151
|
Sun JH, Zhou L, Emerson DJ, Phyo SA, Titus KR, Gong W, Gilgenast TG, Beagan JA, Davidson BL, Tassone F, Phillips-Cremins JE. Disease-Associated Short Tandem Repeats Co-localize with Chromatin Domain Boundaries. Cell 2018; 175:224-238.e15. [PMID: 30173918 DOI: 10.1016/j.cell.2018.08.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 01/15/2023]
Abstract
More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.
Collapse
Affiliation(s)
- James H Sun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linda Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Genomics and Computational Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Emerson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sai A Phyo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanfeng Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas G Gilgenast
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Beagan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Flora Tassone
- Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95616, USA; MIND Institute, UC Davis, Sacramento, CA 95616, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
152
|
Dickey AS, Sanchez DN, Arreola M, Sampat KR, Fan W, Arbez N, Akimov S, Van Kanegan MJ, Ohnishi K, Gilmore-Hall SK, Flores AL, Nguyen JM, Lomas N, Hsu CL, Lo DC, Ross CA, Masliah E, Evans RM, La Spada AR. PPARδ activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Sci Transl Med 2018; 9:9/419/eaal2332. [PMID: 29212711 DOI: 10.1126/scitranslmed.aal2332] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/09/2017] [Indexed: 01/02/2023]
Abstract
Neurons must maintain protein and mitochondrial quality control for optimal function, an energetically expensive process. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that promote mitochondrial biogenesis and oxidative metabolism. We recently determined that transcriptional dysregulation of PPARδ contributes to Huntington's disease (HD), a progressive neurodegenerative disorder resulting from a CAG-polyglutamine repeat expansion in the huntingtin gene. We documented that the PPARδ agonist KD3010 is an effective therapy for HD in a mouse model. PPARδ forms a heterodimer with the retinoid X receptor (RXR), and RXR agonists are capable of promoting PPARδ activation. One compound with potent RXR agonist activity is the U.S. Food and Drug Administration-approved drug bexarotene. We tested the therapeutic potential of bexarotene in HD and found that bexarotene was neuroprotective in cellular models of HD, including medium spiny-like neurons generated from induced pluripotent stem cells (iPSCs) derived from patients with HD. To evaluate bexarotene as a treatment for HD, we treated the N171-82Q mouse model with the drug and found that bexarotene improved motor function, reduced neurodegeneration, and increased survival. To determine the basis for PPARδ neuroprotection, we evaluated metabolic function and noted markedly impaired oxidative metabolism in HD neurons, which was rescued by bexarotene or KD3010. We examined mitochondrial and protein quality control in cellular models of HD and observed that treatment with a PPARδ agonist promoted cellular quality control. By boosting cellular activities that are dysfunctional in HD, PPARδ activation may have therapeutic applications in HD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Audrey S Dickey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dafne N Sanchez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Arreola
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kunal R Sampat
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Nicolas Arbez
- Departments of Psychiatry, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sergey Akimov
- Departments of Psychiatry, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael J Van Kanegan
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kohta Ohnishi
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - April L Flores
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janice M Nguyen
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Lomas
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cynthia L Hsu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donald C Lo
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher A Ross
- Departments of Psychiatry, Neurology, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA.,Howard Hughes Medical Institute, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Albert R La Spada
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA. .,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
153
|
Ebbert MTW, Farrugia SL, Sens JP, Jansen-West K, Gendron TF, Prudencio M, McLaughlin IJ, Bowman B, Seetin M, DeJesus-Hernandez M, Jackson J, Brown PH, Dickson DW, van Blitterswijk M, Rademakers R, Petrucelli L, Fryer JD. Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 2018; 13:46. [PMID: 30126445 PMCID: PMC6102925 DOI: 10.1186/s13024-018-0274-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many neurodegenerative diseases are caused by nucleotide repeat expansions, but most expansions, like the C9orf72 'GGGGCC' (G4C2) repeat that causes approximately 5-7% of all amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases, are too long to sequence using short-read sequencing technologies. It is unclear whether long-read sequencing technologies can traverse these long, challenging repeat expansions. Here, we demonstrate that two long-read sequencing technologies, Pacific Biosciences' (PacBio) and Oxford Nanopore Technologies' (ONT), can sequence through disease-causing repeats cloned into plasmids, including the FTD/ALS-causing G4C2 repeat expansion. We also report the first long-read sequencing data characterizing the C9orf72 G4C2 repeat expansion at the nucleotide level in two symptomatic expansion carriers using PacBio whole-genome sequencing and a no-amplification (No-Amp) targeted approach based on CRISPR/Cas9. RESULTS Both the PacBio and ONT platforms successfully sequenced through the repeat expansions in plasmids. Throughput on the MinION was a challenge for whole-genome sequencing; we were unable to attain reads covering the human C9orf72 repeat expansion using 15 flow cells. We obtained 8× coverage across the C9orf72 locus using the PacBio Sequel, accurately reporting the unexpanded allele at eight repeats, and reading through the entire expansion with 1324 repeats (7941 nucleotides). Using the No-Amp targeted approach, we attained > 800× coverage and were able to identify the unexpanded allele, closely estimate expansion size, and assess nucleotide content in a single experiment. We estimate the individual's repeat region was > 99% G4C2 content, though we cannot rule out small interruptions. CONCLUSIONS Our findings indicate that long-read sequencing is well suited to characterizing known repeat expansions, and for discovering new disease-causing, disease-modifying, or risk-modifying repeat expansions that have gone undetected with conventional short-read sequencing. The PacBio No-Amp targeted approach may have future potential in clinical and genetic counseling environments. Larger and deeper long-read sequencing studies in C9orf72 expansion carriers will be important to determine heterogeneity and whether the repeats are interrupted by non-G4C2 content, potentially mitigating or modifying disease course or age of onset, as interruptions are known to do in other repeat-expansion disorders. These results have broad implications across all diseases where the genetic etiology remains unclear.
Collapse
Affiliation(s)
- Mark T. W. Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Jonathon P. Sens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | | | | | | | | | - Jazmyne Jackson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
154
|
A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein. G3-GENES GENOMES GENETICS 2018; 8:2631-2641. [PMID: 29884614 PMCID: PMC6071607 DOI: 10.1534/g3.118.200188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington’s and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA (PtAN1) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization.
