMAD4 (11.0%). BRAF was mutated in 2.0% of patients. BRAF, RAS, TP53, and SMAD4 mutations were significantly associated with OS, and RAS, TP53, and SMAD4 mutations were significantly associated with RFS. Coexisting mutations in RAS, TP53, and SMAD4 were associated with significantly worse OS and RFS than coexisting mutations in any 2 of these genes and mutations in 1 or none of these genes. Coexisting mutations in 2 genes conferred significantly worse OS and RFS than single mutation or no mutations. OS and RFS did not differ significantly between patients with RAS mutation and wild-type TP53 and SMAD4 and patients with wild-type RAS (P = 0.858 and 0.729, respectively). CONCLUSIONS RAS mutation status alone is not sufficient for precisely predicting prognosis after CLM resection.
Collapse
Affiliation(s)
- Yoshikuni Kawaguchi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy E Newhook
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mario De Bellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yun Shin Chun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Thomas A Aloia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
167
|
Ayra‐Pardo C, Ochagavía ME, Raymond B, Gulzar A, Rodríguez‐Cabrera L, Rodríguez de la Noval C, Morán Bertot I, Terauchi R, Yoshida K, Matsumura H, Téllez Rodríguez P, Hernández Hernández D, Borrás‐Hidalgo O, Wright DJ. HT-SuperSAGE of the gut tissue of a Vip3Aa-resistant Heliothis virescens (Lepidoptera: Noctuidae) strain provides insights into the basis of resistance. INSECT SCIENCE 2019; 26:479-498. [PMID: 28872766 PMCID: PMC6849831 DOI: 10.1111/1744-7917.12535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Multitoxin Bt-crops expressing insecticidal toxins with different modes of action, for example, Cry and Vip, are expected to improve resistance management in target pests. While Cry1A resistance has been relatively well characterized in some insect species, this is not the case for Vip3A, for which no mechanism of resistance has yet been identified. Here we applied HT-SuperSAGE to analyze the transcriptome of the gut tissue of tobacco budworm Heliothis virescens (F.) laboratory-selected for Vip3Aa resistance. From a total of 1 324 252 sequence reads, 5 895 126-bp tags were obtained representing 17 751 nonsingleton unique transcripts (UniTags) from genetically similar Vip3Aa-resistant (Vip-Sel) and susceptible control (Vip-Unsel) strains. Differential expression was significant (≥2.5 fold or ≤0.4; P < 0.05) for 1989 sequences (11.2% of total UniTags), where 420 represented overexpressed (OE) and 1569 underexpressed (UE) genes in Vip-Sel. BLASTN searches mapped 419 UniTags to H. virescens sequence contigs, of which, 416 (106 OE and 310 UE) were unambiguously annotated to proteins in NCBI nonredundant protein databases. Gene Ontology distributed 345 of annotated UniTags in 14 functional categories with metabolism (including serine-type hydrolases) and translation/ribosome biogenesis being the most prevalent. A UniTag homologous to a particular member of the REsponse to PAThogen (REPAT) family was found among most overexpressed, while UniTags related to the putative Vip3Aa-binding ribosomal protein S2 (RpS2) were underexpressed. qRT-PCR of a subset of UniTags validated the HT-SuperSAGE data. This study is the first providing lepidopteran gut transcriptome associated with Vip3Aa resistance and a foundation for future attempts to elucidate the resistance mechanism.
Collapse
Affiliation(s)
- Camilo Ayra‐Pardo
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Maria E. Ochagavía
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Ben Raymond
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| | - Asim Gulzar
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| | | | | | - Ivis Morán Bertot
- Plant Division Centre for Genetic Engineering and Biotechnology (CIGB)HavanaCuba
| | - Ryohei Terauchi
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | - Kentaro Yoshida
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | - Hideo Matsumura
- Genetics and Genomics Research GroupIwate Biotechnology Research CenterKitakamiJapan
| | | | | | | | - Denis J. Wright
- Department of Life Sciences, Faculty of Natural SciencesImperial College LondonBerkshireUK
| |
Collapse
|
168
|
Lemos A, Gomes AS, Loureiro JB, Brandão P, Palmeira A, Pinto MMM, Saraiva L, Sousa ME. Synthesis, Biological Evaluation, and In Silico Studies of Novel Aminated Xanthones as Potential p53-Activating Agents. Molecules 2019; 24:molecules24101975. [PMID: 31121972 PMCID: PMC6571851 DOI: 10.3390/molecules24101975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023] Open
Abstract
Xanthone scaffold has been regarded as an attractive chemical tool in the search for bioactive molecules with antitumor activity, and in particular two xanthone derivatives, 12-hydroxy-2,2-dimethyl-3,4-dihydro-2H,6H-pyrano [3,2-b]xanthen-6-one (4) and 3,4-dimethoxy-9-oxo-9H-xanthene-1-carbaldehyde (5), were described as a murine double minute 2 (MDM2)-p53 inhibitor and a TAp73 activator, respectively. The xanthone 5 was used as a starting point for the construction of a library of 3,4-dioxygenated xanthones bearing chemical moieties of described MDM2-p53 inhibitors. Eleven aminated xanthones were successfully synthesized and initially screened for their ability to disrupt the MDM2-p53 interaction using a yeast cell-based assay. With this approach, xanthone 37 was identified as a putative p53-activating agent through inhibition of interaction with MDM2. Xanthone 37 inhibited the growth of human colon adenocarcinoma HCT116 cell lines in a p53-dependent manner. The growth inhibitory effect of xanthone 37 was associated with the induction of G1-phase cell cycle arrest and increased protein expression levels of p53 transcriptional targets. These results demonstrated the potential usefulness of coupling amine-containing structural motifs of known MDM2-p53 disruptors into a 3,4-dioxygenated xanthone scaffold in the design of novel and potent p53 activators with antitumor activity and favorable drug-like properties. Moreover, in silico docking studies were performed in order to predict the binding poses and residues involved in the potential MDM2-p53 interaction.
