151
|
Manipulating angiotensin metabolism with angiotensin converting enzyme 2 (ACE2) in heart failure. ACTA ACUST UNITED AC 2014; 9:e141-e148. [PMID: 32362932 PMCID: PMC7185729 DOI: 10.1016/j.ddstr.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure is increasing in prevalence associated with a huge economic burden. ACE2 is a negative regulator of the renin–angiotensin system. Elevated ACE2 activity is a biomarker in heart failure. Enhancing ACE2 action may have unique therapeutic effects in patients with heart failure.
Angiotensin converting enzyme 2 (ACE2), is a monocarboxypeptidase which metabolizes several peptides including the degradation of Ang II, a peptide with vasoconstrictive/proliferative/effects, to generate Ang 1–7, which acting through its receptor Mas exerts vasodilatory/anti-proliferative actions. The classical pathway of the RAS involving the ACE-Ang II-AT1 receptor axis is antagonized by the second arm constituted by the ACE2-Ang 1–7/Mas receptor axis. Loss of ACE2 enhances the adverse pathological remodeling susceptibility to pressure-overload and myocardial infarction. Human recombinant ACE2 is also a negative regulator of Ang II-induced myocardial hypertrophy, fibrosis and diastolic dysfunction and suppresses pressure-overload induced heart failure. Due to its characteristics, the ACE2-Ang 1–7/Mas axis may represent new possibilities for developing novel therapeutic strategies for the treatment of heart failure. Human recombinant ACE2 has been safely administered to healthy human volunteers intravenously resulting in sustained lowering of plasma Ang II levels. In this review, we will summarize the beneficial effects of ACE2 in heart disease and the potential use of human recombinant ACE2 as a novel therapy for heart failure.
Collapse
|
152
|
Shahinian H, Tholen S, Schilling O. Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Rev Proteomics 2014; 10:421-33. [DOI: 10.1586/14789450.2013.841547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
153
|
Mori Y, Iwamoto M, Mori K, Yoshida M, Honda T, Nagayama T, Nishi T. An Efficient Synthesis of (3S,5S)-5-[3,3-Dimethyl-1-(o-tolyl)-6-oxo-2H-pyridin-4-yl]piperidine-3-carboxamide as Potent Renin Inhibitor. HETEROCYCLES 2014. [DOI: 10.3987/com-14-12988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
154
|
|
155
|
|
156
|
Kljajic ST, Widdop RE, Vinh A, Welungoda I, Bosnyak S, Jones ES, Gaspari TA. Direct AT2 receptor stimulation is athero-protective and stabilizes plaque in Apolipoprotein E-deficient mice. Int J Cardiol 2013; 169:281-7. [DOI: 10.1016/j.ijcard.2013.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 07/24/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022]
|
157
|
Sharma MC, Sharma S, Sharma P, Kumar A, Bhadoriya KS. Comparative QSAR and pharmacophore analysis for a series of 2,4-dihydro-3H-1,2,4-triazol-3-ones derivatives as angiotensin II AT1 receptor antagonists. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0831-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
158
|
Michida M, Takayanagi Y, Imai M, Furuya Y, Kimura K, Kitawaki T, Tomori H, Kajino H. Convergent Asymmetric Synthesis of a Renin Inhibitor: A Highly Efficient Construction Method of Three Stereogenic Centers. Org Process Res Dev 2013. [DOI: 10.1021/op400219y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Makoto Michida
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Yoshihiro Takayanagi
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Makoto Imai
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Yukito Furuya
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Kenichi Kimura
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Takafumi Kitawaki
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Hiroshi Tomori
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| | - Hisaki Kajino
- Process Technology Research
Laboratories (PTRL), Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, Hiratsuka-shi, Kanagawa 254-0014, Japan
| |
Collapse
|
159
|
Genetic polymorphism of angiotensin converting enzyme and risk of coronary restenosis after percutaneous transluminal coronary angioplasties: evidence from 33 cohort studies. PLoS One 2013; 8:e75285. [PMID: 24098690 PMCID: PMC3787085 DOI: 10.1371/journal.pone.0075285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/12/2013] [Indexed: 11/21/2022] Open
Abstract
Background In the past decade, a number of cohort studies studies have been carried out to investigate the relationship between the insertion/deletion polymorphism of the gene encoding angiotensin-converting enzyme and risk of restenosis after percutaneous transluminal coronary angioplasties in patients. However, these studies have yielded contradictory results. Genetic association studies addressing this issue are frequently hampered by insufficient power. We therefore performed a meta-analysis of the published studies to clarify this inconsistency and to establish a comprehensive picture of the relationship between ACE I/D polymorphism and post-PTCA restenosis risk. Methods Databases including Pubmed, EMBASE, ISI Web of Science, EBSCO, Cochrane Library databases and CNKI were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. The random-effects model was applied, addressing heterogeneity and publication bias. Results A total of 33 cohort studies involving 11,099 subjects were included. In a combined analysis, the OR for post-PTCA restenosis of the ACE DD genotype was 1.61 (95% CI: 1.27–2.04; P<10−5). In the subgroup analysis by intervention, significantly increased risks were also found in PTCA-stent and PTCA-balloon for the DD genotype of the polymorphism. Conclusions Our meta-analysis showed that the DD genotype of ACE I/D polymorphism was significantly associated with increased risk of restenosis, particularly for PTCA-stent.
Collapse
|
160
|
Mamenko M, Zaika O, Prieto MC, Jensen VB, Doris PA, Navar LG, Pochynyuk O. Chronic angiotensin II infusion drives extensive aldosterone-independent epithelial Na+ channel activation. Hypertension 2013; 62:1111-1122. [PMID: 24060890 DOI: 10.1161/hypertensionaha.113.01797] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inability of mineralocorticoid receptor (MR) blockade to reduce hypertension associated with high angiotensin (Ang) II suggests direct actions of Ang II to regulate tubular sodium reabsorption via the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron. We used freshly isolated aldosterone-sensitive distal nephron from mice to delineate the synergism and primacy between aldosterone and Ang II in controlling functional ENaC activity. Inhibition of MR specifically prevented the increased number of functionally active ENaC, but not ENaC open probability elicited by a low sodium diet. In contrast, we found no functional role of glucocorticoid receptors in the regulation of ENaC activity by dietary salt intake. Simultaneous inhibition of MR and Ang II type 1 receptors ameliorated the enhanced ENaC activity caused by low dietary salt intake and produced significantly greater natriuresis than either inhibitor alone. Chronic systemic Ang II infusion induced more than 2 times greater increase in ENaC activity than observed during dietary sodium restriction. Importantly, ENaC activity remained greatly above control levels during maximal MR inhibition. We conclude that during variations in dietary salt intake both aldosterone and Ang II contribute complementarily to the regulation of ENaC activity in the aldosterone-sensitive distal nephron. In contrast, in the setting of Ang II-dependent hypertension, ENaC activity is upregulated well above the physiological range and is not effectively suppressed by inhibition of the aldosterone-MR axis. This provides a mechanistic explanation for the resistance to MR inhibition that occurs in hypertensive subjects having elevated intrarenal Ang II levels.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology; The University of Texas Health Science Center at Houston, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology; The University of Texas Health Science Center at Houston, USA
| | - Minolfa C Prieto
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| | - V Behrana Jensen
- Center for Laboratory Animal Medicine and Care The University of Texas Health Science Center at Houston, USA
| | - Peter A Doris
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, USA
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology; The University of Texas Health Science Center at Houston, USA
| |
Collapse
|
161
|
Dhar I, Dhar A, Wu L, Desai KM. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats. PLoS One 2013; 8:e74212. [PMID: 24040205 PMCID: PMC3769342 DOI: 10.1371/journal.pone.0074212] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
Abstract
The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.