Collapse
|
155
|
Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 2018; 66:1972-1987. [PMID: 30043530 DOI: 10.1002/glia.23451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal, dominantly inherited neurodegenerative disease caused by the expansion of CAG repeats in the Ataxin-1 (ATXN1) gene. SCA1 is characterized by balance and coordination deficits due to the predominant loss of Purkinje neurons in the cerebellum. We previously demonstrated that cerebellar astrogliosis beings during the early stages of SCA1, prior to onset of motor deficits and loss of Purkinje neurons. We communicate here that cerebellar astrogliosis contributes to SCA1 pathogenesis in a biphasic, stage of disease dependent manner. We modulated astrogliosis by selectively reducing pro-inflammatory transcriptional regulator nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling in astroglia via a Cre-lox mouse genetic approach. Our results indicate that inhibition of astroglial NF-κB signaling, prior to motor deficit onset, exacerbates disease severity. This is suggestive of a neuroprotective role mediated by astroglia during early stage SCA1. In contrast, inhibition of astroglial NF-κB signaling during late stage of disease ameliorated motor deficits, indicating a potentially harmful role of astroglia late in SCA1. These results indicate that astrogliosis may have a critical and dual role in disease. If so, our results imply that anti-inflammatory astroglia-based therapeutic approaches may need to consider disease progression to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Abigail Lukowicz
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Wenhui Qu
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Andrea Johnson
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota 2101 6th Street SE, Minneapolis, Minnesota
| |
Collapse
|
156
|
Fay MM, Anderson PJ, Ivanov P. ALS/FTD-Associated C9ORF72 Repeat RNA Promotes Phase Transitions In Vitro and in Cells. Cell Rep 2018; 21:3573-3584. [PMID: 29262335 DOI: 10.1016/j.celrep.2017.11.093] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Membraneless RNA granules originate via phase separation events driven by multivalent interactions. As RNA is the defining component of such granules, we examined how RNA contributes to granule assembly. Expansion of hexanucleotide GGGGCC (G4C2) repeats in the first intron of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). We describe a biophysical phenomenon whereby G4C2 RNA (rG4C2) promotes the phase separation of RNA granule proteins in vitro and in cells. The ability of rG4C2 to promote phase separation is dependent on repeat length and RNA structure because rG4C2 must assume a G-quadruplex conformation to promote granule assembly. We demonstrate a central role for RNA in promoting phase separations and implicate rG4C2 G-quadruplex structures in the pathogenesis of C9-ALS/FTD.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
157
|
Ueyama M, Nagai Y. Repeat Expansion Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:63-78. [PMID: 29951815 DOI: 10.1007/978-981-13-0529-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Repeat expansion disorders are a group of inherited neuromuscular diseases, which are caused by expansion mutations of repeat sequences in the disease-causing genes. Repeat expansion disorders include a class of diseases caused by repeat expansions in the coding region of the genes, producing mutant proteins with amino acid repeats, mostly the polyglutamine (polyQ) diseases, and another class of diseases caused by repeat expansions in the noncoding regions, producing aberrant RNA with expanded repeats, which are called noncoding repeat expansion diseases. A variety of Drosophila disease models have been established for both types of diseases, and they have made significant contributions toward elucidating the molecular mechanisms of and developing therapies for these neuromuscular diseases.
Collapse
Affiliation(s)
- Morio Ueyama
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
158
|
(C2G4)n repeat expansion sequences from the C9orf72 gene form an unusual DNA higher-order structure in the pH range of 5-6. PLoS One 2018; 13:e0198418. [PMID: 29912891 PMCID: PMC6005549 DOI: 10.1371/journal.pone.0198418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022] Open
Abstract
Massive expansion of a DNA hexanucleotide sequence repeat (C2G4) within the human C9orf72 gene has been linked to a number of neurodegenerative diseases. In sodium or potassium salt solutions, single-stranded d(C2G4)n DNAs fold to form G-quadruplexes. We have found that in magnesium or lithium salt solutions, especially under slightly acidic conditions, d(C2G4)n oligonucleotides fold to form a distinctive higher order structure whose most striking feature is an “inverted” circular dichroism spectrum, which is distinguishable from the spectrum of the left handed DNA double-helix, Z-DNA. On the basis of CD spectroscopy, gel mobility as well as chemical protection analysis, we propose that this structure, which we call “iCD-DNA”, may be a left-handed Hoogsteen base-paired duplex, an unorthodox G-quadruplex/i-motif composite, or a non-canonical, “braided” DNA triplex. Given that iCD-DNA forms under slightly acidic solution conditions, we do not know at this point in time whether or not it forms within living cells.
Collapse
|
159
|
Fay MM, Anderson PJ. The Role of RNA in Biological Phase Separations. J Mol Biol 2018; 430:4685-4701. [PMID: 29753780 DOI: 10.1016/j.jmb.2018.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
160
|
Hsia GSP, Musso CM, Alvizi L, Brito LA, Kobayashi GS, Pavanello RCM, Zatz M, Gardham A, Wakeling E, Zechi-Ceide RM, Bertola D, Passos-Bueno MR. Complexity of the 5' Untranslated Region of EIF4A3, a Critical Factor for Craniofacial and Neural Development. Front Genet 2018; 9:149. [PMID: 29922329 PMCID: PMC5996909 DOI: 10.3389/fgene.2018.00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Repeats in coding and non-coding regions have increasingly been associated with many human genetic disorders, such as Richieri-Costa-Pereira syndrome (RCPS). RCPS, mostly characterized by midline cleft mandible, Robin sequence and limb defects, is an autosomal-recessive acrofacial dysostosis mainly reported in Brazilian patients. This disorder is caused by decreased levels of EIF4A3, mostly due to an increased number of repeats at the EIF4A3 5′UTR. EIF4A3 5′UTR alleles are CG-rich and vary in size and organization of three types of motifs. An exclusive allelic pattern was identified among affected individuals, in which the CGCA-motif is the most prevalent, herein referred as “disease-associated CGCA-20nt motif.” The origin of the pathogenic alleles containing the disease-associated motif, as well as the functional effects of the 5′UTR motifs on EIF4A3 expression, to date, are entirely unknown. Here, we characterized 43 different EIF4A3 5′UTR alleles in a cohort of 380 unaffected individuals. We identified eight heterozygous unaffected individuals harboring the disease-associated CGCA-20nt motif and our haplotype analyses indicate that there are more than one haplotype associated with RCPS. The combined analysis of number, motif organization and haplotypic diversity, as well as the observation of two apparently distinct haplotypes associated with the disease-associated CGCA-20nt motif, suggest that the RCPS alleles might have arisen from independent unequal crossing-over events between ancient alleles at least twice. Moreover, we have shown that the number and sequence of motifs in the 5′UTR region is associated with EIF4A3 repression, which is not mediated by CpG methylation. In conclusion, this study has shown that the large number of repeats in EIF4A3 does not represent a dynamic mutation and RCPS can arise in any population harboring alleles with the CGCA-20nt motif. We also provided further evidence that EIF4A3 5′UTR is a regulatory region and the size and sequence type of the repeats at 5′UTR may contribute to clinical variability in RCPS.