Collapse
Affiliation(s)
- Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ana Sara Gomes
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Joana B Loureiro
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Pedro Brandão
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Madalena M M Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
169
|
Shin YJ, Kim Y, Wen X, Cho NY, Lee S, Kim WH, Kang GH. Prognostic implications and interaction of L1 methylation and p53 expression statuses in advanced gastric cancer. Clin Epigenetics 2019; 11:77. [PMID: 31088544 PMCID: PMC6518708 DOI: 10.1186/s13148-019-0661-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background TP53 is frequently mutated across various tissue types of cancers. In normal cells, long interspersed nuclear element-1 (LINE-1, L1) is mostly repressed by DNA methylation in its 5′ untranslated region but is activated by DNA demethylation process during tumorigenesis. p53 is indispensable for maintaining genomic stability and plays its role in controlling genomic stability by repressing retrotransposon activity. However, it is unclear whether p53 regulates expression or methylation of L1 differently depending on the mutational status of TP53. Four hundred ninety cases of advanced gastric cancer (AGC) were analyzed for their statuses in p53 expression and L1 methylation using immunohistochemistry and pyrosequencing, respectively. Whether L1 methylation and expression statuses were differently affected by types of TP53 mutants was analyzed in gastric cancer cell line. Results By p53 immunohistochemistry, tumors were classified into 4 groups according to the intensity and extent of stained tumor nuclei. L1 methylation level was significantly higher in p53 expression group 1 than in the other groups in which L1 methylation level was similar (P < 0.001). Although L1 methylation and p53 expression statuses were associated with patient survival, multivariate analysis revealed that L1 methylation was an independent prognostic parameter. In in vitro analysis of AGS cells with the introduction of wild type or mutant types of TP53, L1 methylation level and activity were different depending on types of TP53 mutation. Conclusions Findings suggest that L1 methylation level is affected by TP53 mutation status; although, L1 methylation status was an independent prognostic parameter in patients with AGC. Further study is required to elucidate the mechanism of how wild type or mutant p53 affects L1 activity and methylation status of L1 CpG island. Electronic supplementary material The online version of this article (10.1186/s13148-019-0661-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun-Joo Shin
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Cancer Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Younghoon Kim
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongo-gu, Seoul, 03080, South Korea
| | - Xianyu Wen
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongo-gu, Seoul, 03080, South Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Cancer Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongo-gu, Seoul, 03080, South Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Chongo-gu, Seoul, 03080, South Korea.
| |
Collapse
|
170
|
Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem 2019; 176:92-104. [PMID: 31100649 DOI: 10.1016/j.ejmech.2019.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
The p53 gene, a well-known tumor suppressor gene, plays a crucial role in cell cycle regulation, DNA repair, cell differentiation, and apoptosis. MDM2 exerts p53-dependent activity mainly by binding to p53 protein to form MDM2-p53 negative feedback loop. In addition, MDM2 is involved in a number of pathways that regulate cell proliferation and apoptosis, playing a p53-independent role. The p53 binding domain of MDMX bind to p53 transcriptional activation domain, inhibiting the transcriptional activity of p53 on its downstream genes, but does not mediate the degradation of p53. The anti-tumor effect is exerted by inhibiting the interaction between the MDM2/MDMX protein and the p53 protein by a small-molecule or by restoring the activity of the p53 protein. This review describes in the structural features, biological functions and mechanisms of p53-MDM2/MDMX, and summarizes small-molecule targeting p53-MDM2/MDMX.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Xiaohui Wang
- Department of Pharmacy, Naval Authorities Clinic, Beijing, 100841, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yong Yuan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
171
|
Mishra M, Duraisamy AJ, Bhattacharjee S, Kowluru RA. Adaptor Protein p66Shc: A Link Between Cytosolic and Mitochondrial Dysfunction in the Development of Diabetic Retinopathy. Antioxid Redox Signal 2019; 30:1621-1634. [PMID: 30105917 PMCID: PMC6459280 DOI: 10.1089/ars.2018.7542] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Diabetes increases oxidative stress in the retina and dysfunctions their mitochondria, accelerating capillary cell apoptosis. A 66 kDa adaptor protein, p66Shc, is considered as a sensor of oxidative stress-induced apoptosis. In the pathogenesis of diabetic retinopathy, a progressive disease, reactive oxygen species (ROS) production by activation of a small molecular weight G-protein (Ras-related C3 botulinum toxin substrate 1 [Rac1])-Nox2 signaling precedes mitochondrial damage. Rac1 activation is facilitated by guanine exchange factors (GEFs), and p66Shc increases Rac1-specific GEF activity of Son of Sevenless 1 (Sos1). p66Shc also possesses oxidoreductase activity and can directly stimulate mitochondrial ROS generation. Our aim was to investigate the role of p66Shc in the development of diabetic retinopathy and mechanism of its transcription. RESULTS High glucose increased p66Shc expression in human retinal endothelial cells, and elevated acetylated histone 3 lysine 9 (H3K9) levels and transcriptional factor p53 binding at its promoter. Glucose also augmented interactions between Rac1 and Sos1 and activated Rac1-Nox2. Phosphorylation of p66Shc was increased, allowing it to interact with peptidyl prolyl isomerase to facilitate its localization inside the mitochondria, culminating in mitochondrial damage. P66shc-small interfering RNA (siRNA) inhibited glucose-induced Rac1 activation and mitochondrial damage. Similar results are observed in retinal microvessels from diabetic rats. INNOVATION This is the first report identifying the role of p66Shc in the development of diabetic retinopathy and implicating increased histone acetylation in its transcriptional regulation. CONCLUSION Thus, p66Shc has dual role in the development of diabetic retinopathy; its regulation in the early stages of the disease should impede Rac1-ROS production and, in the later stages, prevent mitochondrial damage and initiation of a futile cycle of free radicals.
Collapse
Affiliation(s)
- Manish Mishra
- 1 Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan
| | - Arul J Duraisamy
- 1 Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan
| | - Sudarshan Bhattacharjee
- 1 Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan
| | - Renu A Kowluru
- 1 Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan.,2 Department of Anatomy/Cell Biology, Kresge Eye Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
172
|
Oh SJ, Lee MG, Moon JR, Lee CK, Chi SG, Kim HJ. Ras association domain family 1 isoform A suppresses colonic tumor cell growth through p21 WAF1 activation in a p53-dependent manner. J Gastroenterol Hepatol 2019; 34:890-898. [PMID: 30226276 DOI: 10.1111/jgh.14469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM Despite the frequent loss of Ras association domain family 1 isoform A (RASSF1A) expression in various cancers, the precise mechanism underlying its tumor-suppressive effect is not fully understood. To elucidate the growth-inhibitory role for RASSF1A in colorectal tumorigenesis, this study investigated the RASSF1A regulation of the p53-p21WAF1 pathway. METHODS Ras association domain family 1 isoform A effect on cellular growth was tested in three human colon cancer cell lines by flow cytometry, cell counting, and [3 H]-thymidine incorporation assay. HCT116 p53+/+ and p53-/- isogenic sublines were utilized to determine the p53 dependence of RASSF1A effect on p21WAF1 . Cycloheximide chase experiment and immunoprecipitation assay were carried out to define RASSF1A effect on p53 stability and mouse double minute 2 (MDM2) homolog ubiquitination. RESULTS Ras association domain family 1 isoform A expression inhibits colonic cell proliferation by preventing the G1 to S phase transition of the cell cycle. The RASSF1A-induced G1 cell cycle arrest is accompanied by the increase in the level of p21WAF1 mRNA expression. The p21WAF -inducing activity of RASSF1A was substantially higher in HCT116 p53+/+ cell compared with isogenic p53-/- cells. The cycloheximide chase assay revealed that RASSF1A expression leads to p53 stabilization and MDM2 homolog degradation. Using p53-/- and p21WAF1-/- subline cells, this study finally validated a crucial role of the p53-p21WAF1 axis in RASSF1A-mediated growth inhibition. CONCLUSIONS RASSF1A suppresses colonic tumor growth through the activation of the p53-p21WAF1 pathway. This finding supports that RASSF1A could be a valuable marker for the assessment of colorectal cancer development and progression.