Collapse
MESH Headings
- Angiotensin II/blood
- Angiotensin II/genetics
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Blood Pressure/drug effects
- Cells, Cultured
- Dietary Carbohydrates/adverse effects
- Fructose/adverse effects
- Gene Expression Regulation/drug effects
- Glutathione/blood
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/blood
- NF-kappa B/genetics
- Pyruvaldehyde/blood
- Pyruvaldehyde/pharmacology
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products
- Receptor, Angiotensin, Type 1/blood
- Receptor, Angiotensin, Type 1/genetics
- Receptors, Adrenergic, alpha-1/blood
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Immunologic/blood
- Receptors, Immunologic/genetics
- Renin/blood
- Renin/genetics
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/genetics
Collapse
Affiliation(s)
- Indu Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arti Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lingyun Wu
- Department of Health Sciences, Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
- * E-mail: (LW); (KD)
| | - Kaushik M. Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (LW); (KD)
| |
Collapse
|
162
|
|
163
|
Liu Y, Chen K, Kou X, Han Y, Zhou L, Zeng C. Aliskiren and amlodipine in the management of essential hypertension: meta-analysis of randomized controlled trials. PLoS One 2013; 8:e70111. [PMID: 23922924 PMCID: PMC3726495 DOI: 10.1371/journal.pone.0070111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 06/17/2013] [Indexed: 12/25/2022] Open
Abstract
Background Aliskiren is a novel renin-angiotensin aldosterone system (RAAS) inhibitor, the combination therapy of aliskiren and amlodipine for blood pressure control have been reported recently. The primary objective of this analysis is to review recently reported randomized controlled trials (RCTs) to compare antihypertensive effects and adverse events between mono (amlodipine or aliskiren alone) and combination therapy of both medicines. Methods Databases for the search included Pubmed, Embase and the Cochrane Central Register of Controlled Trials. Revman v5.0 statistical program was used to analyze the data. Weighted mean differences (WMD) with a 95% confidence interval (CI) were used for the calculation of continuous data, and relative risk (RR) with a 95% CI was used for dichotomous data. Results We analyzed the data from 7 RCTs for a total of 6074 participants in this meta-analysis. We found that the aliskiren/amlodipine combination therapy had a stronger effect in lowering blood pressure as compared with the monotherapy using aliskiren (SBP: WMD = −10.42, 95% CI −13.03∼−7.82, P<0.00001; DBP: WMD = −6.60, 95% CI −7.22∼−5.97, P<0.00001) or amlodipine (SBP: WMD = −4.85, 95% CI −6.88∼−2.81, P<0.00001; DBP: WMD = −2.91, 95% CI −3.85∼−1.97, P<0.00001). No differences were found in terms of adverse events between combination therapy and monotherapy, except for the rates of peripheral edema and hypokalaemia which were significantly lower in the combination therapy than in the amlodipine monotherapy (RR = 0.78, 0.66∼0.92, P = 0.004; RR = 0.51, 0.27∼0.97, P = 0.04). Similar antihypertensive effects were found in both obese (body mass index > = 30 kg/m2) hypertensive and non-obese (body mass index <30 kg/m2) hypertensive patients. Moreover, there was no difference with the blood pressure lowering or adverse effects with regards to the combination therapy in both subgroups. Conclusion We found that aliskiren/amlodipine combination therapy provided a more effective blood pressure reduction than monotherapy with either drug without increase in the occurrence of adverse events.
Collapse
Affiliation(s)
- Yukai Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Xun Kou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Chongqing Institute of Cardiology, Chongqing, P. R. China
- * E-mail: (CZ); (LZ)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
- Chongqing Institute of Cardiology, Chongqing, P. R. China
- * E-mail: (CZ); (LZ)
| |
Collapse
|
164
|
Yang Y, Liu C, Lin YL, Li F. Structural insights into central hypertension regulation by human aminopeptidase A. J Biol Chem 2013; 288:25638-25645. [PMID: 23888046 DOI: 10.1074/jbc.m113.494955] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypertension is regulated through both the central and systemic renin-angiotensin systems. In the central renin-angiotensin system, zinc-dependent aminopeptidase A (APA) up-regulates blood pressure by specifically cleaving the N-terminal aspartate, but not the adjacent arginine, from angiotensin II, a process facilitated by calcium. Here, we determined the crystal structures of human APA and its complexes with different ligands and identified a calcium-binding site in the S1 pocket of APA. Without calcium, the S1 pocket can bind both acidic and basic residues through formation of salt bridges with the charged side chains. In the presence of calcium, the binding of acidic residues is enhanced as they ligate the cation, whereas the binding of basic residues is no longer favorable due to charge repulsion. Of the peptidomimetic inhibitors of APA, amastatin has higher potency than bestatin by fitting better in the S1 pocket and interacting additionally with the S3' subsite. These results explain the calcium-modulated substrate specificity of APA in central hypertension regulation and can guide the design and development of brain-targeting antihypertensive APA inhibitors.