Collapse
Affiliation(s)
- Gabriella S P Hsia
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Camila M Musso
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Alvizi
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano A Brito
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Gerson S Kobayashi
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Rita C M Pavanello
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Alice Gardham
- North East Thames Genetics Service, Great Ormond Street Hospital, London, United Kingdom
| | - Emma Wakeling
- North East Thames Genetics Service, Great Ormond Street Hospital, London, United Kingdom
| | - Roseli M Zechi-Ceide
- Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo, São Paulo, Brazil
| | - Debora Bertola
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto da Criança, Hospital das Clínicas da FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
161
|
Thadke SA, Perera JDR, Hridya VM, Bhatt K, Shaikh AY, Hsieh WC, Chen M, Gayathri C, Gil RR, Rule GS, Mukherjee A, Thornton CA, Ly DH. Design of Bivalent Nucleic Acid Ligands for Recognition of RNA-Repeated Expansion Associated with Huntington's Disease. Biochemistry 2018; 57:2094-2108. [PMID: 29562132 PMCID: PMC6091552 DOI: 10.1021/acs.biochem.8b00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template. In the absence of an RNA target, they self-deactivate by undergoing an intramolecular reaction to form cyclic products, rendering them inactive for further binding. The work has implications for the design of ultrashort nucleic acid ligands for targeting rCAG-repeat expansion associated with Huntington's disease and a number of other related neuromuscular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shivaji A. Thadke
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - J. Dinithi R. Perera
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - V. M. Hridya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Kirti Bhatt
- Department of Neurology, Box 645, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Ashif Y. Shaikh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-Che Hsieh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mengshen Chen
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chakicherla Gayathri
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Roberto R. Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S. Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India
| | - Charles A. Thornton
- Department of Neurology, Box 645, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Danith H. Ly
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Institute for Biomolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
162
|
Ochaba J, Morozko EL, O'Rourke JG, Thompson LM. Fractionation for Resolution of Soluble and Insoluble Huntingtin Species. J Vis Exp 2018. [PMID: 29553509 DOI: 10.3791/57082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The accumulation of misfolded proteins is central to pathology in Huntington's disease (HD) and many other neurodegenerative disorders. Specifically, a key pathological feature of HD is the aberrant accumulation of mutant HTT (mHTT) protein into high molecular weight complexes and intracellular inclusion bodies composed of fragments and other proteins. Conventional methods to measure and understand the contributions of various forms of mHTT-containing aggregates include fluorescence microscopy, western blot analysis, and filter trap assays. However, most of these methods are conformation specific, and therefore may not resolve the full state of mHTT protein flux due to the complex nature of aggregate solubility and resolution. For the identification of aggregated mHTT and various modified forms and complexes, separation and solubilization of the cellular aggregates and fragments is mandatory. Here we describe a method to isolate and visualize soluble mHTT, monomers, oligomers, fragments, and an insoluble high molecular weight (HMW) accumulated mHTT species. HMW mHTT tracks with disease progression, corresponds with mouse behavior readouts, and has been beneficially modulated by certain therapeutic interventions1. This approach can be used with mouse brain, peripheral tissues, and cell culture but may be adapted to other model systems or disease contexts.
Collapse
Affiliation(s)
- Joseph Ochaba
- Department of Psychiatry and Human Behavior, University of California Irvine; UCI MIND, University of California Irvine
| | - Eva L Morozko
- UCI MIND, University of California Irvine; Department of Neurobiology and Behavior, University of California Irvine
| | | | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California Irvine; UCI MIND, University of California Irvine; Department of Neurobiology and Behavior, University of California Irvine;
| |
Collapse
|
163
|
Abstract
Accumulating evidence suggests that many classes of DNA repeats exhibit attributes that distinguish them from other genetic variants, including the fact that they are more liable to mutation; this enables them to mediate genetic plasticity. The expansion of tandem repeats, particularly of short tandem repeats, can cause a range of disorders (including Huntington disease, various ataxias, motor neuron disease, frontotemporal dementia, fragile X syndrome and other neurological disorders), and emerging data suggest that tandem repeat polymorphisms (TRPs) can also regulate gene expression in healthy individuals. TRPs in human genomes may also contribute to the missing heritability of polygenic disorders. A better understanding of tandem repeats and their associated repeatome, as well as their capacity for genetic plasticity via both germline and somatic mutations, is needed to transform our understanding of the role of TRPs in health and disease.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
164
|
Hsieh WC, Bahal R, Thadke SA, Bhatt K, Sobczak K, Thornton C, Ly DH. Design of a "Mini" Nucleic Acid Probe for Cooperative Binding of an RNA-Repeated Transcript Associated with Myotonic Dystrophy Type 1. Biochemistry 2018; 57:907-911. [PMID: 29334465 DOI: 10.1021/acs.biochem.7b01239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Toxic RNAs containing expanded trinucleotide repeats are the cause of many neuromuscular disorders, one being myotonic dystrophy type 1 (DM1). DM1 is triggered by CTG-repeat expansion in the 3'-untranslated region of the DMPK gene, resulting in a toxic gain of RNA function through sequestration of MBNL1 protein, among others. Herein, we report the development of a relatively short miniPEG-γ peptide nucleic acid probe, two triplet repeats in length, containing terminal pyrene moieties, that is capable of binding rCUG repeats in a sequence-specific and selective manner. The newly designed probe can discriminate the pathogenic rCUGexp from the wild-type transcript and disrupt the rCUGexp-MBNL1 complex. The work provides a proof of concept for the development of relatively short nucleic acid probes for targeting RNA-repeat expansions associated with DM1 and other related neuromuscular disorders.
Collapse
Affiliation(s)
- Wei-Che Hsieh
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Raman Bahal
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Shivaji A Thadke
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Kirti Bhatt
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Krzysztof Sobczak
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Charles Thornton
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Danith H Ly
- Department of Chemistry, ‡Institute for Biomolecular Design and Discovery (IBD), and §CNAST, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, Box 645, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| |
Collapse
|
165
|
Teng Y, Pramanik S, Tateishi-Karimata H, Ohyama T, Sugimoto N. Drastic stability change of X-X mismatch in d(CXG) trinucleotide repeat disorders under molecular crowding condition. Biochem Biophys Res Commun 2018; 496:601-607. [PMID: 29339157 DOI: 10.1016/j.bbrc.2018.01.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
The trinucleotide repeat d(CXG) (X = A, C, G or T) is the most common sequence causing repeat expansion disorders. The formation of non-canonical structures, such as hairpin structures with X-X mismatches, has been proposed to affect gene expression and regulation, which are important in pathological studies of these devastating neurological diseases. However, little information is available regarding the thermodynamics of the repeat sequence under crowded cellular conditions where many non-canonical structures such as G-quadruplexes are highly stabilized, while duplexes are destabilised. In this study, we investigated the different stabilities of X-X mismatches in the context of internal d(CXG) self-complementary sequences in an environment with a high concentration of cosolutes to mimic the crowding conditions in cells. The stabilities of full-matched duplexes and duplexes with A-A, G-G, and T-T mismatched base pairs under molecular crowding conditions were notably decreased compared to under dilute conditions. However, the stability of the DNA duplex with a C-C mismatch base pair was only slightly destabilised. Investigating different stabilities of X-X mismatches in d(CXG) sequences is important for improving our understanding of the formation and transition of multiple non-canonical structures in trinucleotide repeat diseases, and may provide insights for pathological studies and drug development.