Collapse
Affiliation(s)
- Shin Ju Oh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung Rock Moon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Chang Kyun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hyo Jong Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
173
|
Hassan AI, Ibrahim RY. Some genetic profiles in liver of Ehrlich ascites tumor-bearing mice under the stress of irradiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amal I. Hassan
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Malaeb El-Gamaa St., P.O. 12311, Dokki, Giza, 11231, Egypt
| | - Rasha Y.M. Ibrahim
- Department of Radioisotopes, Nuclear Research Centre, Atomic Energy Authority, Malaeb El-Gamaa St., P.O. 12311, Dokki, Giza, 11231, Egypt
| |
Collapse
|
174
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
175
|
A novel regulatory circuit between p53 and GFI1 controls induction of apoptosis in T cells. Sci Rep 2019; 9:6304. [PMID: 31004086 PMCID: PMC6474872 DOI: 10.1038/s41598-019-41684-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Here we demonstrate a mode of reciprocal regulation between GFI1 and p53 that controls the induction of apoptosis in T cells. We show that GFI1 prevents induction of p53 dependent apoptosis by recruiting LSD1 to p53, which leads to the demethylation of its C-terminal domain. This is accompanied by a decrease of the acetylation of lysine 117 within the core domain of the murine p53 protein, which is required for transcriptional induction of apoptosis. Our results support a model in which the effect of GFI1’s regulation of methylation at the c-terminus of p53 is ultimately mediated through control of acetylation at lysine 117 of p53. We propose that GFI1 acts prior to the occurrence of DNA damage to affect the post-translational modification state and limit the subsequent activation of p53. Once activated, p53 then transcriptionally activates GFI1, presumably in order to re-establish the homeostatic balance of p53 activity. These findings have implications for the activity level of p53 in various disease contexts where levels of GFI1 are either increased or decreased.
Collapse
|
176
|
Khurana A, Shafer DA. MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388). Onco Targets Ther 2019; 12:2903-2910. [PMID: 31289443 PMCID: PMC6563714 DOI: 10.2147/ott.s172315] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal heterogenous malignancy of the myeloid cells with a poor prognosis lending itself to novel treatment strategies. TP53 is a critical tumor suppressor and plays an essential role in leukemogenesis. Although TP53 is relatively unusual in de novo AML, inactivation of wild-type p53 (WT-p53) is a common event. Murine double minute 2 (MDM2) is a key negative regulator of p53 and its expression; inhibition of MDM2 is postulated to reactivate WT-p53 and its tumor suppressor functions. Nutlins were the first small molecule inhibitors that bind to MDM2 and target its interaction with p53. RG7388 (idasanutlin), a second-generation nutlin, was developed to improve upon the potency and toxicity profile of earlier nutlins. Preliminary data from early phase trials and ongoing studies suggest clinical response with RG7388 (idasanutlin) both in monotherapy and combination strategies in AML. We herein briefly discuss currently approved therapies in AML and review the clinical data for RG7388 (idasanutlin) and MDM2 inhibition as novel treatment strategies in AML. We further describe efficacy and toxicity profile data from completed and ongoing trials of RG7388 (idasanutlin) and other MDM2-p53 inhibitors in development. Many targeted therapies have been approved recently in AML, with a focus on the older and unfit population for intensive induction therapy and in relapsed/refractory disease. The "nutlins", including RG7388 (idasanutlin), merit continued investigation in such settings.
Collapse
Affiliation(s)
- Arushi Khurana
- Department of Internal Medicine, Division of Hematology, Oncology & Palliative Care, Virginia Commonwealth University, Richmond, VA 23298, USA,
| | - Danielle A Shafer
- Department of Internal Medicine, Division of Hematology, Oncology & Palliative Care, Virginia Commonwealth University, Richmond, VA 23298, USA,
| |
Collapse
|
177
|
Kosztyu P, Slaninová I, Valčíková B, Verlande A, Müller P, Paleček JJ, Uldrijan S. A Single Conserved Amino Acid Residue as a Critical Context-Specific Determinant of the Differential Ability of Mdm2 and MdmX RING Domains to Dimerize. Front Physiol 2019; 10:390. [PMID: 31024344 PMCID: PMC6465955 DOI: 10.3389/fphys.2019.00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
Mdm2 and MdmX are related proteins serving in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer as an E3 ubiquitin ligase for the tumor suppressor p53. The dimerization is required for the E3 activity and is mediated by the conserved RING domains present in both proteins, but only the RING domain of Mdm2 can form homodimers efficiently. We performed a systematic mutational analysis of human Mdm2, exchanging parts of the RING with the corresponding MdmX sequence, to identify the molecular determinants of this difference. Mdm2 can also promote MdmX degradation, and we identified several mutations blocking it. They were located mainly at the Mdm2/E2 interface and did not disrupt the MdmX-Mdm2 interaction. Surprisingly, some mutations of the Mdm2/E2 interface inhibited MdmX degradation, which is mediated by the Mdm2/MdmX heterodimer, but did not affect p53 degradation, mediated by the Mdm2 homodimer. Only one mutant, replacing a conserved cysteine 449 with asparagine (C449N), disrupted the ability of Mdm2 to dimerize with MdmX. When we introduced the cysteine residue into the corresponding site in MdmX, the RING domain became capable of forming dimers with other MdmX molecules in vivo, suggesting that one conserved amino acid residue in the RINGs of Mdm2 and MdmX could serve as the determinant of the differential ability of these domains to form dimers and their E3 activity. In immunoprecipitations, however, the homodimerization of MdmX could be observed only when the asparagine residue was replaced with cysteine in both RINGs. This result suggested that heterocomplexes consisting of one mutated MdmX RING with cysteine and one wild-type MdmX RING with asparagine might be less stable, despite being readily detectable in the cell-based assay. Moreover, Mdm2 C449N blocked Mdm2-MdmX heterodimerization but did not disrupt the ability of Mdm2 homodimer to promote p53 degradation, suggesting that the effect of the conserved cysteine and asparagine residues on dimerization was context-specific. Collectively, our results indicate that the effects of individual exchanges of conserved residues between Mdm2 and MdmX RING domains might be context-specific, supporting the hypothesis that Mdm2 RING homodimers and Mdm2-MdmX heterodimers may not be entirely structurally equivalent, despite their apparent similarity.