Collapse
Affiliation(s)
- Yang Yang
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Chang Liu
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Yi-Lun Lin
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Fang Li
- From the Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| |
Collapse
|
165
|
Sato A, Fukuda S. Effect of aldosterone breakthrough on albuminuria during treatment with a direct renin inhibitor and combined effect with a mineralocorticoid receptor antagonist. Hypertens Res 2013; 36:879-84. [PMID: 23864056 DOI: 10.1038/hr.2013.74] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/28/2013] [Accepted: 03/13/2013] [Indexed: 11/09/2022]
Abstract
We have reported observing aldosterone breakthrough in the course of relatively long-term treatment with renin-angiotensin (RA) system inhibitors, where the plasma aldosterone concentration (PAC) increased following an initial decrease. Aldosterone breakthrough has the potential to eliminate the organ-protective effects of RA system inhibitors. We therefore conducted a study in essential hypertensive patients to determine whether aldosterone breakthrough occurred during treatment with the direct renin inhibitor (DRI) aliskiren and to ascertain its clinical significance. The study included 40 essential hypertensive patients (18 men and 22 women) who had been treated for 12 months with aliskiren. Aliskiren significantly decreased blood pressure and plasma renin activity (PRA). The PAC was also decreased significantly at 3 and 6 months; however, the significant difference disappeared after 12 months. Aldosterone breakthrough was observed in 22 of the subjects (55%). Urinary albumin excretion differed depending on whether breakthrough occurred. For the subjects in whom aldosterone breakthrough was observed, eplerenone was added. A significant decrease in urinary albumin excretion was observed after 1 month, independent of changes in blood pressure. In conclusion, this study demonstrated that aldosterone breakthrough occurs in some patients undergoing DRI therapy. Aldosterone breakthrough affects the drug's ability to improve urinary albumin excretion, and combining a mineralocorticoid receptor antagonist with the DRI may be useful for decreasing urinary albumin excretion. When the objective is organ protection in hypertensive patients, a two-pronged approach using combination therapy to inhibit both the RA system and aldosterone may be highly effective.
Collapse
Affiliation(s)
- Atsuhisa Sato
- Department of Internal Medicine, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | | |
Collapse
|
166
|
Jakubczyk A, Baraniak B. Activities and sequences of the angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from the digested lentil (Lens culinaris) globulins. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry; University of Life Sciences; ul. Skromna 8; 20-704; Lublin; Poland
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry; University of Life Sciences; ul. Skromna 8; 20-704; Lublin; Poland
| |
Collapse
|
167
|
Abstract
Angiotensin II (Ang II) is the principal effector of the renin-angiotensin-aldosterone system (RAAS). It initiates myriad processes in multiple organs integrated to increase circulating volume and elevate systemic blood pressure. In the kidney, Ang II stimulates renal tubular water and salt reabsorption causing antinatriuresis and antidiuresis. Activation of the RAAS is known to enhance activity of the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron. In addition to its well described stimulatory actions on aldosterone secretion, Ang II is also capable of directly increasing ENaC activity. In this brief review, we discuss recent findings about non-classical Ang II actions on ENaC and speculate about its relevance for renal sodium handling.
Collapse
|
168
|
Pharmacokinetics, pharmacodynamics, and tolerability of ACT-077825, a new direct renin inhibitor after multiple-ascending doses in healthy subjects. J Cardiovasc Pharmacol 2013; 61:42-50. [PMID: 23052033 DOI: 10.1097/fjc.0b013e318276d444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was conducted to characterize the multiple-dose tolerability, pharmacokinetics, and pharmacodynamics of ACT-077825, a new direct renin inhibitor, in healthy male subjects. In this single-center, double-blind, placebo-controlled, active-controlled (20 mg of enalapril), randomized multiple-ascending dose study, ACT-077825 was administered once a day. for 7 days in the 50-1000 mg dose range to sodium- and potassium-restricted subjects. ACT-077825 pharmacokinetics on days 1 and 7 were characterized by dose-proportional increases in Cmax and AUCτ. At steady state, accumulation was modest (1.5- to 1.7-fold). Enalapril caused an increase in plasma active renin concentration and plasma renin activity (PRA). ACT-077825 dose dependently increased active renin on days 1 and 7 and inhibited PRA dose dependently only on day 1. On day 7, the maximal PRA inhibition was attained after 250 mg of ACT-077825. In contrast to enalapril, ACT-077825 did not induce any consistent lowering effect on blood pressure when compared with placebo. Of the reported adverse events, diarrhea, headache, and postural dizziness were more frequent. The incidence of diarrhea was greater in the 1000-mg group and a dose of 500 mg of ACT-077825 was identified as the maximum tolerated dose. Overall, pharmacokinetic, pharmacodynamic, and tolerability profiles warrant the further investigation of ACT-077825 in patients with hypertension.
Collapse
|
169
|
Wei LH, Huang XR, Zhang Y, Li YQ, Chen HY, Yan BP, Yu CM, Lan HY. Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling. Cardiovasc Res 2013; 99:665-73. [PMID: 23761400 DOI: 10.1093/cvr/cvt151] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Smad7 plays a negative regulatory role in many inflammatory diseases, but its effect on hypertensive disease remains unknown. The present study tested the hypothesis that overexpression of Smad7 may have therapeutic potential for angiotensin II (Ang II)-mediated hypertensive cardiac remodelling. METHODS AND RESULTS Hypertensive heart disease was induced in mice by subcutaneous infusion of Ang II for 28 days and treated with Smad7 by a non-invasive ultrasound-microbubble-mediated inducible Smad7 gene transfer. We found that cardiac Smad7 was largely reduced in the hypertensive heart and overexpression of cardiac Smad7 protected against the fall in the left ventricular (LV) ejection fraction (EF), an increase in LV mass, and cardiac inflammation and fibrosis such as up-regulation of pro-inflammatory cytokines (IL-1β, TNF-α) and fibrotic markers (collagen I, α-SMA), and infiltration of CD3(+) T cells and F4/80(+) macrophages. Further studies revealed that inactivation of the Sp1-TGF-β/Smad3-NF-κB (NF-κB, nuclear factor κB) pathways and prevention of cardiac miR-29 loss were mechanisms by which overexpression of Smad7 inhibited Ang II-mediated cardiac remodelling. Importantly, we also found that treatment with Smad7 when hypertensive cardiopathy established at day 14 halted the progression of cardiac injury by blunting the fall of EF and an increase in LV mass, and blocking TGF-β/Smad3-mediated cardiac fibrosis and NF-κB-driven inflammation. CONCLUSION Smad7 plays a protective role in Ang II-induced cardiac remodelling via mechanisms involving the Sp1-TGF-β/Smad-NF-κB-miR-29 regulatory network. Thus, Smad7 may be a novel therapeutic agent for hypertensive cardiovascular diseases.