Collapse
Affiliation(s)
- Ye Teng
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan; Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan; Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
166
|
Cheng W, Wang S, Mestre AA, Fu C, Makarem A, Xian F, Hayes LR, Lopez-Gonzalez R, Drenner K, Jiang J, Cleveland DW, Sun S. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat Commun 2018; 9:51. [PMID: 29302060 PMCID: PMC5754368 DOI: 10.1038/s41467-017-02495-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/01/2017] [Indexed: 01/04/2023] Open
Abstract
Hexanucleotide repeat expansion in C9ORF72 is the most frequent cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we demonstrate that the repeat-associated non-AUG (RAN) translation of (GGGGCC) n -containing RNAs into poly-dipeptides can initiate in vivo without a 5'-cap. The primary RNA substrate for RAN translation of C9ORF72 sense repeats is shown to be the spliced first intron, following its excision from the initial pre-mRNA and transport to the cytoplasm. Cap-independent RAN translation is shown to be upregulated by various stress stimuli through phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2α), the core event of an integrated stress response (ISR). Compounds inhibiting phospho-eIF2α-signaling pathways are shown to suppress RAN translation. Since the poly-dipeptides can themselves induce stress, these findings support a feedforward loop with initial repeat-mediated toxicity enhancing RAN translation and subsequent production of additional poly-dipeptides through ISR, thereby promoting progressive disease.
Collapse
Affiliation(s)
- Weiwei Cheng
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shaopeng Wang
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander A Mestre
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chenglai Fu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andres Makarem
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fengfan Xian
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rodrigo Lopez-Gonzalez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kevin Drenner
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jie Jiang
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Shuying Sun
- Department of Pathology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
167
|
Abstract
Topoisomerase I (Top1) resolves torsional stress that accumulates during transcription, replication and chromatin remodeling by introducing a transient single-strand break in DNA. The cleavage activity of Top1 has opposing roles, either promoting or destabilizing genome integrity depending on the context. Resolution of transcription-associated negative supercoils, for example, prevents pairing of the nascent RNA with the DNA template (R-loops) as well as DNA secondary structure formation. Reduced Top1 levels thus enhance CAG repeat contraction, somatic hypermutation, and class switch recombination. Actively transcribed ribosomal DNA is also destabilized in the absence of Top1, reflecting the importance of Top1 in ensuring efficient transcription. In terms of promoting genome instability, an aborted Top1 catalytic cycle stimulates deletions at short tandem repeats and the enzyme's transesterification activity supports illegitimate recombination. Finally, Top1 incision at ribonucleotides embedded in DNA generates deletions in tandem repeats, and induces gross chromosomal rearrangements and mitotic recombination.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA.
| |
Collapse
|
168
|
Abstract
Epigenetics is a growing field of knowledge that is changing our understanding of pathologic processes. For many cerebellar disorders, recent discoveries of epigenetic mechanisms help us to understand their pathophysiology. In this chapter, a short explanation of each epigenetic mechanism (including methylation, histone modification, and miRNA) is followed by references to those cerebellar disorders in which relevant epigenetic advances have been made. The importance of normal timing and distribution of methylation during neurodevelopment is explained. Abnormal methylation and altered gene expression in the developing cerebellum have been related to neurodevelopmental disorders such as autism, Rett syndrome, and fragile X syndrome. DNA packaging by histones is another important epigenetic mechanism in cerebellar functioning. Current knowledge of histone abnormalities in cerebellar diseases such as Friedreich ataxia and spinocerebellar ataxias is reviewed, including implications for new therapeutic approaches to these degenerative diseases. Finally, micro RNAs, the third mechanism to modulate DNA expression, and their role in normal cerebellar development and disease are described. Understanding how genetic and epigenetic mechanisms interact not only in normal cerebellar development but also in disease is a great challenge. However, such understanding will lead to promising new therapeutic possibilities as is already occurring in other areas of medicine.
Collapse
Affiliation(s)
- Mercedes Serrano
- Pediatric Neurology Department and Pediatric Institute for Genetic Medicine and Rare Diseases, Hospital Sant Joan de Déu; and Centre for Biomedical Research on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
169
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
170
|
X-Linked Spinal and Bulbar Muscular Atrophy: From Clinical Genetic Features and Molecular Pathology to Mechanisms Underlying Disease Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:103-133. [PMID: 29427100 DOI: 10.1007/978-3-319-71779-1_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal and Bulbar Muscular Atrophy (SBMA) is an inherited neuromuscular disorder caused by a CAG-polyglutamine (polyQ) repeat expansion in the androgen receptor (AR) gene. Unlike other polyQ diseases, where the function of the native causative protein is unknown, the biology of AR is well understood, and this knowledge has informed our understanding of how native AR function interfaces with polyQ-AR dysfunction. Furthermore, ligand-dependent activation of AR has been linked to SBMA disease pathogenesis, and has led to a thorough study of androgen-mediated effects on polyQ-AR stability, degradation, and post-translational modifications, as well as their roles in the disease process. Transcriptional dysregulation, proteostasis dysfunction, and mitochondrial abnormalities are central to polyQ-AR neurotoxicity, most likely via a 'change-of-function' mechanism. Intriguingly, recent work has demonstrated a principal role for skeletal muscle in SBMA disease pathogenesis, indicating that polyQ-AR toxicity initiates in skeletal muscle and results in secondary motor neuron demise. The existence of robust animal models for SBMA has permitted a variety of preclinical trials, driven by recent discoveries of altered cellular processes, and some of this preclinical work has led to human clinical trials. In this chapter, we review SBMA clinical features and disease biology, discuss our current understanding of the cellular and molecular basis of SBMA pathogenesis, and highlight ongoing efforts toward therapy development.