Collapse
Affiliation(s)
- Pavlína Kosztyu
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Barbora Valčíková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Amandine Verlande
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Petr Müller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Jan J Paleček
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
178
|
Gowkielewicz M, Lipka A, Piotrowska A, Szadurska-Noga M, Nowakowski JJ, Dzięgiel P, Majewski MK, Jozwik M, Majewska M. Anti-Müllerian Hormone Expression in Endometrial Cancer Tissue. Int J Mol Sci 2019; 20:ijms20061325. [PMID: 30884769 PMCID: PMC6471522 DOI: 10.3390/ijms20061325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a commonly known factor secreted by Sertoli cells, responsible for regression of the Müllerian ducts in male fetuses. AMH has also other functions in humans. In vivo and in vitro studies have shown that AMH inhibits cell cycle and induces apoptosis in cancers with AMH receptors. The aim of the study was to assess whether the tissue of pre-cancerous states of endometrium (PCS) and various histopathologic types of endometrial cancer (EC) exhibit the presence of AMH. We aimed to investigate whether the potential presence of the protein concerns menopausal women or those regularly menstruating, and whether is related to cancers with a good or a bad prognosis, as well as what other factors may influence AMH expression. The undertaken analysis was carried out on tissues retrieved from 232 women who underwent surgical treatment for PCS and EC. Tissues were prepared for immunohistochemical assessment with the use of a tissue microarrays method. AMH expression was confirmed in 23 patients with well differentiated endometrioid adenocarcinoma (G1), moderately differentiated endometrioid adenocarcinoma (G2), clear cell carcinoma (CCA) and nonatypical hyperplasia. AMH was not found in EC tissues in regularly menstruating women. An appropriately long mean period of breastfeeding in line with a prolonged period of hormonal activity had a positive effect on AMH expression. Our results may suggest that AMH is a factor which protects the organism against cancer, and should be further investigated as a potential prognosis marker and a therapeutic agent.
Collapse
Affiliation(s)
- Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Marta Szadurska-Noga
- Department of Pathomorphology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland.
| | - Jacek J Nowakowski
- Department of Ecology & Environmental Protection, University of Warmia and Mazury in Olsztyn, 10⁻727 Olsztyn, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
179
|
Ward C, Meehan J, Gray M, Kunkler IH, Langdon SP, Murray A, Argyle D. Preclinical Organotypic Models for the Assessment of Novel Cancer Therapeutics and Treatment. Curr Top Microbiol Immunol 2019. [PMID: 30859401 DOI: 10.1007/82_2019_159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The immense costs in both financial terms and preclinical research effort that occur in the development of anticancer drugs are unfortunately not matched by a substantial increase in improved clinical therapies due to the high rate of failure during clinical trials. This may be due to issues with toxicity or lack of clinical effectiveness when the drug is evaluated in patients. Currently, much cancer research is driven by the need to develop therapies that can exploit cancer cell adaptations to conditions in the tumor microenvironment such as acidosis and hypoxia, the requirement for more-specific, targeted treatments, or the exploitation of 'precision medicine' that can target known genomic changes in patient DNA. The high attrition rate for novel anticancer therapies suggests that the preclinical methods used in screening anticancer drugs need improvement. This chapter considers the advantages and disadvantages of 3D organotypic models in both cancer research and cancer drug screening, particularly in the areas of targeted drugs and the exploitation of genomic changes that can be used for therapeutic advantage in precision medicine.
Collapse
Affiliation(s)
- Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK.
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK.
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
- School of Engineering and Physical Sciences, Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS, Edinburgh, UK
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Alan Murray
- School of Engineering, Faraday Building, The King's Buildings, Mayfield Road, EH9 3JL, Edinburgh, UK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK
| |
Collapse
|
180
|
Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep 2019; 21:3767-3780. [PMID: 29281826 DOI: 10.1016/j.celrep.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022] Open
Abstract
The hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.
Collapse
|
181
|
Phosphorylation of p53 Serine 15 Is a Predictor of Survival for Patients with Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2019; 2019:9015453. [PMID: 30881947 PMCID: PMC6383407 DOI: 10.1155/2019/9015453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers with a poor prognosis. Several commonly investigated immunohistochemical markers in resected HCC have potential prognostic value, but the prognostic utility of p53 expression in HCC has remained elusive. AIM To evaluate the prognostic value of p53 and p53 phosphorylation at serine 15 (p53 Ser15-P) in patients with HCC. METHODS Surgically resected tumors from 199 HCC patients were analyzed for p21, p53, p53 Ser15-P, and proliferating cell nuclear antigen (PCNA) expression using immunohistochemistry. RESULTS Stratifying by the expression of p53 Ser15-P (P = 0.016), but not by p53 (P = 0.301), revealed significantly different survival outcomes in patients with HCC. Moreover, our analysis demonstrated that patients who were PCNA-positive and p53 Ser15-P-negative had significantly worse survival outcomes (P = 0.001) than patients who were PCNA-positive and p53 Ser15-P-positive. CONCLUSIONS P53 Ser15-P is associated with poor outcomes in patients with HCC, and this prognostic marker is useful for predicting the survival of patients with PCNA-positive HCC.
Collapse
|
182
|
Nazim UMD, Park SY. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int J Mol Med 2019; 43:701-708. [PMID: 30483736 PMCID: PMC6317668 DOI: 10.3892/ijmm.2018.3994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)‑related apoptosis‑inducing ligand (TRAIL) is a member of the TNF superfamily and is an antitumor drug that induces apoptosis in tumor cells with minimal or no effects on normal cells. Here, it is demonstrated that 6‑shogaol (6‑sho), a bioactive component of ginger, exerted anti‑inflammatory and anticancer properties, attenuated tumor cell propagation and induced TRAIL‑mediated cell death in liver cancer cells. The current study identified a potential pathway by revealing that TRAIL and 6‑sho or chloroquine acted together to trigger reactive oxygen species (ROS) production, to upregulate tumor‑suppressor protein 53 (p53) expression and to change the mitochondrial transmembrane potential (MTP). Treatment with N‑acetyl‑L‑cysteine reversed these effects, restoring the MTP and attenuated ROS production and p53 expression. Interestingly, treatment with 6‑sho increased p62 and microtubule‑associated proteins 1A/1B light chain 3B‑II levels, indicating an inhibited autophagy flux. In conclusion, attenuation of 6‑sho‑induced autophagy flux sensitized cells to TRAIL‑induced apoptosis via p53 and ROS, suggesting that the administration of TRAIL in combination with 6‑sho may be a suitable therapeutic method for the treatment of TRAIL‑resistant Huh7 liver cells.