Collapse
Affiliation(s)
- Li-Hua Wei
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, China
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Ozasa Y, Akazawa H, Qin Y, Tateno K, Ito K, Kudo-Sakamoto Y, Yano M, Yabumoto C, Naito AT, Oka T, Lee JK, Minamino T, Nagai T, Kobayashi Y, Komuro I. Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells. Hypertens Res 2013; 36:859-65. [DOI: 10.1038/hr.2013.52] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 11/09/2022]
|
171
|
Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 2013; 14:11190-207. [PMID: 23712358 PMCID: PMC3709727 DOI: 10.3390/ijms140611190] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs), a group of small non-coding RNAs that fine tune translation of multiple target mRNAs, are emerging as key regulators in cardiovascular development and disease. MiRNAs are involved in cardiac hypertrophy, heart failure and remodeling following cardiac infarction; however, miRNAs involved in hypertension have not been thoroughly investigated. We have recently reported that specific miRNAs play an integral role in Angiotensin II receptor (AT1R) signaling, especially after activation of the Gαq signaling pathway. Since AT1R blockers are widely used to treat hypertension, we undertook a detailed analysis of potential miRNAs involved in Angiotensin II (AngII) mediated hypertension in rats and hypertensive patients, using miRNA microarray and qPCR analysis. The miR-132 and miR-212 are highly increased in the heart, aortic wall and kidney of rats with hypertension (159 ± 12 mm Hg) and cardiac hypertrophy following chronic AngII infusion. In addition, activation of the endothelin receptor, another Gαq coupled receptor, also increased miR-132 and miR-212. We sought to extend these observations using human samples by reasoning that AT1R blockers may decrease miR-132 and miR-212. We analyzed tissue samples of mammary artery obtained from surplus arterial tissue after coronary bypass operations. Indeed, we found a decrease in expression levels of miR-132 and miR-212 in human arteries from bypass-operated patients treated with AT1R blockers, whereas treatment with β-blockers had no effect. Taken together, these data suggest that miR-132 and miR-212 are involved in AngII induced hypertension, providing a new perspective in hypertensive disease mechanisms.
Collapse
|
172
|
Wilson PC, Lee MH, Appleton KM, El-Shewy HM, Morinelli TA, Peterson YK, Luttrell LM, Jaffa AA. The arrestin-selective angiotensin AT1 receptor agonist [Sar1,Ile4,Ile8]-AngII negatively regulates bradykinin B2 receptor signaling via AT1-B2 receptor heterodimers. J Biol Chem 2013; 288:18872-84. [PMID: 23661707 DOI: 10.1074/jbc.m113.472381] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar(1),Ile(4),Ile(8)]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar(1),Ile(4), Ile(8)]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar(1),Ile(4),Ile(8)]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar(1),Ile(4),Ile(8)]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar(1),Ile(4),Ile(8)]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar(1),Ile(4),Ile(8)]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions.
Collapse
Affiliation(s)
- Parker C Wilson
- Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Yokokawa F. Recent progress on the discovery of non-peptidic direct renin inhibitors for the clinical management of hypertension. Expert Opin Drug Discov 2013; 8:673-90. [DOI: 10.1517/17460441.2013.791279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
174
|
Nakamura Y, Fujimoto T, Ogawa Y, Namiki H, Suzuki S, Asano M, Sugita C, Mochizuki A, Miyazaki S, Tamaki K, Nagai Y, Inoue SI, Nagayama T, Kato M, Chiba K, Takasuna K, Nishi T. Lead optimization of 5-amino-6-(2,2-dimethyl-5-oxo-4-phenylpiperazin-1-yl)-4-hydroxyhexanamides to reduce a cardiac safety issue: discovery of DS-8108b, an orally active renin inhibitor. Bioorg Med Chem 2013; 21:3175-96. [PMID: 23598247 DOI: 10.1016/j.bmc.2013.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 01/26/2023]
Abstract
With the aim to address an undesired cardiac issue observed with our related compound in the recently disclosed novel series of renin inhibitors, further chemical modifications of this series were performed. Extensive structure-activity relationships studies as well as in vivo cardiac studies using the electrophysiology rat model led to the discovery of clinical candidate trans-adamantan-1-ol analogue 56 (DS-8108b) as a potent renin inhibitor with reduced potential cardiac risk. Oral administration of single doses of 3 and 10 mg/kg of 56 in cynomolgus monkeys pre-treated with furosemide led to significant reduction of mean arterial blood pressure for more than 12 h.
Collapse
Affiliation(s)
- Yuji Nakamura
- Lead Discovery & Optimization Research Laboratories I, Daiichi Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Hansen JT, Lyngsø C, Speerschneider T, Hansen PBL, Galés C, Weiner DM, Sheikh SP, Burstein ES, Hansen JL. Functional enhancement of AT1R potency in the presence of the TPαR is revealed by a comprehensive 7TM receptor co-expression screen. PLoS One 2013; 8:e58890. [PMID: 23516570 PMCID: PMC3597553 DOI: 10.1371/journal.pone.0058890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/07/2013] [Indexed: 01/14/2023] Open
Abstract
Background Functional cross-talk between seven transmembrane (7TM) receptors can dramatically alter their pharmacological properties, both in vitro and in vivo. This represents an opportunity for the development of novel therapeutics that potentially target more specific biological effects while causing fewer adverse events. Although several studies convincingly have established the existence of 7TM receptor cross-talk, little is known about the frequencey and biological significance of this phenomenon. Methodology/Principal Findings To evaluate the extent of synergism in 7TM receptor signaling, we took a comprehensive approach and co-expressed 123 different 7TM receptors together with the angiotensin II type 1 receptor (AT1R) and analyzed how each receptor affected the angiotensin II (AngII) response. To monitor the effect we used integrative receptor activation/signaling assay called Receptor Selection and Amplification Technology (R-SAT). In this screen the thromboxane A2α receptor (TPαR) was the only receptor which significantly enhanced the AngII-mediated response. The TPαR-mediated enhancement of AngII signaling was significantly reduced when a signaling deficient receptor mutant (TPαR R130V) was co-expressed instead of the wild-type TPαR, and was completely blocked both by TPαR antagonists and COX inhibitors inhibiting formation of thromboxane A2 (TXA2). Conclusions/Significance We found a functional enhancement of AT1R only when co-expressed with TPαR, but not with 122 other 7TM receptors. In addition, the TPαR must be functionally active, indicating the AT1R enhancement is mediated by a paracrine mechanism. Since we only found one receptor enhancing AT1R potency, our results suggest that functional augmentation through 7TM receptor cross-talk is a rare event that may require specific conditions to occur.