Collapse
|
171
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
172
|
Kumar V, Hasan GM, Hassan MI. Unraveling the Role of RNA Mediated Toxicity of C9orf72 Repeats in C9-FTD/ALS. Front Neurosci 2017; 11:711. [PMID: 29326544 PMCID: PMC5736982 DOI: 10.3389/fnins.2017.00711] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
The most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is intronic hexanucleotide (G4C2) repeat expansions (HRE) in the C9orf72 gene. The non-exclusive pathogenic mechanisms by which C9orf72 repeat expansions contribute to these neurological disorders include loss of C9orf72 function and gain-of-function determined by toxic RNA molecules and dipeptides repeats protein toxicity. The expanded repeats are transcribed bidirectionally and forms RNA foci in the central nervous system, and sequester key RNA-binding proteins (RBPs) leading to impairment in RNA processing events. Many studies report widespread transcriptome changes in ALS carrying a C9orf72 repeat expansion. Here we review the contribution of RNA foci interaction with RBPs as well as transcriptome changes involved in the pathogenesis of C9orf72- associated FTD/ALS. These informations are essential to elucidate the pathology and therapeutic intervention of ALS and/or FTD.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Gulam M Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
173
|
Dickey AS, La Spada AR. Therapy development in Huntington disease: From current strategies to emerging opportunities. Am J Med Genet A 2017; 176:842-861. [PMID: 29218782 DOI: 10.1002/ajmg.a.38494] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder in which patients typically present with uncontrolled involuntary movements and subsequent cognitive decline. In 1993, a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene was identified as the cause of this disorder. This extended CAG repeat results in production of HTT protein with an expanded polyglutamine tract, leading to pathogenic HTT protein conformers that are resistant to protein turnover, culminating in cellular toxicity and neurodegeneration. Research into the mechanistic basis of HD has highlighted a role for bioenergetics abnormalities stemming from mitochondrial dysfunction, and for synaptic defects, including impaired neurotransmission and excitotoxicity. Interference with transcription regulation may underlie the mitochondrial dysfunction. Current therapies for HD are directed at treating symptoms, as there are no disease-modifying therapies. Commonly prescribed drugs for involuntary movement control include tetrabenazine, a potent and selective inhibitor of vesicular monoamine transporter 2 that depletes synaptic monoamines, and olanzapine, an atypical neuroleptic that blocks the dopamine D2 receptor. Various drugs are used to treat non-motor features. The HD therapeutic pipeline is robust, as numerous efforts are underway to identify disease-modifying treatments, with some small compounds and biological agents moving into clinical trials. Especially encouraging are dosage reduction strategies, including antisense oligonucleotides, and molecules directed at transcription dysregulation. Given the depth and breadth of current HD drug development efforts, there is reason to believe that disease-modifying therapies for HD will emerge, and this achievement will have profound implications for the entire neurotherapeutics field.
Collapse
Affiliation(s)
- Audrey S Dickey
- Departments of Neurology, Neurobiology, and Cell Biology, Duke Center for Neurodegeneration & Neurotherapeutics, Duke University Medical Center, Durham, North Carolina
| | - Albert R La Spada
- Departments of Neurology, Neurobiology, and Cell Biology, Duke Center for Neurodegeneration & Neurotherapeutics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
174
|
Miyazaki Y, Du X, Muramatsu SI, Gomez CM. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med 2017; 8:347ra94. [PMID: 27412786 DOI: 10.1126/scitranslmed.aaf5660] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a dominantly inherited neurodegenerative disease characterized by slowly progressive ataxia and Purkinje cell degeneration. SCA6 is caused by a polyglutamine repeat expansion within a second CACNA1A gene product, α1ACT. α1ACT expression is under the control of an internal ribosomal entry site (IRES) present within the CACNA1A coding region. Whereas SCA6 allele knock-in mice show indistinguishable phenotypes from wild-type littermates, expression of SCA6-associated α1ACT (α1ACTSCA6) driven by a Purkinje cell-specific promoter in mice produces slowly progressive ataxia and cerebellar atrophy. We developed an early-onset SCA6 mouse model using an adeno-associated virus (AAV)-based gene delivery system to ectopically express CACNA1A IRES-driven α1ACTSCA6 to test the potential of CACNA1A IRES-targeting therapies. Mice expressing AAV9-mediated CACNA1A IRES-driven α1ACTSCA6 exhibited early-onset ataxia, motor deficits, and Purkinje cell degeneration. We identified miR-3191-5p as a microRNA (miRNA) that targeted CACNA1A IRES and preferentially inhibited the CACNA1A IRES-driven translation of α1ACT in an Argonaute 4 (Ago4)-dependent manner. We found that eukaryotic initiation factors (eIFs), eIF4AII and eIF4GII, interacted with the CACNA1A IRES to enhance α1ACT translation. Ago4-bound miR-3191-5p blocked the interaction of eIF4AII and eIF4GII with the CACNA1A IRES, attenuating IRES-driven α1ACT translation. Furthermore, AAV9-mediated delivery of miR-3191-5p protected mice from the ataxia, motor deficits, and Purkinje cell degeneration caused by CACNA1A IRES-driven α1ACTSCA6 We have established proof of principle that viral delivery of an miRNA can rescue a disease phenotype through modulation of cellular IRES activity in a mouse model.
Collapse
Affiliation(s)
- Yu Miyazaki
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi 3290498, Japan. Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 1088639, Japan
| | | |
Collapse
|
175
|
Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:molecules22122027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
|
176
|
Abstract
Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
Collapse
Affiliation(s)
- Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
177
|
Abstract
In this issue of Neuron, Ishiguro et al. (2017) explore the toxicity of RAN translation in spinocerebellar ataxia 31. Using a Drosophila model, the authors demonstrate that TDP-43 and other RNA-binding proteins act as chaperones to regulate the formation of toxic RNA aggregates.
Collapse
Affiliation(s)
- George R Jackson
- Department of Neurology, Baylor College of Medicine, Houston, TX 77006, USA.
| |
Collapse
|
178
|
Peripheral markers of autophagy in polyglutamine diseases. Neurol Sci 2017; 39:149-152. [DOI: 10.1007/s10072-017-3156-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
179
|
Gymrek M, Willems T, Reich D, Erlich Y. Interpreting short tandem repeat variations in humans using mutational constraint. Nat Genet 2017; 49:1495-1501. [PMID: 28892063 PMCID: PMC5679271 DOI: 10.1038/ng.3952] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Identifying regions of the genome that are depleted of mutations can distinguish potentially deleterious variants. Short tandem repeats (STRs), also known as microsatellites, are among the largest contributors of de novo mutations in humans. However, per-locus studies of STR mutations have been limited to highly ascertained panels of several dozen loci. Here we harnessed bioinformatics tools and a novel analytical framework to estimate mutation parameters for each STR in the human genome by correlating STR genotypes with local sequence heterozygosity. We applied our method to obtain robust estimates of the impact of local sequence features on mutation parameters and used these estimates to create a framework for measuring constraint at STRs by comparing observed versus expected mutation rates. Constraint scores identified known pathogenic variants with early-onset effects. Our metric will provide a valuable tool for prioritizing pathogenic STRs in medical genetics studies.
Collapse
Affiliation(s)
- Melissa Gymrek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York Genome Center, New York, NY, USA
- Department of Medicine, University of California San Diego, La Jolla, CA USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA USA
| | - Thomas Willems
- New York Genome Center, New York, NY, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA USA
| | - Yaniv Erlich
- New York Genome Center, New York, NY, USA
- Department of Computer Science, Fu Foundation School of Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
180
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
181
|
Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat Struct Mol Biol 2017; 24:765-777. [PMID: 28805808 DOI: 10.1038/nsmb.3441] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.