Collapse
Affiliation(s)
- Uddin MD. Nazim
- Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
183
|
Fischer M. Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene 2019; 38:4095-4109. [PMID: 30710145 PMCID: PMC6755996 DOI: 10.1038/s41388-019-0706-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Understanding the p53 tumor suppressor pathway remains crucial for the design of anticancer strategies. Studies in human tumors and mouse models help to unravel the molecular mechanisms that underlie the p53 signaling pathway. Yet, the p53 gene regulatory network (GRN) is not the same in mice and humans. The comparison of the regulatory networks of p53 in mice and humans reveals that gene up- and down-regulation by p53 are distinctly affected during evolution. Importantly, gene up-regulation by p53 underwent more rapid evolution and gene down-regulation has been evolutionarily constrained. This difference stems from the two major mechanisms employed by p53 to regulate gene expression: up-regulation through direct p53 target gene binding and indirect down-regulation through the p53-p21-DREAM pathway. More than 1000 genes have been identified to differ in their p53-dependent expression between mice and humans. Analysis of p53 gene expression profiles and p53 binding data reveal that turnover of p53 binding sites is the major mechanism underlying extensive variation in p53-dependent gene up-regulation. Only a core set of high-confidence genes appears to be directly regulated by p53 in both species. In contrast to up-regulation, p53-induced down-regulation is well conserved between mice and humans and controls cell cycle genes. Here a curated data set is provided that extends the previously established web-atlas at www.targetgenereg.org to assess the p53 response of any human gene of interest and its mouse ortholog. Taken together, the analysis reveals a limited translation potential from mouse models to humans for the p53 GRN.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany. .,Molecular Oncology Group, Medical School, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
184
|
Han Y, Wu P, Wang Z, Zhang Z, Sun S, Liu J, Gong S, Gao P, Iwakuma T, Molina-Vila MA, Chen BPC, Zhang Y, Ji T, Mo Q, Chen P, Hu J, Wang S, Zhou J, Lu H, Gao Q. Ubiquinol-cytochrome C reductase core protein II promotes tumorigenesis by facilitating p53 degradation. EBioMedicine 2019; 40:92-105. [PMID: 30674441 PMCID: PMC6412871 DOI: 10.1016/j.ebiom.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/03/2023] Open
Abstract
Background Ubiquinol-cytochrome C reductase core protein II (QCR2) is essential for mitochondrial functions, yet, its role in cancer development has remained elusive. Methods The expression of QCR2 in cancer patients was assessed by immunohistochemistry. The proliferation of cancer cells was assessed by CCK-8 assay, EdU staining and Flow cytometry analysis. The biological function of QCR2 and PHB were determined using western blotting, RT-qPCR, microarray analysis and xenografts. The interactions between proteins and the ubiquitination of p53 were assessed by immunoprecipitation, mass spectrometry analysis and GST pull down. The subcellular location of PHB and QCR2 was assessed by immunoblotting and immunofluorescence. Finding The expression of QCR2 is upregulated in multiple human tumors. Suppression of QCR2 inhibits cancer cell growth by activating p53 signaling and inducing p21-dependent cell cycle arrest and senescence. QCR2 directly interacts with PHB in the mitochondria. Overexpression of QCR2 inhibits PHB binding to p53 in the nucleus, and facilitates p53 ubiquitination and degradation, consequently leading to tumorigenesis. Also, increased QCR2 and decreased PHB protein levels are well correlated with decreased expression of p21 in cervical cancer tissues. Interpretation These results identify a novel role for QCR2, together with PHB, in negative regulation of p53 stability and activity, thus promote cervical carcinogenesis. Fund “973” Program of China, the National Science-technology Supporting Plan Projects, the National Natural Science Foundation of China, National Science and Technology Major Sub-Project and Technical Innovation Special Project of Hubei Province.
Collapse
Affiliation(s)
- Yingyan Han
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujuan Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peipei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Miguel Angel Molina-Vila
- Pangaea Oncology, Laboratory of Molecular Biology(,) Quirón-Dexeus University Hospital, Barcelona, Spain
| | - Benjamin Ping-Chi Chen
- Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas TX75390, USA
| | - Yu Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan 410008, China
| | - Teng Ji
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Mo
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingbo Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shixuan Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
185
|
Imanishi M, Yamamoto Y, Wang X, Sugaya A, Hirose M, Endo S, Natori Y, Yamato K, Hyodo I. Augmented antitumor activity of 5-fluorouracil by double knockdown of MDM4 and MDM2 in colon and gastric cancer cells. Cancer Sci 2019; 110:639-649. [PMID: 30488540 PMCID: PMC6361612 DOI: 10.1111/cas.13893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022] Open
Abstract
Inactivation of the TP53 tumor suppressor gene is essential during cancer development and progression. Mutations of TP53 are often missense and occur in various human cancers. In some fraction of wild‐type (wt) TP53 tumors, p53 is inactivated by upregulated murine double minute homolog 2 (MDM2) and MDM4. We previously reported that simultaneous knockdown of MDM4 and MDM2 using synthetic DNA‐modified siRNAs revived p53 activity and synergistically inhibited in vitro cell growth in cancer cells with wt TP53 and high MDM4 expression (wtTP53/highMDM4). In the present study, MDM4/MDM2 double knockdown with the siRNAs enhanced 5‐fluorouracil (5‐FU)‐induced p53 activation, arrested the cell cycle at G1 phase, and potentiated the antitumor effect of 5‐FU in wtTP53/highMDM4 human colon (HCT116 and LoVo) and gastric (SNU‐1 and NUGC‐4) cancer cells. Exposure to 5‐FU alone induced MDM2 as well as p21 and PUMA by p53 activation. As p53‐MDM2 forms a negative feedback loop, enhancement of the antitumor effect of 5‐FU by MDM4/MDM2 double knockdown could be attributed to blocking of the feedback mechanism in addition to direct suppression of these p53 antagonists. Intratumor injection of the MDM4/MDM2 siRNAs suppressed in vivo tumor growth and boosted the antitumor effect of 5‐FU in an athymic mouse xenograft model using HCT116 cells. These results suggest that a combination of MDM4/MDM2 knockdown and conventional cytotoxic drugs could be a promising treatment strategy for wtTP53/highMDM4 gastrointestinal cancers.
Collapse
Affiliation(s)
- Mamiko Imanishi
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akinori Sugaya
- Department of Gastroenterology, Kasumigaura Medical Center, Tsuchiura, Japan
| | - Mitsuaki Hirose
- Department of Gastroenterology, Tsuchiura Clinical Education and Training Center, University of Tsukuba Hospital, Tsuchiura, Japan
| | - Shinji Endo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Matsudo, Japan
| | | | - Kenji Yamato
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology and Hepatology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
186
|
Okuda K, Haneda H, Yokota K, Tatematsu T, Nakanishi R. The effect of smoking and TP53 mutations on molecular-targeted therapy in lung adenocarcinoma patients. J Thorac Dis 2019; 10:S4013-S4016. [PMID: 30631542 DOI: 10.21037/jtd.2018.09.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Haneda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keisuke Yokota
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tsutomu Tatematsu
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryoichi Nakanishi
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
187
|
Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH. Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol 2019; 58:65-79. [PMID: 30633978 DOI: 10.1016/j.semcancer.2019.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is a multifaceted disease which is therapeutically challenging. Based on insights gleaned from almost a quarter century of research, it is obvious that deregulation of spatio-temporally controlled signaling pathways play instrumental role in development and progression of colorectal cancer. High-throughput technologies have helped to develop a sharper and broader understanding of the wide ranging signal transduction cascades which also contribute to development of drug resistance, loss of apoptosis and, ultimately, of metastasis. In this review, we have set the spotlight on role of JAK/STAT, TGF/SMAD, Notch, WNT/β-Catenin, SHH/GLI and p53 pathways in the development and progression of colorectal cancer. We have also highlighted recent reports on TRAIL-mediated pathways and molecularly distinct voltage-gated sodium channels in colorectal cancer.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London, SW7 2AZ, United Kingdom; Cyprus International University, Biotechnology Research Centre, Haspolat, Mersin 10, North Cyprus, Turkey.