Collapse
Affiliation(s)
- Jonas Tind Hansen
- Laboratory for Molecular Cardiology, Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Dingemanse J, Nicolas LB, van Bortel L. Effect of Multiple-Dose Diltiazem on the Pharmacokinetics of the Renin Inhibitor ACT-077825. Clin Pharmacol Drug Dev 2013; 2:113-9. [DOI: 10.1002/cpdd.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 01/30/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Jasper Dingemanse
- Actelion Pharmaceuticals Ltd; Gewerbestrasse; Allschwil; Switzerland
| | | | - Luc van Bortel
- Drug Research Unit Ghent; Ghent University Hospital; De Pintelaan; Ghent; Belgium
| |
Collapse
|
177
|
Majumder K, Panahi S, Kaufman S, Wu J. Fried egg digest decreases blood pressure in spontaneous hypertensive rats. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
178
|
He HL, Liu D, Ma CB. Review on the Angiotensin-I-Converting Enzyme (ACE) Inhibitor Peptides from Marine Proteins. Appl Biochem Biotechnol 2012; 169:738-49. [DOI: 10.1007/s12010-012-0024-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/05/2012] [Indexed: 12/21/2022]
|
179
|
Aachary AA, Thiyam U. A pursuit of the functional nutritional and bioactive properties of canola proteins and peptides. Crit Rev Food Sci Nutr 2012; 52:965-79. [PMID: 22823345 DOI: 10.1080/10408398.2010.516033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This review focuses on updated information about canola proteins and peptides, their functional, nutritional, and bioactive properties, safety aspects, and potential application in foods. Attention is paid to gelation, emulsion, thermal, and water holding capacities of crude and pure proteins and peptides isolated from canola meal. Various factors affecting these properties are discussed. This paper provides an overview of use of canola meal as a protein source in animal diets and their digestibility in vivo. Their effects on a range of health outcomes including ACE inhibition, hypocholesterolemic effects, cancer prevention, anti-viral and anti-diabetic properties are reviewed on the basis of the available in vitro and in vivo animal and human data. The review also focuses on the safety aspects and selected food applications of canola proteins and peptides.
Collapse
|
180
|
Cardiovascular and cerebrovascular outcomes in elderly hypertensive patients treated with either ARB or ACEI. J Geriatr Cardiol 2012; 9:252-7. [PMID: 23097655 PMCID: PMC3470024 DOI: 10.3724/sp.j.1263.2011.12031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 05/20/2012] [Accepted: 09/03/2012] [Indexed: 01/13/2023] Open
Abstract
Background Although angiotensin converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) are equally important in the treatment of hypertension, there is less evidence whether they have equal cardiovascular and cerebrovascular protective effects, especially in elder hypertensive patients. This study aims to clarify this unresolved issue. Methods This cross-sectional study included clinical data on 933 aged male patients with hypertension who received either an ARB or ACEI for more than two months between January 2007 and May 2011. The primary outcome was the composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. The secondary endpoints were unstable angina, new atrial fibrillation, and transient ischemic attack. Results The median follow-up time was 24 months. Age, drug types, cerebral infarction history, renal dysfunction history were the independent predictors of the primary endpoint. The risk of an occurrence of a primary endpoint event was higher in the ARB group than the ACEI group [P = 0.037, hazard ratios (HR): 2.124, 95% confidence interval (95% CI): 1.048–4.306]. The Kaplan-Meier method also suggests that the rate of primary endpoint occurrence was higher in the ARB group than the ACEI group (P = 0.04). In regard to the secondary endpoints, there were no significant differences between the two treatment arms (P = 0.137, HR: 1.454, 95% CI: 0.888–2.380). Patient age and coronary heart disease history were independent predictors of the secondary endpoint. Conclusion ACEI were more effective than ARB in reducing cardiovascular and cerebrovascular morbidity and mortality in aged patients with hypertension.
Collapse
|
181
|
Mori Y, Ogawa Y, Mochizuki A, Nakamura Y, Sugita C, Miyazaki S, Tamaki K, Matsui Y, Takahashi M, Nagayama T, Nagai Y, Inoue SI, Nishi T. Design and discovery of new (3S,5R)-5-[4-(2-chlorophenyl)-2,2-dimethyl-5-oxopiperazin-1-yl]piperidine-3-carboxamides as potent renin inhibitors. Bioorg Med Chem Lett 2012; 22:7677-82. [PMID: 23122821 DOI: 10.1016/j.bmcl.2012.09.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 11/16/2022]
Abstract
Utilizing X-ray crystal structure analysis, (3S,5R)-5-[4-(2-chlorophenyl)-2,2-dimethyl-5-oxopiperazin-1-yl]piperidine-3-carboxamides were designed and identified as renin inhibitors. The most potent compound 15 demonstrated favorable pharmacokinetic and pharmacodynamic profiles in rat.
Collapse
Affiliation(s)
- Yutaka Mori
- Lead Discovery & Optimization Research Laboratories I, Daiichi Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Gul S, Gribbon P. Exemplification of the challenges associated with utilising fluorescence intensity based assays in discovery. Expert Opin Drug Discov 2012; 5:681-90. [PMID: 22823207 DOI: 10.1517/17460441.2010.495748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Despite the advances in the understanding of biological processes, significant challenges still face those engaged in small molecule drug discovery. To complicate matters further, researchers are often overwhelmed with a range of off-the-shelf as well as bespoke assay formats to choose from when initiating a drug discovery programme. Although fluorescence intensity based assays have traditionally been adopted in drug discovery programmes for a wide range of target classes, it is essential to fully validate the chosen readouts to confirm that they accurately reflect the underlying biological mechanism under investigation. AREAS COVERED IN THIS REVIEW This review exemplifies the challenges that are often encountered with fluorescence intensity based assays and particular attention is paid to compound interference, the protease, deacetylating enzyme and kinase enzyme target classes. WHAT THE READER WILL GAIN Designing a critical path in early stage drug discovery, which combines several diverse and minimally overlapping readout modes, will maximise the chance that compound activities will translate between the primary assay (utilised in the initial screening campaign) and secondary assay (utilised to evaluate the confirmed hits identified in the primary assay, usually a cell based assay) formats in a meaningful way. However, this is not always the case as is amply demonstrated across both academia and the pharmaceutical industry. Paying insufficient attention to these points can lead to the early termination of drug discovery programmes, not for want of resources or confidence in the rationale underlying the target, but instead because decision making has been driven by assay data originating from a different biological mechanism than the one under investigation. TAKE HOME MESSAGE Although fluorescence intensity based assays are likely to remain popular for many target classes in drug discovery, in particular in small molecule screening campaigns, it is essential that at the outset they are sufficiently well validated so that compounds are likely to exhibit profiles that are confirmed in subsequent assays.