Collapse
|
182
|
Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H, Chaim IA, Thomas JD, Zhang N, Nguyen V, Aigner S, Markmiller S, Xia G, Corbett KD, Swanson MS, Yeo GW. Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9. Cell 2017; 170:899-912.e10. [PMID: 28803727 DOI: 10.1016/j.cell.2017.07.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.
Collapse
Affiliation(s)
- Ranjan Batra
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - David A Nelles
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elaine Pirie
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ryan J Marina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Harrison Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Isaac A Chaim
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Nigel Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Vu Nguyen
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Guangbin Xia
- Department of Neurology, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA; Department of Chemistry, University of California, San Diego, La Jolla, CA, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA; Stem Cell Program, University of California at San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA; Molecular Engineering Laboratory, A(∗)STAR, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
183
|
Lefebvre FA, Cody NA, Bouvrette LPB, Bergalet J, Wang X, Lécuyer E. CeFra-seq: Systematic mapping of RNA subcellular distribution properties through cell fractionation coupled to deep-sequencing. Methods 2017; 126:138-148. [DOI: 10.1016/j.ymeth.2017.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/18/2022] Open
|
184
|
Lall D, Baloh RH. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 2017; 127:3250-3258. [PMID: 28737506 DOI: 10.1172/jci90607] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that is characterized by loss of motor neurons and shows clinical, pathological, and genetic overlap with frontotemporal dementia (FTD). Activated microglia are a universal feature of ALS/FTD pathology; however, their role in disease pathogenesis remains incompletely understood. The recent discovery that ORF 72 on chromosome 9 (C9orf72), the gene most commonly mutated in ALS/FTD, has an important role in myeloid cells opened the possibility that altered microglial function plays an active role in disease. This Review highlights the contribution of microglia to ALS/FTD pathogenesis, discusses the connection between autoimmunity and ALS/FTD, and explores the possibility that C9orf72 and other ALS/FTD genes may have a "dual effect" on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration.
Collapse
Affiliation(s)
- Deepti Lall
- Board of Governors Regenerative Medicine Institute and
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute and.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
185
|
Liu Q, Zhang P, Wang D, Gu W, Wang K. Interrogating the "unsequenceable" genomic trinucleotide repeat disorders by long-read sequencing. Genome Med 2017; 9:65. [PMID: 28720120 PMCID: PMC5514472 DOI: 10.1186/s13073-017-0456-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/30/2017] [Indexed: 12/26/2022] Open
Abstract
Microsatellite expansion, such as trinucleotide repeat expansion (TRE), is known to cause a number of genetic diseases. Sanger sequencing and next-generation short-read sequencing are unable to interrogate TRE reliably. We developed a novel algorithm called RepeatHMM to estimate repeat counts from long-read sequencing data. Evaluation on simulation data, real amplicon sequencing data on two repeat expansion disorders, and whole-genome sequencing data generated by PacBio and Oxford Nanopore technologies showed superior performance over competing approaches. We concluded that long-read sequencing coupled with RepeatHMM can estimate repeat counts on microsatellites and can interrogate the “unsequenceable” genomic trinucleotide repeat disorders.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Peng Zhang
- Nextomics Biosciences, Wuhan, Hubei, 430000, China
| | - Depeng Wang
- Nextomics Biosciences, Wuhan, Hubei, 430000, China
| | - Weihong Gu
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kai Wang
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA. .,Department of Biomedical Informatics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
186
|
Krishnan J, Athar F, Rani TS, Mishra RK. Simple sequence repeats showing 'length preference' have regulatory functions in humans. Gene 2017; 628:156-161. [PMID: 28712775 DOI: 10.1016/j.gene.2017.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/18/2017] [Accepted: 07/10/2017] [Indexed: 11/15/2022]
Abstract
Simple sequence repeats (SSRs), simple tandem repeats (STRs) or microsatellites are short tandem repeats of 1-6 nucleotide motifs. They are twice as abundant as the protein coding DNA in the human genome and yet little is known about their functional relevance. Analysis of genomes across various taxa show that despite the instability associated with longer stretches of repeats, few SSRs with specific longer repeat lengths are enriched in the genomes indicating a positive selection. This conserved feature of length dependent enrichment hints at not only sequence but also length dependent functionality for SSRs. In the present study, we selected 23 SSRs of the human genome that show specific repeat length dependent enrichment and analysed their cis-regulatory potential using promoter modulation, boundary and barrier assays. We find that the 23 SSR sequences, which are mostly intergenic and intronic, possess distinct cis-regulatory potential. They modulate minimal promoter activity in transient luciferase assays and are capable of functioning as enhancer-blockers and barrier elements. The results of our functional assays propose cis-gene regulatory roles for these specific length enriched SSRs and opens avenues for further investigations.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, MO, United States; International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Fathima Athar
- Stowers Institute for Medical Research, MO, United States; International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Tirupaati Swaroopa Rani
- Stowers Institute for Medical Research, MO, United States; International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Rakesh Kumar Mishra
- Stowers Institute for Medical Research, MO, United States; International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
187
|
Abstract
In this review, we discuss how two evolutionarily conserved pathways at the interface of DNA replication and repair, template switching and break-induced replication, lead to the deleterious large-scale expansion of trinucleotide DNA repeats that cause numerous hereditary diseases. We highlight that these pathways, which originated in prokaryotes, may be subsequently hijacked to maintain long DNA microsatellites in eukaryotes. We suggest that the negative mutagenic outcomes of these pathways, exemplified by repeat expansion diseases, are likely outweighed by their positive role in maintaining functional repetitive regions of the genome such as telomeres and centromeres.