| | - Zahid H Siddik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
188
|
Yu F, Jiang Z, Song A. Association of rs11801299 and rs1380576 polymorphisms at MDM4 with risk, clinicopathological features and prognosis in patients with retinoblastoma. Cancer Epidemiol 2019; 58:153-159. [PMID: 30597480 DOI: 10.1016/j.canep.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/28/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND rs11801299 and rs1380576, two novel polymorphisms in MDM4 gene, have been investigated in several different cancer types. However, the role of these two polymorphisms in retinoblastoma (RB) remains unclear. METHODS A total of 126 patients with primary RB and 148 age-/gender-matched controls were included in this retrospective study. The frequency of rs11801299 and rs1380576 were determined between RB patients and controls. The association of these two polymorphisms with clinicopathological characteristics, prognosis were further evaluated. RESULTS AA genotype at rs11801299 was significantly associated with an increased risk of developing RB (OR = 2.06, 95%CI 1.09-3.90). The possibility of developing RB was also significantly increased in individuals with A allele at rs11801299 (OR = 1.49, 95%CI 1.06-2.08). RB patients carrying AA genotype and A allele at rs11801299 were more likely to have tumor invasion and poor differentiation. As for rs1380576, a significantly lower risk of developing RB was observed in patients with G allele (CG + GG) compared with wild-type CC genotype (OR = 0.59, 95%CI 0.36-3.95). RB patients with GG genotype or G allele had a lower risk of developing highly aggressive cancer. Kaplan-Meier curves and log-rank results revealed that RB patients carrying AA genotype or A allele (AA + GA) at rs11801299 had significantly poorer prognosis. Multivariate COX analysis showed that the rs11801299 G allele was associated with decreased survival but was not an independent prognostic factor. CONCLUSION rs11801299 was significantly associated with RB risk, pathological differentiation, tumor aggressiveness and poor prognosis.
Collapse
Affiliation(s)
- Fenghua Yu
- Department of Ophthalmology, Central Hospital of Linyi, Yishui, Shandong, 276400, China
| | - Zhongming Jiang
- Department of Ophthalmology, Central Hospital of Linyi, Yishui, Shandong, 276400, China
| | - Aiping Song
- Department of Ophthalmology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China.
| |
Collapse
|
189
|
Guerra B, Issinger OG. Natural Compounds and Derivatives as Ser/Thr Protein Kinase Modulators and Inhibitors. Pharmaceuticals (Basel) 2019; 12:E4. [PMID: 30609679 PMCID: PMC6469162 DOI: 10.3390/ph12010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
The need for new drugs is compelling, irrespective of the disease. Focusing on medical problems in the Western countries, heart disease and cancer are at the moment predominant illnesses. Owing to the fact that ~90% of all 21,000 cellular proteins in humans are regulated by phosphorylation/dephosphorylation it is not surprising that the enzymes catalysing these reactions (i.e., protein kinases and phosphatases, respectively) have attracted considerable attention in the recent past. Protein kinases are major team players in cell signalling. In tumours, these enzymes are found to be mutated disturbing the proper function of signalling pathways and leading to uncontrolled cellular growth and sustained malignant behaviour. Hence, the search for small-molecule inhibitors targeting the altered protein kinase molecules in tumour cells has become a major research focus in the academia and pharmaceutical companies.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Olaf-Georg Issinger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
190
|
Co-expression of MDM2 and CDK4 in transformed human mesenchymal stem cells causes high-grade sarcoma with a dedifferentiated liposarcoma-like morphology. J Transl Med 2019; 99:1309-1320. [PMID: 31160689 PMCID: PMC6760642 DOI: 10.1038/s41374-019-0263-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Amplification and overexpression of MDM2 and CDK4 are well-known diagnostic criteria for well-differentiated liposarcoma (WDLPS)/dedifferentiated liposarcoma (DDLPS). Although it was reported that the depletion of MDM2 or CDK4 decreased proliferation in DDLPS cell lines, whether MDM2 and CDK4 induce WDLPS/DDLPS tumorigenesis remains unclear. We examined whether MDM2 and/or CDK4 cause WDLPS/DDLPS, using two types of transformed human bone marrow stem cells (BMSCs), 2H and 5H, with five oncogenic hits (overexpression of hTERT, TP53 degradation, RB inactivation, c-MYC stabilization, and overexpression of HRASv12). In vitro functional experiments revealed that the co-overexpression of MDM2 and CDK4 plays a key role in tumorigenesis by increasing cell growth and migration and inhibiting adipogenic differentiation potency when compared with the sole expression of MDM2 or CDK4. Using mouse xenograft models, we found that the co-overexpression of MDM2 and CDK4 in 5H cells with five additional oncogenic mutations can cause proliferative sarcoma with a DDLPS-like morphology in vivo. Our results suggest that the co-overexpression of MDM2 and CDK4, along with multiple genetic factors, increases the tendency for high-grade sarcoma with a DDLPS-like morphology in transformed human BMSCs by accelerating their growth and migration and blocking their adipogenic potential.
Collapse
|
191
|
Differential Mechanisms of Cell Death Induced by HDAC Inhibitor SAHA and MDM2 Inhibitor RG7388 in MCF-7 Cells. Cells 2018; 8:cells8010008. [PMID: 30583560 PMCID: PMC6356663 DOI: 10.3390/cells8010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
Gene expression is often altered by epigenetic modifications that can significantly influence the growth ability and progression of cancers. SAHA (Suberoylanilide hydroxamic acid, also known as Vorinostat), a well-known Histone deacetylase (HDAC) inhibitor, can stop cancer growth and metastatic processes through epigenetic alterations. On the other hand, Letrozole is an aromatase inhibitor that can elicit strong anti-cancer effects on breast cancer through direct and indirect mechanisms. A newly developed inhibitor, RG7388 specific for an oncogene-derived protein called MDM2, is in clinical trials for the treatment of various cancers. In this paper, we performed assays to measure the effects of cell cycle arrest resulting from individual drug treatments or combination treatments with SAHA + letrozole and SAHA + RG7388, using the MCF-7 breast cancer cells. When SAHA was used individually, or in combination treatments with RG7388, a significant increase in the cytotoxic effect was obtained. Induction of cell cycle arrest by SAHA in cancer cells was evidenced by elevated p21 protein levels. In addition, SAHA treatment in MCF-7 cells showed significant up-regulation in phospho-RIP3 and MLKL levels. Our results confirmed that cell death caused by SAHA treatment was primarily through the induction of necroptosis. On the other hand, the RG7388 treatment was able to induce apoptosis by elevating BAX levels. It appears that, during combination treatments, with SAHA and RG7388, two parallel pathways might be induced simultaneously, that could lead to increased cancer cell death. SAHA appears to induce cell necroptosis in a p21-dependent manner, and RG7388 seems to induce apoptosis in a p21-independent manner, outlining differential mechanisms of cell death induction. However, further studies are needed to fully understand the intracellular mechanisms that are triggered by these two anti-cancer agents.