Collapse
Affiliation(s)
- Sheraz Gul
- European ScreeningPort GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany
| | | |
Collapse
|
183
|
Sharma MC, Sharma S, Bhadoriya KS. WITHDRAWN: QSAR analyses and pharmacophore studies of tetrazole and sulfonamide analogs of imidazo[4,5-b]pyridine using simulated annealing based feature selection. JOURNAL OF SAUDI CHEMICAL SOCIETY 2012. [DOI: 10.1016/j.jscs.2012.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
184
|
Giarrusso MA, Taylor MK, Ziogas J, Brody KM, Macdougall PE, Schiesser CH. Fluorescent Angiotensin AT1Receptor Antagonists. ASIAN J ORG CHEM 2012. [DOI: 10.1002/ajoc.201200064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
185
|
Nakamura Y, Fujimoto T, Ogawa Y, Sugita C, Miyazaki S, Tamaki K, Takahashi M, Matsui Y, Nagayama T, Manabe K, Mizuno M, Masubuchi N, Chiba K, Nishi T. Discovery of DS-8108b, a Novel Orally Bioavailable Renin Inhibitor. ACS Med Chem Lett 2012; 3:754-8. [PMID: 24900544 DOI: 10.1021/ml300168e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/18/2012] [Indexed: 11/28/2022] Open
Abstract
A novel orally bioavailable renin inhibitor, DS-8108b (5), showing potent renin inhibitory activity and excellent in vivo efficacy is described. We report herein the synthesis and pharmacological effects of 5 including renin inhibitory activity in vitro, suppressive effects of ex vivo plasma renin activity (PRA) in cynomolgus monkey, pharmacokinetic data, and blood pressure-lowering effects in an animal model. Compound 5 demonstrated inhibitory activities toward human renin (IC50 = 0.9 nM) and human and monkey PRA (IC50 = 1.9 and 6.3 nM, respectively). Oral administration of single doses of 3 and 10 mg/kg of 5 in cynomolgus monkey on pretreatment with furosemide led to dose-dependent significant reductions in ex vivo PRA and sustained lowering of mean arterial blood pressure for more than 12 h.
Collapse
Affiliation(s)
- Yuji Nakamura
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Teppei Fujimoto
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuyuki Ogawa
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Chie Sugita
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shojiro Miyazaki
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazuhiko Tamaki
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Mizuki Takahashi
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yumi Matsui
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takahiro Nagayama
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kenichi Manabe
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Makoto Mizuno
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriko Masubuchi
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Katsuyoshi Chiba
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takahide Nishi
- Lead Discovery & Optimization Research Laboratories I, ‡Lead Discovery & Optimization Research Laboratories II, §Cardiovascular-Metabolics Research Laboratories, ∥Biological Research Laboratories, ⊥Drug Metabolism & Pharmacokinetics Research Laboratories, and #Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
186
|
Stawski L, Han R, Bujor AM, Trojanowska M. Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. Arthritis Res Ther 2012; 14:R194. [PMID: 22913887 PMCID: PMC3580592 DOI: 10.1186/ar4028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/20/2012] [Indexed: 02/08/2023] Open
Abstract
Introduction Systemic sclerosis (SSc) is an autoimmune inflammatory disorder of unknown etiology characterized by fibrosis of the skin and internal organs. Ang II (angiotensin II), a vasoconstrictive peptide, is a well-known inducer of kidney, heart, and liver fibrosis. The goal of this study was to investigate the profibrotic potential of Ang II in the mouse skin. Methods Ang II was administered by subcutaneous osmotic mini pumps to C57BL/6 male mice. Collagen-content measurements were performed with Gomori Trichrome staining and hydroxyproline assay. The mRNA expression level of collagens, TGF-β1, TGF-β2, TGF-β3, CTGF, αSMA, CD3, Emr1, CD45/B220, MCP1, and FSP1 were quantified with real-time polymerase chain reaction (PCR). Immunostaining was performed for markers of inflammation and fibrosis, including, phospho-Smad2, αSMA, CD3, Mac3, CD45/B220, and CD163B. Fibrocytes were identified by double staining with CD45/FSP1 and CD45/PH4. Endothelial cells undergoing endothelial-to-mesenchymal transition (EndoMT) were identified by double staining with VE-cadherin/FSP1. Results Ang II-infused mice develop prominent dermal fibrosis in the area proximal to the pump, as shown by increased collagen and CTGF mRNA levels, increased hydroxyproline content, and more tightly packed collagen fibers. In addition, elevated mRNA levels of TGF-β2 and TGF-β3 along with increased expression of pSmad2 were observed in the skin of Ang II-treated mice. Dermal fibrosis was accompanied by an increased number of infiltrating fibrocytes, and an increased number of αSMA-positive cells, as well as CD163B+ macrophages in the upper dermis. This correlated with significantly increased mRNA levels of αSMA, Emr1, and MCP1. Infiltration of CD3-, CD45/B220-, and Mac3-positive cells was observed mainly in the hypodermis. Furthermore, an increased number of double-positive VE-cadherin/FSP1 cells were detected in the hypodermis only. Conclusions This work demonstrates that Ang II induces both inflammation and fibrosis in the skin via MCP1 upregulation and accumulation of activated fibroblasts. Additionally, our data suggest that populations of these fibroblasts originate from circulating blood cells. Ang II infusion via osmotic minipumps could serve as a useful mouse model of skin fibrosis to gain new insights into pathogenic mechanisms and to test new antifibrotic therapies.
Collapse
|
187
|
Lin YS, Lu YL, Wang GJ, Chen LG, Wen CL, Hou WC. Ethanolic extracts and isolated compounds from small-leaf grape (Vitis thunbergii var. taiwaniana) with antihypertensive activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7435-7441. [PMID: 22762395 DOI: 10.1021/jf302445x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study aimed to investigate the antihypertensive effects of ethanolic extracts (EE) and compounds isolated from the small-leaf grape (Vitis thunbergii var. taiwaniana, VTT). The highest antiangiotensin-converting enzyme (anti-ACE) was found in stem-EE (IC50 was 69.5 μg/mL). In spontaneously hypertensive rats (SHRs), stem-EE effectively reduced blood pressure 24 h after administration of a single oral dose or when administered daily for 4 weeks. The isolated compounds, including (+)-vitisin A, ampelopsin C, and (+)-ε-viniferin, were shown to have anti-ACE and vasodilating effects against phenylephrine-induced tensions in an endothelium-intact aortic ring, with (+)-vitisin A being the most effective compound. Compared to control rats, SHRs showed significantly reduced systolic and diastolic blood pressures 24 h after a single oral dose of (+)-vitisin A (10 mg/kg) or captopril (2 mg/kg). These results suggest that the development of functional foods with VTT extracts may be beneficial for regulating blood pressure.