Collapse
Affiliation(s)
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, USA
| | | |
Collapse
|
188
|
Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, Loureiro JL, Dhingra A, Brandão E, Cruz VT, Timóteo A, Quintáns B, Rouleau GA, Rizzu P, Carracedo Á, Bessa J, Heutink P, Sequeiros J, Sobrido MJ, Coutinho P, Silveira I. A Pentanucleotide ATTTC Repeat Insertion in the Non-coding Region of DAB1, Mapping to SCA37, Causes Spinocerebellar Ataxia. Am J Hum Genet 2017; 101:87-103. [PMID: 28686858 DOI: 10.1016/j.ajhg.2017.06.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
Advances in human genetics in recent years have largely been driven by next-generation sequencing (NGS); however, the discovery of disease-related gene mutations has been biased toward the exome because the large and very repetitive regions that characterize the non-coding genome remain difficult to reach by that technology. For autosomal-dominant spinocerebellar ataxias (SCAs), 28 genes have been identified, but only five SCAs originate from non-coding mutations. Over half of SCA-affected families, however, remain without a genetic diagnosis. We used genome-wide linkage analysis, NGS, and repeat analysis to identify an (ATTTC)n insertion in a polymorphic ATTTT repeat in DAB1 in chromosomal region 1p32.2 as the cause of autosomal-dominant SCA; this region has been previously linked to SCA37. The non-pathogenic and pathogenic alleles have the configurations [(ATTTT)7-400] and [(ATTTT)60-79(ATTTC)31-75(ATTTT)58-90], respectively. (ATTTC)n insertions are present on a distinct haplotype and show an inverse correlation between size and age of onset. In the DAB1-oriented strand, (ATTTC)n is located in 5' UTR introns of cerebellar-specific transcripts arising mostly during human fetal brain development from the usage of alternative promoters, but it is maintained in the adult cerebellum. Overexpression of the transfected (ATTTC)58 insertion, but not (ATTTT)n, leads to abnormal nuclear RNA accumulation. Zebrafish embryos injected with RNA of the (AUUUC)58 insertion, but not (AUUUU)n, showed lethal developmental malformations. Together, these results establish an unstable repeat insertion in DAB1 as a cause of cerebellar degeneration; on the basis of the genetic and phenotypic evidence, we propose this mutation as the molecular basis for SCA37.
Collapse
|
189
|
Dumbovic G, Forcales SV, Perucho M. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics 2017; 12:515-526. [PMID: 28426282 PMCID: PMC5687341 DOI: 10.1080/15592294.2017.1318235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.
Collapse
Affiliation(s)
- Gabrijela Dumbovic
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Sonia-V. Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), La Jolla, CA, USA
| |
Collapse
|
190
|
Abstract
Saha and Hyman discuss recent work published by Jain and Vale in Nature documenting RNA phase transitions in repeat expansion disorders. Several neurological disorders are linked to tandem nucleotide repeat expansion in the mutated gene. Jain and Vale (2017. Nature.https://doi.org/10.1038/nature22386) show that, above a pathological threshold repeat number, base pairing interactions drive phase separation of RNA into membrane-less gels, suggesting that RNA can scaffold the assembly of phase-separated compartments that sequester proteins/RNAs causing toxicity.
Collapse
Affiliation(s)
- Shambaditya Saha
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
191
|
Yenigun VB, Sirito M, Amcheslavky A, Czernuszewicz T, Colonques-Bellmunt J, García-Alcover I, Wojciechowska M, Bolduc C, Chen Z, López Castel A, Krahe R, Bergmann A. (CCUG) n RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis. Dis Model Mech 2017. [PMID: 28623239 PMCID: PMC5560059 DOI: 10.1242/dmm.026179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The myotonic dystrophies are prototypic toxic RNA gain-of-function diseases. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by different unstable, noncoding microsatellite repeat expansions – (CTG)DM1 in DMPK and (CCTG)DM2 in CNBP. Although transcription of mutant repeats into (CUG)DM1 or (CCUG)DM2 appears to be necessary and sufficient to cause disease, their pathomechanisms remain incompletely understood. To study the mechanisms of (CCUG)DM2 toxicity and develop a convenient model for drug screening, we generated a transgenic DM2 model in the fruit fly Drosophila melanogaster with (CCUG)n repeats of variable length (n=16 and 106). Expression of noncoding (CCUG)106, but not (CCUG)16, in muscle and retinal cells led to the formation of ribonuclear foci and mis-splicing of genes implicated in DM pathology. Mis-splicing could be rescued by co-expression of human MBNL1, but not by CUGBP1 (CELF1) complementation. Flies with (CCUG)106 displayed strong disruption of external eye morphology and of the underlying retina. Furthermore, expression of (CCUG)106 in developing retinae caused a strong apoptotic response. Inhibition of apoptosis rescued the retinal disruption in (CCUG)106 flies. Finally, we tested two chemical compounds that have shown therapeutic potential in DM1 models. Whereas treatment of (CCUG)106 flies with pentamidine had no effect, treatment with a PKR inhibitor blocked both the formation of RNA foci and apoptosis in retinae of (CCUG)106 flies. Our data indicate that expression of expanded (CCUG)DM2 repeats is toxic, causing inappropriate cell death in affected fly eyes. Our Drosophila DM2 model might provide a convenient tool for in vivo drug screening. Summary: A Drosophila model of myotonic dystrophy type 2 (DM2) recapitulates several features of the human disease, identifies apoptosis as a contributing factor to DM2, and is likely to provide a convenient tool for drug screening.
Collapse
Affiliation(s)
- Vildan Betul Yenigun
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA
| | - Mario Sirito
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alla Amcheslavky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tomek Czernuszewicz
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Marzena Wojciechowska
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clare Bolduc
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihong Chen
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ralf Krahe
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Graduate Programs in Human & Molecular Genetics, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, Texas, USA
| | - Andreas Bergmann
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
192
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
193
|
RNA phase transitions in repeat expansion disorders. Nature 2017; 546:243-247. [PMID: 28562589 PMCID: PMC5555642 DOI: 10.1038/nature22386] [Citation(s) in RCA: 605] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Expansions of short nucleotide repeats produce several neurological and neuromuscular disorders including Huntington’s disease, muscular dystrophy and amyotrophic lateral sclerosis. A common pathological feature of these diseases is the accumulation of the repeat containing transcripts into aberrant foci in the nucleus. RNA foci, as well as the disease symptoms, only manifest above a critical number of nucleotide repeats, but the molecular mechanism governing foci formation above this characteristic threshold remains unresolved. Here, we show that repeat expansions create templates for multivalent base-pairing, which causes purified RNA to undergo a sol-gel transition at a similar critical repeat number as observed in the diseases. In cells, RNA foci form by phase separation of the repeat-containing RNA and can be dissolved by agents that disrupt RNA gelation in vitro. Analogous to protein aggregation disorders, our results suggest that the sequence-specific gelation of RNAs could be a contributing factor to neurological disease.
Collapse
|
194
|
Guo P, Chan HYE, Lam SL. Conformational flexibility in the RNA stem-loop structures formed by CAG repeats. FEBS Lett 2017; 591:1752-1760. [PMID: 28488797 DOI: 10.1002/1873-3468.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 11/11/2022]
Abstract
The expansion of CAG repeats has been found to be associated with at least nine human genetic disorders. In these disorders, the full-length expanded CAG RNA transcripts are cleaved into small CAG-repeated RNAs which are cytotoxic and known to be capable of forming hairpins. To better understand the RNA pathogenic mechanism, in this study we have performed high-resolution nuclear magnetic resonance structural investigations on the RNA hairpins formed by CAG repeats. Our results show the formation of a type III AGCA tetraloop and reveal the effect of stem rigidity on the loop conformational flexibility.