Collapse
|
192
|
Huang D, Qi Y, Song J, Zhang JZH. Calculation of hot spots for protein–protein interaction in p53/PMI‐MDM2/MDMX complexes. J Comput Chem 2018; 40:1045-1056. [DOI: 10.1002/jcc.25592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/04/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Dading Huang
- School of Physics and Material Science, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
| | - Yifei Qi
- School of Physics and Material Science, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
| | - Jianing Song
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
| | - John Z. H. Zhang
- School of Physics and Material Science, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200062 China
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai Shanghai 200062 China
- Department of ChemistryNew York University New York New York, 10003
- Collaborative Innovation Center of Extreme OpticsShanxi University Taiyuan Shanxi, 030006 China
| |
Collapse
|
193
|
Li H, Zhang J, Niswander L. Zinc deficiency causes neural tube defects through attenuation of p53 ubiquitylation. Development 2018; 145:145/24/dev169797. [PMID: 30545932 DOI: 10.1242/dev.169797] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Micronutrition is essential for neural tube closure, and zinc deficiency is associated with human neural tube defects. Here, we modeled zinc deficiency in mouse embryos, and used live imaging and molecular studies to determine how zinc deficiency affects neural tube closure. Embryos cultured with the zinc chelator TPEN failed to close the neural tube and showed excess apoptosis. TPEN-induced p53 protein stabilization in vivo and in neuroepithelial cell cultures and apoptosis was dependent on p53. Mechanistically, zinc deficiency resulted in disrupted interaction between p53 and the zinc-dependent E3 ubiquitin ligase Mdm2, and greatly reduced p53 ubiquitylation. Overexpression of human CHIP, a zinc-independent E3 ubiquitin ligase that targets p53, relieved TPEN-induced p53 stabilization and reduced apoptosis. Expression of p53 pro-apoptotic target genes was upregulated by zinc deficiency. Correspondingly, embryos cultured with p53 transcriptional activity inhibitor pifithrin-α could overcome TPEN-induced apoptosis and failure of neural tube closure. Our studies indicate that zinc deficiency disrupts neural tube closure through decreased p53 ubiquitylation, increased p53 stabilization and excess apoptosis.
Collapse
Affiliation(s)
- Huili Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA.,Department of Molecular, Cellular and Development Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jing Zhang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA.,Department of Molecular, Cellular and Development Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lee Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA .,Department of Molecular, Cellular and Development Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
194
|
MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene 2018; 38:2501-2515. [PMID: 30532073 DOI: 10.1038/s41388-018-0605-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023]
Abstract
MDM2 (Murine double minute 2) acts as a key repressor for p53-mediated tumor-suppressor functions, which includes cellular senescence. We found that MDM2 can promote cellular senescence by modulating WRN stability. Werner syndrome (WS), caused by mutations of the WRN gene, is an autosomal recessive disease, which is characterized by premature aging. Loss of WRN function induces cellular senescence in human cancer cells. Here, we found that MDM2 acts as an E3 ligase for WRN protein. MDM2 interacts with WRN both in vivo and in vitro. MDM2 induces ubiquitination of WRN and dramatically downregulates the levels of WRN protein in human cells. During DNA damage response, WRN is translocated to the nucleoplasm to facilitate its DNA repair functions; however, it is degraded by the MDM2-mediated ubiquitination pathway. Moreover, the senescent phenotype induced by DNA damage reagents, such as Etoposide, is at least in part mediated by MDM2-dependent WRN degradation as it can be significantly attenuated by ectopic expression of WRN. These results show that MDM2 is critically involved in regulating WRN function via ubiquitin-dependent degradation and reveal an unexpected role of MDM2 in promoting cellular senescence through a p53-independent manner.
Collapse
|
195
|
Yang R, Huang B, Zhu Y, Li Y, Liu F, Shi J. Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance. SCIENCE ADVANCES 2018; 4:eaat5077. [PMID: 30585287 PMCID: PMC6300403 DOI: 10.1126/sciadv.aat5077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Studies of drug resistance mostly characterize genetic mutation, and we know much less about phenotypic mechanisms of drug resistance, especially at a quantitative level. p53 is an important mediator of cellular response to chemotherapy, but even p53 wild-type cells vary in drug sensitivity for unclear reasons. Here, we elucidated a new resistance mechanism to a DNA-damaging chemotherapeutic through bimodal modulation of p53 activation dynamics. By combining single-cell imaging with computational modeling, we characterized a four-component regulatory module, which generates bimodal p53 dynamics through coupled feed-forward and feedback, and found that the inhibitory strength between ATM and Mdm2 determined the differential modular output between drug-sensitive and drug-resistant cancer cell lines. We further showed that the combinatorial inhibition of Mdm2 and Wip1 was an effective strategy to alter p53 dynamics in resistant cancer cells and sensitize their apoptotic response. Our results point to p53 pulsing as a potentially druggable mechanism that mediates chemoresistance.
Collapse
Affiliation(s)
- Ruizhen Yang
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Bo Huang
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
- National Laboratory of Solid State Microstructures, Department of Physics and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China
| | - Yanting Zhu
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yang Li
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
196
|
MicroRNA-148b-3p is involved in regulating hypoxia/reoxygenation-induced injury of cardiomyocytes in vitro through modulating SIRT7/p53 signaling. Chem Biol Interact 2018; 296:211-219. [DOI: 10.1016/j.cbi.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
|
197
|
Hu D, Jablonowski C, Cheng PH, AlTahan A, Li C, Wang Y, Palmer L, Lan C, Sun B, Abu-Zaid A, Fan Y, Brimble M, Gamboa NT, Kumbhar RC, Yanishevski D, Miller KM, Kang G, Zambetti GP, Chen T, Yan Q, Davidoff AM, Yang J. KDM5A Regulates a Translational Program that Controls p53 Protein Expression. iScience 2018; 9:84-100. [PMID: 30388705 PMCID: PMC6214872 DOI: 10.1016/j.isci.2018.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/01/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
The p53 tumor suppressor pathway is frequently inactivated in human cancers. However, there are some cancer types without commonly recognized alterations in p53 signaling. Here we report that histone demethylase KDM5A is involved in the regulation of p53 activity. KDM5A is significantly amplified in multiple types of cancers, an event that tends to be mutually exclusive to p53 mutation. We show that KDM5A acts as a negative regulator of p53 signaling through inhibition of p53 translation via suppression of a subgroup of eukaryotic translation initiation genes. Genetic deletion of KDM5A results in upregulation of p53 in multiple lineages of cancer cells and inhibits tumor growth in a p53-dependent manner. In addition, we have identified a regulatory loop between p53, miR-34, and KDM5A, whereby the induction of miR-34 leads to suppression of KDM5A. Thus, our findings reveal a mechanism by which KDM5A inhibits p53 translation to modulate cancer progression.