Collapse
Affiliation(s)
- Yin-Shiou Lin
- School of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
188
|
Functional single-cell hybridoma screening using droplet-based microfluidics. Proc Natl Acad Sci U S A 2012; 109:11570-5. [PMID: 22753519 DOI: 10.1073/pnas.1204514109] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies can specifically bind or even inhibit drug targets and have hence become the fastest growing class of human therapeutics. Although they can be screened for binding affinities at very high throughput using systems such as phage display, screening for functional properties (e.g., the inhibition of a drug target) is much more challenging. Typically these screens require the generation of immortalized hybridoma cells, as well as clonal expansion in microtiter plates over several weeks, and the number of clones that can be assayed is typically no more than a few thousand. We present here a microfluidic platform allowing the functional screening of up to 300,000 individual hybridoma cell clones within less than a day. This approach should also be applicable to nonimmortalized primary B-cells, as no cell proliferation is required: Individual cells are encapsulated into aqueous microdroplets and assayed directly for the release of antibodies inhibiting a drug target based on fluorescence. We used this system to perform a model screen for antibodies that inhibit angiotensin converting enzyme 1, a target for hypertension and congestive heart failure drugs. When cells expressing these antibodies were spiked into an unrelated hybridoma cell population in a ratio of 1:10,000 we observed a 9,400-fold enrichment after fluorescence activated droplet sorting. A wide variance in antibody expression levels at the single-cell level within a single hybridoma line was observed and high expressors could be successfully sorted and recultivated.
Collapse
|
189
|
Nakamura Y, Sugita C, Meguro M, Miyazaki S, Tamaki K, Takahashi M, Nagai Y, Nagayama T, Kato M, Suemune H, Nishi T. Design and optimization of novel (2S,4S,5S)-5-amino-6-(2,2-dimethyl-5-oxo-4-phenylpiperazin-1-yl)-4-hydroxy-2-isopropylhexanamides as renin inhibitors. Bioorg Med Chem Lett 2012; 22:4561-6. [DOI: 10.1016/j.bmcl.2012.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022]
|
190
|
Al-Waili K, Al-Rasadi K, Banerjee Y. Will β-blockers live up to the maxim of Sir James Black, their creator? Angiology 2012; 63:409-11. [PMID: 22718079 DOI: 10.1177/0003319711434636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Khalid Al-Waili
- Department of Clinical Biochemistry, Sultan Qaboos University, Al-Khod, Muscat, Sultanate of Oman
| | | | | |
Collapse
|
191
|
Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, Wagg CS, Kassiri Z, Lopaschuk GD, Oudit GY. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail 2012; 5:493-503. [PMID: 22705769 DOI: 10.1161/circheartfailure.112.966705] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Activation of the renin-angiotensin and sympathetic nervous systems may alter the cardiac energy substrate preference, thereby contributing to the progression of heart failure with normal ejection fraction. We assessed the qualitative and quantitative effects of angiotensin II (Ang II) and the α-adrenergic agonist, phenylephrine (PE), on cardiac energy metabolism in experimental models of hypertrophy and diastolic dysfunction and the role of the Ang II type 1 receptor. METHODS AND RESULTS Ang II (1.5 mg·kg(-1)·day(-1)) or PE (40 mg·kg(-1)·day(-1)) was administered to 9-week-old male C57/BL6 wild-type mice for 14 days via implanted microosmotic pumps. Echocardiography showed concentric hypertrophy and diastolic dysfunction, with preserved systolic function in Ang II- and PE-treated mice. Ang II induced marked reduction in cardiac glucose oxidation and lactate oxidation, with no change in glycolysis and fatty acid β-oxidation. Tricarboxylic acid acetyl coenzyme A production and ATP production were reduced in response to Ang II. Cardiac pyruvate dehydrogenase kinase 4 expression was upregulated by Ang II and PE, resulting in a reduction in the pyruvate dehydrogenase activity, the rate-limiting step for carbohydrate oxidation. Pyruvate dehydrogenase kinase 4 upregulation correlated with the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway in response to Ang II. Ang II type 1 receptor blockade normalized the activation of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F pathway and prevented the reduction in glucose oxidation but increased fatty acid oxidation. CONCLUSIONS Ang II- and PE-induced hypertrophy and diastolic dysfunction is associated with reduced glucose oxidation because of the cyclin/cyclin-dependent kinase-retinoblastoma protein-E2F-induced upregulation of pyruvate dehydrogenase kinase 4, and targeting these pathways may provide novel therapy for heart failure with normal ejection fraction.
Collapse
Affiliation(s)
- Jun Mori
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Affiliation(s)
- Alexander Dömling
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
193
|
Comprehensive two and three-dimensional QSAR studies of 3-substituted 6-butyl-1,2dihydropyridin-2-ones derivatives as angiotensin II receptor antagonists. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0110-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
194
|
De Caterina AR, Harper AR, Cuculi F. Critical evaluation of the efficacy and tolerability of azilsartan. Vasc Health Risk Manag 2012; 8:299-305. [PMID: 22661897 PMCID: PMC3363145 DOI: 10.2147/vhrm.s22589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Appropriate control of blood pressure (BP) in hypertensive patients still represents the major therapeutic goal in the treatment of hypertension. Despite the growing attention and wide range of antihypertensive agents available in the clinical scenario, the target of BP below the advised thresholds of 140/90 mmHg is, unfortunately, often unreached. For this reason, the search for new antihypertensive agents is still ongoing. Azilsartan medoxomil, a new angiotensin receptor blocker that has been recently introduced in the clinical arena, represents the eighth angiotensin receptor blocker currently available for BP control. The aim of this paper is to describe the efficacy and safety profile of this new compound, reviewing available data obtained from both pre-clinical and clinical studies.