Collapse
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
195
|
Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K, Ochaba J, Geater C, Morozko E, Stocksdale J, Glatzer JC, Pham JT, Ahmed I, Peng Q, Wadhwa H, Pletnikova O, Troncoso JC, Duan W, Snyder SH, Ranum LPW, Thompson LM, Lloyd TE, Ross CA, Rothstein JD. Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron 2017; 94:93-107.e6. [PMID: 28384479 PMCID: PMC5595097 DOI: 10.1016/j.neuron.2017.03.023] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is caused by an expanded CAG repeat in the Huntingtin (HTT) gene. The mechanism(s) by which mutant HTT (mHTT) causes disease is unclear. Nucleocytoplasmic transport, the trafficking of macromolecules between the nucleus and cytoplasm, is tightly regulated by nuclear pore complexes (NPCs) made up of nucleoporins (NUPs). Previous studies offered clues that mHTT may disrupt nucleocytoplasmic transport and a mutation of an NUP can cause HD-like pathology. Therefore, we evaluated the NPC and nucleocytoplasmic transport in multiple models of HD, including mouse and fly models, neurons transfected with mHTT, HD iPSC-derived neurons, and human HD brain regions. These studies revealed severe mislocalization and aggregation of NUPs and defective nucleocytoplasmic transport. HD repeat-associated non-ATG (RAN) translation proteins also disrupted nucleocytoplasmic transport. Additionally, overexpression of NUPs and treatment with drugs that prevent aberrant NUP biology also mitigated this transport defect and neurotoxicity, providing future novel therapy targets.
Collapse
Affiliation(s)
- Jonathan C Grima
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - J Gavin Daigle
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Arbez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathleen C Cunningham
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ke Zhang
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Charlene Geater
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Eva Morozko
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennifer Stocksdale
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenna C Glatzer
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jacqueline T Pham
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ishrat Ahmed
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qi Peng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harsh Wadhwa
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenzhen Duan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H Snyder
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, Departments of Molecular Genetics and Microbiology and Neurology, College of Medicine, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas E Lloyd
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher A Ross
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Rothstein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
196
|
Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, Tokuda E, Zamiri B, Gall-Duncan T, Mirceta M, Furukawa Y, Yokota T, Wada K, Taylor JP, Pearson CE, Charlet-Berguerand N, Mizusawa H, Nagai Y, Ishikawa K. Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31. Neuron 2017; 94:108-124.e7. [PMID: 28343865 PMCID: PMC5681996 DOI: 10.1016/j.neuron.2017.02.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/04/2016] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
Microsatellite expansion disorders are pathologically characterized by RNA foci formation and repeat-associated non-AUG (RAN) translation. However, their underlying pathomechanisms and regulation of RAN translation remain unknown. We report that expression of expanded UGGAA (UGGAAexp) repeats, responsible for spinocerebellar ataxia type 31 (SCA31) in Drosophila, causes neurodegeneration accompanied by accumulation of UGGAAexp RNA foci and translation of repeat-associated pentapeptide repeat (PPR) proteins, consistent with observations in SCA31 patient brains. We revealed that motor-neuron disease (MND)-linked RNA-binding proteins (RBPs), TDP-43, FUS, and hnRNPA2B1, bind to and induce structural alteration of UGGAAexp. These RBPs suppress UGGAAexp-mediated toxicity in Drosophila by functioning as RNA chaperones for proper UGGAAexp folding and regulation of PPR translation. Furthermore, nontoxic short UGGAA repeat RNA suppressed mutated RBP aggregation and toxicity in MND Drosophila models. Thus, functional crosstalk of the RNA/RBP network regulates their own quality and balance, suggesting convergence of pathomechanisms in microsatellite expansion disorders and RBP proteinopathies.
Collapse
Affiliation(s)
- Taro Ishiguro
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Nozomu Sato
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Morio Ueyama
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuhiro Fujikake
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Chantal Sellier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, University of Strasbourg, Illkirch 67400, France
| | - Akemi Kanegami
- Research Institute of Biomolecule Metrology, 807-133 Enokido, Tsukuba, Ibaraki 305-0853, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Bita Zamiri
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Terence Gall-Duncan
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Mila Mirceta
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - J Paul Taylor
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher E Pearson
- Department of Genetics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Program of Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, University of Strasbourg, Illkirch 67400, France
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
197
|
Abstract
Most of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) may affect normal gene expression and disease progression, making them a new class of targets for drug discovery. Because their mechanisms of action are often novel, developing drugs to target ncRNAs will involve equally novel challenges. However, many potential problems may already have been solved during the development of technologies to target mRNA. Here, we discuss the growing field of ncRNA - including microRNA, intronic RNA, repetitive RNA and long non-coding RNA - and assess the potential and challenges in their therapeutic exploitation.
Collapse
Affiliation(s)
- Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| |
Collapse
|
198
|
Gass JM, McKay J, Guthrie KJ, Boczek N, Atwal PS, Van Gerpen J. A Case of Two Repeats: Huntington's Disease and Spinocerebellar Ataxia Type 8. Mov Disord Clin Pract 2017; 4:270-272. [DOI: 10.1002/mdc3.12401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jennifer M. Gass
- Center for Individualized Medicine Mayo Clinic Jacksonville Florida USA
| | - Jake McKay
- Department of Neurology Mayo Clinic Jacksonville Florida USA
| | - Kimberly J. Guthrie
- Center for Individualized Medicine Mayo Clinic Jacksonville Florida USA
- Department of Clinical Genomics Mayo Clinic Jacksonville Florida USA
| | - Nicole Boczek
- Division of Biomedical Statistics and Informatics Mayo Clinic Rochester Minnesota USA
| | - Paldeep S. Atwal
- Center for Individualized Medicine Mayo Clinic Jacksonville Florida USA
- Department of Clinical Genomics Mayo Clinic Jacksonville Florida USA
| | - Jay Van Gerpen
- Department of Neurology Mayo Clinic Jacksonville Florida USA
| |
Collapse
|
199
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
200
|
Yum K, Wang ET, Kalsotra A. Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr Opin Genet Dev 2017; 44:30-37. [PMID: 28213156 DOI: 10.1016/j.gde.2017.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/11/2016] [Accepted: 01/13/2017] [Indexed: 01/29/2023]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease primarily characterized by myotonia and progressive muscle weakness. The pathogenesis of DM involves microsatellite expansions in noncoding regions of transcripts that result in toxic RNA gain-of-function. Each successive generation of DM families carries larger repeat expansions, leading to an earlier age of onset with increasing disease severity. At present, diagnosis of DM is challenging and requires special genetic testing to account for somatic mosaicism and meiotic instability. While progress in genetic testing has been made, more rapid, accurate, and cost-effective approaches for measuring repeat lengths are needed to establish clear correlations between repeat size and disease phenotypes.
Collapse
Affiliation(s)
- Kevin Yum
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA.
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|