Collapse
Affiliation(s)
- Dongli Hu
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Carolyn Jablonowski
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Pei-Hsin Cheng
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alaa AlTahan
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yingdi Wang
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lance Palmer
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Cuixia Lan
- Department of Clinical Laboratory, Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao 266033, China
| | - Bingmei Sun
- Department of Clinical Laboratory, Qingdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao 266042, China
| | - Ahmed Abu-Zaid
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark Brimble
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nicolas T Gamboa
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ramhari C Kumbhar
- Department of Molecular Biosciences, University of Texas at Austin, 100 E 24th St NHB 2.606 Stop A5000, Austin, TX 78712, USA
| | - David Yanishevski
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, University of Texas at Austin, 100 E 24th St NHB 2.606 Stop A5000, Austin, TX 78712, USA
| | - Guolian Kang
- Department of Biostatistics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, 310 Cedar St, New Haven, CT 06520, USA
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
198
|
He W, Yan J, Sui F, Wang S, Su X, Qu Y, Yang Q, Guo H, Ji M, Lu W, Shao Y, Hou P. Turning a Luffa Protein into a Self-Assembled Biodegradable Nanoplatform for Multitargeted Cancer Therapy. ACS NANO 2018; 12:11664-11677. [PMID: 30335959 DOI: 10.1021/acsnano.8b07079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The peptide-derived self-assembly platform has attracted increasing attention for its great potential to develop into multitargeting nanomedicines as well as its inherent biocompatibility and biodegradability. However, their clinical application potentials are often compromised by low stability, weak membrane penetrating ability, and limited functions. Herein, inspired by a natural protein from the seeds of Luffa cylindrica, we engineered via epitope grafting and structure design a hybrid peptide-based nanoplatform, termed Lupbin, which is capable of self-assembling into a stable superstructure and concurrently targeting multiple protein-protein interactions (PPIs) located in cytoplasm and nuclei. We showed that Lupbin can efficiently penetrate cell membrane, escape from early endosome-dependent degradation, and subsequently disassemble into free monomers with wide distribution in cytosol and nucleus. Importantly, Lupbin abrogated tumor growth and metastasis through concurrent blockade of the Wnt/β-catenin signaling and reactivation of the p53 signaling, with a highly favorable in vivo biosafety profile. Our strategy expands the application of self-assembled nanomedicines into targeting intercellular PPIs, provides a potential nanoplatform with high stability for multitargeted cancer therapy, and likely reinvigorates the development of peptide-based therapeutics for the treatment of different human diseases including cancer.
Collapse
Affiliation(s)
- Wangxiao He
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Jin Yan
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Fang Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Xi Su
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Yiping Qu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Qingchen Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Hui Guo
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Meiju Ji
- Center for Translational Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Yongping Shao
- Frontier Institute of Science and Technology, Center for Translational Medicine, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| |
Collapse
|
199
|
Fan Y, Li M, Ma K, Hu Y, Jing J, Shi Y, Li E, Dong D. Dual-target MDM2/MDMX inhibitor increases the sensitization of doxorubicin and inhibits migration and invasion abilities of triple-negative breast cancer cells through activation of TAB1/TAK1/p38 MAPK pathway. Cancer Biol Ther 2018; 20:617-632. [PMID: 30462562 DOI: 10.1080/15384047.2018.1539290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis mainly due to insensitivity or resistance to standard anthracycline- and taxane-based chemotherapy, urgently calling for new adjuvants to reverse drug resistance. Dual-target murine double minute 2 (MDM2) and murine double minute X (MDMX) inhibitor has been proved to play a critical part against cancer, particularly focusing on the tremendous potential to enhance the efficacy of doxorubicin (DOX), however little was reported in TNBC. In the present study, we investigated the synergistic antitumor effect of the MDM2/MDMX inhibitor with DOX using three TNBC cell lines, two in situ transplantation tumor models and 214 clinical samples. We observed that the MDM2/MDMX inhibitor combined with DOX could not only inhibit cell vitality and migration and invasion abilities, but also highly inhibit tumor growth in TNBC nude mice. Besides, co-treatment of MDM2/MDMX inhibitor and DOX suppressed epithelial to mesenchymal transition (EMT) through increasing the TAK1-binding protein 1 (TAB1), transforming growth factor β-activated kinase 1 (TAK1) and p38 mitogen-activated protein kinase (MAPK) expression. Small interfering RNA-mediated TAB1 knockdown induced the EMT, desensitized cells to DOX and enhanced the migration and invasion abilities. High MDM2/MDMX expression was positively associated with weak TAB1 expression in 214 TNBC tumor tissues confirmed by immumohistochemical staining and MDM2/MDMX/TAB1 expression was significantly related to TNBC patient survival. These findings indicate that dual-target MDM2/MDMX inhibitor could increase the sensitization of doxorubicin and inhibit migration and invasion abilities in TNBC cells through p38 MAPK pathway activation caused EMT suppression and hence could be useful in TNBC treatments in future.
Collapse
Affiliation(s)
- Yangwei Fan
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Mengya Li
- b Department of Medical Oncology , the First Affiliated Hospital of Henan University , Kaifeng , China
| | - Ke Ma
- c Department of Medical Oncology , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuan Hu
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Jiayu Jing
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Yu Shi
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Enxiao Li
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| | - Danfeng Dong
- a Department of Medical Oncology , the First Affiliated Hospital of medical school of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
200
|
Zhang H, Zhou X, Sheng N, Cui R, Cui Q, Guo H, Guo Y, Sun Y, Dai J. Subchronic Hepatotoxicity Effects of 6:2 Chlorinated Polyfluorinated Ether Sulfonate (6:2 Cl-PFESA), a Novel Perfluorooctanesulfonate (PFOS) Alternative, on Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12809-12818. [PMID: 30256107 DOI: 10.1021/acs.est.8b04368] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The compound 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an alternative to perfluorooctanesulfonate (PFOS) in the metal-plating industry, has been widely detected in various environmental matrices. However, its hepatotoxicity has yet to be clarified. Here, male mice were exposed to 0.04, 0.2, or 1 mg/kg/day of 6:2 Cl-PFESA for 56 days. Results demonstrated that relative liver weight increased significantly in the 0.2 and 1 mg/kg/day 6:2 Cl-PFESA groups, whereas liver lipid accumulation increased in all 6:2 Cl-PFESA groups. Serum enzyme activities of alanine transaminase and alkaline phosphatase were increased. Serum triglycerides and low-density lipoprotein cholesterol both increased, whereas serum total cholesterol and high-density lipoprotein cholesterol decreased following 6:2 Cl-PFESA exposure. A total of 264 differentially expressed proteins (127 up-regulated and 137 down-regulated), mainly involved in lipid metabolism, xenobiotic metabolism, and ribosome biogenesis, were identified by quantitative proteomics. Bioinformatics analysis highlighted the de-regulation of PPAR and PXR, which may contribute to the hepatotoxicity of 6:2 Cl-PFESA. Additionally, 6:2 Cl-PFESA induced both cell apoptosis and proliferation in the mouse liver. Compared to the overt toxicity of PFOS, 6:2 Cl-PFESA exhibited more-serious hepatotoxicity. Thus, caution should be exercised in the application of 6:2 Cl-PFESA as a replacement alternative to PFOS in industrial areas.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiujuan Zhou
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Qianqian Cui
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|