Collapse
|
195
|
|
196
|
Sukumaran V, Veeraveedu PT, Gurusamy N, Lakshmanan AP, Yamaguchi K, Ma M, Suzuki K, Nagata M, Takagi R, Kodama M, Watanabe K. Olmesartan attenuates the development of heart failure after experimental autoimmune myocarditis in rats through the modulation of ANG 1-7 mas receptor. Mol Cell Endocrinol 2012; 351:208-19. [PMID: 22200414 DOI: 10.1016/j.mce.2011.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 11/23/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE-2) is a membrane-associated carboxy-peptidase catalyzes the conversion of the vasoconstrictor angiotensin (ANG)-II to the vasodilatory peptide ANG 1-7. In view of the expanding axis of the renin angiotensin system, we have investigated the cardioprotective effects of olmesartan (10mg/kg/day) in experimental autoimmune myocarditis. Olmesartan treatment effectively suppressed the myocardial protein expressions of inflammatory markers in comparison to the vehicle-treated rats. However, the protein and mRNA levels of ACE-2 and ANG 1-7, and its receptor Mas were upregulated in olmesartan treated group compared to vehicle-treated rats. Olmesartan medoxomil treatment significantly decreased the expression levels of phospho-p38 mitogen-activated protein kinase (MAPK), phospho-JNK, phospho-ERK and phospho-(MAPK) activated protein kinase-2 than with those of vehicle-treated rats. Moreover, vehicle-treated rats were shown to be up-regulated protein expressions of NADPH oxidase subunits (p47phox, p67phox and Nox-4), myocardial apoptotic markers and endoplasmic reticulum stress markers in comparison to those of normal and all these effects are expectedly down-regulated by an olmesartan. In addition, attenuated protein levels of phosphatidylinositol-3-kinase (PI3K) and phospho-Akt in the vehicle-treated EAM rats were prevented by olmesartan treatment. Our results suggest that beneficial effects of olmesartan treatment was more effective therapy in combating the inflammation, oxidative stress, apoptosis and signaling pathways associated with heart failure at least in part via the modulation of ANG 1-7 mas receptor.
Collapse
Affiliation(s)
- Vijayakumar Sukumaran
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Fournier PA, Arbour M, Cauchon E, Chen A, Chefson A, Ducharme Y, Falgueyret JP, Gagné S, Grimm E, Han Y, Houle R, Lacombe P, Lévesque JF, MacDonald D, Mackay B, McKay D, Percival MD, Ramtohul Y, St-Jacques R, Toulmond S. Design and synthesis of potent, isoxazole-containing renin inhibitors. Bioorg Med Chem Lett 2012; 22:2670-4. [DOI: 10.1016/j.bmcl.2012.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 11/27/2022]
|
198
|
Deng YF, Aluko RE, Jin Q, Zhang Y, Yuan LJ. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. PHARMACEUTICAL BIOLOGY 2012; 50:401-406. [PMID: 22136493 DOI: 10.3109/13880209.2011.608076] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Baicalin has been characterized as the active compound and quality control marker in Scutellaria baicalensis Georgi, traditionally used as a hypotensive herb. OBJECTIVES To investigate the inhibitory activities of baicalin against renin and angiotensin-I converting enzyme (ACE) and their molecule mechanism of interactions. METHODS The fluorescence method using renin substrate 1(R-2932) and the spectroscopy method by Cushman were used to determine renin and ACE activities, respectively. The fluorescence quench techniques were used to characterize their interactions. RESULTS The results showed that baicalin inhibited renin activity with an IC(50) value of 120.36 µM and inhibited ACE activity with an IC(50) value of 2.24 mM in vitro. The fluorescence emission of both renin and ACE were efficiently quenched by baicalin and a complete quenching was achieved at a high concentration of baicalin. Furthermore, baicalin was more effective in quenching the fluorescence of renin (K(SV) = 60 × 10(3) M(-1)) than ACE (K(SV) = 17.1 × 10(3) M(-1)). The quenching of fluorescence of renin and ACE involved static interactions, which was characterized by the formation of quencher-enzyme complex. The baicalin-renin complex formed through three-sites binding including the active site with a binding constant of 796.15 × 10(13) M(-1), but there was only one binding site for the baicalin-ACE complex with a much smaller binding constant of 6.8 × 10(5) M(-1). CONCLUSION The inhibition activity of baicalin against renin was a result of the formation of stable complex through multisites binding including the active site, which could explain the higher inhibitory efficiency.
Collapse
Affiliation(s)
- Y F Deng
- Chemistry Institute of Pharmaceutical Resources, Southwest University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
199
|
Choi KY, Swierczewska M, Lee S, Chen X. Protease-activated drug development. Am J Cancer Res 2012; 2:156-78. [PMID: 22400063 PMCID: PMC3296471 DOI: 10.7150/thno.4068] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/28/2012] [Indexed: 12/11/2022] Open
Abstract
In this extensive review, we elucidate the importance of proteases and their role in drug development in various diseases with an emphasis on cancer. First, key proteases are introduced along with their function in disease progression. Next, we link these proteases as targets for the development of prodrugs and provide clinical examples of protease-activatable prodrugs. Finally, we provide significant design considerations needed for the development of the next generation protease-targeted and protease-activatable prodrugs.
Collapse
|
200
|
Mamenko M, Zaika O, Ilatovskaya DV, Staruschenko A, Pochynyuk O. Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone. J Biol Chem 2012; 287:660-671. [PMID: 22086923 PMCID: PMC3249120 DOI: 10.1074/jbc.m111.298919] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/14/2011] [Indexed: 12/11/2022] Open
Abstract
Dietary salt intake controls epithelial Na+ channel (ENaC)-mediated Na+ reabsorption in the distal nephron by affecting status of the renin-angiotensin-aldosterone system (RAAS). Whereas regulation of ENaC by aldosterone is generally accepted, little is known about whether other components of RAAS, such as angiotensin II (Ang II), have nonredundant to aldosterone-stimulatory actions on ENaC. We combined patch clamp electrophysiology and immunohistochemistry in freshly isolated split-opened distal nephrons of mice to determine the mechanism and molecular signaling pathway of Ang II regulation of ENaC. We found that Ang II acutely increases ENaC Po, whereas prolonged exposure to Ang II also induces translocation of α-ENaC toward the apical membrane in situ. Ang II actions on ENaC Po persist in the presence of saturated mineralocorticoid status. Moreover, aldosterone fails to stimulate ENaC acutely, suggesting that Ang II and aldosterone have different time frames of ENaC activation. AT1 but not AT2 receptors mediate Ang II actions on ENaC. Unlike its effect in vasculature, Ang II did not increase [Ca2+]i in split-opened distal nephrons as demonstrated using ratiometric Fura-2-based microscopy. However, application of Ang II to mpkCCDc14 cells resulted in generation of reactive oxygen species, as probed with fluorescent methods. Consistently, inhibiting NADPH oxidase with apocynin abolished Ang II-mediated increases in ENaC Po in murine distal nephron. Therefore, we concluded that Ang II directly regulates ENaC activity in the distal nephron, and this effect complements regulation of ENaC by aldosterone. We propose that stimulation of AT1 receptors with subsequent activation of NADPH oxidase signaling pathway mediates Ang II actions on ENaC.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center, Houston, Texas 77030
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | | | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, the University of Texas Health Science Center, Houston, Texas 77030.
| |
Collapse
|